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Abstract 

               This thesis illustrates the behaviour of cellulose ethers during powder processing, 

compaction and drug release, as these are frequently employed in the fabrication of 

compressed hydrophilic matrices. The handling operations can give rise to the electrification 

of powder particles, which can affect the end product‘s quality. Controlling the parameters 

which can dictate the quality of compressed matrices is an ambition inherent in the 

development of pharmaceutical formulations. Thus, the aims and objectives of this thesis 

were to firstly study the electrostatic, surface adhesion, dissolution and compaction properties 

of plain polymers and model drugs. Secondly, binary mixtures of fixed drug to polymer ratios 

were made in order to investigate the effect of polymer concentration and physico-chemical 

attributes (particle size, chemistry and viscosity) on the tribo-electric charging, surface 

adhesion (SA), swelling, erosion, drug release kinetics and compaction properties of model 

drugs.  

              It can be discerned that the both drugs charged negatively, whereas the 

methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) particles charged 

positively. The physico-chemical properties associated with MC and HPMC, such as particle 

size, chemical heterogeneity and molecular size of cellulose ethers all have a significant 

effect on charging and adhesion behaviour of plain MC and HPMC particles. Moreover, the 

concentration, particle size, chemical heterogeneity and molecular size of MC/HPMC all 

significantly affect the charging and SA propensity of the model drugs studied.  

             The swelling and dissolution results confirm that the extent and rate of swelling, 

swelling exponent, dissolution rate and drug release kinetic parameters were affected by 

physico-chemical attributes (concentration, particle size, substitution and viscosity) of 

MC/HPMC and drug solubility. The mechanism of swelling and drug release was found to be  

anomalous. However, it inclined towards more diffusion-oriented swelling/drug release with 

higher MC/HPMC levels, viscosity, Hpo/Meo substitution ratios, drug solubility but smaller 

MC/MC particle size. 

             The matrix erosion results obtained from newly developed phenol-sulphuric acid 

assay (PSA) method confirmed that the solubility of the drug, and levels of HPMC in a 

particular matrix tablet, significantly affect the matrix erosion rate and the results were 

similar to those determined using the much more labour-intensive gravimetric method. 

Moreover, the combination of conventional UV drug analysis technique and PSA assay can 

be used to simultaneously quantify the matrix erosion, polymer dissolution and drug release 

kinetics in a single set of experiments avoiding the need for separate studies. 

             The compaction results confirmed that the FBP has poor compaction as compare to 

THP. The particle size, substitution ratios and molecular size of MC/HPMC affect the 

compaction and consolidation behaviour of plain MC/HPMC compacts. Furthermore, it can 

be noticed that the concentration and physico-chemical attributes (particle size, chemistry and 

molecular size) of MC/HPMC have a significant influence on the densification and 

consolidation process of hydrophilic matrices.  

             In summary, the information obtained can be used in the future to develop and adopt 

strategies for development and further optimization of compressed hydrophilic matrices. 
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1- Introduction 

1.1- Cellulose ethers 

 

Over the past few decades, the application of polymers in the science of drug delivery has led 

to the development of numerous polymer-based drug delivery systems (Wen et al., 2010). 

Among them, hydrophilic cellulose ethers are unarguably the most frequent and widely used 

polymers, and are usually manufactured through etherification of cellulose (Maderuelo et al., 

2011). Cellulose is an abundantly occurring biopolymer and there are many sources 

considered suitable for cellulose ether manufacturing. These include seed fibres (cotton), 

wood fibres, bast fibres, grasses, algae and bacteria, however, cotton seed and wood fibres 

are considered to be the prime and more reliable sources (Craver and Carraher, 2000). 

Cellulose is a polysaccharide made up of glucose units with an empirical formula C6H12O6 

and sometimes designated as a beta-D-glucopyranose or anhydroglucose unit (AGU). These 

units usually hooked together through a condensation reaction to form a cellulose molecule 

(Figure 1.1). It is insoluble in water and its poor solubility is considered to be linked 

primarily with the strong inter- and intra-molecular hydrogen bonding between the individual 

polymer chains. Despite its poor solubility, it is used in range of applications including 

netting, composites, upholstery, coatings and paper. Moreover, chemical modification can be 

performed to produce different derivatives suited for specific pharmaceutical applications 

(Feller and Wilt, 1991; Wertz et al., 2010).  
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Figure 1.1, Structure of cellulose 

 

In 2000, the net global consumption of cellulose ethers was estimated to be 371,000 tonnes, 

with a total world market of nearly $2.0 billion. An overall average growth rate of 3.5 % per 

year is expected for all cellulose ether products in 2012–2018. In Asia, the lowest growth is 

expected in Japan, while China will lead global growth. The regions with the largest current 

consumption are Europe and China with an annual growth rate of 2.0 % and 4.6 %, 

respectively (SRI, 2013). Their popularity can be attributed to their non-toxic and 

biocompatible properties, with some even being approved as direct food additives (Alderman, 

1984).  

The only considerable recognised risk related to cellulose ethers utilization is that they may 

form flammable dusts when finely divided powder particles are suspended in air. An 

explosion may result if suspended dust contacts an ignition source. Cloud and layer ignition 

temperatures generally vary between 290 and 410
 °
C and critical airborne concentrations vary 

depending on particle size. This hazard can be minimized largely through good housekeeping 
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and proper design and operation of handling equipment (NFPA, 1986). Another minor hazard 

is associated with water-soluble cellulose ether powders as they have a tendency to form a 

slippery surface when wet; therefore spills should be cleaned immediately in the working 

area to avoid slipping mishaps. 

1.2- Manufacturing of cellulose ethers 

In 1912 the first experimental work was conducted to produce useful derivatives of cellulose. 

Firstly, methyl and ethyl derivatives were manufactured but soon after that 

carboxymethylcellulose (CMC) and hydroxyethylcellulose (HEC) were produced (Worden, 

2011). In 1920s, Germany started to produce these cellulose ethers on a commercial scale, 

however, in United States commercial production was started in 1930s. The presence of 

hydroxyl groups in cellulose structure gave a hope to organic chemists that it could be 

converted to useful derivatives and since then, there have been much advancement in the 

preparation methodologies (Kroschwitz and Seidel, 2007; Mark, 2014; Worden, 2011). The 

building blocks of cellulose are AGUs bound through ß-1,4-glycosidic linkages (Figure 1.1). 

The AGU rings contain three hydroxyl groups, a primary hydroxyl at the C- 6 position and 

two secondary groups at the C- 2 and C- 3 positions. In the native state the chains are linked 

together by strong inter- and intra-molecular bonds and as a result cellulose is not water 

soluble (Wertz et al., 2010). For manufacturing of cellulose ethers, the irreversible 

nucleophilic substitution reaction is commonly employed and its simplified form can be 

expressed as shown in scheme 1.1 (Trimm, 2011). 

 

 (1.1) 

 

Where other organic radicals are represented by R, such as methyl (- CH3), ethyl (- C2H5), 

hydroxypropyl (- CH2 CH (OH) CH3) or any other complex moiety. 



 
5 

 

Cellulose ethers are commonly manufactured on a commercial scale by reaction of purified 

cellulose with alkylating reagents, usually in the presence of a base (sodium hydroxide) and 

an inert diluent (acetone or propanol) (Salamone, 1996). The combination of water and base 

activates the cellulose matrix by disrupting hydrogen-bonded crystalline regions, thereby 

increasing accessibility to the alkylating reagent and this activated matrix is termed  ‗alkali 

cellulose‘ (Mark, 2014). Methylcellulose (MC) is usually produced by methylation of alkali 

cellulose through methyl halide, as shown in scheme 1.2: 

 

 

                          RCell-O 
-
  + CH3-X    →    R Cell – O – CH3 + X 

-                
               (1.2) 

 

Where, RCell-O- is ‗alkali cellulose‘ and RCell-O-CH3 is methylcellulose. 

 

Hydroxypropyl methylcellulose (HPMC), a mixed cellulose ether, is prepared by reaction of 

mixtures of methyl chloride and propylene oxide with alkali cellulose (CH3 CH CH2O) as 

shown in scheme 1.3; 

                        

                Rcell- O 
-
 +   CH3 CH CH2O →  Rcell-O-CH2CH(OH)CH3 + NaOH       (1.3) 

 

 

Where, Rcell-O-CH2CH(OH)CH3 is hydroxypropyl methylcellulose. 

 

 

The ratios of methyl and hydroxypropyl groups can be controlled by changing the 

concentration of the reactants (România, 1995). To make this complex manufacturing process 

more commercially reliable and robust, different types of reagents can be added.  Likewise 

inert diluents are frequently used in these processes which firstly suspend/disperse the 

cellulose, provide heat transfer, moderate reaction kinetics, and facilitate recovery of the 
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product. Secondly, the diluent can facilitate the reagents‘ distribution which might lead to 

uniform reaction (Yokota, 1985). Moreover, these reactions are typically conducted at 

elevated temperatures (∼50–140
◦
C), under nitrogen, to inhibit oxidative molecular weight 

degradation of the polymer (Kroschwitz and Seidel, 2007). After reaction, crude grades are 

simply dried, ground, and packed; however, purified grades require eradication of by-

products before drying. Low concentrations of colloidal silica can be added to some products 

prior to drying or before packaging to improve handling operations (Mark, 2014; Worden, 

2011). A schematic outline of the manufacturing process is illustrated in Figure 1.2.   

 

 

 

 

 

 

 

 

 

 

Figure 1.2, Schematic outline of cellulose ether manufacturing process (Mark, 2014) 

 

1.3- Derivatives of cellulose ethers 

Cellulose ethers are a commercially important class of polymers and their properties are 

generally determined by their molecular weights, distribution of the substitution groups and 

degree of substitution. Moreover, their important intrinsic properties usually include 

solubility, viscosity and stability against biodegradation, hydrolysis and oxidation. Examples 
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of mostly used cellulose ethers are: methylcellulose (MC), hydroxypropyl methylcellulose 

(HPMC), hydroxyethylcellulose (HEC), hydroxypropyl cellulose (HPC), ethylcellulose (EC) 

and sodium carboxymethylcellulose (NaCMC). However, MC and HPMC are most 

frequently employed candidates in pharmaceutical controlled release matrix systems (Wen et 

al., 2010). A general chemical structure of cellulose ethers with their respective substituents 

(R) is shown in Figure 1.3. 

 

 

 

                                  Cellulose ether                            Substituents (R) 

                                          MC                                            -H, -CH3 

                                          HPMC                                      -H, -CH3, -CH2CH(OH)CH3 

                                          HPC                                          -H, -CH2CH(OH)CH3 

                                          EC                                             -H, -C2H5 

                                         HEC                                           -H, -CH2CH2OH 

                                         NaCMC                                     -H, -CH2COONa 

 

Figure 1.3, Structure of cellulose ethers 
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1.3.1- Methylcellulose  

Methylcellulose is a long chain, linear, non-ionic and substituted cellulose in which almost 

27–32 % of parent hydroxyl groups are in the form of the methyl ether (Mark, 2014). 

Methylcellulose is an odourless, tasteless, white, fibrous granular powder which is practically 

insoluble in acetone, chloroform, methanol, ethanol (95%), ether, saturated salt solutions, 

toluene, and hot water. In cold water, methylcellulose swells and disperses slowly to form a 

clear to opalescent, viscous and colloidal dispersion ( Rowe et al., 2012).
  

The various grades of methylcellulose have degrees of polymerization in the range 50–1000, 

with molecular weights (average number) in the range of 10 000 – 220 000 Da. The degree of 

methylcellulose substitution is defined as the average number of methoxyl (- OCH3) groups 

attached to each of the AGUs along the chain. The degree and levels of substitution affect the 

physical properties of methylcellulose, including its solubility.  MC contains a two-fold helix 

conformation similar to cellulose, however, the integration of - OCH3 groups on glucose 

monomer induce steric hindrance which in turn opens up the cellulose backbone 

(Embuscado, 2014) resulting in an ability to dissolve in cold water (Sarkar and Walker, 

1995).  

MC is available commercially from a number of sources; grades in this thesis were from Dow 

Chemical Company. The first part of the trade name (A) is indicative of its chemistry which 

is followed by an indication of the viscosity of an aqueous 2% w/w solutions (cps) at 20
 °

C, 

with a multiplier of 100 (denoted by the letter C) or 1000 (denoted by the letter M). A final 

suffix identifies the grade of the material, such as premium (P), low viscosity (LV), 

controlled release (CR), granular (G), surface treated (S) or food grade (FG) (Dow, 2006). 
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1.3.2- Hypromellose (Hydroxypropyl methylcellulose, HPMC) 

Hydroxypropyl methylcellulose (HPMC) is a semisynthetic, inert, viscoelastic polymer used 

as an excipient in pharmaceutical formulations and a controlled-delivery component in oral 

medicaments (Wertz et al., 2010).
 
It is a non-ionic, odourless, tasteless, white or creamy-

white fibrous or granular powder. It is soluble in cold water, forming a viscous colloidal 

solution; practically insoluble in hot water, chloroform, ethanol (95%), and ether, but soluble 

in mixtures of ethanol and dichloromethane, mixtures of methanol and dichloromethane, and 

mixtures of water and alcohol. It is available in several grades that vary in viscosity and 

extent of substitution ( Rowe et al., 2012).   

HPMC also contains a two-fold helix conformation similar to MC and cellulose but the 

presence of - OCH3 and hydroxypropoxy groups (- CH2CH(OH)CH3 ) on AGUs induce steric 

hindrance which opens up the cellulose backbone in a similar manner to MC. This  

modification in chemical structure of HPMC also confers the  ability to dissolve in cold water 

same (like MC, as described earlier in section 1.3.1) (Embuscado, 2014). However, the 

presence of different levels of -CH2CH(OH)CH3  groups in various HPMC grades affects 

their gelation behaviour (Sarkar and Walker, 1995). HPMC produces strong films but these 

are not as strong as those produced using MC because MC has a linear structure and non-

ionic nature, ideal for inter-polymer association which is necessary for films development. 

However, in case of HPMC the -CH2CH(OH)CH3 groups result in a greater level of steric 

hindrance which keeps these HPMC polymeric chains further apart compared to MC 

(Embuscado, 2014).  

Many commercial hypromelloses are identified by codes. For instance, for those 

manufactured by the Dow Chemical Company, the first part of the nomenclature is a letter 

(E, F or K) that relates to the degree of substitution. The K grades (hypromellose 2208) have 

a methoxy substitution of 19– 24% and a hydroxypropyl substitution of 7–12%. F grades 

http://en.wikipedia.org/wiki/Semisynthesis
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Excipient
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(hypromellose 2906) have a methoxy substitution of 27–30% and a hydroxypropyl 

substitution of 4.0– 7.5%. E grades (hypromellose 2910) have a methoxy substitution of 28–

30% and a hydroxypropyl substitution of 7–12% (Dow Commercial Information 2002). This 

first letter is followed by an indication of the viscosity of their aqueous 2% w/w gels (in 

centipoises) at 20 
°
C, with a multiplier of 100 (denoted by the letter C) or 1000 (denoted by 

the letter M). A final suffix identifies the grade of the material, such as premium (P), low 

viscosity (LV), controlled release (CR), granular (G), surface treated (S) or food grade (FG). 

Controlled-release dosage forms mainly use the K or E grades of hypromellose (Dow, 2006). 

1.4- Pharmaceutical applications of MC and HPMC 

Methylcellulose (MC) and hypromellose (HPMC) are used extensively in the pharmaceutical 

industry for a wide range of purposes. 

(i) Applications in pharmaceutical coating 

Pharmaceutical solid dosage forms like tablets, pellets, pills, beads, granules and 

microcapsules are often coated for various reasons such as protection of sensitive drugs from 

humidity and inappropriate environmental conditions, taste masking or enabling site or time 

specific release characteristics (Wen et al., 2010). MC and HPMC are generally hydrophilic, 

having excellent film-forming characteristics and are widely used for coating solid dosage 

forms (Banker et al., 1981; Entwistle and Rowe, 1979). Lower molecular weight grades of 

MC and HPMC tend to be employed for coating tablets and granules. Film properties have 

been shown to be affected by the molecular weight of the polymer with higher molecular 

weight polymers producing harder and less elastic films (Fukui et al., 2000; Macleod et al., 

1999; Pradhan et al., 2014). 

(ii) Ophthalmic applications 

MC and HPMC are used as stabilizers and thickeners for ophthalmic solutions (eye drops and 

contact lens solutions) and ointments (Jansook et al., 2014). The MC and HPMC reduce 
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surface tension which improves wetting and spreading of the solution over the surface of the 

eye (Kaur et al., 2000; Liu et al., 2006). 

(iii) Applications as tablet binders 

Wet granulation is an important tableting process in which drug substance is combined with 

other excipients and processed using solvent (aqueous or organic) with subsequent drying and 

sieving to produce uniform granules (Chowhan, 1980). The strong binding properties 

exhibited by MC and  HPMC enable their utilization in granule preparation in moist and dry 

granulation formulations, to produce harder tablets upon compression (Itiola, 1991). 

(iv) Applications as suspending agents  

MC and HPMC can be used as suspending agents because of their viscosity enhancing 

properties. Choice of the optimum concentration and viscosity grade is vital, as too high a 

polymer concentration can cause gelling and failure of the sedimented particles to redisperse 

(Raghavan et al., 2003). 

(v) Applications as emulsifying agents 

Cellulose ethers, especially MC and HPMC, act to stabilize an emulsion by forming a 

multimolecular film around the dispersed globules at the oil/water interface. They can also 

increase the viscosity of the continuous phase of an o/w emulsion. Lower molecular weight 

MC and HPMC were found to be better emulsifying agents than higher molecular weight 

grades because of their polymer chain flexibility (Schulz and Daniels, 2000; Wollenweber et 

al., 2000).  

(vi) Applications as extended release (ER) solid dosage form excipients 

Matrices are very simple and efficient systems for controlling drug release from dosage 

forms. Cellulose ethers, in particular MC and HPMC, are widely used to develop ER 

hydrophilic matrices due to their good compression properties (Maderuelo et al., 2011; Wen 
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et al., 2010).  Varying concentration of MC and HPMC can be used to delay or control the 

drug release profiles regardless of their solubility characteristics, however, the relative 

solubility of the drug can affect the release mechanism; water soluble drugs  are released 

mainly by diffusion but poorly water soluble drugs are released predominantly by erosion  

(Ghori et al., 2014b; Li et al., 2005).  

(ix) Applications as compressibility enhancers 

Almost 80 % of pharmaceutical products are administered in the form of tablets.  There are 

different ways of tablet manufacturing but direct compression is a straight forward, simple 

and fast tablet compression technique. This method commonly used for tableting of medium 

to high potency drugs where the drug contents are less than 30 % of the formulation (Jivraj et 

al., 2000). One of the common difficulties in direct compression and dry granulation is poor 

compaction properties of drugs, especially when the amount of drug in tablet formulation is 

more than 30 %.  So, in these scenarios an efficient compressibility enhancer can help in the 

development of tablets having acceptable pharmaceutical characteristics.  All of the cellulose 

ethers have good compaction properties and these can significantly improve compressibility 

of poorly compactable powder mixtures (Shokri and Adibkia, 2013). 

(x) Applications as tablet fillers 

MC and HPMC can be used as fillers in pharmaceuticals solid dosage forms because of their 

compatibility with the most of the other pharmaceutical excipients and drugs. Furthermore, 

neither of  these polymers cause any irritancy to any part of gastrointestinal tract (GIT) 

(Shokri and Adibkia, 2013).  

(xi) Applications as disintegrants 

Solid oral dosage forms, specifically tablets, go through several steps before the drug reaches 

the systemic circulation. Among these, disintegration is the key initial step which starts 

immediately after administration and breaks up the dosage forms into smaller fragments in an 
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aqueous environment (Esezobo, 1989). MC and HPMC, in low concentrations, can be used as 

disintegration agents (Rowe et al., 2012). 

(xii) Miscellaneous pharmaceutical applications 

Other pharmaceutical applications of MC include use as a bulk laxative and HPMC  can be  

an alternative to gelatin in the manufacturing of hard-shell medicinal capsules (Sarkar, 1979). 

MC and HPMC have also been reported to have applications as a contraceptive as they have 

the ability to immobilize human sperm ( Hofmann and Steiner, 1980; Loewit, 1977; Oyelola 

et al., 1987). 

1.5-   Profiles of model drugs 

1.5.1- Flurbiprofen   

Flurbiprofen (FBP) is a propionic acid derivative, first synthesized in 1974 during the 

pharmacological testing of substituted phenylalkanoic acid and the most potent was 

substituted 2- (4-biophenyl) propionic acid (Lemke and Williams, 2012). It was initially 

marketed as a sodium salt for topical ophthalmic use in 1987 in United States. However, the 

first oral form of FBP (Ansaid
®
) was introduced in 1988.  It is a white crystalline powder, 

practically insoluble in water, (variously reported as 0.034 mg/ml (Tavornvipas et al., 2002), 

0.008 mg/ml (Yalkowsky et al., 2010) and 0.024 mg/ml (Maitre et al., 2007)), however, it is 

freely soluble in alcohol (Sweetman, 2009). It has a high propensity to electrostatic charging, 

poor compaction and SA properties in comparison to other drugs and pharmaceutical 

excipients (Šupuk et al., 2012; Šupuk et al., 2013). It is a weak acid (pKa = 4.22) (Xu and 

Madden, 2011) and contains a biphenyl group with a fluorine atom in the ortho position (Fig 

1.4).  
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Figure 1.4, Structure of FBP. 

FBP is a non-steroidal anti-inflammatory drug (NSAID), a group of drugs that have 

analgesic, anti-inflammatory, and antipyretic effects.  NSAIDs inhibit cyclooxygenase (COX) 

and which is in turn responsible for the inhibition of biosynthesis of prostaglandins (PG) and 

thromboxanes from arachidonic acid (Katzung, 2007). It undergoes entero-hepatic circulation 

and extensively metabolised by phase-I and phase-II biotransformation reaction. It is recanted 

as a non-selective cox inhibitor as it inhibits both types of COX (COX-1 and COX-2) 

enzymes. Its anti-inflammatory action is more effective than ibuprofen as it inhibits both 

PGE2 and PGF2. However, inhibition of COX-1 is related to the toxic effects associated with 

GIT (August et al., 1996). It is available in 50 and 100 mg tablets and indicated for acute or 

chronic osteoarthritis, and rheumatoid arthritis (BNF, 2014). The most prominent adverse 

effect related to NSAIDs is their toxicity prevailing in long term GIT intolerance and 

ulceration.  The commonest adverse effects of FBP are generally GIT disturbances, such as 

GIT discomfort, nausea, and diarrhoea; these are usually mild and reversible but in some 

patients, peptic ulceration and severe GIT bleeding may occur. However, FBP is generally 

better tolerated compared to aspirin with low incidence of hepatic toxicity.  Like other 

NSAIDs it is contraindicated for patients suffering from nasal polyps, rhinitis, angioedema, 

asthma, bronchospasm and allergy to FBP (Atkinson et al., 2012; Bennett et al., 2012) .   
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1.5.2- Theophylline 

Theophylline (THP) is a methyl xanthine belonging to xanthine family. It was extracted from 

tea plant leaves and its chemical identification was carried out in 1888, moreover its 

commercial synthesis was started in 1895. THP was firstly marketed as a diuretic drug but 

later its anti-asthmatic action was established.  In 1970s it was introduced to the market as a 

liquid syrup (Rheostat
®
 20 and Rheostat

®
 80) but in 1980s the first oral tablet (Quiroz

®
) was 

introduced in United States (Lemke and Williams, 2012). It is a white, odourless, crystalline 

powder which is slightly soluble in water, 8.3 g/L, (Yalkowsky et al., 2010), sparingly 

soluble in alcohol,  chloroform, and ether but freely soluble in solutions of alkali hydroxides 

and in ammonia (Sweetman, 2009). Chemically, it is 1,3-dimethylxanthine and contains an 

acidic and basic nitrogen at N-7 and N-9, respectively (Fig. 1.5). It has good compaction and 

electrostatic properties in comparison to FBP (Asare-Addo et al., 2013b;Šupuk et al., 2012; 

Šupuk et al., 2013). 

 

 

 

Figure 1.5, Structure of THP. 

Although THP is considered among the pioneering drugs developed for the treatment of 

asthma and chronic obstructive pulmonary disease (COPD), its precise mode of action is still 

ambiguous. The main possibilities include non-selective phosphodiesterase inhibition and 

antagonistic effects of adenosine. It undergoes n-methylation due to cytochrome P450 1A2 

and is extensively metabolised in liver (Atkinson et al., 2012; Katzung, 2007). It is indicated 

http://en.wikipedia.org/wiki/Cytochrome
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in reversible airways obstruction, severe acute and chronic asthma. However, it should be 

avoided in peptic ulcer, hypertension and cardiac diseases. Nausea, vomiting, insomnia, 

gastric irritation, tachycardia and palpitation are the typical adverse effects associated with 

THP (Craig and Stitzel, 2004). 

1.6- Aims and objectives  

The aims of this thesis were to understand the tribo-electrification, swelling, erosion, 

dissolution and compaction properties of MC and HPMC matrices containing model poorly 

soluble and soluble drugs, as summarised below (Figure, 1.6). 

1.6.1- Tribo-electrification and adhesion studies 

1. To investigate the tribo-electrification and adhesion properties of MC and HPMC 

powders. 

2. To study the impact of polymeric attributes such as particle size fractions, substitution 

levels and molecular size (viscosity) on tribo-electric and adhesion properties. 

3. To study the tribo-electrification and adhesion properties of model drugs. 

4. To study the impact of varying proportions and physical attributes of MC and HPMC 

on tribo-electric and adhesion properties of model drugs.   

1.6.2- Swelling, erosion and dissolution studies 

1. To study the swelling and erosion properties of MC and HPMC matrices. 

2. To study the impact of polymeric attributes such as particle size fractions, substitution 

levels and molecular size (viscosity) on the swelling and erosion properties. 

3. Determination of intrinsic dissolution rate (IDR) for model drugs. 
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4. To study the impact of varying proportions and physical attributes of MC and HPMC 

on swelling, erosion and dissolution properties of hydrophilic matrices.   

5. Development, characterisation and validation of phenol-sulphuric acid assay (PSA) 

based erosion determination technique for hydrophilic matrices. 

1.6.3- Compaction studies 

1. To study the compaction, compression and relaxation properties of MC and HPMC 

matrices. 

2. To study the impact of polymeric attributes such as particle size fractions, substitution 

levels and molecular size (viscosity) on compaction, compression and relaxation 

properties of MC and HPMC. 

3. To study the compaction, compression and relaxation properties of model drugs. 

4. To study the impact of varying proportions and physical attributes of MC and HPMC 

on compaction, compression and relaxation properties of model drugs.   
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Figure 1.6, Outline of aims and objectives of thesis. 
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2- General experimental  
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2- General experimental  

2.1-Materials 

2.1.1- Cellulose ethers 

Methylcellulose, MC, (Methocel
®
 A4M) and hydroxypropyl methylcellulose, HPMC, 

(Methocel
®
 F4M  E4M, K4M, K15M and K100M) were donated by Colorcon Ltd. (Dartford, 

UK) and their specifications are listed in Table 2.1.  

2.1.2- Model drugs 

Flurbiprofen (FBP) and theophylline (THP) were purchased from Aesica Pharmaceutical Ltd, 

Cramlington, UK and Tokyo Chemical Industry Ltd, UK, respectively. A detailed description 

of both the drugs is given in section 1.5.  

2.1.3- Buffering agents 

Disodium hydrogen orthophosphate (Na2HPO4) and sodium dihydrogen orthophosphate 

(NaH2PO4) salts were purchased from Fisher Scientific, UK for the preparation of pH 7.2 

sodium phosphate buffer.   
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Table 2.1,   Specifications of methylcellulose (MC) and hypromellose (HPMC) 

a Data obtained from the manufacturer. 

 

2.2-Methods 

2.2.1- Preparation of sodium phosphate buffer, pH 7.2 

De-ionized (DI) water was used to prepare pH 7.2 (0.2 M) sodium phosphate buffer solutions 

using disodium hydrogen orthophosphate (Na2HPO4), and sodium dihydrogen orthophosphate 

(NaH2PO4) salts.  

2.2.2- Saturated solubility determination of model drugs 

Saturated solubility of FBP and THP was determined at ambient temperature (22-24 
°
C) using 

sodium phosphate buffer pH 7.2. An excess amount of the drug was added to 100 ml of 

medium and stirred for 48 hours before extracting a 5 ml aliquot with a plastic syringe fitted 

with 0.45 μm PTFE syringe filter. The concentrations of FBP and THP were determined using 

UV spectrometry at maximum wavelength (λmax) 247 and 272 nm for FBP and THP, 

respectively. The equations derived from the standard calibration curves (Table 2.2) for both 

the model drugs were subsequently used to determine drug concentration. 

 

 

Methocel
®
 

grade 
Methoxy 

(Meo) (% w/w) a 

Hydroxypropyl 
(Hpo) (% w/w) a 

Hpo/Meo 

ratio 

Total  

substitution 
(% w/w) 

Viscosity 
(cps) a 

molecular 

weight 

g/mol
 a
 

A4M 30 0 0 30 4878 ~86000 

F4M 28.1 6.7 0.238 34.8 4031 ~90000 

E4M 29.0 8.3 0.286 37.3 3919 ~92000 

K4M 22.3 8.5 0.381 30.8 4351 ~88000 

K15M 22.3 9.0 0.403 31.3 17129 ~125000 

K100M 22.5 8.9 0.395 31.4 79279 ~215000 
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Table 2.2,   Equations derived from standard calibration curves of model drugs.  

 

Model drug Wavelength (nm) Equation 
a
 

Co-efficient of determination 

(R
2
) 

FBP 247 y = 0.0829 x - 0.012 0.9991 

THP 272 y = 0.0559 x + 0.016 0.9995 
a y and x represent the absorbance and concentration of FBP or THP (mg/ml), respectively. 

 

 

2.2.3- Particle size fractionation and storage of powders 

Particle size fractions of each polymer (90-150 µm and 150-250 µm) and drug (38-63 µm) 

were obtained by mechanical sieving. Powder sample of 25 g was used and sieves were 

assembled in decreasing aperture size and agitated for 30 minutes using Endecotts Test Sieve 

Ltd. Moreover, all the powders were stored at ambient temperature (18-24 
°
C) and humidity 

(RH 36-44 %) before any further investigation. 

2.2.4- Characterisation of powders 

2.2.4.1- Surface morphology of powder particles 

The surface morphology of all the Methocel
®
 grades (MC/HPMC), model drugs and their 

respective binary powder mixtures was imaged using scanning electron microscopy (SEM). 

Dry samples were mounted onto stubs using double sided adhesive tape and were sputter-

coated with gold/palladium (80:20) for 60 seconds by using Quorum SC7620 Sputter Coater. 

The coated samples were individually placed on the specimen holder of the SEM (Jeol JSM-

6060CV) under vacuum and image formed was viewed directly on attached computer and 

recorded photographically. 

2.2.4.2- Determination of true density 

The true density of solids is an intrinsic property and expressed as mass per unit volume          

(g cm
-3

), exclusive to all the inter-particulate voids which are not a fundamental part of the 

molecular packing arrangement. The true density of all the Methocel
®
 grade polymers, model 
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drugs and their respective binary powder mixtures  was determined  (n = 10), using AccuPyc 

1340 II Pycnometer (Micromeritic, UK) employing helium as an inert gas. The helium 

pycnometer determined the volume occupied by the known mass of powder sample by 

measuring the volume of displaced helium gas by the particular mass of powder sample.  

 

 

 

 

 

 

 

 

Figure 2.1, Helium pycnometer 

 

2.2.4.3- Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) has been the most frequently used thermal analysis 

technique, mainly because of its promptness, simplicity and wide range of applications. In this 

study DSC (Mettler Toledo SC 821) analysis for all the powder samples (plain drugs, polymers 

and their respective powder mixtures) was performed using 5 – 10 mg of powder samples in an 

atmosphere of flowing nitrogen at 50 mL per minute and temperature program of 10 °C/min 

from  20 °C to 300 °C.  

2.2.4.4- Powder X-ray diffraction (PXRD) 

In this study the powder X-ray diffraction study of all the powder samples (plain drugs, 

polymers and their respective powder mixtures) was carried out by using D2-Phase (Bruker) X-
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ray diffractometer, equipped with a Cu Kɑ radiation source at 30 KV voltage and 10 mA 

current. Diffraction patterns were obtained in the 2θ range of 5-100° using 0.02 step sizes.  

2.2.5-Tribo-electrification and powder surface adhesion studies 

2.2.5.1- Preparation and storage of powder mixtures 

 

Binary powder mixtures were fabricated by using model drugs (THP and FBP) and different 

Methocel
®

 grades (90 - 150 µm and 150-250 µm),  at a fixed  polymer to drug ratios of 0.5 , 1 , 

2.5 , 5, 10 and 15 % w/w. The powder samples were blended in bespoke tumble mixer for 20 

minutes (50 rpm) and  to ensure a homogeneous powder mix and random samples of 10 mg 

were taken from each batch (n=3) and dissolved in 100 ml of 7.2 pH phosphate buffer. The 

drug content was determined using UV-Vis Spectrophotometry (Jenway 6305, UV-VIS 

spectrophotometer). The equations listed in Table 2.2 were used and an acceptance limit of  

95-105 %  was set (BP, 2012).   

2.2.5.2-Tribo-electrification  

Tribo-electric charge to mass ratio (Q/M) was determined using an electrostatic charge 

measurement apparatus, based on a shaking concept, Figure 2.2,  (Šupuk et al., 2009).  Powder 

sample (~ 0.1 g) was placed inside a stainless steel cylindrical container (10 ml) and shaken in 

a horizontal direction (Retsch MW 4000) for 0.5, 2, 5 and 10 minutes at a vibration frequency 

of 20 Hz. The charged powder particles were then poured into a Faraday cup, connected to an 

electrometer (Keithley Model 6514). A  Faraday cup comprises two concentric cups made up 

of a conducting material. The outer cup is slightly larger and acts as an electrical shield and it 

is covered by a lid. Both are very important to prevent the effect of any extraneous electric 

fields. The inner cup is directly attached to an electrometer for charge measurement and can be 

removed to measure the weight of the sample retrieved. The two cups are separated by a 

polytetrafluoroethylene (PTFE) insulator. As charged samples are loaded into the inner 

Faraday cup, this induces an equal but opposite charge on the wall of inner Faraday cup, 
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providing the net charge on the object (Šupuk et al., 2013). The resolution of the charge 

measurement was in nano-coulombs (nC). The charge to mass ratio (Q/M) was calculated by 

dividing the final charge by the final mass of the respective powder. Each tribo-electric 

charging test was repeated three times and the shaking container was cleaned between each test 

by washing with isopropyl alcohol to remove any residual deposits, impurities and surface 

charges. Studies were carried out at an ambient temperature (18-24 
°
C) and humidity (RH 36-

44 %). Maximum charge acquisition data were presented as a charge to mass ratio (Q/M) at the 

end of each tribo-electrification experiment (n= 3). 
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Figure 2.2, Tribo-electric charging measurement set up (Šupuk et al., 2009) 
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2.2.5.3- Surface adhesion (SA) of powder particles  

During powder processing, powder particles can adhere to equipment surfaces, resulting in 

losses through deposition but it may also cause changes in their proportionalities. Particle 

adherence to the surface of the stainless steel container used in the tribo-electrification studies 

was calculated from mass difference by deducting the final amount recovered (post shaking 

and tapping) from the initial amount of sample loaded into the shaking vessel (Šupuk et al., 

2012) and  powder mass loss was reported as a percentage (%) powder adhesion. 

2.2.5.4- Statistical analysis 

One way analysis of variance (ANOVA) (confidence limit of P < 0.05) was used to 

investigate the statistical significance of different underlying factors on tribo-electrification 

and adhesion properties of polymers and their blends with FBP.  

2.2.6- Swelling and erosion studies 

2.2.6.1- Preparation and storage of powder mixtures  

Binary powder mixtures of Methocel
®

 polymers and model drugs for swelling, erosion and 

dissolution studies were prepared at a fixed polymer to drug ratio of 5, 10 and 15 % w/w. The 

powder samples were mixed and furthermore the respective drug contents were quantified by 

using the method described in section 2.2.5.1. For drug content uniformity an acceptance limit 

of 95-105 % was set (BP, 2012), as described earlier. Furhermore, all the powder blends were 

stored at ambient temperature (18-24 
°
C) and humidity (RH 36-44 %) before any further 

investigations. 
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2.2.6.2- Tableting of Methocel
®
 polymers 

Tablet matrices of all the  Methocel
® 

grades (MC/HPMC) were prepared using a Specac
®
 

manual hydraulic press GS25011  (Specac
®

 Ltd, UK) equipped with 13.00 mm evacuable die 

set (Specac
®
  Ltd, UK), Figure 2.3. The matrix tablet weight was adjusted to 300 (± 2) mg 

which was constantly maintained and a compression pressure of 20 kiloNewtons (kN) with a 

20 second dwell time was used. All the matrices were stored in an airtight container over silica 

gel for 24 h before any further investigation.  

 

 

 

 

 

Figure 2.3, (a) Specac
® 

13.00 mm evacuable die set and (b) Specac
®
 manual hydraulic 

press. 

 

2.2.6.3- Tableting of powder mixtures 

The matrices of all the  Methocel
® 

/ drug powder mixtures (Table 2.5) were prepared using 

Specac
®
 manual hydraulic press GS25011  (Specac

®
 Ltd, UK) equipped with 13.00 mm 

evacuable die set (Specac
®
  Ltd, UK), Figure 2.3. The FBP and THP powder mixtures were 

compacted at 2 tonnes for 3 minutes and 2 tonnes for 1 minute, respectively. Moreover, a 

constant weight of 300 mg (± 2) was constantly maintained and the tablets were stored in an 

airtight container over silica gel for 24 h before any further investigation. 
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2.2.6.4- Swelling and erosion studies 

The swelling studies were carried out for all the matrices using the swelling experimental 

setup shown in Figure 2.4. Initially the matrices were placed on a wire mesh and weighed 

(Wi). Subsequently, these pre-weighed dry matrix tablets were placed in glass petri dishes (17 

mm    45 mm) containing 20 ml of sodium phosphate buffer (pH 7.2) at ambient temperature 

22 - 25 
°
C. At 5, 10,15, 30, 60, 120, 240 and 360 minute intervals, the previously weighed 

wire mesh containing the tablet were removed, lightly blotted with 125 mm filter paper 

(Whatman
®
, UK) to remove excess water, reweighed (Ws) and were rapidly replaced into the 

glass petri dishes . The mean weight was determined for each formulation and degree of 

swelling (S) was calculated using Eq. (2.1) (Ghori et al., 2014a):  

                                                         
     

  
             (2.1)  

Where Wi and Ws are initial dry or swollen matrix tablet weight, respectively, at immersion time 

(t) in the phosphate buffer. The degree of swelling was determined from the mean of three 

replicates and presented as degree of swelling (S, %) against time (t).  

After a swelling period of 360 min these matrices were subsequently dried in a convection 

oven at 50 
°
C. After 24 hours, the tablets were cooled to ambient temperature and then weighed 

until a constant weight had been achieved and this was termed the dried weight. All studies 

were conducted in triplicate (n = 3) and the degree of erosion (E) was calculated using Eq. 2.2.  

 

         
     

  
                 (2.2) 

Where, Wi is the initial weight of the matrix tablets and Wf is the weight of the dried 

matrices. 
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Figure 2.4,  Swelling experimental set up (a) wire mesh (b) glass petri dish (17 mm    45 

mm) 

2.2.6.5- Swelling kinetics 

The mathematical model described by Vergnaud (1993) was applied to the swelling data to 

determine the rate of water uptake. This Vergnaud model has been frequently adopted by 

different authors to evaluate the mechanism of hydrophilic matrix tablet swelling. The 

generalized form of the Vergnaud model is shown in Eq. 2.3 (Ebube et al., 1997; Vergnaud, 

1993): 

                                              (2.3) 

Where,  

M = the amount of liquid transferred 

t = time 

k = the swelling constant, 

n = the mechanism of water uptake, 

Ebube et al. (1997) reported that a value of n < 0.5 is indicative of a diffusion-controlled 

mechanism in which the rate of diffusion is much less compared to the rate of polymer 

relaxation in a matrix tablet. However, when n = 1, water diffuses through the matrix at a 
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constant velocity showing an advancing liquid front marking the limit of liquid penetration 

into the matrix. A value of 0.45 < n < 1 indicates an anomalous behaviour in which diffusion 

of liquid and polymer relaxation are of the same magnitude. 

2.2.7- Dissolution studies  

2.2.7.1- Tableting of model drugs 

Compacts containing only FBP and THP were compacted at 2 tonnes for 3 minutes and 2 

tonnes for 1 minute, respectively. The Specac
®
 manual hydraulic press GS25011 (Specac

®
 Ltd, 

UK) equipped with 13.00 mm evacuable die set (Specac
®
 Ltd, UK, Figure 2.3) was used. 

Moreover, a constant weight of 300 mg (± 2) was constantly maintained and the tablets were 

stored in an airtight container over silica gel for 24 h before any further investigation. 

2.2.7.2- Preparation of powder mixtures 

The powder mixtures were prepared essentially using the same Methocel
®
 concentration and 

mixing parameters described in section 2.2.6.1. 

2.2.7.3- Tableting of powder mixtures 

The tablets of resultant powder mixtures were prepared by adopting a method described in 

section 2.2.6.2.  

2.2.7.4- Determination of intrinsic dissolution rate (IDR)   

The IDRs of all the compacts were fabricated by the methods described in sections 2.2.5.2 

and 2.2.5.3 were determined by using stationary disk method. To determine IDR, the 13 mm 

compacts were fixed in PTFE holders (Figure 2.4) and the edges of the disk were sealed using 

the paraffin wax which was previously melted at 70 
°
C. The fixed tablets were introduced into 

USP apparatus II which was a fully automated assembly, comprising a dissolution bath 

(Pharmatest DT 70), peristaltic pump and UV visible spectrophotometer (Cecil 3201, series 
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3000).  The temperature of the dissolution bath was maintained at 37 
°
C and paddle stirring 

speed of 75 rpm. Sodium phosphate buffer pH 7.2 was used as the dissolution medium and 

the volume was 900 ml. In this way, only one face of the compact was exposed to the liquid 

medium and samples were taken after every predetermined time interval using an auto-

sampling system equipped with PTFE filters. UV measurements were carried out at 252 and 

276 nm for FBP and THP, respectively. All the experiments were conducted in triplicate with 

mass (mg) or percentage (%) of dissolved drug calculated based on a series of standard 

solutions at known concentrations. A relationship between dissolved drug mass (mg) and time 

was plotted, and IDR (mg min
-1

 cm
2
) was determined by dividing the gradient (m) obtained 

from each linear profile by the surface area (A = 1.33 cm
2
) of the exposed drug, Eq. 2.4;  

(Shaw et al., 2005) 

     
 

 
                                      (2.4) 

 

 

 

 

 

 

 

 

Figure 2.5, Dissolution apparatus used for IDR determination. 
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2.2.7.5- Drug release kinetics 

Over the years, a number of mathematical models have been developed to explain the 

mechanism of drug release from polymeric matrices. Mathematical modelling of drug release 

data can be used to elucidate the mass transport mechanisms and predict the effect of matrix 

tablet physical characteristics, especially those related to its design (shape, size and 

composition of matrix tablets), on the rate of particular drug release (Siepmann and Peppas, 

2001). In this study, drug release profiles were curve-fitted to commonly used models to 

characterize and derive drug release parameters for comparative purposes. These include the 

zero order, first order, Higuchi and Korsmeyer-Peppas mathematical models.  

2.2.7.5.1- Zero-order equation 

Equation 2.5 describes a constant rate of drug release with time: 

      + K t                           (2.5) 

where Q is the amount of drug released at time t, Q  is the initial amount of drug and Ko is the 

zero order release constant (Costa and Sousa Lobo, 2001). In swellable-erodible polymer 

matrices, a constant drug delivery rate can be achieved when a constant gel layer thickness is 

attained by synchronization of the swelling and eroding fronts (Baveja et al., 1987; Costa and 

Sousa Lobo, 2001). 

2.2.7.5.2- First-order equation 

The first order kinetic model can be applied to drug release data by using Eq. 2.6 

          - K1 t                  (2.6) 
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Where Q is the amount of drug released in time t,    is the initial amount of drug in the 

solution and K1 is the first order release constant. This relationship can be used to describe the 

drug dissolution from pharmaceutical dosage forms such as those containing water-soluble 

drugs in porous matrices (Costa and Sousa Lobo, 2001). 

2.2.7.5.3- Higuchi square root equation 

The Higuchi model (Higuchi, 1961; Higuchi, 1963) is commonly used to describe drug 

release from matrix systems. It describes a linear relationship between the cumulative amount 

of drug released and the square root of time, which is an indicator of diffusion controlled 

release. Higuchi (1961) proposed the mathematical model to describe the drug release from a 

planar system consisting of a homogeneous matrix in the form of an ointment base containing 

finely dispersed drug. The mathematical equation of the Higuchi model can be simplified and 

expressed as Eq. 2.7.  

                                (2.7) 

where Mt amount of drug released at time t and K   is the Higuchi rate constant. 

2.2.7.5.4- Korsmeyer-Peppas equation  

The mechanism and kinetics of drug release were further evaluated by fitting drug release 

data to the Korsmeyer– Peppas mathematical model, Eq. 2.8 (Korsmeyer et al., 1983).   

 

  

  
                          (2.8) 

Where  
  

  
   is the fraction of drug released at time t while K is a drug release constant 

incorporating the geometrical characteristics of matrix tablet, and n is the diffusional exponent 
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of drug release and used to elucidate the drug release mechanism (Siepmann and Peppas, 

2001). The goodness of fit was established using the adjusted coefficient of determination 

where the closer the value is to unity, the better the data fit to the model. The value of n is 

dependent on the mechanism of drug release and geometrical shape of the matrix that is being 

assessed and was further used to describe drug release patterns. This drug release model is 

also known as the power law and subsequently showed that the equation can be used to 

describe the general drug release behaviour of non-swelling and swelling polymeric matrices 

in the form of slabs, spheres and cylinders. Solute or solvent transport process can be Fickian 

or non-Fickian, depending on the relative rate of diffusion and polymer swelling (Ritger and 

Peppas, 1987a; Ritger and Peppas, 1987b). When solvent transport is slower than polymer 

relaxation, Fickian diffusion is observed. In contrast, when polymer relaxation is rate-limiting 

to solvent transport, case II transport, or time-independent diffusion, is observed. For 

cylindrical matrix tablets when the value of n is 0.45, Fickian diffusion is the predominant 

mechanism of drug release. However, when its value is equal to 0.89, drug release occurs via 

case II transport. Moreover, when the value of n falls between 0.45 and 0.89, the mechanism 

of drug release is considered anomalous. This is attributed to the concurrent occurrence of 

diffusion and swelling controlled mechanisms (Ritger and Peppas, 1987b; Siepmann and 

Peppas, 2001). 

2.2.8- Development and validation of PSA assay for erosion analysis  

2.2.8.1- Preparation of powder mixtures 

All the powder mixtures comprising different HPMC to drug ratios (FBP/THP, 20-80%) were 

blended for 15 minutes (Turbula mixer, Figure 2.5). To evaluate the mixing efficiency, 

samples were taken from each powder mixture and FBP and THP content were determined 

using their respective UV-VIS standard calibration curves as described in the sections 2.2.5.1 

and 2.2.6.1.  



 
36 

 

 

 

 

 

 

 

Figure 2.6, Turbula shaker-mixer 

 

2.2.8.2- Preparation of matrix tablets 

The matrices comprising Methocel
® 

polymers without drug (Table, 2.1) having different 

particle size fractions (90-150 and 150-250 µm)
 
and their respective powder mixtures enlisted 

in Table 2.6, were compacted using a Specac
®
 manual hydraulic press GS25011 equipped with 

13.00 mm die set (Specac
®
 Ltd, UK), Figure 2.3. The compact weight was maintained to 500 ± 

2.5 mg each and was compressed at 20 kN with a 20 second dwell time. All the matrix tablets 

were stored in an airtight container over silica gel for 24 hours before any further investigation.  

2.2.8.3- In vitro release studies  

2.2.8.3.1- Drug release studies 

In vitro drug release studies were performed on all the drugs based hydrophilic matrices, 

except those containing 100 % Methocel
®
, using USP dissolution apparatus I, SR II 6-flask, 

basket apparatus (Hanson Research, USA, Figure, 2.7) at 100 rpm. pH 7.2 sodium phosphate 

buffer (900 ml) was used as the release medium and was maintained at 37.5 ± 0.5
 °

C. Aliquots 

of dissolution media (5 ml) were withdrawn manually after 30, 60, 120, 360, 740 and 1440 

minutes and replaced with an equal amount of fresh dissolution medium. The dissolution 



 
37 

 

samples were then analysed for drug content using the standard calibration curves of respective 

drugs as described in section 2.2.2. 

2.2.8.3.2- Methocel
® 

(MC/HPMC) dissolution studies 

The Methocel
®
 polymer dissolution of all the matrices, alone or in combination with drugs, 

was studied. Dissolved Methocel
®
 was quantified using a phenol-sulphuric acid assay (Ghori et 

al., 2014b) alone or alongside drug analysis using the removed samples described in section 

2.2.5.2.1. Filtered samples (1 ml) were added to 1 ml of 5% phenol in 0.1 M hydrochloric acid, 

followed by 5 ml of concentrated sulphuric acid. The resultant solution was mixed vigorously 

for 10 minutes and placed in a water bath at 25-30 
°
C for 20 minutes. Absorbance was 

measured at maximum wavelength (ʎ max) 490 nm and dissolved polymeric content was 

calculated by using the equation derived from the standard calibration curves of respective 

grades of Methocel
® 

enlisted in  Table 2.7 ( Brummer and Cui, 2005; Dubois et al., 1956).   

 

Table 2.3,   Equations derived from standard calibration curves of different Methocel
® 

grades.  

 

Methocel
®
 Wavelength (nm) Equation 

a
 R

2
 

A4M 490 y = 0.0089 X - 0.0139 0.999 

F4M 490 y = 0.0098 X + 0.0295 0.997 

E4M 490 y = 0.0095 X + 0.0250 0.998 

K4M 490 y = 0.0088 X + 0.0172 0.999 

K15M 490 y = 0.0090 X + 0.0273 0.997 

K100M 490 y = 0.0097 X + 0.0292 0.997 

               a
 y and x represent the absorbance and concentration of Methocel

® 
(mg/ml), respectively. 
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Figure 2.7, Dissolution apparatus I (basket assembly) 

 

2.2.8.4- Matrix erosion studies  

2.2.8.4.1- Gravimetrical method  

Erosion of matrix tablets was determined using a gravimetric technique (Chaibva et al., 2010; 

Dhopeshwarker and Zatz, 1993; Ebube et al., 1997; Ranga Rao et al., 1988, Sinha Roy and 

Rohera, 2002). The study was conducted using USP apparatus I, SR II 6-flask (Hanson 

Research, USA, Figure, 2.8) at 100 rpm. The dry hydrophilic matrix tablets were accurately 

weighed and placed in baskets prior to immersion in dissolution medium (pH 7.2 sodium 

phosphate buffer) which was maintained at 37 ± 0.5 
°
C. Tablets were removed at 30, 60, 120, 

360, 720 and 1440 minutes and lightly blotted dry with 125 mm filter paper (Whatman
®
) to 

remove excess water. They were subsequently dried in a convection oven at 50°C. After 24 

hours, the tablets were cooled to ambient temperature and then weighed until a constant weight 

had been achieved. All studies were conducted in triplicate and the degree of erosion (E) was 

calculated using the method described in section 2.2.4.2.  
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2.2.8.4.2- Combined dissolution method of matrix erosion 

Matrix tablet erosion was also determined by using the collective amount of drug and polymer 

dissolved during dissolution and the percentage erosion was calculated at each sampling time 

using Eq. 2.9. 

                                         ( )   
      

  
                          (2.9) 

where, Wd is amount of drug released (mg) and Wp is amount of HPMC released (mg), 

determined using the phenol-sulphuric assay method in the dissolution medium at specific 

sampling times while  Wi is the initial weight of matrix tablet.  Moreover, the HPMC degree 

of erosion (He) was also calculated by using the equation 3.   

                                      (  )   
   

   
                                (2.10) 

 

where, Wp is amount of dissolved HPMC (mg) and Wpi is the initial amount of HPMC in the 

matrix tablet. Percentage matrix or HPMC erosion (E or He) was plotted against time up to 

720 minutes for all the matrix tablets with an aim to get a linear profile. Then simple linear 

regression was applied representing slope as an erosion rate (k, % min
-1

).  

2.2.8.4.3- Modelling of drug release profiles   

The mechanism and kinetics of drug release were deduced by fitting respective dissolution 

data to the Korsmeyer– Peppas model (Korsmeyer et al., 1983) as described in section 

2.2.4.5.2. 
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2.2.9- Compaction studies 

2.2.9.1- Powder compression and data acquisition  

All the powder samples of Methocel
®
 (MC and HPMC), having different particle size 

fractions (90-150 and 150-250 µm), were compressed using a Testometric
™

 M500 - 50 CT, 

50 KN (Testometric
™

 Company Ltd., United Kingdom) materials testing machine equipped 

with 13.00 mm Atlas Evacuable Pellet Die (Specac
®

 Limited, United Kingdom) and directly 

connected to a computer. The powder samples were accurately weighed (300 ± 1.5 mg) on an 

analytical balance and manually poured into the die. The initial height (h) of the powder bed 

was determined from the starting cross-head position. The compaction rate was determined 

by the movement of the cross-head, which was set at 10 mm min
−1

 during the compression 

phase. The force (F) was transmitted through a pushrod to the upper punch, while the lower 

punch remained stationary during the experiment. The upper punch displacement was 

measured using a linear variable differential transformer (LVDT) position gauge attached to 

the compression platens. As soon as the required maximum force (150.77 MPa) had been 

achieved, the force was gradually reduced by allowing the upper punch to retract at 1mm 

min
−1

. When the force was completely removed, the specimen was immediately ejected from 

the die in the same direction as the initial compaction and force-displacement data was 

recorded automatically during the experiment. The height of the powder bed (X) during 

compression with respect to time and progressing pressure was calculated from the initial 

height (h), using force-displacement data. Thus, the average relative density (rel) of the 

powder bed could be calculated throughout the experiment, using Eq. 2.11: 

                                       rel   
  

     (   )
                 (2.11) 
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The porosity (Ɛ,%) of the powder bed during the compression phase was subsequently 

determined using the Eq. 2.12: 

                         (%)   (   
  

     (   )
)            (2.12) 

Where W, , d, h and X represents the weight of the poured powder sample, true density, 

tablet diameter, initial height and height of the powder bed with respect to time and pressure, 

respectively.  As the compression cycle completed, the thickness (T) and diameter (d) of the 

ejected compacts were measured, using a digital calliper, within ~1 min and after 24 h of 

releasing the compaction force. The weight (W) was also determined by using the analytical 

weight balance. The out-of-die relative density and porosity at zero h and 24 h was calculated 

using the Eq. 2.13 and 2.14, respectively.   

                                     rel   
 

 (   )   
                                    (2.13) 

                                         ( )    (   
 

 (   )   
  ) × 100        (2.14) 

After ejection, the tablets were stored over silica gel for 24 h for elastic recovery. Relative 

humidity (RH) and temperature during compaction work were in the range of 25-45 % and 

22-25 °C, respectively.  
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Figure 2.8, (a) Testometric™ material testing machine equipped with, (b) Specac
® 

13.00 mm evacuable die set 
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2.2.9.2- Compressional analysis 

The tablet compression characteristics were studied firstly by using the Heckel compression 

mathematical model, relating powder porosity (Ɛ) during compression to the applied pressure 

(P). The equation is written as follows, Eq. (2.15) (Heckel, 1961a; Heckel, 1961b): 

       ( 
 

 
 )         (2.15) 

Where A and K are constants representing particle rearrangement and the slope of the linear 

region, respectively. The slope of the straight line portion (K) is inversely related to the 

material‘s mean yield pressure (Py) which gives an indication regarding the plasticity and 

pressure required for deformation of materials. This can be determined from Eq. (2.16): 

           
 

 
                               (2.16)          

The compression data profiles were further fitted to the linear form of Kawakita‘s equation, 

(Kawakita and Ludde, 1971) given by Eq. (2.17): 

                                           
 

 
 

 

  
 

 

 
                  (2.17) 

Where, P is the applied axial pressure, and ―a‖ is the value of initial porosity which 

corresponds to the total portion of reducible volume at maximum pressure. Mathematically, 

1/b is simply the pressure needed to compress the powder to one half of the total volume. 

Moreover, it was proposed that it is related to the plasticity of powder particles during 

compression. C is the degree of volume reduction (engineering strain) and can be calculated 

using Eq. (2.18),  

                                             
 

  
                  (2.18) 

Where Vo is the initial powder volume and V is the volume of the powder at pressure P. The  

Kawakita parameters a and b were calculated from the linear regression of the profiles. 
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2.2.9.3- Tensile strength and elastic recovery determination 

After a relaxation phase (24 h.) the matrix tablets were fractured diametrically using a Tablet 

Hardness Tester (PharmaTest PTB 311E). The  diameter (D) and thickness (H) of compacts 

calculated after  24 h. and maximum breaking force (F), were used to calculate tensile 

strength T  according to Eq. (2.19), (Fell and Newton, 1970):  

  
  

   
           (2.19) 

Moreover, the percentage of elastic recovery of each matrix tablet was determined using Eq. 

(2.20): (Armstrong and Haines-Nutt, 1972)  

   ( 
     

  
 )               (2.20) 

Where    is the height of the tablet at maximum pressure and    is the tablet height after 24 

h. of ejection.  
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3- Tribo-electrification and adhesion studies 
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3- Tribo-electrification and adhesion studies  

3.1- Introduction 

Electrostatic charging on solids arising from the contact between two surfaces is a 

phenomenon considered as one of the oldest manifestations of electricity. The concept of 

electrostatic charging has been known for centuries, as the ancient Greeks in the sixth century 

B.C. observed that amber attracts small objects after rubbing. The earliest experiments of 

Thales of Miletus, around 500 B.C.,  describe the mineral amber attracted light bodies such as 

feathers and pieces of straw after rubbing with fur or wool (Arfken, 1984). In 1600, William 

Gilbert used the word ‗electric‘ for the first time, originating from the Greek word elektron 

and differentiates the electrical and magnetic phenomena. Gilbert also explains the electrical 

mechanism of a range of different materials and concluded that many materials other than 

amber can also be electrified. In 1733, Charles du Fay discussed the polarity of charge on 

glass and amber respectively, after rubbing with silk and introduced the terms ‗vitreous‘ and 

‗resinous‘. Subsequently, in 1750, Benjamin Franklin named these charges as positive and 

negative, respectively. Around the same time Stephen Gray classified substances into two 

major groups, firstly, ‗conductors‘ for materials such as metals and water, which allowed the 

charge to flow freely whereas ‗insulators‘ a group including wood, rubber and glass, do not 

allow charge to flow (Smith et al., 1966). However, a quantitative investigation of electrical 

interaction between two charged particles was begun in 1785 when the French scientist 

Charles Augustin de Coulomb was able to establish an electrostatic force law or Coulomb's 

Law by using a torsion balance (Arfken, 1984). According to this law, it was established that 

the force between two small electrically charged spheres, at rest, was inversely proportional 

to the square of the distance of separation. Furthermore, in 1843, Faraday conducted 

experiments on electrostatic induction using an ice-pail (Faraday well) connected to a gold-

leaf electroscope and placed on an insulator. It was concluded that as a charged body was 
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enclosed in a hollow conductor, it induced, on the inside of that conductor, a charge equal in 

magnitude but opposite in polarity to its own. He also suggested that equal and opposite 

charges are produced when a body is electrified by rubbing (Chang et al., 1995). 

3.2- Tribo-electrification  

Tribo-electrification is intrinsically a dynamic, strenuous and dissipative phenomenon, 

arising due to the difference in electrical potential when two materials come into contact with 

each other (either by impact, friction or shear) and then separated (Harper, 1967). There are 

two broad categories that are considered under tribo-electrification; firstly, contact charging, 

which involves the direct contact and subsequent separation of two surfaces without rubbing. 

Secondly, frictional charging involves relatively adjacent movement of two contacting 

surfaces. However, with regard to a mechanistic point of view, these two modes of charging 

are difficult to discern and the term tribo-electrification is conventionally used to describe the 

overall process, even though the prefix ‗‗tribo‘‘ literally means rubbing (Swarbrick, 2007; 

Cross, 1987). Mostly, pharmaceutical powders are insulators and composed of fine powder 

particles, which are in contact with each other or with the surfaces of different processing 

equipment surrounding the powder leading to tribo-electric charging. This charge generation 

arises due to the contact potential differences (CPD) between the bodies  caused by the type 

of different materials but may also be influenced by particle size, surface roughness, 

environmental factors, contamination and type of contacting surfaces (Karner and Anne 

Urbanetz, 2011). The tribo-electrification phenomenon can be classified into metal-metal, 

metal-insulator, and insulator-insulator contacts. 

3.2.1- Metal-metal contacts 

The rationale for charge generation and transfer between two contacting metals is well 

known, however, quantification of tribo-electric charging of metallic material is usually 

difficult, as the charge migrates from the contact point quickly. The charging process can be 
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explained in terms of the work functions of the materials; when two dissimilar metal objects 

make contact, electrons will flow from the metal with the lower work function (Wlow) to the 

metal having a higher work function (Whigh), as illustrated in Figure 3.1. This is due to the 

CPD generated on the contact of two surfaces having different energy levels (Matsusaka and 

Masuda, 2003). 

 

 

 

 

 

 

 

Figure 3.1, Schematic illustration of charge generation during metal-metal contact. 

3.2.2- Metal-insulator contacts 

The theory of contact electrification between metals can be extended to metal-insulator 

contacts, as various authors have used the same concept to describe the metal-insulator 

charge generation mechanism (Matsusaka et al., 2010). However, this type of contact 

charging is less well understood, despite a considerable amount of research carried out in this 

area. For instance, none of the literature on this subject discusses the exact mechanism of 

charge transfer, however, several charge transfer mechanisms have been proposed (Lowell 

and Rose-Innes, 1980), as described in the following sub-sections. Moreover, a summary of 

all the theories is summarised in Table 3.1. 
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3.2.2.1- Electron transfer in metal-insulator contacts 

Early experiments conducted using insulators and metallic surfaces have shown a direct 

relationship between the charging propensity and the level of work function. Davies (1969) 

determined the charge density on the insulator, dielectric polymer surfaces, due to contact 

with metallic surfaces of a known work function. The charge density produced by each metal 

was plotted against the CPD of that metal with respect to gold as a reference. Results showed 

the dependence of charge density on the metal work function, and are therefore described by 

way of electron transfer for all the materials tested.  Murata and Kittaka (1979) presented 

evidence for electron transfer as the mechanism for contact electrification of polymers and 

metals by measuring photoelectric emission. According to Lowell and Rose-Innes (1980), 

charges acquired by an insulator, when in contact with a metal, are usually attributed to 

electron transfer. During the contact charging process, the valence electron energy state of 

powder particles on an atomic scale is designated as the Fermi level whilst the vacuum 

energy level is a thermodynamic state of electrons far from the atom and can be considered as 

a reference point. The difference between the Fermi level and vacuum energy level equates to 

the work function (W), which is a unique surface property of materials and refers to the 

minimum energy difference required for the liberation of loosely bonded electrons present in 

the outer electron shells of an atom (Lowell, 1979). When inter- or intra-particulate contacts 

of powder particles are established, electrons flow from the lower work function (Wlow) 

towards the higher (Whigh), consequently a CPD (Whigh – Wlow) is generated across the particle 

surface (Lang and Kohn, 1971). Moreover, this leads to the generation of electrostatic charge, 

which is exclusively a surface phenomenon (Lowell and Rose-Innes, 1980). A schematic 

illustration of electron transfer theory is described in Figure 3.2. 
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Figure 3.2, Schematic illustration of electron transfer theory of tribo-electric charge generation.
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3.2.2.2- Ion transfer in metal-insulator contacts 

Ion transfer has been suggested by various researchers as a mechanism of charge transfer 

during insulator and metal contact (Harper, 1967; Robins et al., 1980). The fundamental 

principles of this theory are based on the fact that insulating materials contain free, movable 

ions in their body or on their surface. These ions can be transferred by diffusion; relative 

affinities and the kinetic effect based on shearing and cause one member of a pair of positive 

and negative ions to relocate to the other surface, which can be a polymer or a metal. This 

will then determine the magnitude and polarity of tribo-electric charge on the contacting 

material surfaces (Matsusaka et al., 2002). A schematic illustration of ion transfer theory is 

described in Figure 3.3. 

Furthermore, it was assumed that the insulators contain an internal electric field.  The charged 

defects present in their lattice structure and the ions present in the atmosphere compensate for 

this field which leads to the formation of a surface layer. The friction between the two 

materials mixes their respective surface layers. Finally, the compensation of the intrinsic field 

of the two bodies is disturbed and the insulator gains a tribo-electric charge (Kornfeld, 1976). 

However, ion transfer is commonly not regarded as a dominant cause of tribo-electrification 

(Harper, 1967). 
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Figure 3.3, Schematic illustration of ion transfer theory of tribo-electric charge generation.
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3.2.2.3- Material transfer in metal-insulator contacts 

According to this theory, the material in the nanometer to the micrometer range can be 

transferred during contact and that dislodged material is expected to bear the charge. The 

impact or friction between two surfaces can break the bonds and this is particularly true for 

brittle and friable particles, such as pharmaceutical powders, and this eventually determines 

the net overall charge of the resultant material bearing the detached material (Matsusaka et 

al., 2010). Jain and Bahadur (1978) probed the impact of material transfer in polymer-

polymer sliding as a function of time, speed and load. It was concluded that material transfer 

occurred under all conditions of rubbing. Material transfer may also contribute to the charge 

transfer between a metal and an insulator (Tanoue et al., 1999). Electrons in insulators do not 

possess single energy levels like conductive materials. Electron energy can be explained as a 

function of its physical position, surface impurities, and the material's chemical and atomic 

structure (Hogue et al., 2004). Research investigating the impact of surface impurities has 

shown that cleaning the container surface with acetone to remove surface impurities during 

the experiments has a significant effect on the tribo-electric charging of particles. This study  

suggested that charge transfer is not solely an intrinsic feature of the material (Eilbeck et al., 

2000). However, recently there are experimental data using X-ray photoelectron spectroscopy 

and Raman spectroscopy that support and that material transfer model mechanism of charge 

generation (Baytekin et al., 2013; Piperno et al., 2011). A schematic illustration of material 

transfer theory is described in Figure 3.4. A physical clump of material rubs onto the 

opposing surface of material bearing either positive or negative charges.  
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Figure 3.4, Schematic illustration of material transfer theory of tribo-electric charge generation. 
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3.2.3- Insulator-insulator contacts 

The experimental and theoretical principles of charging generation during insulator-insulator 

contact have been applied mostly to toner charging (Lowell and Rose-Innes, 1980; Yoshida et 

al., 2003; Yoshida et al., 2006) . The mechanism of charge generation is similar to that for 

metal-insulator contacts, but in this particular scenario, movement of electrons and ions is 

more restricted (Matsusaka et al., 2010). According to Castle, (1997), all three 

aforementioned mechanisms (electron transfer, ion transfer and material transfer) may occur 

during insulator-insulator contacts. Moreover, another theory associated with insulator 

charging may also be involved. According to that theory, to generate charging between two 

insulating surfaces, there must be donor and acceptor sites near the surface of the non-

conductive particles (Bailey, 1984). In order for insulators to charge, surface impurities must 

be present if the particles are to charge when in contact with each other. According to Bailey 

(1984), tests carried out using perfect insulators showed that no charging occurred and when 

slight impurities were added charging became detectable. Hogue et al., (2004) states that 

many materials are hydrophilic and have a thin layer of water molecules on their surfaces; 

this is where ions can exist which play a role in charge exchange. 
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Table 3.1, Summary of insulator-metal tribo-electric charging theories.

Electrostatic theory Description Reference 

Electron transfer theory 

Electrons move from material having a 

low work function to a higher work 

function which generates a charge. 

Davies, 1969 ; Murata et al., 1979 ;  Lowell and Rose-

Innes, 1980 ; Lowell, 1979 ; Lang and Kohn, 1971) 

 

Ion transfer theory 

On contact, the free movable ion 

(positively or negatively) relocates to 

another surface. 

Harper, 1967 ;(Kornfeld, 1976 ; Matsusaka et al., 2010 ; 

Robins et al., 1980) 

Material transfer theory 

A physical clump of material rubs onto 

an opposing surface of material bearing 

either positive or negative charges. This 

eventually decides the net overall charge 

of the resultant material bearing the 

detached material. 

Jain and Bahadur, 1978 ; Tanoue et al., 1999 ; Hogue et al., 

2004 ; Eilbeck et al., 2000 ; Baytekin et al., 2013 ; Piperno 

et al., 2011) 
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3.3- Powder processing 

Pharmaceutical solids are mainly organic materials that have high resistivities ( > 10
13

 Ω m ) 

and charge relaxation times of minutes to hours (Bailey, 1993). The processing of 

pharmaceutical powders during manufacturing inevitably involves relative movement of 

particles against each other and alongside solid surfaces of processing equipment, hence 

providing ample opportunities for tribo-electrification (Glor, 1985, Harper, 1967). Powder 

processing operations, including micronisation, fluidisation, sieving, conveying of powders 

through pipes, bags, and hoppers and spray drying, invariably generate tribo-electric charges 

(Glor, 1985 ; Matsusaka et al., 2010 ; Matsusaka and Masuda, 2003). Commonly, the higher 

the energy involved in a procedure, the greater tribo-electric charging. This can instigate 

problems such as dust explosions, particle adhesion during manufacturing, alteration in the 

dose uniformity of dosage form, particle accumulation on the surface and segregation  (Šupuk 

et al., 2011 ; Staniforth and Rees ; 1982, Glor, 2005 ; Glor, 1985).  Surface adhesion (SA) of 

powder, is the propensity of dissimilar powder particles or contacting surfaces to cling 

together. SA during processing seems to be the root cause of other problems, having a direct 

relationship with the aforementioned problems related to binary powder mixtures. The inter-

molecular forces considered responsible for SA include van der Waals forces, electrostatic 

charges and bridging forces, mainly surface liquid capillary attractions (Cross, 1987). 

However, it was proposed that the main particle/substrate forces are van der Waals forces and 

electrostatic forces. These forces are strongly affected by surface properties such as 

morphology, surface chemistry and contact area. For larger particles, gravity and inertia are 

generally greater than the adhesion force, hence they normally flow easily. For fine particles, 

the inter-particle adhesion force is appreciable relative to gravity, therefore, they tend to 

adhere to one another and are difficult to handle (Lam and Newton, 1991 ; Podczeck, 1998). 
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3.4- Factors affecting tribo-electrification  

The electrostatic charging of powder particles in relation to the manufacturing and use of 

pharmaceutical products is usually considered due to a tribo-electrification phenomenon. 

Tribo-electrification and its associated adhesion of powder particles are complex processes 

affected by different factors. In this section, the principal factors that can affect electrostatic 

charge transfer and powder SA will be discussed; however, a summary of all the major 

contributing factors has been given in Table 3.2.    

3.4.1 - Nature and work function of contacting surfaces 

The work function of a material can be defined as, the minimum energy required to remove 

the weakest bonded electron from the surface to infinity. The earliest research work 

demonstrated conflicting evidence regarding the relationship between work function and 

electrostatic charging (Elsdon and Mitchell, 1976) but with progress in the area, now there is 

better established evidence to show that there is a relationship between work function and 

electrostatic charge generation and transfer. Davies (1969) studied the charge densities 

generated on dielectric surfaces, polycarbonate, PTFE, polyvinyl chloride (PVC), polyimide, 

polyethylene terephthalate (PET) , polystyrene (PS) and nylon, and studies revealed that the 

dielectric surfaces were directly related to the work function of the respective contacting 

surface, as described earlier. Lowell (1976) performed electrostatic experiments to explain 

the mechanism of charge generation and transfer between platinum, gold, nickel, rhodium, 

and aluminium and three kinds of polymers (polyethylene, PTFE and PET), using a single 

non-sliding contact, repeated non-sliding contacts and a sliding contact. The results 

demonstrated that in a single non-sliding contact, the charge did not depend on the work 

function. However, on repeated contact, or if the metal slides on the polymer, then the 

resultant charge density has a linear relationship with the work function of contacting 



59 
 

surfaces. The electrostatic charging of aluminium, copper, gold, magnesium and platinum 

electrodes was investigated by Nordhage and Bäckström (1977) against sodium chloride. It 

was found that the charge density transferred to the metals was enhanced with increasing 

work function of each respective metal. A study using lactose of different surface type and 

distinct different levels of work function revealed that it charged differently as the contacting 

surface changed. The tribo-electric charge was -13.23, -18.76 and + 76.90 × 10
-9

 C/g, when 

the contacting surfaces were brass, steel and cellulose, respectively (Carter et al., 1992). The 

authors explained that the metals generally donate electrons due to higher work function, 

whereas insulators accept electrons because of lower work function. So in this particular 

study, the difference in tribo-electric charge generation is entirely due to a difference in work 

function (Carter et al., 1992).  Bennett (1998) investigated the electrostatic properties of 

salbutamol sulphate which acquired negative and positive charges following agitation in 

stainless steel and polypropylene, respectively. The polarity of charge was found to depend 

on the level of the work function of the contacting surface (Bennett 1998). Furthermore, the 

tribo-electrical properties of ɑ-lactose monohydrate powder particles were investigated by 

Eilbeck et al. (1999) using a cyclone separator at < 10 % RH. It was found that the ɑ-lactose 

monohydrate gained a higher magnitude of negative charge following contact with stainless 

steel than with acetal, and a higher positive charge following contact with polyvinylchloride 

(PVC) than with polypropylene, thus again demonstrating that the charge generation and 

transfer have a linear relationship with the level of work function. Li et al., (1999) also 

concluded that the charge transferred for synthetic mineral against a copper surface had a 

linear relationship with work function. Similar conclusions have been drawn by Akande and 

Adedoyin (2001), Elajnaf et al. (2006), Engers et al. (2006),  Greason (2000) and Zhu et al. 

(2007).  
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Furthermore, Šupuk et al. (2012) studied the tribo-electric charging of numerous 

pharmaceutical materials, including lactose and hydroxypropylcellulose (HPC), using glass, 

PTFE and stainless steel surfaces. This study again demonstrated that the work function plays 

an important role in determining the magnitude and polarity of tribo-electric charging of 

powder particles and the powders, themselves and a 50:50 binary mixture was found to 

charge positively against PTFE, but negatively against glass and stainless steel.  

3.4.2- Contact surface roughness 

Coste and Pechery (1981) investigated the effect of contact surface roughness of polyethylene 

terephthalate (PET) on the electrostatic charge density acquired through contact with metal. 

This study demonstrated that the charge density was increased as the PET powder particles 

collided with the smooth metal surface. Additionally, the experiments conducted by Eilbeck 

et al., (1999) investigated the effects of contact surface roughness on tribo-electrification 

using ɑ-lactose monohydrate charged against a rough and smooth stainless steel cyclone 

separator at < 10% RH. The results showed that the -lactose monohydrate acquired a highly 

negative charge against the smoother stainless steel surface.  
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Table 3.2, Summary of factors affecting tribo-electric charging

Factor Effect Reference 

Nature and work 

function of contacting 

surface 

Work function is considered the principal 

driving force for the generation of tribo-

electric charge. 

 Akande and Adedoyin, 2001 ; Bennett, 1998 ; Carter et al., 1992 ; Davies, 1969 ; Eilbeck et 

al., 1999 ; Elajnaf et al., 2006 ; Elsdon and Mitchell, 1976 ; Engers et al., 2006 ; Greason, 

2000 ;  Li et al., 1999 ; Lowell, 1976 ; Šupuk et al., 2012 ; Zhu et al., 2008 

Contact surface 

roughness 

The smooth contact surface leads to higher 

magnitude of tribo-electric charge. 
(Coste and Pechery, 1981, Eilbeck et al., 1999) 

Contact surface 

contamination 

Surface contamination of contacting 

surface impacts the polarity and  magnitude 

of tribo-electric charge 

 Eilbeck et al., 2000 ; Harper, 1953 ; Murtomaa et al., 2002a ; Murtomaa et al., 2002c 

Particle size 

A decrease in particle size enhances the 

magnitude of tribo-electric charge. 

 

 

An increased particle size enhances the 

magnitude of tribo-electric charge.  

(Bailey, 1984 ; Carter et al., 1992 ; Duff and Lacks, 2008 ; Eilbeck et al., 1999a ; Engers et 

al., 2006 ; Gallo and Lama, 1976 ; Karner and Urbanetz, 2012 ; Karner and Urbanetz, 2013 ; 

Kwek et al., 2013 ; Lacks et al., 2008 ; Lacks and Levandovsky, 2007 ; Lacks and Sankaran, 

2011; Rowley, 2001b ; Smeltzer et al., 1982 ; Staniforth and Rees, 1982 ; Zhao et al., 2003) 

 

(Carter et al., 1998; Fasso et al., 1982; Nieh and Nguyen, 1988) 

Particle shape and 

roughness 

A rougher particle surface lead to higher 

magnitude of tribo-electric charge. 
(Kwek et al., 2013 ; Matsusaka et al., 2000  ; Murtomaa et al., 2004 ;Trigwell et al., 2008) 

Material chemistry 
The chemical structure, functional groups 

and surface chemistry can significantly 

affect the tribo-electrification  

(Kamiyama et al., 1994 ; Mazumder et al., 2006a  ; Sharma et al., 2007 ; Sharma et al., 2003 ; 

Shinohara et al., 1976 ; Trigwell et al., 2003) 

Crystallinity and 

amorphicity 

Higher crystallinity leads to higher 

propensity of tribo-electric charge. 

(Carter et al., 1998 ; Cassidy et al., 2000 ; Kwok and Chan, 2009 ;  Murtomaa et al., 2002a ; 

Shekunov et al., 2002 ; Wong et al., 2014b) 

Mixing ratio 
Increasing fraction of excipients in powder 

mixtures with APIs tends to decrease the 

final tribo-electric charging.  

(Asare-Addo et al., 2013b ; Engers et al., 2006 ; Ghori et al 2014c ; Murtomaa and Laine, 

2000 ; Pingali et al., 2009 ; Rowley, 2001 ; Sarkar et al., 2012 ; Zhu et al., 2007) 

Frequency of contacts 
The increased and repeated powder particle 

contacts increase the magnitude tribo-

electric charge  

(Cunningham and Goodings, 1986 ;  Engers et al., 2006 ; Harper, 1953 ;  Lowell, 1976 ; 

Lowell and Akande, 1988 ;  Matsusaka et al., 2000 ; Watanabe et al., 2007 ; Zhu et al., 2007) 

Atmospheric 

conditions 

As the RH decreases, the charge on a 

powder sample increases. 

 

However, some studies report increased 

propensity of charging with increased RH 

Eilbeck et al., 2000 ; Greason, 2000 ; Nguyen and Nieh, 1989 ; Nieh and Nguyen, 1988 ; 

Nomura et al., 2003 ; Rowley and Mackin, 2003 ; Smeltzer et al., 1982 ; Turner and 

Balasubramanian, 1976) 

 

(Boschung and Glor, 1980 ; Wiles et al., 2004) 
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3.4.3- Contact surface contamination 

Contact surface contamination and the procedure for cleaning surfaces can affect the tribo-

electrification process and hence the charge acquired by contacting powders. Early work by 

Harper (1953) showed the electrification of powders was affected by the cleaning procedure 

and surface contamination. Eilbeck et al., (2000) investigated the effect of contamination of 

pharmaceutical equipment on powder tribo-electrification following contact with a stainless 

steel cyclone separator. Charging of ɑ-lactose monohydrate was undertaken without cleaning 

between experimental runs and the results showed a decrease in the net negative charge 

acquired by the lactose with replicated experiments, due to an increase in the extent of 

powder adhesion to the cyclone surface. Murtomaa et al., (2002) studied the tribo-

electrification of glucose powder in a glass pipe, and the effect of adding smaller particles of 

lactose, magnesium stearate, dicalcium phosphate, or starch 1500 of different size fractions to 

the glucose. Mixtures of different ratios were charged by sliding them down a glass pipe into 

a Faraday well and differences were obtained in the polarity and magnitude of transferred 

charge after mixing. For example, when the glucose was mixed with lactose, the particle 

charge changed from positive to negative due to contact between glucose particles and 

adhered lactose particles. Also Murtomaa et al., (2000) investigated the tribo-electrification 

of microcrystalline cellulose and PS spheres in contact with stainless steel pipes washed with 

several different detergents. The results clearly indicated that some detergents left 

contamination on the pipe surface that had a significant effect on the polarity and the 

magnitude of the transferred charge. 

3.4.4- Particle size  

The effect of particle size on the magnitude and charge of powder particles has been studied 

extensively for many years. In general, particle size affects many industrial processes; a small 
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size improves drug absorption, but may lead to flow problems and segregation. In the 

literature, there are contradictory findings on the effect of particle size on tribo-electrification. 

Gallo and Lama (1976) proposed that the work function decreases with an increase in particle 

size, suggesting that, under some experimental conditions, the difference in work function 

between small and large particles of the same material will result in charge generation and 

transfer. The tendency for such charge exchange is greatest when one of the particles is very 

small and the other is comparatively large (Gallo and Lama, 1976). It was also suggested that 

electrons should transfer from larger particles, due to their lower work function, to smaller 

particles when they contact each other and therefore, the smaller particles should charge 

negatively and the large particles positively. The studies conducted by Duff and Lacks, 

(2008); Engers et al. (2006); Lacks et al. (2008); Lacks and Levandovsky (2007); Rowley 

(2001) and Lacks and Sankaran (2011) discussed the theoretical mechanisms for particle size 

dependent charging. In most cases, smaller particles charged negatively whereas larger 

particles charged positively and these findings are in complete accordance with the theory of 

Gallo and Lama (1976). However, this theory is contradicted by Ali et al. (1998) who 

reported that for a specific polymer powder tested, the small particles charged positively and 

the larger ones charged negatively. It could be argued that if the charging is the result of ion 

transfer rather than electron transfer, the Gallo and Lama theory may still be valid (Bailey, 

1984).  

Many studies have shown an inverse relationship between particle size and charge, i.e., as 

particle size is deceased, the charge on a powder particle increased (Carter et al., 1992; 

Eilbeck et al., 1999; Engers et al., 2006; Ghori et al 2014c; Smeltzer et al., 1982; Staniforth 

and Rees, 1982 ; Rowley, 2001; Zhao et al., 2003).  

The study conducted by Staniforth and Rees (1982) showed that recrystallised lactose 

acquired negative charges, which increased with decreasing sieve fraction from 710-1000 μm 
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to 500-710 μm. The studies carried out by Smeltzer et al. (1982) investigated the effect of 

particle size on the charging of glass beads during pneumatic transport along a pipe, with an 

increase in charge transfer, as the particle size decreased from 150 to 75 μm. This was 

thought to be due to a higher number density, giving an increased number of collisions for 

smaller particles. Carter et al. (1992) investigated the tribo-electrification properties of ɑ-

lactose monohydrate against a stainless steel and brass cyclone separator. The specific charge 

values were inversely related to particle size. Eilbeck et al. (1999) investigated the tribo-

electrification of lactose after contact with a stainless steel and PVC cyclone separator at < 

10% RH. The mean specific charge for the ɑ-lactose monohydrate sieve fraction samples 

increased with decreasing particle size, over the range 90-1000 μm. Rowley (2001) proposed 

that as the lactose sieve fraction size decreased from 355-500 μm to 90-125 μm, there was an 

increase in the specific charge following contact with a stainless steel surface and likewise for 

fractions 355-500 μm to 125-150 μm in contact with a PVC surface.  

Zhao et al. (2003) investigated the effect of particle size on charge-to-mass ratio of polymer 

powders using fluidized beds. It was observed that smaller particles charged negatively and 

possessed a high charge-to-mass ratio, whilst the larger particles charged positively and 

possessed lower charge-to-mass ratios. Engers et al. (2006) investigated the effect of particle 

size of dicalcium phosphate dihydrate on the specific charge of powder samples. The study 

revealed that the specific charge was significantly higher for the sample containing a higher 

proportion of fines than that observed for particles in the size range of 425 – 800 μm.  Ghori 

et al. (2014c) reported that when the particle size of MC/HPMC has decreased from 150-250 

µm to 90-150 µm the charge was increased. The studies carried out by Karner and Urbanetz 

(2012, 2013) and Kwek et al. (2013) reach the same conclusions, the fine powder particles 

acquired a higher magnitude of the charge.  
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Conversely, other studies have shown a direct relationship between increasing particle size, 

and the specific charge (Carter et al., 1998a; Fasso et al., 1982; Nieh and Nguyen, 1988). In a 

study by Fasso et al. (1982), the electrostatic charge and charge distribution of glass beads 

was measured in a freeboard and the main charge for glass beads (30 to 55 μm) at various 

flow velocities was found be enhanced with the increase in particle size. Nieh and Nguyen 

(1988) studied the electrostatic charging of flowing glass beads (137 to 550 µm). The results 

showed that large particles acquired a higher charge, but lower specific charge and the mean 

surface charge density of the particle remained almost constant over a wide particle size 

range. Carter et al. (1998a) investigated the tribo-electrification for both fractionated 

crystalline and spray-dried lactose samples. The results showed that the magnitude of charge 

on the lactose samples increased with increasing particle size, over the range 45-125 pm and 

63-180 μm for crystalline and spray dried lactose, respectively. This was due to particle 

adhesion to the contact surface which cause increased particle-particle interactions and 

reduced particle-contact surface collisions. 

3.4.5- Particle shape and roughness 

The transfer of charge takes place between surfaces in contact and the shape and surface 

morphology of powder particles play an important role in the exchange of tribo-electric 

charges. Transferred charge is proportional to the maximum contact area in an impact 

process; consequently the particle shape is extremely important (Matsusaka et al., 2000; 

Trigwell et al., 2008). The rougher the surface of the particle, the smaller the area of contact 

and surface-charge density, which is transferred between the materials in contact. In reality, 

most pharmaceutical materials have rough surfaces, containing many asperities. When such 

surfaces are in contact, there will be a small distance between the materials in contact, known 

as the effective distance. The flatter the contact surfaces of the powders, the smaller the 
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effective distance will be (Trigwell et al., 2008). Murtomaa et al. (2004) investigated tribo-

electric charging of lactose with different particle morphology, finding that the overall 

reproducibility was improved with homogeneous particle morphology. However, the study 

could not clearly explain the effect of shape and morphology of lactose on the tribo-electric 

charging. Recently, Kwek et al. (2013) studied the tribo-electrification properties of 

mannitol, comparing smooth and rough surfaces using shaking and aerosolisation techniques. 

This study revealed that the mannitol powder particles with a rougher surface had a higher 

magnitude of surface charged than those with a smoother surface.  

3.4.6- Material chemistry   

The chemical structure, functional groups and surface chemistry (Kamiyama et al., 1994; 

Mazumder et al., 2006; Shinohara et al., 1976) can significantly affect the tribo-

electrification and subsequent particle SA processes. Kamiyama et al. (1994) investigated the 

tribo-electrical properties of polymeric materials by introducing different ions on their 

surface, demonstrating that the change in surface chemistry can significantly impact the 

materials‘ tribo-electrification properties. Furthermore, Sharma et al. (2003 and 2004) and 

Trigwell (2003) determined that the magnitude and polarity of charge exchange between two 

dissimilar materials are directly related to the chemical nature of the polymer powders. 

Recently, Ghori et al. (2014c) reported that the substitution groups of MC/HPMC have 

significant impact on the tribo-electrification properties.      

3.4.7- Crystallinity and amorphicity    

Theoretically, amorphous and crystalline materials have different crystal packing which 

would lead to varied surface energies that may influence charge transfer behaviours. Cassidy 

et al. (2000) investigated the tribo-electrification of spray-dried lactose prepared from 

different feedstock concentrations (10 - 50%), following contact with a stainless steel surface, 
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using either a mixing vessel or cyclone separator. Increasing the feedstock concentrations 

from 10 to 50% decreased the mean specific charge on lactose from -20.8 to -1.3 nC g and 

54.9 to -4.1 nC g for the mixing vessel and cyclone separator, respectively. This was 

attributed to differences in crystal form of the spray dried lactose powder samples. Carter et 

al. (1998a) investigated tribo-electric charging of spray-dried amorphous and fractionised 

crystalline lactose. Both the materials showed significantly different charging tendencies with 

crystalline lactose charging gaining a higher tribo-electric charge than spray-dried amorphous 

lactose. Shekunov et al. (2002) compared micronized and supercritical fluid-conditioned 

salmeterol xinafoate, Murtomaa (2002a) studied the tribo-electrification properties of lactose 

and Kwok and Chen (2008) studied amorphous spray-dried salbutamol sulphate (spherical 

shape) and crystalline jet-milled salbutamol sulphate (plate-like). In all studies, the tribo-

electric charge decreased as the crystalline component of respective powder samples was 

increased. The particle surface morphology was not experimentally controlled and this is an 

area that may need further investigation However, a recent study carried out by Wong et al. 

(2014b) has, for the first time, attempted to resolve this ambiguity.  Electrostatic charging 

was characterised in two ways, firstly, through aerosolisation from an inhaler and secondly, 

by tumbling in containers made of different materials. Following aerosolisation, crystalline 

salbutamol sulphate showed more consistent charging and mass deposition than the 

amorphous formulation. Alternatively, the tumbling experiments found, the net charge of 

crystalline salbutamol sulphate correlated linearly with work function. This correlation was 

absent in amorphous salbutamol sulphate. It is possible that the long-range crystal packing in 

crystalline salbutamol sulphate caused more predictable charging.  
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3.4.8- Mixing ratios 

The quantification of tribo-electric charge of different powder blends is a difficult task as due 

to different mixing ratios; the component powder particles of a powder blend have complex 

charging kinetics. Additionally, the tendency of one material to coat either the equipment 

surface or other particles leads to unpredictable behaviour, and the volume of powder used 

determines the nature of the contact. If the volume is small compared to the surface of the 

container, particle-particle contacts may be negligible (Zhu et al., 2007). Pingali et al. (2009) 

concluded that the composition of powder blends can significantly impact the tribo-electric 

charging properties.  

Rowley (2001) investigated the effect of different salbutamol sulphate concentrations (0.5, 

1.0 and 5.0% w/w) in a binary mixture with α-lactose monohydrate carriers charging against 

steel and polyamide contacting surfaces. The magnitude of tribo-electric charge decreased as 

salbutamol sulphate concentration increased from 0.5 to 5% w/w, and the values were −38 to 

−91 nC/g for steel and −10 to −42 nC/g for polyamide. Among different pharmaceutical 

excipients, lactose and glucose are widely used excipients in the pharmaceutical industry. It 

was reported that pure glucose became positively charged, but as soon as lactose was 

introduced, the accumulated net charge on the powder mixture became negative. The mixture 

charged negatively if the amount of lactose was between 20 and 40 % w/w, but became 

positively charged again when the amount of lactose was increased further (Murtomaa and 

Laine, 2000). Engers et al. (2006) reported that specific tribo-electric charges of powder 

mixtures can be controlled by using compatible excipients. Sarkar et al. (2012) observed 

reduction of tribo-electric charge on incorporation of additives (L-ascorbic acid, Magnesium 

stearate, and stearic acid). Moreover, Sarkar et al. (2012) also proposed that the extent of 

charge reduction appeared to relate to moisture content and levels of effective work function. 
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Šupuk et al. (2010) concluded that binary mixtures of α-lactose monohydrate and 

hydroxypropyl cellulose charged to significantly higher magnitudes with increasing 

concentrations of α-lactose monohydrate in a binary mix. Asare-Addo et al. (2013b) and 

Ghori et al. (2014c) confirm that the HPMC has antistatic properties as with higher polymer 

concentration it has the ability to dissipate the charge of drug particles.  

3.4.9- Mixing speed/frequency of contact 

Cunningham and Goodings (1986); Harper (1953) and Lowell (1976) have shown that an 

increase in the number of contacts may increase the propensity of tribo-electric charge on the 

surface of powder particles. Cunningham and Goodings (1986) demonstrated that repeated 

contacts increased the quantity of net charge transferred between a gold probe and a polymer. 

Moreover, Lowell and Arkande (1988) also found that repeated contacts increased the extent 

of tribo-electric charging. Watanabe et al. (2006, 2007) found that the amount of tribo-

electric charge generated during single particle impacts under different impact velocities and 

angles relates to the normal component of the impact velocity. Furthermore, an equilibrium 

initial charge was quantified, where no charge transfer took place on impact of the particle 

due to the surface potential of the contacting bodies. Similar results were reported by 

Matsusaka et al. (2000) using 30 mm rubber balls. Zhu et al. (2007) investigated the contact 

energy as a function of the rotation speed of a mixer, finding that was not influenced by the 

rotation speed. This is because the rotation speed of the mixer only influences the frequency 

of particle contacts. Thus the time required to reach saturation increases with decrease in 

rotation speed, but the total amount of saturated charge is defined by the surface potential 

difference of the contacting bodies and therefore cannot be influenced by the rotation speed. 

These results are in agreement with the blender studies performed by Engers et al. (2006). 
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3.4.10- Atmospheric conditions  

Most authors have shown an inverse relationship between RH and charge. (e.g. Eilbeck et al., 

2000; Greason,2000; Smeltzer et al., 1982; Nguyen and Nieh (1989); Nieh and Nguyen, 

1988; Nomura et al., 2003; Mackin et al., 1993, 1994; Rowley and Mackin, 2003; Turner and 

Balasubramanian,1976).  

Conversely, Boschung and Glor (1980) and Wiles et al. (2004) showed that charge increased 

linearly with RH. In the study carried out by Turner and Balasubramanian (1976), a lower 

electrostatic charge on glass spheres was found at higher levels of relative humidity. 

Similarly, Smeltzer et al. (1982) investigated the effect of RH (25 to 65%) on the charging of 

glass beads (75-150 μm) during pneumatic transport along a pipe and showed a greater 

charge was generated at the lower RH. Nieh and Nguyen (1988) found that the mean particle 

charge on 550 μm glass beads flowing in a copper pipe fell with an increase in RH from 4 to 

76 %. This may be due to the moisture around the dielectric particles, increasing their surface 

conductivity, and thereby enhancing the transfer of electrons upon contact with an earthed 

pipe wall. Nguyen and Nieh (1989) investigated the effect of carrier gas RH on the 

electrostatic charges of glass beads flowing in a continuous copper pipe loop. As RH 

increased from 0 to 65%, electrostatic charges decreased; this was attributed to sorbed 

moisture on the glass particle surface, providing an earthing path to the metal walls during 

particle/metal collisions and it was proposed that hydrated ions and water vapour would act 

as charge carriers to redistribute the surface charge into free space. Eilbeck et al. (2000) 

investigated the effect of moisture contamination of the contact surface on the charge of -

lactose monohydrate (180-212 μm) following tribo-electrification with a stainless steel 

cyclone separator at 2 and 100% RH. The results showed a decrease in the net negative 

charge on the lactose at the higher RH. There was a decrease in net charge as the RH % and 
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the temperature increased after rolling a stainless steel sphere (1.27 cm diameter) in tubes 

constructed from glass, quartz, PTFE, acrylic, polycarbonate, and nylon at range of 10-30°C 

and RH range from 10 to 70% (Greason, 2000). The results showed a decrease in the tribo-

electric charge which can be attributed to a decrease in the volume and surface resistivities of 

the insulators caused by an increase in temperature and RH. Nomura et al. (2003) studied the 

effect of environment humidity on the tribo-electrification of a ferrite powder coated with 

silicone resin following rotating samples in cylindrical nickel vessels and showed a decrease 

in the specific charge on the powder with increasing humidity. With a variety of contact 

surfaces, Rowley and Mackin (2003) showed that for relatively non-hygroscopic excipients 

-lactose monohydrate and dextrose monohydrate there was a negligible change in charge 

values in RH range 0-80 %, however a hygroscopic excipient, sodium starch glycolate, 

showed a decrease in electrostatic charge from RH 0 to 80 %. There was no relationship 

between moisture sorption and charge for the intermediately hygroscopic material, spray-

dried sorbitol. Care must be taken when considering total sorption data for predicting 

electrostatic charge behaviour, where significant proportions of total moisture are present as 

absorbed moisture, as may be the case with porous spray-dried sorbitol. When nylon, Teflon 

and polyacetal pellets were fired at a metal target at temperatures ranging between ambient 

temperature conditions and 230 °C, Bailey and Smedley (1991) found there was little effect 

of temperature on tribo-electrification between metal and insulator contacts.  

3.5 – Applications and hazards of tribo-electric charging 

In pharmaceutical manufacturing, processing operations such as mixing, spray-drying, 

coating and pneumatic conveying, have a tendency to induce an electrostatic charge on 

powder particles due to inter and intra-particulate  collisions (Carter et al., 1992). Fine 

powder particles, such as those used in inhalation, typically experience problems in flow and 
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dispersion because of the small particle size. Moreover, electrostatic, capillary and Van der 

Waals forces play a critical role contributing to adhesion and cohesion (Bailey, 1993) with 

implications on transporting, filling, blending, drying, milling, and mixing; and subsequently, 

non-uniform dosages in the final product (Bennett et al., 1999; Elajnaf et al., 2007; Elajnaf et 

al., 2006; Rowley, 2001; Staniforth and Rees, 1982).  Due to the potent nature of many APIs, 

there are strict quality control processes governing pharmaceutical production for acceptance 

of finished pharmaceutical product. A single batch of powder worth hundreds of thousands of 

pounds is sometime discarded, if the amount of APIs dose not meet the pharmacopoeial 

standards.  Therefore, the control of electrostatic charge is important to ensure the final 

product is safe and effective to use. Aside from the mechanical behaviour of charged 

particles, electrostatic discharges are also an area of concern as large quantities of powders 

being handled with high transfer rates in filling and emptying during tableting process. This 

can rapidly build up a charge and increases the probability of an electrical discharge. 

Additionally, fine pharmaceutical powder particles have a larger surface area that enhances 

surface contact, which leads to charge accumulation and their distribution in the air provides 

the oxygen for combustion. The combination of these elements is considered highly 

dangerous as it has the potential to ignite fires and explosions  (Ohsawa, 2011). In 2012, an 

electrostatic spark discharge ignited a fire during a pharmaceutical powder transfer operation. 

Following investigation, the source was found to be a 15 year old filter which was not 

appropriate for handling low minimum ignition energy powders (Kong, 2006). A statistical 

study about industrial dust explosions revealed that one dust explosion happens every day 

and every tenth explosion is caused by static electricity discharge (Glor, 2003). Similar 

statistics in Japan found 70 % of 153 industrial accidents that occurred over the past 50 years 

were attributable to static electricity (Ohsawa, 2011). A noteworthy finding was that these 
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incidents were caused by isolating conductors, including workers, which led to spark 

discharges and could have been easily been prevented with earthing (Wong et al., 2014a). 

Despite the issues discussed in the previous section, there have also been several useful 

applications of electrostatics in the pharmaceutical industry. Blend homogeneity of powder 

mixes can be promoted by APIs and excipients with opposite charges as they tend to attract 

each other and segregation becomes unlikely (Pu et al., 2009; Staniforth and Rees, 1981, 

1982). While the physicochemical properties determine the inherent polarity of charge 

gained, the magnitude of charge can be enhanced by charging processes. Conversely, 

homogeneity could be compromised if an opposite polarity is induced. Other critical 

parameters that should be considered, in particular for potent low-dose formulations, include 

the choice of an appropriate mixer, mixing time, and content uniformity (Venables and Wells, 

2001). Pu et al. (2009) evaluated three different API blending procedures: (I) conventional 

blending without any charge control, (II) blending with simultaneous charge neutralisation, 

and (III) blending combined with a corona charging process. Variation in API content 

increased with specific charges, which suggested that uncontrolled electrostatic charging had 

an adverse effect. The elimination or minimisation of electrostatic charge did not resolve the 

problem, rather the mixing of oppositely charged components remained the only controlled 

charging that improved blend uniformity (Staniforth and Rees, 1982). Interestingly, there is a 

relationship between electrostatic charging and blend homogeneity and selection of the time 

points with the least charge variation were expected to correlate with relatively more uniform 

content, and the authors proposed this as a useful monitoring tool in mixing processes (Chang 

et al., 1995). 

3.6 – Powder mixing 

Mixing may be defined as the merger of two or more dissimilar portions of material resulting 

in the attainment of a required level of uniformity in the final product (Swarbrick, 2007). 
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There are three types of mixtures namely, positive, negative and neutral mixes. The first 

occurs spontaneously by diffusion, for example, in miscible liquids and gases where no 

energy is needed, whereas with negative mixing, such as the dispersion of insoluble solid 

particles with a liquid, work is required by stirring to maintain the dispersion. In the neutral 

mix, work must be done initially to mix the components as in a mixture of powders. Powder 

mixing is a fundamental, important and often the very first processing step, for many 

industrial processes and is one of the most common unit operations utilised in many 

industries such as pharmaceutical, chemical, food, cosmetic, cement, glass, and detergent. 

Mixing performance assessment, which has been a main issue for about a decade, is likely to 

become even more important as dosages become smaller. Specifically, the pharmaceutical 

industry uses powder mixing operations to incorporate highly active pharmaceutical 

ingredients in many pharmaceutical formulations, such as powders, granules, capsules and 

tablets. Powder mixing can be classified either as randomised or ordered mixing (Hersey, 

1975).  

3.6.1 – Random powder mixtures 

In random mixtures, the component particles should be free flowing and of similar size, 

density and shape. However, in practice, the components of particulate solids often consist of 

materials with different morphologies and sizes. These powder mixtures can be produced by 

random or ordered methods. Random mixing is the process of repeatedly splitting and 

recombining a bed of particles until there is an equal chance of any individual particle being 

at any given point in the mix at any one time (Venables and Wells, 2001). Random mixing is 

based on the statistical randomization of non-cohesive particles (Hersey, 1975). It is a rough 

estimate of disorder and does not result in an ―ideal‖ mixture. 
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3.6.2 – Ordered powder mixtures 

When inter-particulate forces, either attraction or repulsion, are introduced in mixtures, the 

randomized distribution of component particles will be disturbed; this type of mixing is 

described by ordered mixing. Tribo-electrification can be used to help with such mixing 

operations in industry (Swaminathan and Kildsig, 2000; Venables and Wells, 2001). Fine 

particles charge opposite to coarse particles during particle collisions with material surfaces, 

(see section 3.4.4 for more detail). This results in fine particles adhering to larger carrier 

particles, known as ordered mixing. Ordered mixing is believed to result in a more 

homogeneous and stable system compared to that of a random mixture (Hersey, 1975). Both 

gravitational and electrostatic forces are presented in random and ordered mixes. In an 

ordered mix, the gravitational force is weak compared to the electrostatic forces, whilst the 

opposite is true of a random mix. A mixture is likely to retain its integrity if the bonds 

between the carrier and the fine particle are strong enough; in this case, handling problems 

are greatly reduced (Mäki et al., 2007; Hersey, 1975) 

3.7- Section A,  Tribo-electrification and adhesion studies of model drugs 

3.7.1- Introduction 

The conversion of active pharmaceutical ingredient (API) into pharmaceutical formulations 

encompasses an array of processes that are involved in powder processing and handling, such 

as powder transport, milling and mixing. In recent years, formulation development has 

become more challenging because new drug molecules often display poor physico-chemical 

properties (Swarbrick, 2007). These include a high propensity to electrostatic charging and 

occurrence of associated problems. In powder handling operations, particles frequently come 

in contact with each other and with the walls of the processing equipment causing tribo-

electrification of the particles (Cross, 1987). The irregular surface morphology, fine particle 
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size distribution and low bulk density of APIs makes them highly susceptible to electrostatic 

charging. Moreover, the APIs have high electrical resistance which prevents charge 

dissipation. The charge duration on a powder particle surface depends on relaxation time, 

which is the product of permittivity and surface resistivity of drug particles. As the majority 

of APIs are insulators, so this process is extended, perhaps over minutes to hours, in 

comparison to conductive materials (Bailey, 1984). The accumulation of charge for extended 

durations can generate inter-particulate bonding forces which lead to SA and deposition of 

the powder particles on the walls of the processing equipment (Harper, 1967). Therefore, 

characterisation and optimization of tribo-electrification and adhesion properties of APIs can 

be considered as a key task during pharmaceutical formulation development. The aim of this 

particular study was to investigate the tribo-electrification and adhesion properties of poorly 

soluble (FBP) and freely soluble (THP) model drugs with a mechanistic perspective.   

3.7.2- Experimental 

3.7.2.1- Materials  

The model drugs were obtained as detailed in section 2.1.2. 

3.7.2.2- Methods 

3.7.2.2.1- Surface morphology of drug particles 

The surface morphology of the powder particles of model drugs was examined by following 

the method as described in section 2.2.4.1.  

3.7.2.2.2 - Tribo-electrification 

Tribo-electric charging of drug powder particles was studied by adopting a method based on 

a shaking concept as described in section 2.2.5.2.  
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3.7.2.2.3- Surface adhesion (SA) of powders 

The SA of the powder particles of model drugs was examined following the method 

described in section 2.2.5.3. 

3.7.3- Results and discussion  

3.7.3.1- Surface morphology of model drugs  

SEM micrographs were used to study the surface morphology of pure model drugs. Figure 

3.5 illustrates SEM micrographs of (a) FBP and (b) THP which were imaged at a 

magnification of × 800 and × 750, respectively. FBP has rectangular shaped crystals, whereas 

THP has elongated crystals with a columnar habit. Moreover, from both the SEM 

micrographs, it can be concluded that both the drug crystals have rough surfaces, however, 

THP crystals have more irregularity than FBP crystals.  

 

 

 

 

 

 

 

Figure 3.5, SEM micrographs of (a) FBP and (b) THP powder particles 

 



78 
 

3.7.3.2- Tribo-electrification and adhesion properties of model drugs 

In the present study, maximum charge acquisition data (Qmax) are presented as a charge to 

mass ratio (Q/M) at the end of each tribo-electrification experiment (n=3), as exemplified in 

Figure 3.6. Moreover, the SA of powders related to Qmax was determined, (n=3).  

 

 

 

Figure 3.6, Tribo-electrification charging profiles of (a) FBP and (b) THP powder 

particles (n = 3). 
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The model drugs (FBP and THP), like many other APIs, possess a high degree of crystallinity 

and were presumed to have a higher electrical resistance. FBP and THP attained Qmax in 5 and 

2 minutes respectively, when shaken against a stainless steel container (Figure 3.6). The 

tribo-electrification phenomenon is considered to be ambiguous, but the electron transfer 

theory is widely accepted to explain the mechanism of charge generation of pharmaceutical 

materials. In the present study it can be assumed that the effective work function of FBP (Wf) 

and THP (Wt) is higher than the work function of stainless steel contacting surface (Ws). This 

might be due to the greater electrical resistivity of drug crystals.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7, Schematic illustration of tribo-electric charging of FBP and THP powder 

particles. 

 

Therefore, when the powder particles of both the drugs were introduced into the stainless steel 

container, the electrons from the stainless steel surface, presumably moved to the interface of 

the contacting drug powder particles, thus inducing a positive surface charge on the donor, 
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with a negative charge (acceptor) on the FBP and THP powder particles (as illustrated in 

Figure 3.7).  

 

 

Table 3.3,  Tribo-electric charging and SA results for THP and FBP (n = 3, standard 

deviations  in parentheses). 

 

Both FBP and THP attained a negative net charge across their particle surface, gaining 

maximum tribo-electric charge of -243 nC/g and -32 nC/g, respectively. The higher charging 

tendency associated with FBP resulted in more SA (74 %) due to higher dispersive, chemical 

and electrostatic forces. THP tended to have lower SA which might be due to the fact that 

lower levels of tribo-electric charging tend to generate strong inter- or intra-particulate 

dispersive forces. The electrostatic behaviour of FBP can be categorised as highly charging 

when compared to other APIs and pharmaceutical excipients and is likely to cause problems 

during powder processing.   

 

 

 

 

 

 

 

 

Drug Particle size Charge to mass ratio (nC/g) Adhesion (%) 

THP 38 – 63 µm -32.01 (3.8) 38.42 (5.11) 

FBP 38 – 63 µm -243.13 (13.25) 74.23 (4.32) 
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3.8- Section B, tribo-electrification and adhesion studies of cellulose ethers 

3.8.1- Introduction 

The pervasiveness of tribo-electric charge during pharmaceutical processing can lead to the 

exacerbation of a range of problems, including segregation, content heterogeneity and 

particle SA (Harper, 1967). During pharmaceutical powder processing (e.g., milling, 

transporting, mixing, coating, spray drying, pneumatic conveying and sieving), particles 

develop tribo-electric charges due to the frequent abrasion and collision between the powder 

particles and the contacting surface of the processing equipment (Cross, 1987; Cross et al., 

1981; Lowell and Rose-Innes, 1980). This can instigate problems such as dust explosions, 

particle adhesion during manufacturing, alteration in the dose uniformity of dosage form, 

particle accumulation on the surface and segregation (Hussain et al., 2013; Pu et al., 2009; 

Staniforth and Rees, 1981; Staniforth and Rees, 1982; Šupuk et al., 2011b)). The chemical 

structure, functional groups, surface chemistry (Kamiyama et al., 1994; Mazumder et al., 

2006b; Shinohara et al., 1976), particle size, shape, surface roughness (Carter et al., 1998a; 

Eilbeck et al., 1999b; Traini et al., 2012) and electrical properties of powders and contacting 

surfaces (Bailey and Smedley, 1991; Rowley, 2001) can all affect the tribo-electrification 

process and subsequent particle surface adhesion. Moreover, the charge transfer process is 

further complicated due to external factors that may influence the charging, process including 

relative humidity, temperature, nature of contacting material and the velocity of particles 

(Matsusaka et al., 2010).  

Numerous varieties of pharmaceutical excipients are employed to improve or modulate tablet 

characteristics, among them methylcellulose MC and HPMC are frequently used for 

controlling drug release from hydrophilic matrix systems (Ghori et al., 2014b; Li et al., 2005; 

Maderuelo et al., 2011). These polymers are available in different grades varying in viscosity 
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(molecular size), substitution ratios and particle size. Asare-Addo et al. (2013b) recently 

described the tribo-electric charging behaviour of Methocel
®
 E4M, K4M and their powder 

mixtures with the negatively charging API, THP. The polarity of the singular polymers was 

positive and was generally higher in magnitude than other common pharmaceutical 

excipients (Šupuk et al., 2012). It was shown that when THP came into contact with HPMC, 

it attached to its surface due to opposite polarities and the tribo-electric charge of the final 

powder mixture was decreased (Asare-Addo et al., 2013b). Surprisingly, despite being so 

widely used, the tribo-electrification and adhesion characteristics of MC and HPMC are still 

poorly understood. The aim of this study was to investigate the tribo-electrification and 

adhesion properties of different cellulose ethers. The impact of polymer attributes 

(concentration, particle size, hydroxypropyl (Hpo) / methoxyl (Meo) substitution ratio and 

molecular size) on tribo-electric charging and SA of cellulose ethers was studied. 

3.8.2- Experimental 

3.8.2.1- Materials  

MC and HPMC were obtained as detailed in section 2.1.1. 

3.8.2.2- Methods 

3.8.2.2.1- Surface morphology of drug particles 

The surface morphology of the powder particles of MC and HPMC was examined by 

following the method as described in section 2.2.4.1.  

3.8.2.2.2 - Tribo-electrification 

Tribo-electric charging of drug powder particles were studied by adopting a method based on 

shaking concept as described in section 2.2.5.2.  
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3.8.2.2.3- Powder surface adhesion (SA) 

The SA of the powder particles of model drugs was examined by following the method as 

described in section 2.2.5.3. 

3.8.2.2.4- Statistical analysis 

One way analysis of variance (ANOVA) (confidence limit of P < 0.05) was used to 

investigate the statistical significance of different underlying factors on tribo-electrification 

and adhesion properties of MC/HPMC. 

3.8.4- Results and discussion 

3.8.4.1- Surface morphology of MC and HPMC powder particles  

The surface morphology is considered an important attribute which can impact the tribo-

electrification and SA properties of powder particles. Figure 3.8 is a group of six SEM 

micrographs where the images of (a) A4M (b) F4M (c) E4M (d) K4M (e) K15M and K100 M 

are merged. All the grades of HPMC and MC contained mixtures of irregular-shaped flat and 

fibrous particles. Generally, the proportion of fibrous material is higher in MC (a) than HPMC 

(b-f). It was also noticed that the K-chemistry grades of HPMC and, in particular, K100M have 

more irregularly shaped particles with rough surfaces than any of the other grades of cellulose 

ethers. This is attributed to the higher Hpo/Meo substitution ratio and molecular size, which 

result in more complex surfaces (Gustafsson et al., 1999; Okimoto et al., 1997).  
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Figure 3.8, SEM micrographs of MC and HPMC, (a) A4M  (b) F4M (c) E4M (d) K4M (e) K15M (f) K100M. 
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3.8.4.2 - Tribo-electrification and adhesion properties of MC and HPMC 

In the present study, maximum charge acquisition data (Qmax) are presented as a charge to mass 

ratio (Q/M) at the end of each tribo-electrification experiment (n=3), as exemplified in Figure 

3.6.  Moreover, the SA of powders related to Qmax was reported, (n=3). All grades of cellulose 

ethers charged positively against the stainless steel container and gained Qmax after 0.5 minutes 

of shaking. The charge and SA of MC and HPMC powder particles ranged between 4 - 57 nC/g 

and 6 - 33 %. The order of charging and particle SA was A4M > F4M > E4M > K4M >K15M 

> K100M, with the amount of charge transferred assumed to be due to differences in the 

effective work function between the contacting surfaces. The MC and HPMC have a lower 

effective work function (Wh) than the steel surface (Ws), therefore it is assumed that electrons 

from the surface of polymer particle move to the interface of the contacting surface inducing a 

positive surface charge on the surface of polymer particle (donor), with a negative charge 

(acceptor) on the steel surface. An equilibrium state is reached when both the potential 

difference and charged layers become equal in magnitude. As the particle moves away from a 

contact point, the initial high magnitude of capacitance is reduced (Matsusaka et al., 2010). A 

schematic illustration of MC and HPMC charge generation phenomena is described in Figure 

3.9. Furthermore, the potential difference between the materials initiates cohesive and adhesive 

interactions, with the latter apparently having a dominant role in particle adherence to the 

contacting surface (Cross, 1987).   
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Figure 3.9, Schematic illustration of tribo-electrification charging of MC and HPMC 

powder particles. 

 

3.8.4.2.1- Effect of particle size  

The propensity and magnitude of inter-particulate forces within pharmaceutical powders often 

seem to be directly related to the powder particle size (Rowley, 2001). In this study, the charge 

and adhesion of A4M were increased by 3.1 nC/g and 3.3 % respectively when particle size 

was reduced from 150 – 250 to 90 - 150 µm. This trend is exhibited by all HPMC grades 

except the very low charging K100M (Table 2). The tribo-electric charge and adhesion of 

polymer are inversely related to particle size (P < 0.05, Table 3.4); presumably, fine particle 

fractions have a large specific surface area thereby increasing the number of particle and 

surface contacts (Cross, 1987; Rowley, 2001). Moreover, particle size can also influence the 

effective work function of the materials, as larger particles might lose their electrons easily, 
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decreasing the effective work function, which was assumed to be linked with their charge 

density (Gallo and Lama, 1976).  

3.8.4.2.2- Effect of substitution ratios 

When two dissimilar materials such as metals and polymers contact, the magnitude and 

polarity of tribo-electric charging is determined by functional groups, structural and surface 

chemistries (Kamiyama et al., 1994; Mazumder et al., 2006b; Sharma, 2004; Shinohara et al., 

1976;Trigwell et al., 2003). It can be hypothesised that the substitution ratio on the anhydrous 

glucose ring of cellulose ethers and their molecular size will alter the charging and adhesion 

behaviour due to variations in electrical resistivity and effective work function and this was 

borne out in this study (P < 0.05). These materials are manufactured commercially from the 

parent cellulose which is highly crystalline and insoluble in water. However, various 

substitution groups (methyl chloride and/or propylene oxide) can be integrated along the 

anhydrous glucose backbone which helps to reduce crystallinity and impart solubility (Sarkar 

and Walker, 1995). Additionally, the integration of methoxy (- OCH3) or  hydroxypropyl 

groups (- CH2CH(OH)CH3) on AGUs induce steric hindrance which opens up the cellulose 

backbone. Previous studies have reported that degree of crystallinity and modifications to 

surface composition can alter the effective work function of pharmaceutical powders 

(Kamiyama et al., 1994; Murtomaa et al., 2002b; Mazumder et al., 2006b; Wong et al., 

2014a). As the ratio of the hydrophilic substitution group, hydroxypropyl, increased (with 

respect to methoxy groups), the charge and SA decreased (Table 3.4). Therefore, 

methylcellulose, A4M (i.e. 0 % hydroxypropyl substitution) has the highest tribo-electric 

charge and surface adhesion. K4M, which has a higher Hpo/Meo substitution ratio (0.382), but 

similar molecular weight as Methocel
®
 F4M and E4M, shows lower propensity of charge and 

SA (Table 3.4). So, the tribo-electric charging and SA behaviour of HPMC and MC can be 

assumed to be related to work function variations induced during the substitution process. 
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3.8.4.2.3- Effect of molecular size (viscosity)  

Cellulose ethers are polydisperse molecules with longer chain length impacting viscosity 

grades (Sarkar and Walker, 1995). Polymeric chains in K100M are longer than those in K15M 

and K4M  and show the lowest tribo-electric charge and surface adhesion. The magnitude of 

charge and SA  decreased with increasing polymer chain length within the HMPC series (i.e. 

K4M >K15M >K100M (Table 3.4). The arrangement and length of the polymeric chains affect 

the surface roughness, physical, rheological and mechanical properties of the particles (Keary, 

2001). Therefore, it can be anticipated that the molecular size and arrangement of polymeric 

chains within HPMC particles modifies the polymeric architecture and localises change in the 

atomic structure, resulting in alteration of electrical resistivity and effective work function. 

These characteristics dictate the charge transfer process and generation of operational forces 

(van der Waal forces, ionic bonding and electrostatic forces) thus impacting phenomena 

(Harper 1967).  
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Table 3.4, Charge-to-mass ratio and percentage particle adhesion of MC/HPMC (standard deviation is shown in parentheses, n=3) 

Methocel
®
 Particle size 

( µm) 

Charge to mass ratio 

(Q/M) 

Adhesion 

(%) 

A4M 90 – 150 57.44 (2.81) 32.98 (2.12) 

150 – 250 54.33 (2.21) 29.69 (1.89) 

F4M 90 – 150 44.02 (1.32) 25.08 (2.23) 

150 – 250 39.67 (3.14) 20.64 (0.99) 

E4M 90 – 150 26.90 (2.64) 20.11 (1.55) 

150 – 250 19.86 (1.15) 17.87 (1.23) 

K4M 90 – 150 12.33 (2.23) 11.37 (1.11) 

150 – 250 9.78 (3.69) 11.82 (2.55) 

K15M 90 – 150 10.36 (2.15) 12.09 (1.12) 

150 – 250 7.06 (1.68) 10.51(0.88) 

K100M 90 – 150 4.23 (0.85) 5.59 (1.15) 

150 – 250 3.94 (0.66) 7.93 (0.91) 
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3.9- Section C,  Tribo-electrification and adhesion studies of MC and 

HPMC based binary mixtures with model drugs 

3.9.1- Introduction 

The pharmaceutical industry relies heavily on powder processing since more than 80 % of its 

products are provided in tablet form (Jivraj et al., 2000). In order to manufacture a tablet, the 

excipients and API need to be mixed together thoroughly to form a homogenous powder 

mixture. Pharmaceutical products have special quality control requirements with regard to 

uniformity of active contents, consistency in appearance, longevity for storage, transportation 

and shelf life, demanding an exceptional degree of control and precision (Swarbrick, 2007). 

However, during powder processing, powder particles frequently come into contact with each 

other and with the walls of the processing equipment lead to the generation of tribo-electric 

charging on the surface of powder particles (Harper, 1967). Such phenomena become more 

prominent when excipients are introduced to a powder mixture alongside the APIs with inter- 

and intra-particulate interactions giving rise to electrification and SA of powder particles. The 

study and characterisation of electrostatic and SA properties of powders are vitally important 

in pharmaceutical dosage form development. Electrostatic charging and SA of powders is 

influenced by particle size, shape, surface morphology, surface energy, chemical 

composition, moisture content, processing vessel geometry, and other experimental factors, 

as explained in the detail in the previous section 3.6. In response to this complexity, 

numerous methods for measuring electrostatic charge and SA have been developed, largely 

based on empirical understanding. 

The electrostatic particle charging is a common nuisance as it can cause segregation, dust 

explosions, adhesion and deposition or blockage of pipelines, leading to loss of powder and 

difficulties controlling the powder flow, as this have been discussed in detail in the 
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aforementioned section 3.4. The ability to control the charging of pharmaceutical powders is 

essential in improving the quality of the end product and minimising deposition and powder 

loss. So powder processing techniques need an in depth evaluation and further improvement 

to meet these challenges. Despite the negative influences described above, electrostatic 

charging phenomena can be beneficial under certain conditions, for example, exploiting the 

opposite polarity of charged powder particles to fabricate ordered mixtures. Electrostatic 

assisted ordered mixtures are considered stable and further have a potential to improve 

content homogeneity, stability and powder processing problems (Wong et al., 2014b)  

Various excipients are added to tablet formulations, acting as binders, lubricants and 

disintegrants in order to improve the processability and bioavailability of the tablet product. 

MC and HPMC are considered to be the main excipients of choice in the development of 

extended release hydrophilic matrix tablets. Recently, tribo-electric charging behaviour of 

Methocel
®

 E4M, K4M based powder mixtures with the negatively charging API, THP have 

been studied. It was shown that when THP came into contact with HPMC, it attached to its 

surface due to opposite polarities and the tribo-electric charge of the final powder mixture 

was decreased (Asare-Addo et al., 2013b). However, the impact of diverse physico-chemical 

attributes related to MC and HPMC on API in a binary system still needs further 

investigation. Therefore, the aim of this study was to investigate the tribo-electrification and 

adhesion properties of different MC and HPMC based powder mixtures, using THP and FBP 

as model drugs. The impact of polymer attributes (concentration, particle size, hydroxypropyl 

(Hpo) / methoxyl (Meo) substitution ratio and molecular size) on tribo-electric charging and 

SA of powder mixtures were studied. Furthermore, a relationship between tribo-electric 

charging and SA was also studied. 
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3.9.2- Experimental 

3.9.2.1- Materials 

MC, HPMC and model drugs were obtained as detailed in section 2.1.1 and 2.1.2, 

respectively. 

3.9.2.2- Methods 

3.9.2.2.1- Efficiency of powder mixing 

3.9.2.2.2- Surface morphology of powder mixtures 

SEM was used to analyse the surface attachment of drug particles on the surface of MC or 

HPMC powder particles as described in section 2.2.4.1. 

3.9.2.2.3- Drug content uniformity of powder mixtures 

The contents of FBP and THP were quantified using the method described in section 2.2.4.2  

3.9.2.2.4- Differential scanning calorimetry (DSC) of powders 

Differential scanning calorimetry (DSC) study of MC/HPMC, model drugs (FBP/THP) and 

their respective powder mixtures were carried out using the method described in section 

2.2.4.3. 

3.9.2.2.5- Powder X-ray diffraction (PXRD) 

PXRD of MC/HPMC, model drugs (FBP/THP) and their respective powder mixtures were 

carried out using the method described in section 2.2.4.4. 
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3.9.2.2.6 - Tribo-electrification 

Tribo-electric charging of drug powder particles was studied using the method based on the 

shaking concept as described in section 2.2.5.2.  

3.9.2.2.7- Surface adhesion (SA) of powders 

The SA of model drugs was examined by following the method as described in section 

2.2.5.3. 

3.9.2.2.8- Statistical analysis 

One way analysis of variance (ANOVA) (confidence limit of P < 0.05) was used to 

investigate the statistical significance of different underlying factors on tribo-electrification 

and adhesion properties of MC/HPMC on the tribo-electric charging and SA properties of 

model drugs.  

3.9.3- Results and discussion 

3.9.3.1- Formation of ordered mixtures 

Among different mixing methods, ordered mixing results in more homogeneous and stable 

particulate powder mixtures. Ordered mixing can be achieved using powder particles having 

electrostatic charges of opposite polarity (Mäki et al., 2007; Swaminathan and Kildsig, 2000; 

Venables and Wells, 2001). Drugs are usually negatively charged while the excipients or 

polymers are positively charged.  This can be used to maintain the homogeneity of a mix 

through different processing conditions (Saharan et al., 2008). In the present study, an 

ordered binary mix was formed by mixing a polymer (positively charged) and FBP/THP 

(negatively charged) powders. The powder particles of polymers and drugs gained positive 

and negative tribo-electric charge, respectively, due to the difference in the effective work 
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functions between the powder particles and contacting surfaces. In the present study, when 

FBP and THP charged negatively and polymers charged positively, it was observed that the 

negatively charged FBP and THP powder particles were attracted towards the positively 

charged polymeric powder particles and adhered to their surfaces. A schematic illustration of 

powder charging and further the attachment of fine drug particles to the polymer surface are 

shown in Figure 3.10.  

Pharmaceutical products have strict quality control requirements with regard to drug content 

uniformity. So, all binary mixtures were analysed and contained between 95 - 105% of the 

expected drug (FBP/THP) content. The results of content uniformity are detailed in Table 3.5.   
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Figure 3.10, Schematic illustration of tribo-electric charge generation of powder 

mixtures. 
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Table 3.5, Content uniformity of powder mixture containing (a) FBP and (b) THP (n=3). 

  

Methocel
®
 

 

Particle Size 

( µm) 

FBP content (%) 
Polymer concentration (%) 

0.5 1 2.5 5 10 15 

A4M 
90 – 150  98.3 (1.1) 96.2 (0.5) 98.6 (1.2) 98.2 (1.8) 99.6 (2.5) 98.6 (2.3) 

150 – 250  97.2 (0.5) 99.2 (1.7) 99.5 (1.5) 96.3 (1.2) 98.5 (2.1) 99.2 (1.8) 

F4M 
90 – 150 99.3 (1.7) 98.1 (2.0) 97.4 (1.3) 98.5 (2.1) 96.5 (1.0) 101.3 (2.1) 

150 – 250  103.2 (1.9) 97.5 (1.1) 104.3 (1.8) 99.4 (1.3) 98.3 (2.3) 103.6 (1.5) 

E4M 
90 – 150  98.3 (0.8) 96.7 (1.2) 100.5 (1.7) 97.6 (1.4) 100.5 (2.1) 99.6 (2.5) 

150 – 250  97.2 (1.2) 99.2 (1.7) 99.1 (2.1) 97.4 (2.1) 101.2 (1.5) 98.2 (1.1) 

K4M 
90 – 150  96.1 (0.3) 100.5 (0.8) 98.6 (1.0) 99.32 (1.8) 98.3 (2.5) 96.3 (1.0) 

150 – 250  100.2 (2.5) 97.1 (0.8) 97.8 (2.1) 99.87 (1.3) 102.5 (1.3) 98.3 (2.0) 

K15M 
90 – 150  98.3 (0.9) 97.5 (1.1) 99.2 (2.7) 100.5 (1.7) 99.3 (2.8) 99.3 (1.8) 

150 – 250  98.6 (1.7) 99.6 (1.8) 97.6 (1.3) 98.63 (2.0) 100.5 (1.9) 98.3 (2.1) 

K100M 
90 – 150  99.2 (2.8) 97.8 (1.0) 98.2 (0.8) 99.57 (2.8) 97.3 (1.8) 100.5 (1.3) 

150 – 250  99.1 (1.1) 98.4 (2.1) 99.5 (3.1) 97.82 (1.0) 98.3 (2.5) 101.9 (2.8) 

Methocel
®
 

 

Particle Size 

( µm) 

THP content (%) 
Polymer concentration (%) 

0.5 1 2.5 5 10 15 

A4M 
90 – 150  99.3 (1.8) 98.2 (2.1) 99.3 (3.2) 101.2(2.8) 99.6 (3.1) 100.5 (2.4) 

150 – 250  99.2 (2.1) 98.2 (1.8) 98.5 (3.0) 97.3 (0.5) 99.3 (2.1) 98.6 (1.6) 

F4M 
90 – 150  98.5 (1.5) 99.7 (1.9) 97.7 (1.8) 99.3 (1.9) 98.3 (1.0) 99.2 (2.1) 

150 – 250  99.5 (2.1) 99.8 (1.8) 99.1 (1.0) 100.5 (0.9) 97.2 (2.2) 96.3 (1.1) 

E4M 
90 – 150  100.1 (1.7) 103.6 (2.2) 96.8 (1.2) 98.3 (1.2) 99.8 (2.5) 99.3 (1.5) 

150 – 250  98.1 (2.5) 99.2 (1.7) 96.9 (1.1) 99.6 (1.5) 100.8 (0.9) 97.1 (1.3) 

K4M 
90 – 150  99.5 (2.3) 100.5 (0.8) 99.5 (1.7) 97.8 (2.0) 101.0 (1.5) 102.8 (2.5) 

150 – 250  99.8 (2.5) 99.6 (1.8) 97.9 (2.8) 101.5 (2.8) 100.5 (2.3) 101.2 (1.8) 

K15M 
90 – 150  101.8 (2.9) 97.5 (1.8) 99.8 (2.4) 100.5 (1.9) 97.3 (0.2) 98.3 (1.7) 

150 – 250  99.3 (0.1) 96.3(1.0) 97.7 (1.7) 99.3 (1.3) 99.8 (1.8) 97.6 (0.7) 

K100M 
90 – 150  97.3 (1.8) 102.5 (2.0) 98.8 (2.8) 97.5 (2.4) 97.5 (2.2) 99.7 (1.5) 

150 – 250  99.6 (1.7) 99.5 (3.1) 97.5 (1.1) 98.6 (1.5) 100.1 (1.3) 100.8 (2.3) 

(a) 

(b) 
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To validate the attachment of negatively charged drug particles on the positively charged 

polymer particle and further confirm the formation of electrostatic ordered powder mixtures, 

SEM was used. The general findings of this work are exemplified in Figures 3.11 and 3.12. 

Figure 3.11 illustrates six SEM micrographs of FBP powder mixtures with different grades of 

MC and HPMC and the negatively charged FBP powder particles are attached to the 

positively charged polymer surface, regardless of grade. Furthermore, it is clearly evident 

from the micrographs that the FBP has retained its crystalline habit.  

Figure 3.12 also illustrates six SEM micrographs of THP powder mixtures with different 

grades of MC and HPMC. Like FBP, mixtures of THP powder particles also attached to the 

positively charged MC or HPMC powder particles. The crystalline nature of the drug is also 

evident with irregular-shaped HPMC or MC powder particles. 

Overall, it can be concluded from the SEM work that the negatively charged (FBP and THP) 

powder particles are attached to the positively charged MC or HPMC powder particles and 

this lead to the successful formation of homogeneous, electrostatic-assisted, ordered 

mixtures.   
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Figure 3.11, SEM micrographs of FBP powder mixtures, (a) A4M/FBP (b)F4M/FBP (c) 

E4M/FBP (d) K4M/FBP (e) K15M/FBP and (d) K100M/FBP. 
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Figure 3.12, SEM micrographs of THP powder mixtures,  (a) A4M/THP (b) F4M/THP 

(c) E4M/THP (d) K4M/THP (e) K15M/THP and (d) K100M/THP. 
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DSC was employed to investigate any possible solid-solid interaction between the FBP and 

THP with MC/HPMC powders. Figure 3.12 (a) depicts the DSC thermograms of MC and 

HPMC showing no melting peak, suggesting they are amorphous. Figure 3.12 (b) 

demonstrated sharp endothermic melting peaks at 115.45 ºC and 272.02 ºC for FBP and THP, 

respectively.  

Moreover, Figure 3.13 (a and b) showed DSC thermograms of MC/HPMC : FBP/THP 

powder mixtures containing 15 % w/w of polymer content to exemplify and indicate any 

possible drug-polymer interaction. There was a negligible depression in the melting peaks 

and it can be concluded that the drugs retained their crystalline structure and no drug-polymer 

interaction was discerned.   
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Figure 3.13, DSC profiles of (a) MC/HPMC and (b) FBP/THP.  
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Figure 3.14, DSC profiles of (a) FBP and (b) THP powder mixtures. 
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Figure 3.14 (a) demonstrates the PXRD patterns of MC and HPMC powders. The absence of 

any sharp diffraction peaks confirms their amorphous nature. Figure 3.14 (b) shows 

characteristic diffraction peaks at 15.76º and 20.49º for FBP, however, THP showed 

characteristic diffraction peaks at 12.30º and 25.22º. The sharp and intense diffraction peaks 

of model drugs represent their crystalline structure.  

Figure 3.15 (a and b) shows PXRD patterns of MC/HPMC : FBP/THP powder mixtures 

containing 15 % w/w of polymer contents to exemplify and indicate any possible drug-

polymer interaction. It is evident from the Figure 3.15 (a and b) that the model drugs retained 

their diffraction peaks, which confirms that after powder mixing, the drugs retained their 

crystalline structure. Furthermore, it can be concluded that no drug-polymer interaction was 

evident. 
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Figure 3.15, PXRD patterns of (a) MC/HPMC and (b) FBP/THP. 
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Figure 3.16, PXRD patterns of (a) THP and (b) FBP powder mixtures. 
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3.9.3.2- Tribo-electrification and adhesion properties of binary mixtures 

In the present study, maximum charge acquisition data (Qmax) are presented as charge to mass 

ratio (Q/M) at the end of each tribo-electrification experiment (n=3), as exemplified in Figure 

3.6.  Moreover, the SA of powders related to Qmax was reported, (n=3).  

3.9.3.2.1- Effect of polymer concentration 

The acquisition of tribo-electric charge and SA of powder formulations can be affected by the 

component ratios in a binary powder mixture as explained in section 3.5.2 (Engers et al., 

2007; Murtomaa and Laine, 2000). Tribo-electric charging and adhesion experiments were 

carried out on MC/HPMC : FBP and MC/HPMC : THP powder mixtures with fixed polymer 

to drug loading ratios of 0.5, 1, 2.5, 5, 10 and 15 w/w %. The charging and adhesion results 

show that the addition of increasing proportions of MC/HPMC has a significant impact (P < 

0.05) on these properties; as the level of MC/HPMC increased from 0.5 to 15 %, the charge 

and PSA was decreased (Tables 3.6 and 3.7).  

In case of MC/HPMC : FBP or  MC/HPMC : THP powder mixtures, at 0.5 % polymer 

content, there is a slight decrease in the charge and SA of FBP with the addition of A4M, 

F4M and E4M. With further increases in polymer concentration, the charge dissipation 

increases significantly due to the influence of polymer-to-drug ratio on the overall effective 

work function and surface resistivity of a bulk powder sample (Figures 3.17-3.18 and Tables 

3.6-3.7). The charge reduction reached a plateau level at 5 and 10 % and so further increases 

in polymer concentration only had a small impact on charge, however, the SA was further 

reduced, especially in the case of MC/HPMC : THP powder mixtures (Table 3.6-3.7). The 

powder mixtures of FBP or THP formed using polymers K4M, K15M and K100M were the 

lowest charging blends as compared to A4M, F4M and E4M. The addition of 0.5% w/w of 

polymer halved the overall net charge on FBP. Moreover, at 15% polymer, the charge was 
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neutralised completely and particle adhesion was also very low. In the case of THP powder 

mixtures, at 0.5 %, significant dissipation of the tribo-electric charge was noticed and this 

phenomenon was previously discussed by Asare-Addo et al., (2013b), however in that study 

20 % w/w of E4M and K4M with THP was used. The charge reduction is likely due to 

ordering of particles as particles of opposite charges adhered to each other as electrovalent 

bonds developed between drug and excipient powder particles due to an exchange of 

electrons.  

Additionally, in the present study a shift in polarity of charge from negative to positive was 

also noticed for FBP powders containing 15% w/w K15M and K100M (Figure 3.17). 

Likewise THP powder mixtures also showed a similar trend at 15 % w/w concentrations of 

K15M and K100M, Additionally, K100M also showed a shift in polarity at 10 % w/w 

concentration (Figure 3.18). This phenomenon was previously encountered for 

glucose/lactose mixtures by Murtomaa and Laine, (2000). In the present scenario, it can be 

assumed that the K15M and K100M have a lower work function and surface resistivity than 

FBP/THP and the contacting surface (stainless steel). Thus, when the percentage of polymer 

is increased, the net surface resistivity and effective work function of powders is altered, 

leading to a reduction and shift in polarity of electrostatic charge. As expected, such a 

significant charge reduction changes the classification from a high charging to a lower 

charging category, and the impact of charge during powder handling will be reduced. 
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Figure 3.17, Effect of polymer concentration on the tribo-electric charging of cellulose ether : FBP powder mixtures; polymer particle 

size (a) 150 - 250 µm and (b) 90 - 150 µm (n=3). 
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Figure 3.18, Effect of polymer concentration on the tribo-electric charging of cellulose ether : THP powder mixtures; polymer particle 

size (a) 150 - 250 µm and (b) 90 - 150 µm (n=3).
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3.9.3.2.2- Effect of particle size  

The effect of polymer particle size on the propensity of charge and SA of FBP and THP 

powder mixtures during the contact electrification process against a the stainless steel surface, 

is shown in Figures 3.17- 3.18 and Tables 3.6 - 3.7, respectively. Charge and SA of all the 

powder mixtures were increased as the particle size of MC/HPMC was reduced from 150-250 

to 90-150 m, regardless of concentration and MC/HPMC grade. With an increase in particle 

size, the positively charging polymer powder particles provide more active sites on a single 

carrier particle for negatively charged FBP/THP to attach, leading to an ordered mixing, as 

described in Figure 3.10 and section 3.5.8. This particle size alteration and ordering of 

oppositely charged powder particles reduces the electrostatic charge and SA of powder 

particles. Furthermore, the particle size variation might also change the effective work function 

of powder blends as previously explained by various authors (Duff and Lacks, 2008; Engers et 

al., 2006; Gallo and Lama 1976;, Lacks et al., 2008; Lacks and Levandovsky, 2007; Lacks and 

Sankaran, 2011; Rowley, 2001). So, the findings of current study imply that the manipulation 

of polymer particle size may aid reduction of electrostatic properties and adhesion of 

pharmaceutical powder mixtures. 
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Table 3.6, Adhesion (%) of polymer/ FBP powder mixtures (standard deviation in parentheses, n=3). 

  

 

 
 

Methocel
®

 

 

Particle Size 
(µm) 

Adhesion (%) 

Methocel
®
 concentration (%) 

0.5 1 2.5 5 10 15 

A4M 
90 – 150 71.5 (3.81) 67.1 (3.51) 48.5 (2.77) 28.9 (1.82) 24.1 (1.59) 21.4 (1.54) 

150 – 250 69.7 (3.77) 58.1 (1.89) 29.2 (2.38) 22.4 (2.54) 18.2 (0.88) 16.3 (1.05) 

F4M 
90 – 150 70.8 (2.74) 63.4 (3.14) 42.3 (1.25) 21.9 (2.47) 20.2 (1.58) 19.4 (0.92) 

150 – 250 66.3(3.55) 45.2 (2.02) 26.5 (2.34) 18.4 (3.25) 15.2 (2.21) 12.9 (1.09) 

E4M 
90 – 150 68.2 (3.88) 47.2 (1.46) 37.5 (1.4) 27.2 (2.21) 17.6 (2.17) 18.6 (1.06) 

150 – 250 61.3 (3.24) 36.5 (1.69) 22.2 (2.54) 14.5 (1.37) 12.9 (1.54) 10.5 (1.15) 

K4M 
90 – 150 57.3 (1.85) 44.5 (0.88) 34.5 (1.27) 23.5 (2.88) 17.2 (0.56) 14.3(1.54) 

150 – 250 48.1 (2.12) 34.5 (2.25) 19.2 (1.25) 12.3 (1.25) 11.1  (1.12)    8.0 (0.23) 

K15M 
90 – 150 47.3 (2.33) 41.2 (1.48) 30.5 (1.15) 24.3 (2.41) 15.1 (2.25)  12.6 (0.58) 

150 – 250 50.2 (2.51) 31.5 (1.55) 16.5 (0.88) 10.2 (0.88) 9.5 (1.47)     6.5 (2.10) 

K100M 
90 – 150 48.5 (1.89) 38.3 (1.21) 24.5 (0.78) 19.3 (1.10) 11.5 (1.09)     9.8 (0.48) 

150 – 250 44.2 (2.20) 29.3 (1.25) 14.1 (0.98) 9.2 (0.55) 7.3 (0.88)     4.2 (0.51) 
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Table 3.7, Adhesion (%) of polymer/ THP powder mixtures (standard deviation in parentheses, n=3). 

 

  

 

 

 

Methocel
®

 

 

Particle Size 
(µm) 

Adhesion (%) 

Methocel
®
 concentration (%) 

0.5 1 2.5 5 10 15 

A4M 
90 – 150 35.1 (5.27) 30.2 (4.53) 28.1 (5.63) 22.2 (4.89) 20.3 (4.69) 18.5 (4.64) 

150 – 250 34.6 (5.20) 28.3 (4.25) 20.5 (4.12) 18.6 (4.11) 15.1 (3.47) 12.6 (3.17) 

F4M 
90 – 150 33.8 (5.08) 27.5 (4.14) 22.5 (4.51) 15.5 (3.43) 17.3 (3.99) 14.2 (3.57) 

150 – 250 32.2 (4.84) 21.5 (3.24) 16.2 (3.25) 11.4 (2.52) 10.7 (2.46) 8.8 (2.22) 

E4M 
90 – 150 30.8 (4.62) 21.3 (3.20) 16.3 (3.27) 13.9 (3.08) 10.5 (2.43) 9.5 (2.40) 

150 – 250 27.3 (4.11) 18.2 (3.29) 14.3 (2.87) 11.4 (2.51) 8.5 (1.97) 7.5 (1.89) 

K4M 
90 – 150 27.3 (5.47) 17.5 (3.15) 14.3 (2.88) 9.6 (2.13) 8.9 (2.06) 6.2 (1.55) 

150 – 250 20.7 (4.16) 11.5 (2.07) 9.7 (1.95) 7.6 (1.69) 7.1 (1.64) 5.5 (1.40) 

K15M 
90 – 150 24.3 (4.88) 18.6 (3.36) 11.3 (2.26) 8.8 (1.95) 7.5 (1.74) 5.8 (1.47) 

150 – 250 14.3 (2.88) 9.6 (1.74) 7.3 (1.46) 6.8 (1.71) 4.5 (1.05) 3.8 (0.97) 

K100M 
90 – 150 18.3 (3.66) 9.5 (1.71) 7.2 (1.44) 6.2 (1.56) 5.8 (1.35) 4.1 (1.05) 

150 – 250 8.3 (1.66) 6.5 (1.17) 5.2 (1.04) 3.9 (1.00) 3.8 (0.89) 2.90 (0.75) 
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3.9.3.2.3- Effect of substitution ratios 

The chemistry of polymers can affect the tribo-electric charging and SA properties of 

powders as it instigates variations in particle dynamics during the tribo-charging process. The 

major difference between MC (A4M) and other various grades of HPMC (F4M, E4M and 

K4M) is the level of Meo and Hpo groups attached to the parent glucose ring. The variation 

in the Hpo/Meo substitution ratios had a significant impact on the tribo-electric charge and 

SA properties of plain MC and HPMC powders, as explained in section 3.5 and Table 3.4.  

In the present study of MC/HPMC : FBP/THP powder mixtures, the Hpo to Meo substitution 

ratio showed a significant impact. The overall net charge and SA were decreased with an 

increase in Hpo/Meo substitution ratios (i.e. A > F > E > K) and this was the case for both 

particle size fractions (Figures 3.17 - 3.18 and Tables 3.6 – 3.7) 

It is notable that as the substitution ratio increases, the surface irregularities were increased, 

resulting in a more complex surface morphology of powder particles. Moreover, it induced 

steric hindrance due to the difference in local atomic number as described earlier in section 

3.7.4.2.2. These changes can modify surface resistivity, work function and steric hindrance, 

thus enabling MC/HPMC to show anti-static and anti-adhesive properties.  

3.9.3.2.4- Effect of molecular size (viscosity)  

The molecular size of MC/HPMC can affect charging and SA due to its impact on the 

polymer chain lengths and their subsequent packing in a powder particle. The molecular size 

of MC/HPMC has a significant effect on the tribo-electric charging and SA properties of 

powder mixtures either containing FBP/THP (Figures 3.19-3.20 and Tables 3.5-3.6). The net 

tribo-electric charge and SA were decreased with an increase in the molecular size (for K 

series); both the particle size fraction showed similar behaviour. It is evident that as 
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molecular size increases, it affects the packing of the polymeric chains which leads to surface 

irregularities of powder particle, as described earlier (section 3.5.6). Moreover, these changes 

can modify surface resistivity and the effective work function of powder particles in a blend. 

Moreover, these characteristics dictate the charge transfer process and generation of 

operational forces (van der Waals forces, ionic bonding and electrostatic forces) thus 

impacting phenomena. Additionally, the agglomeration and stability of these powder 

mixtures are improved with more complex surface carrier particles compared with particles 

having a smooth surface (Saharan et al., 2008; Swaminathan and Kildsig, 2000).   
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Figure 3.19, Effect of polymer molecular size (viscosity) on the tribo-electric charging of  

MC/HPMC : FBP powder mixtures; polymer particle size (a) 150 - 250 µm and (b) 90 - 

150 µm, n=3, ( viscosity (cps) in parentheses on x-axis) 
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Figure 3.20, Effect of polymer molecular size (viscosity) on the tribo-electric charging of  

MC/HPMC : THP powder mixtures; polymer particle size (a) 150 - 250 µm and (b) 90 - 

150 µm, n=3, ( viscosity (cps) in parentheses on x-axis). 
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3.9.4- Relationship between tribo-electric charging and surface adhesion 

 

Table 3.7 shows the adhesion of polymer particles to the steel surface calculated as a ratio 

between the initial feed and the mass loss due to powder sticking. A reduction in adhesion is 

observed with a decrease in electrostatic charge on the particles. Figures 3.21 and 3.22 show 

the relationship between charge and SA for all binary mixtures having varying polymer 

particle size (90 -150 µm and 150 - 250 µm) and concentration (0.5 - 15 % w/w). The 

electrostatic charge was spawned due to electron transfer from the polymer to FBP/THP 

powder particles, as described earlier. A reduction in susceptibility towards tribo-electric 

charging is directly related to surface adhesion, with correlation coefficients ranging between 

0.81-0.98 and (Table 3.8). As in the case of FBP powder mixtures, the A4M blends show a 

higher degree of correlation (R
2
) than others, while K100M blends were at the lower end of 

this series. Conversely, F4M: THP blends showed a good correlation coefficient, but A4M 

powder mixtures had lower values. The particle size distribution also has a significant impact 

on the R
2
 which tends to decrease with decreasing particle size and it is more eminent in the 

THP powder blends study. This might be due to the fact that the reduction in particle size has 

generated molecular and Van der Waals forces, as both depend on the distance between the 

contacting powder particles (Cross, 1987).  The large surface area associated with a reduction 

in particle size reduced the distance between the powder particles, thus giving rise to a higher 

intensity of operational forces during the experiments. The current study shows that 

electrostatic forces generated during the tribo-electrification process played a significant role 

during the SA phenomena of pharmaceutical powders. However, it is appreciated that the 

mechanism of particle adhesion is a complex process and other mechanisms may also be 

involved (Cowell, 2003; Donald, 1969).  
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Table 3.8, Inter-relationship between tribo-electric charge and SA (n = 3). 

 

 

 

 

 

 

Powder mixtures 
Correlation co-efficient (R

2
) 

Particle size 
(90-150 µm) 

Particle size 
(150-250 µm) 

A4M/FBP 0.959 0.980 

F4M/FBP 0.956 0.973 

E4M/FBP 0.974 0.961 

K4M/FBP 0.913 0.955 

K15M/FBP 0.815 0.940 

K100MFBP 0.857 0.894 

A4M/THP 0.750 0.947 

F4M/THP 0.880 0.992 

E4M/THP 0.917 0.967 

K4M/THP 0.982 0.930 

K15M/THP 0.975 0.938 

K100M/THP 0.899 0.963 
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Figure 3.21, Effect of tribo-electric charging (nC/g) of FBP powder mixtures on SA (%), (a) A4M (b) F4M (c) E4M (d) K4M (e) K15M 

(f) K100M having polymer particle size 90-150 µm and 150-250 µm. 
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Figure 3.22, Effect of tribo-electric charging (nC/g) of THP powder mixtures on SA (%), (a) A4M (b) F4M (c) E4M (d) K4M (e) K15M 

(f) K100M having polymer particle size 90-150 µm and 150-250 µm. 
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3.10- Summary 

 

In summary, it can be concluded that both the drugs charged negatively, with the electrostatic 

behaviour of FBP and THP categorised as highly charging and low charging materials, 

respectively, when compared to other APIs and pharmaceutical excipients. The high charging 

of FBP is likely to result in processing problems during powder processing. Moreover, the 

study revealed that the MC and HPMC powder particles charged positively and have lower 

work function in comparison to steel surface. The physico-chemical properties associated with 

MC and HPMC, such as particle size, chemical heterogeneity and molecular size of cellulose 

ethers all have significant impact on their charging and adhesion properties. 

 

The study further revealed that the particle size, substitution and molecular size of cellulose 

ethers all can significantly affect the charging and adhesion behaviour. An electrostatic charge-

assisted ordering has been showed to be an efficient tool for the dissipation of charge on the 

API. The charge and adhesion were highly dependent on the concentration (P < 0.05), particle 

size, substitution ratios and molecular size of the cellulose ethers. The decrease in PSA and 

charge dissipation of FBP powder mixtures is intuitively expected to improve its flowability 

and compaction which is expected to have a positive effect on the finished pharmaceutical 

dosage forms.   
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4- Swelling, erosion and dissolution studies of hydrophilic 

matrices 
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4- Swelling, erosion and dissolution studies of hydrophilic matrices 

4.1- Introduction 

The goal of any drug delivery system is to provide a therapeutic amount of drug to its proper 

site in the body, so that a desired drug concentration at the site of action is achieved promptly 

and then maintained over a specified period of time. Thus, an ideal drug delivery system 

should have the capacity to deliver drugs at a particular rate as required by the patient. 

However, most of the traditional oral dosage forms require frequent and repeated doses to 

achieve these objectives (Wise, 2000; Yihong, 2009). Thus, it is far from an ideal therapeutic 

environment as fluctuation of plasma drug concentrations over successive administrations 

may lead to overdosing or underdosing of the patient. Moreover, drugs with short biological 

half-lives require frequent doses to maintain therapeutic concentrations in the body. 

Additionally, the lack of compliance due to a forgotten dose or overnight can significantly 

deteriorate the treatment plan (Remington and Allen, 2013). 

Owing to these problems, controlled drug release approaches have become popular over the 

years. The use of hydrophilic polymers to develop hydrophilic matrices became eminent as 

they enable the drugs to be released continuously over long periods of time, which ultimately 

improves patient compliance and decreases patient to patient variations in drug 

administration patterns. Furthermore, it reduces the total amount of administered drug and 

possible side-effects related to high peak plasma drug levels (Wen and Park, 2011). 

4.2- Hydrophilic matrices 

Hydrophilic matrix tablets are the most frequently used controlled release oral dosage forms 

intended for oral administration (Alderman, 1984; Maderuelo et al., 2011). Commonly, 

hydrophilic matrices are compressed matrix tablets and can easily be prepared by direct 
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compression of a powder mixture of drug with a release retardant swellable-polymer and 

other additives to aid processing. Such matrices are commonly employed because of the 

advantages associated with their manufacturing, including simple formulation, the use of 

existing tableting technologies and the low cost of polymers, which are generally regarded as 

safe excipients (Wen et al., 2010). These hydrophilic matrices have the ability to release the 

drug over a defined period of time, as they do not undergo disintegration when delivered to 

patients, as the drug is entrapped in the polymeric network at the particulate level (Figure 

4.1). Numerous swellable, carbohydrate-based polymers are available, allowing flexibility for 

the needs of an individual formulation to achieve specific goals in drug therapy (Siepmann et 

al., 2011).  

 

 

 

 

 

Figure 4.1, Cross-sectional view of a typical hydrophilic matrix tablet. 

 

4.3- Cellulose ether based hydrophilic matrices 

Among the swellable polymers usually used to develop these hydrophilic matrices, cellulose 

ethers, specifically methylcellulose (MC) and hypromellose (hydroxypropyl methylcellulose, 

HPMC), have provoked extensive interest (Maderuelo et al., 2011). Their widespread 

acceptance can be attributed to good compression properties, adequate swelling 
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characteristics which allow the matrix tablet to develop an external gel layer on the surface of 

matrix tablet, non-toxic nature, availability in different grades, ability to give pH independent 

drug release profiles and amenability to high levels of drug loading, (see chapter 1, sections 

1.1-1.4 for more detail).   

4.4- Mechanism of swelling, drug release and matrix erosion  

Polymer swelling, drug dissolution and matrix erosion are the phenomena that determine the 

mechanism of drug release form hydrophilic matrix tablets, either on a macroscopic or 

molecular level (Chaibva et al., 2010). When drug loaded swellable Methocel
®
 based 

hydrophilic matrices are exposed to dissolution fluid, steep water concentration gradients are 

formed between the dissolution fluid and the outermost surface of matrix tablet. This results 

in water imbibition into the polymer matrix network. To describe this process adequately, it is 

important to consider the exact geometry of the matrix tablet, as in the case of cylinders, 

both, axial and radial directions of mass transport can be manifested which have a significant 

dependence of the water diffusion coefficient and the matrix swelling (Ford et al., 1987; 

Siepmann and Peppas, 2001). When dry matrix tablets are introduced into the liquid system, 

the diffusion coefficient tends to be very low, whereas in highly swollen gels, it is of the 

same magnitude as pure water. So, the liquid acts as a plasticizer and the glass transition 

temperature (Tg) reduces from somewhere between 154 – 184 
º
C to around the system 

temperature, 37 
º
C (Conti et al., 2007). Once the Tg equals the temperature of the system, the 

polymer chains start to relax and eventually  disentangle enhancing the molecular surface 

area (Maderuelo et al., 2011). This phenomenon of polymer chains relaxation is termed 

‗swelling‘ and the continuous inward ingression of liquid breaks the hydrogen bonds formed 

during tablet compaction and can lead to the development of new hydrogen bonds 

accommodating water molecules (Li et al., 2005). Therefore, the reduction in Tg and 
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formation of new hydrogen bonds results in the swelling of polymer chains. As a 

consequence, a thick gelatinous layer appears on the surface of matrix tablets, commonly 

known as a gel layer, as MC/HPMC pass from the amorphous glassy state to the rubbery state 

(Colombo et al., 1999; Colombo et al., 2000; Siepmann and Peppas, 2001).  The 

development of the gel layer actually divides the matrix tablet into three different 

distinguishable regions. The highly swollen outer region (erosion front) has the highest 

amount of water molecules but it is mechanically weak. However, it acts as a diffusion 

barrier preventing water penetration into the other two regions. The middle region 

(dissolution front) is moderately swollen and is relatively stronger than the outer one. The 

core of the matrix tablet which actually forms the innermost region (swelling front), remains 

essentially dry and holds its glassy state for a longer period of time (Omidian and Park, 2008; 

Maderuelo et al., 2011). Moreover, there is evidence that a fourth front (penetration front) is 

also present, between the swelling and dissolution fronts, adding further complexity to the 

system  (Ferrero et al., 2010). A schematic illustration of the different fronts which develop 

due to liquid penetration is shown in Figure 4.2.   

The gel layer grows over time as more water penetrates into the matrix tablet. The polymer 

chains present on the surface of matrix tablet hydrate quickly compared to those located 

inside the core and contact with the liquid causes chain relaxation (swelling) which initiates 

erosion of the matrix . Instantaneously, the outermost layer becomes fully hydrated and starts 

to relax, leading to the disentanglement of polymeric chains (Vueba et al., 2005). 

Consequently, matrices start to dissolve from their surface, as water continuously permeates 

towards the core (Tiwari and Rajabi-Siahboomi, 2008). The relative rates of liquid uptake 

and erosion of a polymer matrix play a critical role in controlling the rate of drug release. The 

swelling, matrix erosion, drug release mechanism and rate are dependent on the concentration 

and viscosity of HPMC being used in the hydrophilic matrices (Mitchell et al., 1993; Wan et 
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al., 1991). HPMC has the potential to hydrate quickly enough to form a gel layer before the 

drug entrapped in the tablet matrix can dissolve. 

There are two processes involved during the dissolution of hydrophilic matrix tablets, by 

which polymer erosion from the hydrophilic matrices takes place. Firstly, the 

disentanglement of individual polymer chains at the surface of matrix tablets and secondly 

their subsequent transport to the surrounding bulk solution. The physical entanglement of the 

polymer chains precludes polymer dissolution, but polymer present at the outermost surface 

is diluted by the bulk dissolution medium over time to a point when the polymeric network 

no longer has structural integrity. This eventually leads to polymer disentanglement and the 

matrix tablet starts to disappear (Colombo et al., 2000; Maderuelo et al., 2011; Miller-Chou 

and Koenig, 2003; Siepmann and Peppas, 2001; Wen et al., 2010). Both MC and HPMC are 

water soluble and, as the water penetrates into the hydrophilic matrix, the polymer chains 

become hydrated and these eventually start to disentangle from the matrix because MC and 

HPMC contain linear hydrophilic polymeric chains which do not cross-link but instead form 

a gelatinous layer on the surface of the tablets that is vulnerable to matrix erosion. At high 

polymer concentrations, the linear polymer chains entangle to form what may be considered a 

physically cross-linked structure, which eventually erodes, resulting in the liberation of 

polymer and drug molecules (Mitchell et al., 1993). However, the rate of polymer erosion is 

dependent on the viscosity of the MC/HPMC grade being used in the formulation. Tablets 

were produced using a high molecular weight and viscosity grade MC/HPMC shows more 

resistance to polymer erosion than the low molecular weight and low viscosity grades (Wen 

et al., 2010). 

Figure 4.3 illustrates a general drug release mechanism on the basis of solubility of 

incorporated drugs. Release is controlled by diffusion through, and erosion of, the 
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Figure 4.2, Mechanism of drug release from hydrophilic matrix tablets. 
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gel layer and any drug present on the surface of the matrix tablet are quickly released. This is 

followed by expansion of the gel layer as water permeates into the tablet, increasing the 

thickness of the gel layer (Ford et al., 1985a; Talukdar et al., 1996). If a well-defined gel 

layer is formed, the rate of drug release is reduced and becomes dependent on the rate at 

which the drug molecules diffuse through the gel, as well as the rate at which the barrier layer 

is mechanically removed by attrition and disentanglement of the matrix. In most cases, both 

diffusion and erosion occur simultaneously (Gao et al., 1996; Ju et al., 1995; Kim and 

Fassihi, 1997). Highly water soluble drugs diffuse through the gel layer before the matrix 

erodes, but it is suggested that the presence of poorly soluble drugs can increase matrix 

erosion by imperilling the integrity of the gel layer (Bettini et al., 2001; Ghori et al., 2014b; 

Yang and Fassihi, 1997). So, the solubility of entrapped drugs is another key factor in 

determining the drug release behaviour from hydrophilic matrices. Mechanistically, both 

diffusion and erosion will be contributing factors in controlling drug release from a 

hydrophilic matrix tablet. In practical terms, however, one process will often play a 

predominant role over the other depending on the HPMC level and solubility of other matrix 

tablet contents (Sinha Roy and Rohera, 2002). 
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Figure 4.3, Drug release mechanism of water soluble and poorly water soluble drugs from hydrophilic matrix tablets.
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4.5- Factors affecting swelling, erosion and drug release 

Although the fabrication of compressed hydrophilic matrices may be simple, it becomes very 

complex and challenging when it comes to explaining the mechanism of drug release from 

these polymeric devices. The physicochemical properties of MC/HPMC and incorporated 

drug significantly impact the swelling, erosion and drug release. In this section, the principal 

factors that can affect swelling, erosion and drug release will be discussed; however, a 

summary of all the major contributing factors has been given in Table 4.1.    

4.5.1- Effect of Methocel
®
 concentration 

Commonly, it is noticed that regardless of the physicochemical properties of hydrophilic 

polymer, the drug release rate decreases with an increase in the levels of polymer in a 

hydrophilic matrix tablet. Reza et al. (2003) reported that higher levels of polymer 

correspond to a lower porosity of the matrix tablet and slower drug release rates can be 

achieved. Moreover, Ebube et al. (2004) investigated the effect of polymer levels on the 

release of acetaminophen and found an increase in the percentage of polymer (3.5% to 

19.2%) in the matrix tablet lead to a decrease in the drug release rate. The results of these 

experiments are in complete agreement with the findings of Mitchell et al. (1993), who 

concluded that a greater degree of physical cross-linking of polymer chains is evident when 

the amount of HPMC has been increased. This in turn increases the tortuosity of the matrix 

tablets and essentially corresponds to slower drug release. The studies of Campos-Aldrete 

and Villafuerte-Robles (1997), Kim and Fassihi (1997), Nellore et al. (1998) concluded that 

the first 5 min contact between the matrix tablet and aqueous fluids is a very important time 

for the development of the gel layer on the surface of matrix tablet. After such times, if the 

structure has not formed, the matrix may erode too quickly and lead to premature drug 

release. Higher polymer content in a matrix tablet results in the formation of a stronger gel; at 
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low polymer levels the gel does not form quickly. As hypromellose content is increased, the 

resulting gelatinous diffusion layer becomes stronger and more resistant to diffusion and 

erosion (Xu and Sunada, 1995). Recently, Jain et al. (2014) concluded that the higher levels 

of HPMC in a matrix tablet exhibit slower erosion and drug release rate. These conclusions 

are in complete accordance with the findings of Ghori et al. (2014), who reported that the 

increase in the HPMC concentration (20% to 80 %) in a matrix tablet tends to decrease the 

rate drug release, regardless of drug solubility.    

However, there is a difference of opinion, as some authors do not agree with this notion, as in 

the case of Tiwari et al. (2003). In their studies, these authors prepared the hydrophilic 

matrices by using a highly water soluble drug, tramadol, and failed to observe significant 

changes in the release profile with changes in the polymer concentration. In formulations of 

drugs that are highly soluble in water, it is usual to find that, above a certain percentage of 

polymers, the release rate does not decrease.  

It was reported that once a particular polymer level is reached, the effects from characteristics 

such as viscosity, burst effect and particle size are less evident. A polymer content of 30% – 

40% appears to be the level at which similar drug-release profiles are obtained from differing 

grades of hypromellose (2208, 2906, and 2910) (Ford et al., 1985a; Nellore et al., 1998). 

However, Campos-Aldrete and Villafuerte-Robles (1997) reported that the HPMC 

concentrations higher than 20% can become the overriding factor and the effect of viscosity 

and particle size do not cause any significant changes in the drug release profiles. Moreover, 

the conclusions of Heng et al. (2001) are in complete accordance with aforementioned 

studies, that the increase in HPMC concentration can significantly suppress the impact of 

particle size.  
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4.5.2- Effect of Methocel
®
 particle size 

Over the years, the effect of the particle size of the polymer on drug release has been studied 

in depth by different authors (Campos-Aldrete and Villafuerte-Robles, 1997; Caraballo, 

2010; Dabbagh et al., 1996; Reza et al., 2003; Velasco et al., 1999; Zuleger and Lippold, 

2001). A general observation can be drawn from these studies that the particle size of the 

polymer is not as decisive as expected. However, narrower particle size distribution of 

polymer in a matrix system initiates the prompt development of the gel layer on the surface of 

matrix tablet.  

The hydrophilic matrices formulated with polymer particles sizes larger than 200 μm 

disintegrate before the development of the so-called surface gel layer, while those formulated 

with particle sizes smaller than 150 μm can form the gel layer rapidly, preventing the 

disintegration of the system and lead to prolonged drug release profiles (Dow, 2006). 

Mitchell et al. (1993) reported that the polymer particles tend to dissolve slowly and failed to 

provide adequate controlled drug release. The use of larger sized hypromellose K15M 

particles (> 355 µm) left much larger pores on the surface of matrices that essentially make 

the gel layer structure unstable and lead to rapid drug release. 

Some authors have proposed that the effect of MC/HPMC particle size can be minimised 

with high concentrations of polymers, as described in the earlier section, 4.5.1. Heng et al. 

(2001) carried out the experiments to elucidate the effect of particle size on drug release 

profiles. It was revealed that the HPMC K15M matrices, with a mean particle size smaller 

than 113 μm, release drug through a combination of erosion and diffusion mechanisms. 

However, the matrix tablets having a HPMC particle size of more than 113 μm showed rapid 

drug release behaviour and the release mechanism was considered to be more erosion based. 

Furthermore, Miranda et al. (2007) reported on the relationship between particle size of 
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matrix components and their percolation threshold. It was concluded that the larger polymer 

particle sizes were less effective in the formation of a homogeneous gel layer.  

4.5.3- Effect of Methocel
®
 substitution 

Different polymer properties have been reported to be responsible for the rate of polymer 

hydration, including substitution type. It was initially proposed that cellulose ethers of 

different substitution levels hydrate at different rates and this factor may be used to optimise 

the formulation of sustained release matrices (Alderman, 1984). However, Mitchell et al. 

(1993), using a combination of differential scanning calorimetry (DSC) and dissolution 

studies, showed that the differences in release rates for HPMCs with different substitution 

levels are not due to differences in hydration rate. Further studies using thermo-mechanical 

analysis (Mitchell et al., 1993) indicated that the gel layer thickness (which will affect the 

diffusional path length) is similar in HPMCs of different substitution type. The type of the 

substituent determines the hydration rate of the polymer and can significantly affect the 

hydration rate and drug release. The drug release is dependent on the substitution type if the 

polymer level is kept low, so that the polymer concentration is not the overriding factor in 

controlling the swelling, erosion and drug release behaviour of hydrophilic matrices 

(Malamataris and Karidas, 1994). The change in the substitution levels impacts the polymer 

relaxation in tablet matrices; it was confirmed that different substitution levels gave rise to 

different water mobility, leading to differing drug-release characteristics (Rajabi-Siahboomi 

et al. 1996). Furthermore, McCrystal et al. (1999) confirmed that the amount of water that 

attaches to the polymer and the amount of tightly bound water significantly depend on the 

degree of substitution.  

The substituents of a polymer side chain alter its polarity and melting point. For example, 

substitutions of the side-chain groups by more polar groups result in a reduction in the 
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crystallinity of the polymer, which is reflected in a decrease in its melting point. This affects 

the solubility of the polymer in water. In general, the water solubility of a polymer can be 

said to be related to its ability to establish hydrogen bridges between the hydrogen atoms of 

the water and those of the oxygen present in the side chain and the substituents of the 

polymer (Sarkar and Walker, 1995). In the particular case of matrix systems, the type of 

substitution does not only influence the solubility of the polymer in water, but also the gel 

strength, and the swelling and erosion of the polymer. In the case of HPMC, the rate of 

swelling depends on the side-chain substituents, such that the higher the number of hydroxyl 

groups, the faster the hydration ( Asare-Addo et al., 2013b; Escudero et al., 2012;Viridén et 

al., 2009; Viridén et al., 2010; Tiwari et al., 2003). Moreover, Escudero et al. (2010) studied 

the influence of replacement of the HPMC chain on the release of THP contained in mixtures 

of a swelling polymer with an inert one. Three different types of substitution based on 

methoxyl and hydroxyl groups were tested; E4M, K4M and F4M, and the HPMC F4M 

resulted in slower drug release rates because it had the largest number of hydrophobic 

substituents (methoxyl). For the ratio, inert polymer/swelling polymer 75:25, where the 

characteristics of viscosity and substitution of the HPMC were less important than the 

properties of the inert polymer, the mixtures made with HPMC F4M and E4M allowed a 

more homogeneous gel structure and easier modulation of THP release rate (Escudero et al., 

2010). 

4.5.4- Effect of Methocel
®
 viscosity (molecular size) 

The viscosity of MC/ HPMC is considered to be another important parameter that controls 

and determines the mechanism of release. The viscosity of a polymer in solution very much 

depends on the chemical structure of the polymer, its molecular weight and its interaction 

with the solvent. Various authors have studied the impact of MC/HPMC viscosity on drug 
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release from hydrophilic matrices. It can be concluded from these studies that the higher the 

viscosity of a polymer, the faster the swelling of its side chains, forming a very strong gel, 

which decreases the drug release rate. Moreover, studies carried out by Daly et al. (1984); 

Nakano et al. (1983) and Salomon et al. (1979) reported a decline in the rate of drug release 

with increase in the polymer viscosity.  

A study carried out by Wan et al. (1991) proposed that the increase in the viscosity of HPMC 

tends to increase the swelling and drug release rates. It can be attributed to the fact that the 

pores of high-viscosity hypromellose block up quickly and inhibit further liquid uptake. This 

in turn leads to the formation of a turbid gel, which resists dilution and erosion, subsequently 

resulting in slower drug diffusion and release rates (Gao et al. 1996; Talukdar et al. 1996; 

Wan et al. 1991).  

Furthermore, it has been demonstrated by Campos-Aldrete and Villafuerte-Robles (1997) that 

in the case of HPMC, increases in the viscosity of the polymer lead to slower drug release 

rates as long as the percentages of polymer do not surpass 20%. Studies addressing swelling 

and erosion carried out by Ravi et al. (2008) have shown that the percentages of swelling and 

erosion are completely dependent on the viscosity of the polymer and the percentage of 

swelling increases as the viscosity of  HPMC increases, however, the percentage of erosion 

decreases when the viscosity of the polymer increases.  

4.5.5- Effect of drug solubility 

Drug solubility is a very important factor as high or low solubility can significantly affect the 

gel characteristics and drug release (Conte and Maggi, 1996; Gao et al., 1996; Kim, 1999;, 

Reynolds et al., 2002). Ford et al. (1985a, 1985b and 1985c) studied the release of both water 

soluble (promethazine hydrochloride, aminophylline and propranolol hydrochloride) and 

poorly soluble (indomethacin) drugs from HPMC matrix systems. For indomethacin, both the 
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viscosity grade of HPMC and the particle size of the drug were reported to contribute more to 

controlling the drug release than was the case for water soluble drugs. This was primarily due 

to the erosion mechanism of drug release dominating in the case of poorly soluble drugs. 

High concentrations of insoluble drugs and excipients may cause non-uniform swelling of the 

hydrophilic matrix tablet. However, careful tailoring of the concentrations of insoluble drug 

and polymer in a system can be used to slow the dissolution rate of the insoluble drug (Ford 

et al., 1987). It has been suggested that high-solubility drugs can release by diffusing through 

the gel matrices and this is considered to be the main pathway for their release. However, the 

drug release also occurs through erosion of the gel matrix. It is said that highly soluble drugs 

can also act as pore formers with the formation of micro-cavities, rendering the gel structure 

more porous and weaker, hence leading to increased drug release rates (Yang and Fassihi, 

1997). However, poorly soluble drugs are released predominantly by erosion of the gel 

matrix, as the drug particles translocate and their presence compromises the structural 

integrity of the gel layer present on the surface of the matrix tablet, leading to drug release 

through matrix erosion (Bettini et al., 2001). Several authors have studied whether the 

incorporation of highly water-soluble drugs into matrix systems with hydrophilic or 

hydrophobic polymers affects the drug release rate. Tramadol was formulated with HPMC or 

hydrogenated castor oil (HCO) and it was easier to modulate the release rate of the highly 

water-soluble drug from HMPC matrices than in those made of HCO (Tiwari et al., 2003). 

Recently, Ghori et al. (2014) reported the same findings that the poorly soluble drug released 

predominately through erosion while the water soluble drug released through diffusion 

mechanism. Furthermore, Ghori et al. (2014) demonstrated that the values of the drug 

diffusion co-efficient of the Korsmeyer and Peppas model (n) is linearly related to erosion 

rate of FBP-based matrices, endorsing the view that poorly water soluble drugs are released 

mainly through an erosion mechanism. 
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Table 4.1, Summary of factors affecting drug release from Methocel
® 

based hydrophilic matrices. 

Factor Effect Reference 

Effect of concentration 

As the concentration of the Methocel
® 

polymer 

increases, or the concentration of drug 

decreases, the drug release rate from tablet 

matrices decreases. 

Campos-Aldrete and Villafuerte-Robles, 1997; Dabbagh et al., 1996; Ebube et 

al., 1997; Ford et al., 1985b; Ghori et al., 2014b; Jain et al., 2014;)Kim and 

Fassihi, 1997;  Nellore et al., 1998; Mitchell et al., 1993; Reza et al., 2003; Xu 

and Sunada, 1995. 

Effect of particle size 

The greater the particle size of the Methocel
® 

powder, the faster the drug release rate from 

Methocel
® 

tablet matrices. 

Asare-Addo et al., 2013b; Campos-Aldrete and Villafuerte-Robles, 1997; 

Caraballo, 2010; Dabbagh et al., 1996; Dow, 2006, Escudero et al., 2012; Heng et 

al., 2001; Reza et al., 2003; Mitchell et al., 1993, Velasco et al., 1999; Viridén et 

al., 2009; Viridén et al., 2010; Zuleger and Lippold, 2001. 

Effect of substitution 

Higher levels of the hydrophilic substitution 

group (Hpo) lead to decreased drug release from 

Methocel
® 

tablet matrices. 

Alderman, 1984; Doelker, 1990; Escudero et al., 2010; Malamataris and Karidas, 

1994; McCrystal et al., 1999;  Mitchell et al., 1993, Sarkar and Rajabi-Siahboomi 

et al., 1996 ; Walker, 1995. 

Effect of viscosity 

As the viscosity grade of the Methocel
®
 

polymer increases, the drug release rate from 

the tablet matrices decreases. 

Campos-Aldrete and Villafuerte-Robles, 1997; Daly et al., 1984; Gao et al., 

1996; Hiremath and Saha, 2008; Lee et al., 1999; Li et al., 2005; Nakano et al., 

1983;  Maderuelo et al., 2011; Salamone, 1996; Sarkar, 1979; Talukdar et al., 

1996;  Ravi et al., 2008;  Wan et al., 1991. 

Drug solubility 

As the solubility of the drug increases, the 

release rate from Methocel
® 

tablet matrices 

increases. 

Bettini et al., 2001; Conte and Maggi, 1996; Ford et al., 1985a; Ford et al., 

1985b; Ford et al., 1987; Gao et al., 1996; Ghori et al., 2014b; Kim, 1999; 

Reynolds et al., 2002; Tiwari et al., 2003; Qiu et al., 1997; Yang and Fassihi, 

1997. 
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4.6- Section A, Solubility and dissolution study of model drugs 

4.6.1- Introduction 

Oral ingestion is the most convenient and commonly employed route of drug delivery due to 

its ease of administration, high patient compliance, cost effectiveness, least sterility 

constraints and flexibility in the design of dosage forms (Wen and Park, 2011). As a result, 

many generic drug companies are inclined to produce oral drug products. However, before 

the drugs become available to their respective receptors, these need to be dissolved to be 

absorbed by passive diffusion across GI epithelium. Thus, the solubility and dissolution rate 

of active ingredients have a major importance in pre-formulation studies of pharmaceutical 

dosage forms. The solubility and intrinsic dissolution rate (IDR) have been used to 

characterise solid drugs for many years (Liu, 2008). Moreover, drug solubility has a 

significant impact on the drug diffusivity from the polymer matrices (see section 4.5.5 for 

more detail). As, the main focus of this research is to develop hydrophilic matrices using 

poorly and sparingly soluble model drugs, the aim of this set of experiments was to study the 

solubility and dissolution properties of model drugs before these were incorporated into 

hydrophilic matrices.  

4.6.2- Experimental 

4.6.2.1- Materials 

4.6.1.1- Model drugs 

Model drugs, FBP and THP were obtained as described in section 2.1.1. 
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4.6.2.1.2- Buffering agents 

To prepare dissolution medium, buffering agents were purchased as described in section 

2.1.3. 

4.6.2.2- Methods 

4.6.2.2.1- Solubility studies of model drugs 

The drug (FBP or THP) solubility studies were carried out using the method described in 

section 2.2.2.  

4.6.2.2.2- Tableting of model drugs 

The model drugs (FBP or THP) were compacted by adopting the method described in section 

2.2.7.1.  

4.6.2.2.3- Determination of IDR of model drugs 

The IDR of model drugs (FBP or THP) was determined using the method described in 

section 2.2.7.4. 

4.6.3- Results and discussion  

An understanding of solubility characteristics of a drug can be regarded as one of the most 

important aspect of pre-formulation studies involved in the development of hydrophilic 

matrices. As suggested by many authors, tablet matrices must have adequate solubility and 

release of incorporated drug candidates to attain suitable bioavailability (Alderman, 1984; 

Maderuelo et al., 2011).  
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Figure 4.4 shows a typical plot of dissolution of plain FBP and THP compacts in pH 7.2 

phosphate buffer (dissolution media). It is apparent from the results that the plain FBP and 

theophylline compacts have intrinsic dissolution rates of 0.53 (0.027) and 2.31 (0.075) mg 

min
-1

cm
-2

, respectively (Table 4.2). Moreover, the solubility of FBP and THP in sodium 

phosphate buffer (pH 7.2) is listed in Table 4.2. FBP has a solubility of 5.91 (0.22) mg/mL 

whereas THP has a solubility of 11.33 (0.75) mg/mL. The solubility and dissolution rate of 

FBP are significantly increased in comparison to the stated solubility (0.034 mg/mL, in 

water) and dissolution rate (0.330 mg min
-1

cm
-2

) in pH 6.8 buffer (Tavornvipas et al., 2002, 

Miren, 2010). The mechanism behind the solubility and dissolution enhancement of FBP is 

thought to be the pH dependant ionisation, as the pH of the solvent (i.e. 7.2) is above its pKa 

value, 4.22, (Xu and Madden, 2011) it is mainly ionised, and ionised forms of drugs are 

considered to have higher solubility and dissolution rate in given liquid media (Vogel, 2006). 

Like FBP, THP also showed an increased solubility and dissolution rate (Table 4.2) in 

sodium phosphate buffer (pH 7.2) in comparison to its reported solubility (7.3 mg/mL) and 

IDR (1.88 mg min
-1

cm
-2

) in water (Lee et al., 2011; Yalkowsky et al., 2010). Although, the 

pKa of THP is reported to be 8.60 (acidic) and 0.3 (basic) (Brittain, 2007; Haeckel and 

Hanecke, 1996), it has been reported by various authors that with an increase in pH, THP 

showed a monotonically increase in its solubility and dissolution rate (Remington and Allen, 

2013; Tiekink et al., 2010). This might be because it behaves physiologically like an acid 

that might be the reason of solubility and dissolution rate enhancement.  
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Figure 4.4, Dissolution profiles of FBP and THP compacts (n = 3). 

 

 

Table 4.2, Solubility and dissolution parameters of FBP and THP (n = 3, standard 

deviation given in parenthesis)  

 

 

 

 

 

Drug Solubility (mg/ml) 
Dissolution rate parameters 

Slope Surface area (cm2) R
2
      IDR (mg min-1cm-2) 

FBP 5.91 (0.22) 0.705 (0.12) 1.3227 0.993 0.53 (0.027) 

THP 11.33 (0.75) 3.050 (0.11) 1.3227 0.998 2.31 (0.075) 
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4.7- Section B, Swelling, erosion and dissolution properties of hydrophilic   

matrices. 

4.7.1- Introduction 

Over the years various types of polymers have been used in developing ER hydrophilic 

matrices, but the hydrophilic derivatives of cellulose ethers, more specifically 

methylcellulose (MC) and hypromellose (HPMC) to date are the most frequently employed 

hydrophilic polymers (Alderman, 1984; Maderuelo et al., 2011), see sections 1.1 - 1.4 and 

4.1 - 4.3 for more detail.  

Once these hydrophilic matrices are exposed to aqueous media they swell quickly. The 

penetration of liquid decreases the glass transition temperature (Tg) and the polymer passes 

from an amorphous glassy to a rubbery state and a thick gelatinous layer develops around the 

circumference of matrix tablet, commonly known as a gel layer (Colombo et al., 1999; 

Colombo et al., 2000; Siepmann and Peppas, 2001).  The gel layer grows over a period of 

time as more water penetrates into the matrix network which controls the release of drugs. 

Instantaneously, this outermost layer becomes fully hydrated and starts to relax, leading to 

the disentanglement of polymeric chains. Consequently, matrices start to dissolve from the 

surface, as water continuously permeates towards the core (Tiwari and Rajabi-Siahboomi, 

2008), see section 4.4 for more detail. 

To develop robust and realistically effective compressed hydrophilic matrices, a good 

understanding of polymer properties and, how any variation or modification can affect their 

performance and functionality, is critical. Swelling (liquid uptake), erosion and drug release 

form these hydrophilic matrices are important parameters. For this purpose, the aims and 

objectives of present set of experiments were to comparatively evaluate the swelling and 
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erosion properties of different Methocels
®

 (MC and HPMC), with a view to understand how 

the particle size, substitution ratios and viscosity (molecular size) impact their performance. 

Moreover, MC and HPMC based matrix tablets, having poorly water soluble drug (FBP, 8.0 

mg/L ) or water soluble drug (THP, 7.3 g/L) (Yalkowsky et al., 2010) with different polymer 

to drug ratios (5% – 15 % w/w) were also fabricated in order to study the impact of physico-

chemical attributes related to MC and HPMC (particle size, molecular size (viscosity) and 

Hpo/Meo substitution levels)  and drug solubility characteristics on swelling, erosion and 

drug release kinetics.  

4.7.2- Experimental  

4.7.2.1- Materials  

4.7.2.1.1- Cellulose ethers 

Cellulose ethers (MC/HPMC) were obtained as described in the section 2.1.1 and their 

specifications are enlisted in Table 2.1. 

4.7.2.1.2- Model drugs 

Model drugs, FBP (FBP) and THP (THP), were obtained as described in section 2.1.1. 

4.7.2.1.3- Buffering agents 

To prepare dissolution medium, buffering agents were purchased as described in section 

2.1.3. 
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4.7.2.2- Methods 

4.7.2.2.1- Preparation of powder mixtures 

Binary powder mixtures of Methocel
®
 polymers and model drugs were prepared adopting the 

method described in section 2.2.6.1. 

4.7.2.2.2- Preparation of matrix tablets 

The plain matrix tablets of Methocel
® 

were compacted using the method described in section 

2.2.6.2. For drug-containing matrix tablets, all the Methocel
®:

 drug powder mixtures were 

prepared by adopting the method  described in section 2.2.6.3. 

4.7.2.2.3- Swelling and erosion studies 

Swelling and erosion studies of all the matrix tablets were carried out by adopting 

gravimetrical method described in section 2.2.6.4.  

4.7.2.2.4- Swelling kinetics 

Vergnaud mathematical models were applied to swelling data as described in section 2.2.6.5. 

4.7.2.2.5- Drug release studies 

The IDR of all the matrix tablets was determined using the method described in section 

2.2.7.4. 

4.7.2.2.6- Drug release kinetics 

To understand the mechanism of drug release from the hydrophilic matrix tablets, zero order, 

first order, Higuchi and Korsmeyer– Peppas models were applied to drug release data as 

described in section 2.2.7.5.  
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4.7.3- Results and discussion 

4.7.3.1- Swelling and erosion properties of plain Methocel
® 

matrices 

Swelling of the polymer matrix is dependent on the rate of liquid penetration. The liquid 

uptake measurement has been used primarily for evaluating the effect of polymer–liquid 

interaction. The water uptake (swelling) studies were carried out on all types of Methocels
®

 

listed in Table 4.3. The matrix tablets, having different particle sizes (90-150 and 150-250 

µm) was immersed into the swelling media (pH 7.2 phosphate buffer) and their response is 

shown in Figure 4.5a and b, in terms of the weight increase (% swelling) due to penetration 

of liquid versus time. On contact with liquid, wetting occurs firstly at the surface and then 

progressing through the matrix network. The penetration of liquid essentially causes the Tg to 

fall and, as it becomes equal to the temperature of the system, the polymeric chains begin to 

relax. The penetrant liquid acted as a plasticizer and the matrices developed a viscous gel 

across matrix tablet surfaces, regardless of Methocel
®
 grade (Colombo et al., 1999; Colombo 

et al., 2000), as previously explained in the section 4.4.  The trend for extent of swelling 

across different grades of Methocel
®
 in the present study was, A4M >F4M >E4M >K4M 

>K15M >K100M, (Figure 4.5). Moreover, over the period of time studied, the MC/HPMC 

polymer chains started to erode. The erosion profiles of all the Methocel
®
 grades are depicted 

in Figure 4.6.  The results of water uptake data were modelled using a method described by 

Vergnaud (1993), to determine the rate of water uptake (swelling), section 2.2.6.5. This 

Vergnaud model has been frequently adopted by different authors to evaluate the swelling 

mechanism of hydrophilic matrices. The swelling kinetics parameters of the current study 

have been summarised in Table 4.3.  
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4.7.3.1.1- Effect of Methocel
® 

particle size 

It is apparent from the present results that the extent of swelling, swelling kinetics and 

erosion properties of plain MC/HPMC matrices was markedly affected by the particle size. 

The MC/HPMC compacts fabricated from particles between 90 - 150 µm tend to have a 

higher swelling, but low extent of matrix erosion, in comparison to the compacts fabricated 

from larger polymer particles, 150 - 250 µm (Figure 4.5a and b). Large polymer particles take 

longer to hydrate and to develop a gel layer compared to smaller particles. The same 

behaviour has been noticed by various researchers in that fine MC/HPMC powder particles 

hydrate quickly because of their larger surface area and capability to quickly develop a gel 

layer around the tablet, which acts as a barrier, controlling the swelling, matrix erosion and 

drug release (Li et al., 2005; Maderuelo et al., 2011). So, it can be concluded from the 

present findings that the particle size can potentially affect the erosion properties of 

polymeric compacts and erosion rate can be modified using MC/HPMC with different 

particle sizes.  It can also inferred that swelling, or water uptake, by matrix tablets follows a 

diffusion-controlled mechanism as the swelling exponent (n) values for all the types of 

Methocel
® 

were lower than 0.5. However, with decreasing particle size, the n values 

decreased, showing an enhancement in the extent of diffusion control on the swelling process 

In addition, the higher values of swelling constants, which can be referred as swelling rate, 

indicated a burst swelling pattern and rapid water uptake.  

4.7.3.1.2- Effect of Methocel
® 

substitution  

The present results also demonstrate that the different Hpo/Meo substitution ratios in 

numerous grades of Methocel
® 

impact swelling. The extent of swelling, swelling kinetic 

parameters and matrix erosion tend to decrease with an increase in Hpo/Meo ratios. To 

investigate the effect of substitution on swelling and erosion, A4M, F4M, E4M and K4M 
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were selected as these Methocel
® 

grades have the same viscosity but different Hpo/Meo 

substitution ratios, (Table 2.1, Chapter 2). The A4M based matrices have the lowest swelling 

rate (36.69 and 41.01 % min
-1

, Table 4.3) and it might be due to its relatively hydrophobic 

nature, as hydrophilic, hydroxypropyl groups are absent from their structure (Dow, 2006). 

The HPMC grades F4M and E4M show a slight difference, but swelling rate of K4M was 

significantly faster (62.09 and 48.03 % min
-1

, Table 4.3). Furthermore, swelling kinetic 

parameters indicate a diffusion controlled mechanism, with faster swelling rates as compared 

to other polymers used in pharmaceutical formulations (Sinha Roy and Rohera, 2002). This 

disparity in swelling and erosion properties may be due to the variation in the levels (%) of 

Hpo groups. The increased degree of substitution of Hpo/Meo render Methocel
®
 more 

hydrophilic and, it is evident from the previous studies, that the presence of higher levels (%) 

of Hpo groups leads to higher swelling and, in turn, a reduction in matrix erosion (Maderuelo 

et al., 2011).  

4.7.3.1.3- Effect of Methocel
® 

viscosity (molecular size) 

In the present study, MC/HPMC with different viscosities was investigated: K4M, K15M and 

K100M (see chapter 2, table 2.1 for detailed specifications). The swelling and erosion of 

plain MC/HPMC matrices decreased with increasing polymer viscosity/molecular weight. It 

was observed that the higher viscosity grade of HPMC (K100M) has fastest highest swelling 

rate but lowest extent of erosion (Table 4.3). This can be attributed to its ability to develop a 

thick gel layer which is resistant to erosion (Lee et al., 1999). For high viscosity grades, their 

polymer chains tend to disentangle and increase the hydrodynamic volume within a matrix 

tablet, leading to increased swelling but a lower extent of erosion (Miller-Chou and Koenig, 

2003). Moreover, the swelling kinetics parameters indicate that with the increased viscosity, 
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the swelling rate increased but n values decreased, indicating more diffusion-oriented 

swelling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5, Swelling profiles of cellulose ethers based matrix tablets of particle size (a) 

90-150 (b) 150-250 µm (n = 3). 
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Figure 4.6, Comparative erosion of plain MC/HPMC compacts (n = 3).  

 

 

 

Table 4.3, Swelling kinetics and erosion parameters of plain Methocel
® 

compacts (n = 3, 

standard deviation given in parenthesis). 

    

 

              

 

 

 

    

Swelling constant = k (% min-1), (b)  Swelling exponent = n 

 

 

 

Methocel
®

 

 

Particle size 
(µm) 

Swelling kinetics parameters  

Erosion 
(%) 

KW
a
 n

b
 R

2
 

A4M 
90-150 41.01 0.269 0.995 3.85 (0.22) 

150-250 36.69 0.281 0.997 4.52 (0.25) 

F4M 
90-150 54.49 0.247 0.988 2.96 (0.39) 

150-250 42.85 0.270 0.996 3.18 (0.11) 

E4M 
90-150 55.33 0.259 0.982 2.05 (0.12) 

150-250 45.23 0.269 0.982 2.51 (0.19) 

K4M 
90-150 62.09 0.258 0.988 1.51 (0.09) 

150-250 48.03 0.270 0.984 1.81(0.12) 

K15M 
90-150 77.76 0.238 0.972 1.08 (0.05) 

150-250 63.98 0.260 0.966 1.52 (0.03) 

K100M 
90-150 89.74 0.231 0.978 0.51(0.01) 

150-250 78.62 0.251 0.983 1.04 (0.02) 
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4.7.3.2- Mixing efficiency for Methocel
® 

: FBP/THP powders  

A uniform drug distribution in a powder mixture is desirable during tablet preparation. The 

FBP/THP content uniformity results (n = 3) of powder mixtures are shown in Table 4.4, an 

acceptance limit of  95-105 %  was set (see section 2.2.5.1, chapter 2). All powder blends used 

in subsequent studies fell between these limits. 

 

 

 

Table 4.4, Content uniformity of powder mixture containing FBP and THP (n=3) 

 

 

 

 

 

 

 

 

 

Methocel
®

 

 

 

Particle Size 
(µm) 

Drug content (%) 

Polymer concentration (%) 

FBP THP 

5 10 15 5 10 15 

A4M 90 – 150 98.2 (1.8) 99.6 (2.5) 98.6 (2.3) 101.2(2.8) 99.6 (3.1) 100.5 (2.4) 

150 – 250 96.3 (1.2) 98.5 (2.1) 99.2 (1.8) 97.3 (0.5) 99.3 (2.1) 98.6 (1.6) 

F4M 90 – 150 98.5 (2.1) 98.9 (1.0) 101.3 (2.1) 99.3 (1.9) 98.3 (1.0) 101.1 (2.1) 

150 – 250 99.4 (1.3) 98.3 (2.3) 99.6 (1.5) 100.5 (0.9) 100.2 (2.2) 96.3 (1.1) 

E4M 90 – 150 97.6 (1.4) 100.5 (2.1) 99.6 (2.5) 98.3 (1.2) 98.8 (2.5) 99.3 (1.5) 

150 – 250 97.4 (2.1) 98.2 (1.5) 98.2 (1.1) 99.6 (1.5) 100.8 (0.9) 97.1 (1.3) 

K4M 90 – 150 99.32 (1.8) 98.3 (2.5) 96.3 (1.0) 97.8 (2.0) 101.0 (1.5) 99.8 (2.5) 

150 – 250 99.87 (1.3) 102.5 (1.3) 98.3 (2.0) 101.5 (2.8) 100.5 (2.3) 99.2 (1.8) 

K15M 90 – 150 100.5 (1.7) 99.3 (2.8) 99.3 (1.8) 100.5 (1.9) 97.3 (0.2) 98.3 (1.7) 

150 – 250 98.63 (2.0) 100.5 (1.9) 98.3 (2.1) 99.3 (1.3) 99.8 (1.8) 97.6 (0.7) 

K100M 90 – 150 99.57 (2.8) 97.3 (1.8) 100.5 (1.3) 97.5 (2.4) 97.5 (2.2) 99.7 (1.5) 

150 – 250 97.82 (1.0) 98.3 (2.5) 101.9 (2.8) 98.6 (1.5) 100.1 (1.3) 97.8 (2.3) 
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4.7.3.3- Swelling, erosion and dissolution studies of FBP/THP matrices 

In the present experiments, swelling, erosion and dissolution properties of FBP-and THP-

containing hydrophilic matrices were studied. The main problem in the formulation of these 

systems lies in achieving a suitable rate of drug release for intended application. However, the 

physico-chemical attributes of hydrophilic polymers and model drugs significantly affect the 

performance of these polymeric devices. In the following sections, swelling, erosion and 

dissolution data are presented with an in-depth mechanistic approach and discussion. 

4.7.3.3.1- Effect of Methocel
®
 concentration  

The swelling, erosion and dissolution behaviours of Methocel
® (MC/HPMC) are significantly 

affected by the component ratios, explained in section 4.5.1 (Alderman, 1984; Maderuelo et 

al., 2011). Swelling, erosion and dissolution were studied for MC/HPMC:FBP and 

MC/HPMC:FBP hydrophilic matrices, with fixed MC/HPMC to drug (FBP/THP) loading 

ratios of 5, 10 and 15 w/w %.  

The swelling results are depicted in Figures 4.7 (A4M), 4.11 (F4M), 4.15 (E4M), 4.19 (K4M), 

4.23 (K15M) and 4.27 (K100M) as liquid uptake (% swelling) due to penetration of liquid 

versus time. The results showed that the extent of swelling (%) increased as the level of 

MC/HPMC was increased from 5% to 15% in matrices. The erosion of all the FBP and THP 

matrices was reduced with an increase in MC/HPMC concentration, Figures 4.8 (A4M), 4.12 

(F4M), 4.16 (E4M), 4.20 (K4M), 4.24 (K15M) and 4.28 (K100M). The Vergnaud 

mathematical model was applied to determine the swelling rate (k) and swelling exponent (n) 

of all the drug based matrices, apart from A4M/FBP (5% and 10%), A4M/THP (5% and  10 

%), F4M/FBP (5%), F4M/THP (5%), E4M/FBP (5%), E4M/THP (5%) and K4M/FBP (5%),   

the extent of erosion precluded the application of kinetic swelling analysis. The kinetic 

swelling parameters for FBP and THP hydrophilic matrices for which the Vergnaud 

mathematical model was applicable, are summarised in Tables 4.5 (A4M), 4.8 (F4M), 4.11 
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(E4M), 4.14 (K4M), 4.18 (K15M) and 4.22 (K100M). The swelling exponents for FBP 

matrices were in the range of 0.5334 – 0.8302. However, n values of THP based matrices were 

in the range of 0.5120 – 0.7875. Swelling rates ranged between 5.90 – 45.72 (% min
-1

) and 

7.26 – 62.96 (% min
-1

) for FBP and THP based matrices, respectively. Referring to the criteria 

of the Vergnaud mathematical model (section 2.2.6.5), the swelling behaviour of FBP and THP 

hydrophilic matrices is anomalous, with a n value between 0.45 < n < 1, thus the diffusion of 

liquid and polymer chain relaxation are of similar magnitude. A reduction in n value with 

increasing MC/HPMC concentration, from 5% to 15%, can be attributed to diffusion-oriented 

swelling. However, an increase in the swelling rate suggested an enhanced liquid capturing and 

holding capacity, as it elicits a greater degree of physical cross-linking of MC/HPMC side 

chains (Mitchell et al., 1993). These results demonstrated that the initial 5 min are an important 

period for all the drug -containing matrices to develop a gel layer. It was noticed that the 

matrices having 5% polymer content develop a very weak gel layer, having lower swelling but 

higher erosion compared to matrices with a higher polymeric content. From these findings, it 

can be inferred that at a 5% content, the polymers failed to develop a stable matrix network 

resulting in a weaker surface gel layer barrier. 

Figures 4.9 (A4M/FBP), 4.10 (A4M/THP), 4.13 (F4M/FBP), 4.14 (F4M/THP), 4.17 

(E4M/FBP), 4.18 (E4M/THP), 4.21 (K4M/FBP), 4.22 (K4M/THP), 4.25 (K15M/FBP), 4.26 

(K15M/THP),  4.29 (K100M/FBP) and 4.30 (K100M/THP) depict the dissolution profiles of 

combination matrices. The dissolution data were presented as percentage drug release with 

respect to time. The intrinsic dissolution rates (IDR) of FBP matrices were in the range of 

1.57 – 7.65 (mg min
-1

 cm
-2

) and IDR of THP based matrices were between 2.12 – 12.76 (mg 

min
-1

 cm
-2

), (Tables 4.6 (A4M), 4.9 (F4M), 4.12 (E4M), 4.15 (K4M), 4.18 (K15M) and 4.21 

(K100M)). Both overall percentage and dissolution rates of FBP/THP reduced as the 

concentration of MC/HPMC was increased. The higher concentration of MC/HPMC have 
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resulted in a physical crosslinking, due to which the polymer chains are entangled leading to 

increased tortuosity and viscosity of the surface gel layer (Li et al., 2005; Maderuelo et al., 

2011; Mitchell et al., 1993). Consequently, effective diffusion co-efficient of the drugs was 

reduced and a decline in the extent and rate of drug release is evident.  

To further explore the mechanism of drug release from these matrix devices, zero-order, first-

order, Korsmeyer- Peppas and Higuchi mathematical drug release models were applied to the 

drug release data (see section 2.2.7.5 for more detail). All the drug release kinetics parameters 

are summarised in Tables 4.7 (A4M), 4.10 (F4M), 4.13 (E4M), 4.16 (K4M), 4.19 (K15M) and 

4.22 (K100M). The dissolution data follow first order and Korsmeyer- Peppas drug models 

most closely, indicating a combination of both erosion and diffusion as the controlling factors 

for drug release from the resultant matrix. According to the Korsmeyer - Peppas drug model, 

all the FBP and THP matrices showed anomalous drug release mechanisms (see section 2.2.7.5 

for more detail). However, it can be noticed that with an increase in MC/HPMC concentration, 

the n value falls showing a more diffusion-oriented drug release from matrices.  
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Figure 4.7, Swelling profiles of A4M/FBP, (a) 90-150 µm and (b) 150-250 µm and A4M/THP (c) 90-150 µm and (d) 150-250 µm 

hydrophilic matrices (n=3)
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Figure 4.8, Comparative erosion of (a) A4M/FBP and (b) A4M/THP hydrophilic matrices (n=3) 

 

Table 4.5, Swelling kinetics and matrix erosion of A4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

 

 

 

                                      (----, indicates Vergnaud model is not applicable because of matrix erosion) 

(a) Swelling constant = k (% min-1), (b)   Swelling exponent = n 

 

A4M 
(% w/w) 

Particle size 
(µm) 

Swelling kinetics parameters 
Erosion (%) 

k
a
 n

b
 R

2
 

FBP THP FBP THP FBP THP FBP THP 

5 
90-150 ---- ---- ---- ---- ---- ---- 92.58 (2.22) 88.35 (1.79) 

150-250 ---- ---- ---- ---- ---- ---- 95.64 (1.25) 92.54 (2.21) 

10 
90-150 ---- ---- ---- ---- ---- ---- 89.58 (2.32) 85.58  (2.33) 

150-250 ---- ---- ---- ---- ---- ---- 90.25 (1.89) 87.69 (2.51) 

15 
90-150 6.48 7.51 0.8117 0.7614 0.974 0.962 86.38 (1.09) 81.55 (1.55) 

150-250 5.90 7.26 0.8302 0.7875 0.981 0.975 88.99 (3.21) 82.33 (2.89) 
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Figure 4.9, Dissolution profiles of A4M/FBP hydrophilic matrices having A4M particle 

size (a) 90-150 µm and (b) 150-250 µm (n=3).  
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Figure 4.10, Dissolution profiles of A4M/THP hydrophilic matrices having A4M 

particle size (a) 90-150 µm and (b) 150-250 µm (n=3). 
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Table 4.6, Summary of dissolution parameters of A4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

 

 

 

                                                    (a) Intrinsic dissolution rate = IDR (mg min-1 cm-2) 

 

Table 4.7, Summary of drug release kinetics parameters from A4M based hydrophilic matrices (n=3). 

(a) Zero order constant = K0 (% min-1),   (b)  First order constant =   K1 (% min-1),     (c) Korsmeyer- Peppas constant = Kp  (% min-1) , (d) Diffusional exponent  =  n ,  (e) Higuchi  constant = Kh   (% min-1/2)

 

A4M  (%, 

w/w) 

 

Particle size 
(µm) 

Dissolution rate parameters  

FBP THP 

Slope R
2
 IDR

a
 Slope R

2
 IDR

a
 

5 90-150 8.74 (0.33) 0.988 6.61 (0.33) 11.29 (0.51) 0.984 8.54 (0.43) 

150-250 10.12 (0.44) 0.971 7.65 (0.38) 12.76 (0.38) 0.975 9.65 (0.48) 

10 90-150 6.70 (0.28) 0.981 5.07 (0.25) 8.66 (0.25) 0.988 6.55 (0.33) 

150-250 7.85 (0.51) 0.989 5.93 (0.30) 10.14 (0.67) 0.991 7.67 (0.38) 

15 90-150 5.58 (0.37) 0.982 4.22 (0.21) 7.21 (0.29) 0.985 5.45 (0.27) 

150-250 6.53 (0.42) 0.988 4.94 (0.25) 8.44 (0.36) 0.987 6.38 (0.32) 

 

A4M  
(%, w/w) 

 

Particle size 
(µm) 

Zero order model First order model Korsmeyer- Peppas model Higuchi model 

FBP THP FBP THP FBP THP FBP THP 

K0
a
 R

2
 K0

a
 R

2
 K1

b
 R

2
 K1

 b
 R

2
 Kp

 c
 n

 d
 R

2
 Kp

 c
 n

 d
 R

2
 Kh

 e
 R

2
 Kh

 e
 R

2
 

5 90-150 3.41 0.987 5.70 0.981 0.049 0.983 0.083 0.985 5.39 0.83 0.996 8.47 0.82 0.996 13.14 0.942 16.99 0.945 

150-250 3.92 0.989 6.55 0.978 0.061 0.991 0.102 0.989 5.96 0.86 0.994 9.48 0.84 0.996 15.08 0.938 19.51 0.942 

10 90-150 2.71 0.973 4.52 0.971 0.036 0.997 0.060 0.998 5.28 0.80 0.995 7.98 0.78 0.997 10.49 0.960 13.57 0.964 

150-250 3.17 0.987 5.29 0.986 0.044 0.994 0.074 0.991 5.18 0.82 0.999 8.07 0.81 0.999 12.21 0.947 15.79 0.950 

15 90-150 2.39 0.961 3.99 0.955 0.031 0.998 0.051 0.999 5.14 0.78 0.989 7.62 0.76 0.991 9.26 0.966 11.98 0.970 

150-250 2.81 0.975 4.70 0.984 0.038 0.992 0.063 0.992 5.34 0.80 0.994 8.06 0.79 0.995 10.88 0.958 14.07 0.961 
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4.7.3.3.2- Effect of Methocel
® 

particle size 

The effect of Methocel
® (MC/HPMC) particle size on the swelling, erosion and drug release 

behaviour of tablet matrices has been studied by various authors and it is generally concluded 

that an adequate particle size of MC/HPMC in a matrix tablet is necessary to attain specific 

extended drug release objectives (see section 4.5.2 for more detail).  

In the course of current investigations, swelling of all the drug (FBP/THP) containing 

hydrophilic matrices, having MC/HPMC of different particle sizes (90 -150 µm and 150-250 

µm), was studied. It is evident from the results that particle size had an impact on the 

swelling profiles of matrices. As the particle size of MC/HPMC is increased from 90-150 µm 

to 150-250 µm, the swelling (%) tends to decrease, regardless of drug solubility and levels 

(%, w/w) of MC/HPMC (Figures 4.7 (A4M), 4.11 (F4M), 4.15 (E4M), 4.19 (K4M), 4.23 

(K15M) and 4.27 (K100M)). The erosion profiles of FBP and THP based matrices are shown 

in Figures 4.8 (A4M), 4.12 (F4M), 4.16 (E4M), 4.20 (K4M), 4.24 (K15M) and 4.28 

(K100M) and results are reported as % remaining of tablet matrices after the swelling 

phenomena. It can be inferred from the erosion results that the reduction of particle size 

reduces erosion of the matrix. So, it can be assumed from these findings that reducing particle 

size may be helpful in preventing pre-mature tablet disintegration by developing a more 

stable gel layer on the surface of the tablet. This trend of swelling and erosion can be 

explained using the theory postulated by Mitchell et al. (1993), that a larger particle size of 

MC/HPMC promotes disintegration, as they need a longer time for hydration and the larger 

the polymer particle can leave pores on the surface of matrices, which have a tendency to 

impair the integrity of the gel layer present on the tablet surface. Instead, matrices constructed 

using a smaller size tends to hydrate quickly and this behaviour can be attributed to the larger 

surface area presented in the matrices. 
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The swelling kinetic parameters of FBP and THP hydrophilic matrices indicted an anomalous 

mechanism, (Tables 4.5 (A4M), 4.8 (F4M), 4.11 (E4M), 4.14 (K4M), 4.18 (K15M) and 4.22 

(K100M)). Reducing particle size results in the decline of n value, showing the dominancy of 

diffusion controlled swelling processes. On the other hand the swelling rates increased with a 

reduction of HPMC/MC particle size, regardless of drug and level of MC/HPMC (% w/w).  

The extent of drug release (%) profiles of all the matrices exhibited a reduction as the 

MC/HPMC particle size was reduced from 150 - 250 µm to 90-150 µm, (Figures 4.9 

(A4M/FBP), 4.10 (A4M/THP), 4.13 (F4M/FBP), 4.14 (F4M/THP), 4.17 (E4M/FBP), 4.18 

(E4M/THP), 4.21 (K4M/FBP), 4.22 (K4M/THP),  4.25 (K15M/FBP), 4.26 (K15M/THP),  

4.29 (K100M/FBP) and 4.30 (K100M/THP)). Moreover, the IDRs from all the matrices 

having smaller particle size MC/HPMC were slower, (Tables 4.6 (A4M), 4.9 (F4M), 4.12 

(E4M), 4.15 (K4M), 4.16 (K15M) and 4.21 (K100M)). This behaviour can be explained 

assuming that larger MC/HPMC particles require more time to swell prior to the polymer 

chains becoming mobile and binding together to the gel layer, which can eventually dictate 

the drug release. Additionally, zero-order, first-order, Korsmeyer- Peppas and Higuchi 

mathematical drug release models were applied to the drug release data (see section 2.2.7.5 

for more detail). The drug release kinetic parameters indicated a combination of both erosion 

and diffusion (anomalous) as the controlling factors, Tables 4.7 (A4M), 4.10 (F4M), 4.13 

(E4M), 4.16 (K4M), 4.19 (K15M) and 4.22 (K100M)). Moreover, with the reduction of 

MC/HPMC particle size, the n value fell showing a more diffusion oriented drug release form 

the tablet matrix. This response may be because of faster swelling of smaller MC/HPMC 

particles (as explained earlier) that allow the rapid gel layer formation on the surface of 

matrix tablet.  
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Figure 4.11, Swelling profiles of F4M/FBP, (a) 90-150 µm and (b) 150-250 µm and F4M/THP (c) 90-150 µm and (d) 150-250 hydrophilic 

matrices (n=3). 
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Figure 4.12, Comparative erosion of (a) F4M/FBP and (b) F4M/THP hydrophilic matrices (n=3). 

 

Table 4.8, Swelling kinetics and matrix erosion of F4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

 

 

 

                                     (----, indicates Vergnaud model is not applicable because of early matrix erosion) 

                                     (a) Swelling constant = k (% min-1), (b)   Swelling exponent = n 

 

F4M  
(%, w/w) 

 

 

Particle size 
(µm) 

Swelling kinetics parameters  

Erosion (%) k
a
  n

b
 R

2
 

FBP THP FBP THP FBP THP FBP THP 

5 90-150 ---- 10.75 ---- 0.7944 ---- 0.996 91.25 (1.86) 83.87 (0.55) 

150-250 ---- 9.56 ---- 0.8271 ---- 0.997 93.65 (2.29) 88.69 (2.20) 

10 90-150 11.02 12.02 0.7604 0.7801 0.982 0.997 87.66 (2.14) 78.68 (1.89) 

150-250 8.51 10.82 0.8029 0.8002 0.969 0.994 89.36 (2.33) 82.58 (1.77) 

15 90-150 13.74 14.47 0.7387 0.7389 0.967 0.999 83.69 (2.51) 73.65 (2.02) 

150-250 11.17 11.72 0.7741 0.7869 0.933 0.995 86.32 (1.05) 77.88 (2.09) 
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Figure 4.13, Dissolution profiles of F4M/FBP hydrophilic matrices having F4M particle 

size (a) 90-150 µm and (b) 150-250 µm (n=3). 
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 Figure 4.14, Dissolution profiles of F4M/THP hydrophilic matrices having F4M 

particle size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Table 4.9, Summary of dissolution parameters of F4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis)   

 

 

 

 

 

 

          

(a) Intrinsic dissolution rate = IDR (mg min-1 cm-2) 

 

 

Table 4.10, Summary of drug release kinetics parameters of F4M based hydrophilic matrices (n = 3). 

 

 

(a) Zero order constant = K0 (% min-1),   (b)  First order constant =   K1 (% min-1),     (c) Korsmeyer- Peppas constant = Kp  (% min-1) , (d) Diffusional exponent  =  n  ,  (e) Higuchi  constant = Kh   (% min-1/2) 

 

F4M  
(%, w/w) 

Particle size 
(µm) 

Dissolution rate parameters 

FBP THP 

Slope R
2
 IDR

a
 Slope R

2
 IDR

a
 

5 90-150 7.60 (0.25) 0.992  5.75 (0.29)  10.13 (0.51) 0.987 8.54 (0.43) 

150-250 8.68 (0.18) 0.993   6.57 (0.33) 11.59 (0.38) 0.992 9.65 (0.48) 

10 90-150 5.90 (0.27) 0.986   4.46 (0.22) 7.86 (0.25) 0.990 6.55 (0.33) 

150-250 6.77 (0.59) 0.987  5.12 (0.26) 9.04 (0.67) 0.993 7.67 (0.38) 

15 90-150 4.87 (0.79) 0.991  3.68 (0.18) 6.22 (0.29) 0.992 5.45 (0.27) 

150-250 5.60 (0.42) 0.992  4.23 (0.21) 7.22 (0.36) 0.980 6.38 (0.32) 

 

F4M  
(%, w/w) 

 

Particle size 
(µm) 

Zero order model First order model Korsmeyer- Peppas model Higuchi model 

FBP THP FBP THP FBP THP FBP THP 

K0
a
 R

2
 K0

a
 R

2
 K1

b
 R

2
 K1

 b
 R

2
 Kp

 c
 n

 d
 R

2
 Kp

 c
 n

 d
 R

2
 Kh

 e
 R

2
 Kh

 e
 R

2
 

5 90-150 3.01 0.984 4.18 0.982 0.041 0.992 0.052 0.995 4.86 0.80 0.995 5.98 0.78 0.994 11.58 0.944 12.97 0.946 

150-250 3.34 0.985 3.76 0.985 0.048 0.995 0.060 0.996 5.56 0.82 0.998 6.81 0.81 0.999 12.88 0.948 14.42 0.950 

10 90-150 2.43 0.981 3.42 0.980 0.031 0.999 0.039 0.998 4.36 0.79 0.998 5.37 0.77 0.999 9.37 0.956 10.50 0.959 

150-250 2.74 0.983 3.04 0.981 0.036 0.998 0.046 0.995 4.79 0.80 0.999 5.81 0.79 0.999 10.56 0.953 11.82 0.955 

15 90-150 2.06 0.971 3.04 0.975 0.025 0.993 0.032 0.991 3.96 0.73 0.997 4.80 0.71 0.995 7.98 0.961 8.93 0.963 

150-250 2.44 0.965 2.58 0.963 0.031 0.995 0.039 0.995 5.20 0.75 0.996 6.22 0.74 0.993 9.43 0.969 10.55 0.971 
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4.7.3.3.3- Effect of Methocel
® 

substitution 

The type and levels of substituents which are integrated on polymer chains of Methocel
®
 

have the potential to significantly impact the swelling, erosion and drug characteristics of 

matrices (Alderman, 1984). In the present study experiments were conducted to investigate 

the influence of substitution ratios (Hpo/Meo) on swelling, erosion and dissolution properties. 

For comparative purposes, A4M, F4M, E4M and K4M were selected because these 

Methocel
® 

grades essentially have almost similar viscosity ranges but different Hpo/Meo 

substitution ratios, A4M = 0.238, F4M = 0.286, E4 = 0.381 and K4M = 0.403, Table 2.1 

(Chapter 2).  

 The present results revealed the impact of Hpo/Meo ratios on the swelling profiles of 

matrices. As the Hpo/Meo ratios increased from 0.238 to 0.403, the swelling (%) tended to 

decrease, regardless of drug solubility and levels (%, w/w) of MC/HPMC, (Figures 4.7 

(A4M), 4.11 (F4M), 4.15 (E4M) and 4.19 (K4M)). Furthermore, it is evident that increasing 

Hpo/Meo ratios reduced matrix erosion, (Figures 4.8 (A4M), 4.12 (F4M), 4.16 (E4M) and 

4.20 (K4M)). The swelling kinetic parameters of FBP and THP hydrophilic matrices showed 

an anomalous mechanism, (Tables 4.5 (A4M), 4.8 (F4M), 4.11 (E4M) and 4.14 (K4M)). 

Increasing Hpo/Meo substitution ratios caused n values to decrease, demonstrating a 

diffusion controlled swelling process. On the other hand, the swelling rates increased with a 

reduction in Hpo/Meo substitution ratios, regardless of drug and levels of MC/HPMC (% 

w/w). These swelling and erosion findings may be due to the solubility of the substitution 

groups, as Hpo are hydrophilic substituents groups, however, Meo groups are hydrophobic. 

Moreover, the higher levels (%) of Hpo in comparison to Meo may have increased the water 

holding capacity of macromolecular chains of MC/HPMC (Dow, 2006). 
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 Drug release (%) and IDRs of all the matrices exhibited a reduction as the Hpo/Meo 

substitution ratios were increased, (Figures 4.9 (A4M/FBP), 4.10 (A4M/THP), 4.13 

(F4M/FBP), 4.14 (F4M/THP), 4.17 (E4M/FBP), 4.18 (E4M/THP), 4.21 (K4M/FBP) 4.22 

(K4M/THP) and Tables 4.7 (A4M), 4.10 (F4M), 4.13 (E4M) and 4.16 (K4M)). Additionally, 

zero-order, first-order, Korsmeyer- Peppas and Higuchi mathematical drug release models 

indicted an anomalous drug release mechanism, (Tables 4.7 (A4M), 4.10 (F4M), 4.13 (E4M) 

and 4.16 (K4M)). However, it was noticed that as the Hpo/Meo substitution ratios increased, 

the n value fell, showing a more diffusion dominant drug release behaviour. This is likely due 

to faster swelling at higher Hpo/Meo substitution ratios, which facilitates rapid gel layer 

formation on the surface of matrix tablet. The substituents of a MC/HPMC side chain alter its 

polarity, melting point and crystallinity. This affects the solubility of the MC/HPMC in water. 

In general, the aqueous solubility of any polymer can be related to its ability to establish 

hydrogen bonds between the hydrogen atoms of the water and those of the oxygen present in 

the side chain and the substituents of the polymer (Sarkar and Walker, 1995). In this 

particular case, the type of substitution does not only influence the solubility of the polymer 

in water, but also the gel strength, the swelling and erosion of the polymer. These aforesaid 

factors had a noticeable influence on the drug release properties and it can be concluded that 

the higher levels of  hydroxyl groups have led to higher degree of swelling and lower erosion, 

thus showing a more diffusion oriented drug release characteristics. 



 

169 
 

 

 

 

 

 

 

 

 

 

Figure 4.15, Swelling profiles of E4M/FBP, (a) 90-150 µm and (b) 150-250 µm and E4M/THP (c) 90-150 µm and (d) 150-250 µm 

hydrophilic matrices (n = 3). 
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Figure 4.16, Comparative erosion of (a) E4M/FBP and (b) E4M/THP hydrophilic matrices (n = 3). 

 

 

Table 4.11, Swelling kinetics and matrix erosion of E4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis). 

 

 

 

 

 

 

                                    (----, indicates Vergnaud model is not applicable because of early matrix erosion) 

                                               (a) Swelling constant = k (% min-1), (b)   Swelling exponent = n 

 

E4M  
(% w/w) 

 

Particle size 
(µm) 

Swelling kinetics parameters  

Erosion (%) k
a
 n

b
 R

2
 

FBP THP FBP THP FBP THP FBP THP 

5 90-150 ---- 11.71 ---- 0.7908 ---- 0.998 85.32 (1.22) 89.68 (1.77) 

150-250 ---- 10.73 ---- 0.8006 ---- 0.997 80.58 (1.73) 92.58 (1.85) 

10 90-150 11.58 12.33 0.7515 0.7886 0.963 0.999 78.66 (2.09) 84.55 (1.45) 

150-250 10.88 11.56 0.7484 0.7909 0.979 0.996 75.39 (2.31) 88.39 (1.41) 

15 90-150 14.73 15.99 0.7260 0.7218 0.935 0.991 73.65 (3.02) 78.69 (1.69) 

150-250 12.69 12.86 0.7273 0.7717 0.920 0.997 70.29 (2.89) 82.55 (2.01) 
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Figure 4.17, Dissolution profiles of E4M/FBP hydrophilic matrices having E4M particle 

size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Figure 4.18, Dissolution profiles of E4M/THP hydrophilic matrices having E4M particle 

size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Table 4.12, Summary of  dissolution rate parameters of E4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis)  

 

 

 

 

 

 

 

                                                          (a) Intrinsic dissolution rate = IDR (mg min-1 cm-2) 

 

Table 4.13, Summary of drug release kinetics parameters of E4M based hydrophilic matrices (n = 3). 

 

 (a) Zero order constant = K0 (% min-1),   (b)  First order constant =   K1 (% min-1),     (c) Korsmeyer- Peppas constant = Kp  (% min-1) , (d) Diffusional exponent  =  n  ,  (e) Higuchi  constant = Kh   (% min-1/2) 

 

 

E4M  
(%) 

 

Particle size 
(µm) 

Dissolution rate parameters 

FBP THP 

Slope R
2
 IDR

a
 Slope R

2
 IDR

a
 

5 90-150 6.89 (0.35) 0.988 5.21 (0.30) 9.19 (0.51) 0.984 6.95 (0.43) 

150-250 7.92 (0.28) 0.971 5.99 (0.35) 9.85 (0.38) 0.971 7.45 (0.48) 

10 90-150 5.34 (0.17) 0.981  4.04 (0.27) 6.71 (0.25) 0.980 5.07 (0.33) 

150-250 6.29 (0.49) 0.989 4.76 (0.29) 8.13 (0.67) 0.984 6.15 (0.38) 

15 90-150 4.41 (0.43) 0.982 3.34 (0.14) 5.25 (0.29) 0.975 3.97 (0.27) 

150-250 4.88 (0.22) 0.988 3.69 (0.27) 6.49 (0.36) 0.981 4.91 (0.32) 

 

E4M  
(%, w/w) 

 

Particle size 
(µm) 

Zero order model First order model Korsmeyer- Peppas model Higuchi model 

FBP THP FBP THP FBP THP FBP THP 

K0
a
 R

2
 K0

a
 R

2
 K1

b
 R

2
 K1

 b
 R

2
 Kp

 c
 n

 d
 R

2
 Kp

 c
 n

 d
 R

2
 Kh

 e
 R

2
 Kh

 e
 R

2
 

5 
90-150 2.73 0.984 3.50 0.968 0.036 0.993 0.057 0.998 4.55 0.78 0.994 5.90 0.77 0.989 10.54 0.946 13.90 0.954 

150-250 3.21 0.970 4.01 0.984 0.046 0.998 0.047 0.998 6.27 0.82 0.989 7.52 0.81 0.999 12.41 0.958 12.10 0.960 

10 
90-150 2.21 0.978 2.77 0.983 0.028 0.998 0.044 0.995 4.17 0.76 0.999 5.20 0.73 0.998 8.54 0.961 11.46 0.965 

150-250 2.66 0.985 3.32 0.975 0.035 0.994 0.035 0.994 4.31 0.78 0.988 5.29 0.77 0.999 10.24 0.950 9.58 0.946 

15 
90-150 1.87 0.973 2.35 0.972 0.023 0.990 0.034 0.989 3.73 0.71 0.994 4.45 0.70 0.995 7.27 0.964 9.37 0.964 

150-250 2.16 0.975 2.71 0.971 0.027 0.991 0.028 0.989 4.04 0.73 0.981 4.92 0.71 0.994 8.37 0.955 8.13 0.957 
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4.7.3.3.4- Effect of Methocel
® 

viscosity (molecular size) 

The viscosity (molecular size) of Methocel
® (MC/HPMC) in solution depends on the 

chemical structure of the polymer, its molecular weight and interactions with the solvent. It is 

obvious from the previous studies that viscosity can significantly impact the swelling, erosion 

and drug release properties of hydrophilic matrices, (Campos-Aldrete and Villafuerte-Robles, 

1997; Maderuelo et al., 2011). The K4M, K15M and K100M, having different viscosity but 

almost similar range of Hpo/Meo substitution ratios, K4M = 4351, K15M = 17129 and 

K100M = 79279, Table 2.1 (Chapter 2), were selected.  

The results confirmed that the swelling, erosion and dissolution properties are affected by 

viscosity of MC/HPMC. The swelling (%) tends to decrease as the viscosity of MC/HPMC 

increases, regardless of drug solubility and levels (%, w/w), (Figures (K4M), 4.23 (K15M) 

and 4.27 (K100M)). The erosion profiles of FBP and THP based matrices are shown in 

Figures (K4M), 4.24 (K15M) and 4.28 (K100M) and demonstrated a noticeable reduction in 

the matrix erosion with an increase in the viscosity of MC/HPMC. So, it can be assumed 

from these findings that the higher viscosity based MC/HPMC matrices develop a more 

stable and durable gel layer on the surface of the tablet because of the ability of longer 

polymer chains to capture more water as higher viscosity polymers tend to disentangle on 

exposure to liquids (Miller-Chou and Koenig, 2003).  

Furthermore, increased viscosity results in the decline of the n value, showing a diffusion 

dominant swelling. However, the overall swelling mechanism was considered to be 

anomalous, (Figures 4.14 (K4M), 4.18 (K15M) and 4.22 (K100M)). On the other hand the 

swelling rates were increased with the reduction of HPMC/MC particle size regardless of 

drug and level of MC/HPMC (% w/w). Moreover, the swelling rate was also higher with 

increasing MC/HPMC viscosity.  
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The extent of drug release (%) from all the matrices reduced as the MC/HPMC viscosity 

increased from 4351 cps to 79279 cps, (Figures (K4M/FBP), 4.22 (K4M/THP),  4.25 

(K15M/FBP), 4.26 (K15M/THP),  4.29 (K100M/FBP) and 4.30 (K100M/THP)). Moreover, 

the IDRs exhibited the similar trend, (Tables 4.15 (K4M), 4.18 (K15M) and 4.21 (K100M)). 

It can be assumed that the higher viscosity led to the development of more stable gel layer on 

the surface of matrices which actually controlled drug release. The penetration of liquid into 

the matrix tablets breaks the hydrogen bonds between the polymer chains and develops 

interstitial spaces which promote a rapid entry of water into the matrix network. Over time, 

the imbibition of water actually increases the viscous drag and, as a result, HPMC polymer 

chains swell faster and further result in the blockage of surface pores of matrix tablets (Wan 

et al., 1991). This in turn leads to the formation of a turbid gel, which has a capacity to resist 

matrix erosion. So, as a consequence slower drug diffusion and drug release rates were 

apparent (Gao et al., 1996; Talukdar et al., 1996; Wan et al., 1991).  

The drug release kinetic parameters indicated a combination of both erosion and diffusion 

(anomalous) as the controlling factors for drug release from the resulting matrix, (4.16 

(K4M), 4.19 (K15M) and  4.22 (K100M)). Moreover, a reduction in MC/HPMC particle size 

caused a decrease in the n value, indicating a more diffusion oriented drug release from the 

tablet matrix. This response may be because of faster swelling of smaller MC/HPMC 

particles (as explained earlier) and rapid gel layer formation.  
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Figure 4.19, Swelling profiles of K4M/FBP, (a) 90-150 µm and (b) 150-250 µm and K4M/THP (c) 90-150 µm and (d) 150-250 µm 

hydrophilic matrices (n = 3). 
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Figure 4.20, Comparative erosion profiles of (a) K4M/FBP and (b) K4M/THP hydrophilic matrices  (n = 3). 

 

Table 4.14, Swelling kinetics and matrix erosion of K4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

                                              (----, indicates Vergnaud model is not applicable because of early matrix erosion) 

                                            (a) Swelling constant = k (% min-1), (b)   Swelling exponent = n 

 

K4M  
(%) 

 

Particle size 
(µm) 

Swelling kinetics parameters Erosion (%) 

k
a
 n

b
 R

2
 

FBP THP FBP THP FBP THP FBP THP 

5 
90-150 ….. 14.93 ….. 0.7457 ….. 0.997 77.25 (2.55) 86.32 (1.56) 

150-250 ….. 12.56 ….. 0.7782 ….. 0.998 80.29 (1.05) 90.24 (2.21) 

10 
90-150 16.09 17.83 0.7216 0.7326 0.996 0.991 70.25 (1.01) 79.55 (1.89) 

150-250 13.51 14.68 0.7361 0.7625 0.992 0.993 74.21 (0.91) 84.25 (2.51) 

15 
90-150 18.05 22.45 0.7278 0.6732 0.977 0.987 64.38 (1.07) 72.36 (2.52) 

150-250 15.19 18.76 0.7290 0.7307 0.961 0.981 67.39 (1.33) 78.65 (1.87) 
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Figure 4.21, Dissolution profiles of K4M/FBP hydrophilic matrices having K4M particle 

size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Figure 4.22, Dissolution profiles of K4M/THP hydrophilic matrices having K4M 

particle size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Table 4.15, Summary of dissolution parameters of K4M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

 

 

 

                                                     (a) Intrinsic dissolution rate = IDR (mg min-1 cm-2) 

 

Table 4.16, Summary of drug release kinetic parameters of K4M based hydrophilic matrices (n = 3). 

(a) Zero order constant = K0 (% min-1),   (b)  First order constant =   K1 (% min-1),     (c) Korsmeyer- Peppas constant = Kp  (% min-1) , (d) Diffusional exponent  =  n  ,  (e) Higuchi  constant = Kh   (% min-1/2) 

 

 

 

K4M  
(%) 

 

Particle size 
(µm) 

Dissolution rate parameters 

FBP THP 

Slope R
2
 IDR

a
 Slope R

2
 IDR

a
 

5 
90-150 5.52 (0.25) 0.981 4.18 (0.21) 7.17 (0.57) 0.988 5.42 (0.41) 

150-250 6.41 (0.38) 0.971 4.85 (0.35) 8.33 (0.55) 0.971 6.30 (0.40) 

10 
90-150  4.28 (0.47) 0.988 3.24 (0.16) 5.58 (0.35) 0.981 4.22 (0.53) 

150-250 5.04 (0.39) 0.989 3.81(0.19) 6.56 (0.47) 0.989 4.96 (0.28) 

15 
90-150 3.53 (0.40) 0.982 2.67 (0.16) 4.38 (0.19) 0.982 3.31 (0.17) 

150-250 3.88 (0.26) 0.988 2.93 (0.17) 5.05 (0.25) 0.988 3.82 (0.12) 

 

K4M  
(%, w/w) 

 

Particle size 
(µm) 

Zero order model First order model Korsmeyer- Peppas model Higuchi model 

FBP THP FBP THP FBP THP FBP THP 

K0
a
 R

2
 K0

a
 R

2
 K1

b
 R

2
 K1

 b
 R

2
 Kp

 c
 n

 d
 R

2
 Kp

 c
 n

 d
 R

2
 Kh

 e
 R

2
 Kh

 e
 R

2
 

5 
90-150 2.19 0.983 2.74 0.982 0.027 0.993 0.034 0.993 3.63 0.78 0.995 4.43 0.77 0.996 8.43 0.956 9.44 0.953 

150-250 2.63 0.979 3.29 0.978 0.035 0.996 0.043 0.999 4.78 0.82 0.995 5.84 0.80 0.994 10.15 0.946 11.36 0.958 

10 
90-150 1.79 0.978 2.23 0.977 0.021 0.997 0.027 0.992 3.34 0.75 0.992 4.05 0.73 0.991 6.91 0.944 7.73 0.948 

150-250 2.15 0.983 2.69 0.982 0.027 0.990 0.033 0.992 3.52 0.76 0.998 4.27 0.75 0.998 8.29 0.960 9.27 0.945 

15 
90-150 1.51 0.971 1.89 0.968 0.017 0.985 0.022 0.983 3.03 0.70 0.991 3.66 0.68 0.997 5.84 0.961 6.54 0.967 

150-250 1.71 0.970 1.89 0.967 0.020 0.986 0.025 0.985 3.38 0.71 0.992 4.11 0.70 0.991 6.63 0.970 7.43 0.961 
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Figure 4.23, Swelling profiles of K15M/FBP, (a) 90-150 µm and (b) 150-250 µm and K15M/THP (c) 90-150 µm and (d) 150-250 µm 

hydrophilic matrices (n = 3). 
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Figure 4.24, Comparative erosion of (a) K15M/FBP and (b) K15M/THP hydrophilic matrices (n = 3). 

 

 

Table 4.17, Swelling kinetics and matrix erosion of K15M based hydrophilic matrices (n = 3, standard deviation given in parenthesis). 

 

 

 

 

 

 

                                 (a) Swelling constant = k (% min-1), (b)   Swelling exponent = n 

 

K15M  
(% w/w) 

 

Particle size 
(µm) 

Swelling kinetics parameters Erosion (%) 

k
a
 n

b
 R

2
 

FBP THP FBP THP FBP THP FBP THP 

5 
90-150 22.18 29.90 0.6409 0.6139 0.956 0.994 66.35 (1.39) 77.55 (1.33) 

150-250 19.44 24.64 0.6129 0.6515 0.964 0.998 71.68 (0.88) 81.37 (0.52) 

10 
90-150 28.15 33.01 0.5829 0.5945 0.944 0.993 60.25 (0.59) 70.25 (1.12) 

150-250 25.70 27.82 0.5774 0.6271 0.951 0.988 65.58 (1.61) 75.38 (1.39) 

15 
90-150 35.74 39.79 0.5581 0.5709 0.969 0.994 56.38 (2.02) 66.39 (0.99) 

150-250 35.74 37.84 0.5466 0.5749 0.943 0.996 60.97 (1.11) 71.05 (1.15) 
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Figure 4.25, Dissolution profiles of K15M/FBP hydrophilic matrices having K15M 

particle size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Figure 4.26, Dissolution profiles of K15M/THP hydrophilic matrices having K15M 

particle size (a) 90-150 µm and (b) 150-250 µm (n = 3). 



 

185 
 

Table 4.18, Summary of dissolution parameters of K15M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

 

 

 

                                    (a) Intrinsic dissolution rate = IDR (mg min-1 cm-2) 

 

Table 4.19, Summary of drug release kinetic parameters of K15M based hydrophilic matrices (n = 3). 

 

(a) Zero order constant = K0 (% min-1),   (b)  First order constant =   K1 (% min-1),     (c) Korsmeyer- Peppas constant = Kp  (% min-1) , (d) Diffusional exponent  =  n  ,  (e) Higuchi  constant = Kh   (% min-1/2) 

 

 

K15M  
(%) 

 

Particle size 
(µm) 

Dissolution rate parameters 

FBP THP 

Slope R
2
 IDR

a
 Slope R

2
 IDR

a
 

5 
90-150 4.78 (0.15) 0.989 3.61 (0.18) 6.32 (0.27) 0.988 4.78 (0.21) 

150-250 5.54 (0.25) 0.978 4.19 (0.21) 7.31 (0.35) 0.971 5.53 (0.20) 

10 
90-150 3.72 (0.14) 0.981 2.81 (0.14) 4.90 (0.39) 0.988 3.70 (0.22) 

150-250 4.36 (0.34) 0.965 3.30 (0.16) 5.75 (0.40) 0.981 4.35 (0.24) 

15 
90-150 3.05 (0.45) 0.975 2.31 (0.12) 3.87 (0.25) 0.975 2.93 (0.19) 

150-250 3.37 (0.28) 0.956 2.55 (0.13) 4.45 (0.35) 0.982 3.36 (0.15) 

 

K15M   
(%) 

 

Particle size 
(µm) 

Zero order model First order model Korsmeyer- Peppas model Higuchi model 

FBP THP FBP THP FBP THP FBP THP 

K0
a
 R

2
 K0

a
 R

2
 K1

b
 R

2
 K1

 b
 R

2
 Kp

 c
 n

 d
 R

2
 Kp

 c
 n

 d
 R

2
 Kh

 e
 R

2
 Kh

 e
 R

2
 

5 
90-150 1.90 0.982 2.38 0.981 0.023 0.992 0.029 0.992 3.21 0.78 0.994 3.91 0.76 0.993 7.34 0.959 8.21 0.949 

150-250 2.29 0.977 2.86 0.978 0.029 0.997 0.036 0.997 4.32 0.79 0.998 5.32 0.77 0.998 8.84 0.948 9.91 0.963 

10 
90-150 1.55 0.976 1.94 0.974 0.018 0.998 0.023 0.989 2.99 0.73 0.997 3.63 0.72 0.996 6.02 0.944 6.74 0.964 

150-250 1.87 0.980 2.34 0.977 0.022 0.990 0.028 0.988 3.18 0.74 0.987 3.92 0.72 0.995 7.22 0.962 8.09 0.953 

15 
90-150 1.30 0.969 1.63 0.969 0.015 0.982 0.018 0.982 2.71 0.69 0.992 3.19 0.69 0.992 5.06 0.960 5.65 0.967 

150-250 1.50 0.968 1.88 0.963 0.017 0.985 0.022 0.979 2.99 0.70 0.991 3.68 0.68 0.993 5.81 0.967 6.51 0.952 



 

186 
 

 

 

 

 

 

 

 

 

 

Figure 4.27, Swelling profiles of K100M/FBP, (a) 90-150 µm and (b) 150-250 µm and E4M/THP (c) 90-150 µm and (d) 150-250 µm 

hydrophilic matrices (n = 3). 
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Figure 4.28, Comparative erosion of (a) K100M/FBP and (b) K100M/THP hydrophilic matrices (n = 3). 

 

 

Table 4.20, Swelling kinetics and matrix erosion of K100M based hydrophilic matrices (n = 3). 

 

 

 

 

 

 

                                              (a) Swelling constant = k (% min-1), (b)   Swelling exponent = n 

 

K100M  
(%) 

 

Particle size 
(µm) 

Swelling kinetics parameters Erosion (%) 

k
a
 n

b
 R

2
 

FBP THP FBP THP FBP THP FBP THP 

5 
90-150 32.05 45.72 0.5721 0.5763 0.987 0.960 68.55 54.33 

150-250 29.06 38.12 0.5929 0.611 0.985 0.981 70.91 60.39 

10 
90-150 36.77 55.65 0.5568 0.5392 0.989 0.991 58.55 50.25 

150-250 32.76 46.51 0.575 0.5886 0.988 0.991 63.61 53.69 

15 
90-150 45.72 62.96 0.5114 0.5120 0.982 0.982 55.35 41.58 

150-250 38.47 58.79 0.5495 0.5292 0.973 0.982 57.22 42.28 
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Figure 4.29, Dissolution profiles of K100M/FBP hydrophilic matrices having K100M 

particle size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Figure 4.30, Dissolution profiles of K100M/THP hydrophilic matrices having K100M 

particle size (a) 90-150 µm and (b) 150-250 µm (n = 3). 
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Table 4.21, Summary of dissolution parameters of K100M based hydrophilic matrices (n = 3, standard deviation given in parenthesis) 

 

 

 

 

 

 

 

                                                           (a) Intrinsic dissolution rate = IDR (mg min-1 cm-2) 

 

 

Table 4.22, Summary of drug release kinetics parameters of K100 based hydrophilic matrices (n = 3).  

(a) Zero order constant = K0 (% min-1),   (b)  First order constant =   K1 (% min-1),     (c) Korsmeyer- Peppas constant = Kp  (% min-1) , (d) Diffusional exponent  =  n  ,  (e) Higuchi  constant = Kh   (% min-1/2)

 

K100M  
(%) 

 

Particle size 
(µm) 

Dissolution rate parameters 

FBP THP 

Slope R
2
 IDR

a
 Slope R

2
 IDR

a
 

5 
90-150 3.72 (0.10) 0.989 2.81 (0.12) 5.29 (0.21) 0.981 4.00 (0.11) 

150-250 4.40 (0.22) 0.977 3.33 (0.20) 6.19 (0.36) 0.975 4.68  (0.25) 

10 
90-150 3.03(0.17) 0.975 2.29 (0.11) 3.67 (0.37) 0.962 2.77 (0.32) 

150-250 3.33 (0.31) 0.984 2.52 (0.13) 4.49 (0.42) 0.988 3.39 (0.21) 

15 
90-150 2.08 (0.43) 0.963 1.57 (0.15) 2.80 (0.26) 0.986 2.12 (0.05) 

150-250 2.54 (0.29) 0.986 1.92 (0.12) 3.23 (0.31) 0.977 2.44 (0.16) 

 

K100M   
(%) 

 

Particle size 
(µm) 

Zero order model First order model Korsmeyer- Peppas model Higuchi model 

FBP THP FBP THP FBP THP FBP THP 

K0
a
 R

2
 K0

a
 R

2
 K1

b
 R

2
 K1

 b
 R

2
 Kp

 c
 n

 d
 R

2
 Kp

 c
 n

 d
 R

2
 Kh

 e
 R

2
 Kh

 e
 R

2
 

5 
90-150 1.42 0.968 2.00 0.969 0.016 0.992 0.023 0.995 2.92 0.76 0.996 3.21 0.74 0.995 5.50 0.965 6.92 0.977 

150-250 1.76 0.977 2.39 0.692 0.021 0.984 0.029 0.975 3.52 0.77 0.998 3.87 0.75 0.992 6.82 0.963 8.23 0.961 

10 
90-150 1.17 0.952 1.46 0.956 0.013 0.986 0.016 0.986 2.35 0.70 0.998 3.20 0.67 0.993 4.54 0.948 5.09 0.946 

150-250 1.40 0.963 1.76 0.948 0.016 0.987 0.020 0.982 2.60 0.72 0.997 3.29 0.68 0.999 5.41 0.956 6.08 0.965 

15 
90-150 0.95 0.952 1.19 0.971 0.010 0.963 0.013 0.994 2.18 0.66 0.998 2.86 0.60 0.994 3.69 0.951 4.15 0.971 

150-250 1.11 0.956 1.39 0.966 0.012 0.971 0.016 0.983 2.48 0.68 0.995 3.06 0.62 0.997 4.31 0.964 4.85 0.974 
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4.7.3.3.5- Effect of drug solubility 

Drug solubility is an important factor and needs careful consideration as drugs having high or 

low solubility can affect swelling, erosion and drug release (Conte and Maggi 1996, Gao et al 

1996; Kim 1999, Reynolds et al 2002). Highly water soluble drugs are considered to be 

released by diffusion through the gel matrices, however, poorly soluble drugs are released 

predominantly by erosion of the gel matrix (Bettini et al 2001).  

Swelling results are depicted in Figures 4.7 (A4M), 4.11 (F4M), 4.15 (E4M), 4.19 (K4M), 4.23 

(K15M) and 4.27 (K100M). Additionally, erosion results are presented in Figures 4.8 (A4M), 

4.12 (F4M), 4.16 (E4M), 4.20 (K4M), 4.24 (K15M) and 4.28 (K100M). It is evident that the 

swelling of FBP matrices was lower than THP matrices. However, due to higher extent of 

swelling, matrix erosion was lower for THP matrices than FBP matrices. The swelling data 

were analysed using the Vergnaud mathematical model to determine the swelling rate (k) and 

swelling exponent (n) of all the drug based matrices. The swelling kinetic parameters of FBP 

and THP hydrophilic matrices, where Vergnaud mathematical model was applicable, are 

summarised in Tables 4.5 (A4M), 4.8 (F4M), 4.11 (E4M), 4.14 (K4M), 4.18 (K15M) and 4.22 

(K100M). The n values were affected by the solubility of incorporated drugs. Both the drug 

based matrices had an anomalous swelling mechanism, however, with a more soluble drug 

there was a higher tendency towards diffusion controlled swelling. Moreover the swelling rate 

(k) of FBP matrices (k = 5.90 – 45.72, % min
-1

) was slower than THP matrices (k = 7.26 – 

62.96, % min
-1

). The present results demonstrate that the solubility of the incorporated drugs 

have significantly influenced the swelling and erosion properties of matrices. This higher 

swelling, but decreased erosion, of THP matrices can be attributed to the theory that soluble 

drugs help MC/HPMC based matrices to develop a more stable gel layer.  
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Figures 4.9 (A4M/FBP), 4.10 (A4M/THP), 4.13 (F4M/FBP), 4.14 (F4M/THP), 4.17 

(E4M/FBP), 4.18 (E4M/THP), 4.21 (K4M/FBP), 4.22 (K4M/THP),  4.25 (K15M/FBP), 4.26 

(K15M/THP),  4.29 (K100M/FBP) and 4.30 (K100M/THP) depict the dissolution profiles of 

matrices as percentage drug release with respect to time. The overall percentage of FBP 

released was low compared to THP matrices. Moreover, the IDRs of FBP matrices (1.57 – 7.65 

mg min
-1

 cm
-2

) were lower than corresponding THP matrices (2.12 – 12.76, mg min
-1

 cm
-2

), 

(Tables 4.6 (A4M), 4.9 (F4M), 4.12 (E4M), 4.15 (K4M), 4.16 (K15M) and 4.21 (K100M)). In 

respect of the drugs themselves, THP has a faster IDR then pure FBP; moreover, the pKa of 

FBP and THP is 4.2 and 8.6, respectively. As 7.2 pH phosphate buffer was used as dissolution 

media, and both the drugs at this particular pH are mainly present in their ionised form (see 

section 4.6.3. for more detail). Furthermore, matrices containing 5% MC/HPMC did not have 

sufficient polymer to develop a stable gel layer, instead these matrices disintegrated, thus, 

liberating free drug faster than the relatively stronger pure drug based compacts throughout the 

dissolution experiments.  Furthermore, the lower IDRs of FBP matrices may be due to its low 

swelling and higher erosion. It is evident from the release kinetic data that solubility of drugs 

affects the drug release parameters. The n value of FBP is higher than THP matrices in all 

cases, regardless of type and concentration of MC/HPMC, indicating a higher degree of 

diffusion controlled drug release. As THP matrices have a tendency to form micro-cavities on 

the surface of gel layer, this essentially helps the gel layer resist the hydrodynamic challenges 

for extended durations. Moreover, it provides a pathway for drug diffusion without disturbing 

the surface gel layer of matrices. However, the presence of FBP actually elicits a displacement 

of solid drug particles of drug in the gel layer. The presence of such FBP particles in the gel 

layer hinders its further expansion (Bettini et al., 2001; Li et al., 2005; Maderuelo et al., 2011). 

Therefore, it is more susceptible to matrix erosion which leads to low IDR but higher n values. 
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4.7.3.4- Inter-relationship between swelling and dissolution rates 

Figures 4.31 (FBP : MC/HPMC ) and 4.32 ( FBP : MC/HPMC ) show the correlation between 

matrix swelling rate (k) and IDR , which indicates that swelling and drug release occur 

simultaneously but  the rate at which these occur is different for each matrix tablet.  

 

The Vergnaud equation could not be applied to A4M/FBP (5% and 10%), A4M/THP (5% and 

10 %), F4M/FBP (5%), F4M/THP (5%), E4M/FBP (5%), E4M/THP (5%) and K4M/FBP (5%) 

matrices and these were not included in the analysis. For the other matrices, swelling had a 

direct relationship with IDR (and a direct relationship with k, as with the higher values of k the 

IDR is reduced). Correlation coefficients (R
2
) were in the range of 0.894 – 0.967 and 0.73 – 

0.992 for FBP and THP matrices, respectively.  

 

This relationship is a likely consequence of the diffusional path length of matrix network 

within a matrix tablet. As the MC/HPMC chains swell at a faster rate, the diffusional path 

length increased because of increased tortuosity. However, with a slow swelling rate, the 

matrices are more prone to matrix erosion, which is likely to shorten the diffusion path-length. 

So in the latter case, drug molecules had to travel a shorter distance thus leading to a higher 

IDR.  
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Table 4.23,  Correlation co-efficients of swelling and IDR inter-relationship (n = 3). 

 

 

 

 

 

 

 

      

                                               (-----,correlation is not possible because of early erosion of the matrix tablets).   

 

 

 

Type of matrix tablet Correlation co-efficient (R
2
) 

Particle size 
 (90-150 µm) 

Particle size 
 (150-250 µm) 

A4M/FBP ------ ------ 

F4M/FBP ------ ------ 

E4M/FBP ------ ------ 

K4M/FBP ------ ------ 

K15M/FBP 0.960 0.967 

K100MFBP 0.894 0.957 

A4M/THP ------ ------ 

F4M/THP ------ ------ 

E4M/THP 0.736 0.980 

K4M/THP 0.956 0.949 

K15M/THP 0.908 0.888 

K100M/THP 0.992 0.962 
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Figure 4.31, Effect of swelling on  IDR of FBP based matrix tablets, (a) A4M (b) F4M (c) E4M (d) K4M (e) K15M (f) K100M having 

polymer particle size 90-150 µm and 150-250 µm (n = 3). 
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Figure 4.32, Effect of swelling on  IDR of THP based matrix tablets, (a) A4M (b) F4M (c) E4M (d) K4M (e) K15M (f) K100M having 

polymer particle size 90-150 µm and 150-250 µm (n = 3).
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4.8- Summary 

In summary, the present study confirmed that the particle size, substitution ratios and viscosity of 

Methocel
®

 affect the swelling and erosion of plain MC/HPMC matrices. It can also be concluded 

that the swelling mechanism was diffusion controlled. Moreover, the present study also confirms 

that the physico-chemical attribute  (concentration, particle size, substitution and viscosity) of 

MC/HPMC and drug solubility have significant impact on  extent of swelling, erosion, mechanism 

of erosion, dissolution rate and drug release kinetics.  

The swelling results confirm that the extent of swelling, swelling rate and swelling exponent were 

affected by physico-chemical attributes (concentration, particle size, substitution and viscosity) of 

MC/HPMC and drug solubility. The mechanism of swelling is largely considered to be anomalous. 

However, it inclined towards more diffusion-oriented swelling with higher MC/HPMC levels, 

viscosity, Hpo/Meo substitution ratios, drug solubility but lower MC/MC particle size. Moreover, 

the erosion properties of matrices were also affected by physico-chemical attributes (concentration, 

particle size, substitution and viscosity) of MC/HPMC and drug solubility. 

Regarding FBP and THP release from these matrices, the results presently obtained showed that 5 

% MC/HPMC: levels were unsuitable in the case of A4M (MC) and F4M (HPMC). It can be 

confirmed from the results that IDR of all the matrices was significantly affected by physical-

chemical attributes (concentration, particle size, substitution and viscosity) of MC/HPMC and drug 

solubility. Only first order and Korsmeyer-Peppas models fitted release data well and the release 

mechanism was considered anomalous for both drugs. However, increased MC/HPMC levels, 

viscosity, Hpo/Meo substitution ratios, drug solubility and a smaller MC/HPMC particle size, 

shifted drug release towards a more diffusion controlled mechanism.   
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5- Development and validation of PSA assay for erosion studies 
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5- Development and validation of PSA assay for erosion analysis 

5.1- Introduction 

Extended release (ER) tablets are frequently fabricated to minimise the overall frequency of dosage 

form administration, thus improving bio-pharmaceutics and more importantly, patient compliance. 

The hydrophilic matrix system is commonly employed in the pharmaceutical industry to develop 

ER tablet formulations (Alderman, 1984). Among other hydrophilic polymer-based matrices, 

HPMC has been extensively used in oral dosage forms (Maderuelo et al., 2011).   

Upon contact with liquids (dissolution testing media or biological fluids), these hydrophilic 

matrices swell and polymer chains eventually disentangle.  As a result, a gel layer is developed 

across the matrix tablet as HPMC changes from a glassy stateq to rubbery state (Colombo et al., 

1999;, Colombo et al., 2000; Jiasheng et al., 2010; Mitchell et al., 1993). HPMC has the potential to 

hydrate quickly enough to form a gel layer before the drug entrapped in the tablet matrix can 

dissolve. Highly water soluble drugs can diffuse through the gel layer before the matrix erodes, but 

it is suggested that the presence of poorly soluble drugs can increase matrix erosion by 

detrimentally affecting integrity of the gel layer (Bettini et al., 2001; Yang and Fassihi, 1997). 

Mechanistically both drug diffusion and matrix erosion are contributing factors in controlling drug 

release from these formulations, however, in practical terms, one process will often play a dominant 

role over the other, depending on the HPMC level and solubility of other matrix tablet contents 

(Sinha Roy and Rohera, 2002). The mechanism of drug release from hydrophilic matrices has been 

previously discussed in detail, see section 4.4. 

Owing to the importance of polymer erosion process in controlling the drug release mechanism, the 

gravimetric method (GM) is commonly used to determine the extent of polymer erosion from 

hydrophilic matrices (Chaibva et al., 2010; Dhopeshwarker and Zatz, 1993; Ebube et al., 1997; 

Khamanga and Walker, 2006; Ranga Rao et al., 1988; , Sinha Roy and Rohera, 2002 ) despite it 

being time consuming and laborious, requiring a significant amount of  API and excipients.  A 
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number of analytical techniques can be used to measure carbohydrate concentration including size 

exclusion chromatography (Viridén et al., 2009) capillary electrophoresis (Cortacero-Ramírez et al., 

2004), infrared (IR) spectroscopy (Cadet, 1999), nuclear magnetic resonance (NMR) micro-imaging 

(Tajarobi et al., 2009) and light scattering detection (Zhang et al., 2008). Recently Viridén et al. 

(2009) successfully employed size exclusion chromatography to study HPMC tablet dissolution to 

determine the impact of HPMC heterogeneity on drug release. The PSA assay is a classical method 

which is routinely used in carbohydrate analysis. This is a colorimetric method based on the 

condensation of furan derivatives which can be produced by treating the carbohydrate with strong 

sulphuric acid (Harborne and Dey, 2012). Moreover, phenol is employed in PSA assay to produce 

coloured compounds. This PSA assay is a simple, accurate and specific chemical test for the 

quantification of carbohydrates. This PSA assay virtually has the ability of detecting all classes of 

carbohydrates, therefore, it is applicable to quantify total sugar concentration in oligosaccharides, 

polysaccharides, proteoglycans, glycoproteins and can be scaled down to a microplate retaining 

sensitivity, with potential for high throughput screening, down to 1 nmol for some sugars (Masuko 

et al., 2005). The PSA assay is commonly employed for analysing sugars in foods, including mono-

, di- and polysaccharides and could potentially provide a simple method to study matrix erosion, 

negating requirements for separate analytical equipment and associated costs and time  (Albalasmeh 

et al., 2013;  Brummer and Cui, 2005; Masuko et al., 2005). Therefore, the present set of 

experiments has multiple aims: firstly, the quantification of HPMC in dissolution media by using a 

PSA assay alongside drug release studies. The Korsmeyer and Peppas drug release model was 

applied to drug release profiles to attain a mechanistic insight into the process. Secondly, the 

amount of dissolved HPMC and the drug was combined to calculate the degree and rate of erosion. 

Additionally, matrix erosion was also determined by using a gravimetrical method for validation 

purposes; with an assumption that PSA assay would be an alternative option. Thirdly, the inter-

relationship of the HPMC erosion rate and drug release was studied. Fourthly, the effect of HPMC 

concentration and the solubility of model drugs on polymer dissolution, drug release kinetics and 
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matrix erosion were also studied. THP (water soluble, 8.3 g/L) and FBP (poorly soluble, 8.0mg/L) 

were used as a model drugs (Yalkowsky et al., 2010). 

5.2- Experimental 

5.2.1- Materials 

5.2.1.1- Cellulose ethers 

Cellulose ethers (MC/HPMC) were obtained as described in the section 2.1.1 and their 

specifications are enlisted in Table 2.1. 

5.2.1.2- Model drugs 

Model drugs, FBP (FBP) and THP (THP) were obtained as described in the section 2.1.1 

5.2.1.3- Buffering agents 

To prepare dissolution medium, buffering agents were purchased as described in the section 2.1.3. 

5.2.2- Methods 

5.2.2.1- Preparation of powder mixtures 

Binary powder mixtures containing HPMC (K4M) and drugs were prepared, moreover their content 

uniformity was tested as a detail method is described in section 2.2.8.1. 

5.2.2.2- Preparation of matrix tablets 

Matrix tablets were prepared by using plain MC/HPMC powders and powder mixtures prepared 

according to section 5.2.2.1 and a method was adopted which has been described in section 2.2.8.2. 

5.2.2.3- Drug release studies 

The drug (FBP or THP) release studies were carried out using the method described in section 

2.2.8.3.1.  
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5.2.2.4- MC/HPMC release studies 

The MC/HPMC release studies were carried out using the method described in section 2.2.8.3.2.  

5.2.2.5- Matrix erosion studies 

Matrix erosion studies were carried out by adopting gravimetrical and combined dissolution method 

described in section 2.2.8.4.1 and 2.2.8.4.2, respectively.  

5.2.2.6- Drug release kinetics 

The Korsmeyer– Peppas mathematical model was applied to drug release data as described in 

section 2.2.4.5.2 and 2.2.8.4.3. 

5.3- Results and discussion  

5.3.1- Erosion study of plain MC/HPMC compacts 

In hydrophilic polymeric matrix systems, the polymeric carrier present on the surface of the matrix 

tablet is primarily responsible for the development of the outer viscous gel layer and this layer can 

control the overall matrix erosion rate (Sinha Roy and Rohera, 2002). The dissolution of 

MC/HPMC from matrix tablets has been studied throughout the years by using different techniques 

(Tajarobi et al., 2009; Viridén et al., 2009). In this study, its release from a plain polymeric matrix 

tablet was quantified using the PSA assay. As MC/HPMC has a glucose monomer backbone with 

different levels of methoxyl (%) and hydroxypropoxyl (%) substitution groups incorporated to form 

various grades depending on the need of the industry it was proposed that the phenol-sulphuric acid 

assay, which is classically used to measure carbohydrate content in foods and beverages (Brummer 

and Cui, 2005), could be applied to quantify MC/HPMC released from matrix tablets. The degree of 

matrix erosion as a function of time is depicted in Figure 5.1 (a and b) and is reported as % erosion 

and a summary of erosion kinetics parameters are enlisted in Table 5.1. 
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5.3.1.1- Effect of MC/HPMC particle size 

In the present study, the matrix erosion rate of MC/HPMC was affected by the particle size. The 

MC/HPMC compacts fabricated from particles between 90 - 150 µm tend to have a slow erosion 

rate in comparison to the compacts made from larger particles, (150 - 250 µm) (Figure 5.1a and b). 

However, the K100M based polymeric compacts shows only a slight difference when particle size 

was reduced from 150 - 250 µm to 90 - 150 µm (Table 5.1). In general, smaller particle size shows 

a decrease in the erosion rate and the behaviour can be explained by considering hydration kinetics. 

Large polymer particles take longer to hydrate and to develop a gel layer across the matrix tablet in 

comparison to smaller particles. It was noticed by various researchers that the fine MC/HPMC 

powder particles hydrate quickly because of the larger surface area and develop a gel layer around 

the tablet faster, which act as a barrier controlling the swelling, matrix erosion and drug release 

(Campos-Aldrete and Villafuerte-Robles, 1997). Moreover, on hydration, the hypromellose based 

compacts, having larger HPMC particles left larger pores on the tablet surface which potentially 

deteriorate the stability of gel layer and can lead to premature matrix erosion. So, it can be 

concluded from the present findings that the particle size can potentially affect the erosion 

properties of polymeric compacts and erosion rate can be modified using MC/HPMC with different 

particle sizes.   
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Figure 5.1, Dissolution/erosion profiles of cellulose ethers based matrix tablets of particle size 

(a) 90-150 (b) 150-250 µm (n = 3). 
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Table 5.1, Summary of MC/HPMC erosion kinetics parameters (n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        KE  = Erosion constant/rate (% min-1) 

 

5.3.1.2- Effect of Methocel
®
 substitution ratio 

The substitution pattern on the parent glucose ring of MC/HPMC plays a vital role in determining 

the matrix erosion rate. In the current study, the erosion rates of MC/HPMC having different 

Hpo/Meo substitution ratios were tested: A4M, F4M, E4M and K4M ( see chapter 2, table 2.1 for 

detailed specifications). The A4M has the highest erosion rate (0.020 and 0.022 % min
-1

) in 

comparison to F4M (0.013 and 0.017 % min
-1

), E4M (0.011 and 0.015 % min
-1

) and K4M (0.010 

and 0.011 % min
-1

). The comparatively fast erosion of A4M can be attributed to the presence of the 

higher percentage of hydrophobic substituent (methoxyl, Meo) and absence of the hydrophilic, Hpo, 

groups, Table 5.1 and 2.1 (chapter 2). As the percentage of Hpo/Meo increases (F4M >E4M 

>K4M), the erosion rate decreases. The faster swelling rate with increasing Hpo/Meo ratio (see 

section, 4.6.3.1) lead to rapid formation of the gel layer on the matrix tablet surface and a reduction 

in erosion rates, Table 5.1 and 2.1 (chapter 2). Previously, it was confirmed with NMR imaging that 

different substitution levels in cellulose ethers can give rise to different water mobilities (Rajabi-

 

Methocel
®
 

 

Particle size 
(µm) 

Matrix erosion parameters 

KE R
2
 

A4M 90-150 0.020 0.989 

150-250 0.022 0.968 

F4M 90-150 0.013 0.979 

150-250 0.017 0.989 

E4M 90-150 0.011 0.985 

150-250 0.015 0.99 

K4M 90-150 0.010 0.953 

150-250 0.011 0.989 

K15M 90-150 0.008 0.953 

150-250 0.009 0.985 

K100M 90-150 0.005 0.964 

150-250 0.005 0.985 
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Siahboomi et al., 1996). It can be further stated that the amount of water that attaches to the 

polymer and the amount of tightly bound water depends on the degree of substitution which in turn 

significantly influence erosion (McCrystal et al., 1997). So, from the present findings it can be 

concluded that the incorporation of Meo and Hpo groups on the parent glucose ring of MC/HPMC 

can significantly affect the erosion rate.  

5.3.1.3- Effect of MC/HPMC viscosity 

The erosion or dissolution of polymeric contents decreased with increasing polymer molecular 

weight. In the present study, the erosion rates of MC/HPMC having different viscosities were 

tested: K4M, K15M and K100M (see chapter 2, table 2.1 for detailed specifications). It was 

observed that the higher molecular weight grade of HPMC (K100M) has a lowest erosion rate 

(0.005 % min
-1

), Table 5.1.  This can be ascribed to its ability to develop a thick gel layer which is 

resistant to erosion and more durable (Lee et al., 1999). Moreover, MC/HPMC polymeric chains 

swell faster with an increase in polymer viscosity or molecular weight. The polymer chains of 

MC/HPMC with higher viscosities tend to entangle and enhance the hydrodynamic volume within a 

matrix tablet, leading to higher degree of swelling and as a result the pores of high viscosity 

MC/HPMC inhibit further liquid uptake. This in turn leads to the formation of a turbid gel, which is 

resistant to  dilution or erosion, subsequently resulting in slower matrix erosion and prolonged drug 

release. The trend of erosion rate with increasing viscosity (molecular weight) was K4M >K15M 

>K100M (Table 5.1). So, it can be concluded from the present results that the viscosity of 

MC/HPMC can significantly influence the erosion properties of polymeric compacts.  
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5.3.2- Drug release studies from K4M : FBP/THP matrices  

The in vitro drug release profiles where HPMC is primarily used as a matrix forming polymer are 

depicted in Figure 5.2 (a and b). HPMC on the surface of matrix tablets initially hydrates during the 

dissolution process and helps to form an outer gel layer around the matrix tablet. The continued 

contact of the tablet with the dissolution medium leads to subsequent bulk hydration of the matrix. 

Essentially, this leads to HPMC chain relaxation, followed by erosion of the matrix. The drug 

release rate and mechanism are controlled by the matrix swelling, diffusion of drug through the gel 

layer and/or matrix erosion.   

It was noticed that the HPMC concentration in a matrix tablet played an important role in regulating 

the release of THP and FBP from the hydrophilic matrix tablets.  FBP and THP release profiles are 

shown in Figure 5.2 (a and b), and for both drugs, the HPMC ratio significantly affected the release 

rates, both decreasing with increasing HPMC content as the higher concentrations of HPMC 

reduced the polymeric chain disentanglement  (Li et al., 2005; Maderuelo et al., 2011). At higher 

ratios of HPMC the increased levels lead to physical cross linking which increases the tortuosity of 

matrix tablets (Chaibva et al., 2010; Mitchell et al., 1993). This can be considered an important 

feature impeding the diffusion of drugs from the matrix gel layer during dissolution. The porosity of 

matrix tablet can be an additional factor, as the matrix tablet exhibits a low porosity at higher levels 

which may tend to slow down the liquid mobility across the surface of matrix tablet and leads to 

slower drug release rates (Reza et al., 2003). 

 A substantially faster drug release was observed for hydrophilic matrices containing 20% HPMC, 

and the release rates from matrices containing FBP were slower than those with THP.  The t60 and 

t120 of FBP-containing matrices were lower than those of THP (Table 5.3). The rapid gel layer 

formation around the matrix tablet is a fundamental feature that can dictate the drug release 

regardless of its solubility. Higher amounts of HPMC tend to form a quicker, but stronger, gel layer 

which is more resistant to diffusion and/or erosion. (Mitchell et al., 1993).  
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The mechanism by which drugs are released from hydrophilic systems can possibly be; (a) 

(diffusion- Fickian release), (b) non- Fickian or anomalous transport (c) zero-order release or case II 

mechanism.  Water soluble drugs (THP) can act as pore formers in matrix tablets and have the 

tendency to create micro-cavities on the surface of matrix tablet, thus making the gel layer more 

porous, increasing liberation into the bulk dissolution media through diffusion (Yang and Fassihi, 

1997). Moreover,  poorly water soluble drug (FBP) particles can be translocate through the gel layer 

with a spring-like action caused by the transition of the  polymer chains from a glassy to a rubbery 

state, which disrupts the gel layer structure (Bettini et al., 2001) and can result in exposure of drug 

particles to water. The mechanism of drug release was determined by applying the Korsmeyer-

Peppas model (see chapter 2 and section 2.2.7.5.4 for further detail) to drug release profiles.  

Attributing to the release kinetics criteria for swellable cylindrical systems (Siepmann and Peppas, 

2001), all tablet matrices, regardless of the drug, resulted in non-Fickian release (anomalous 

transport mechanism) (Table 5.3). The HPMC concentration and drug in the matrices affect the 

diffusional exponent (n). As the HPMC level increases in the matrix tablet, the n values decreased 

from 0.88 to 0.60 and 0.75 to 0.50, respectively for FBP- and THP- containing matrices. This 

implies that the release behaviour of matrix tablets fabricated in the present study is a mixture of 

diffusion and erosion, however according to the n values, it can be determined that erosion was the 

dominating mechanism for FBP matrices whilst diffusion dominated for THP matrices.   
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Figure 5.2, Effect of HPMC (K4M) concentration on the (a) FBP and (b) THP release from 

matrix tablets (n = 3). 

 

 

 



 

210 
 

5.3.3- HPMC dissolution studies  

In this study, HPMC dissolution (using K4M) from matrix tablets containing varying concentrations 

of drug (THP or FBP), ranging from 0% to 80 %, was quantified using the PSA assay. UV-Vis 

spectra scanning for both THP and FBP showed that there was no interference with the assay at the 

wavelength of interest (ʎmax = 490 nm).  

It can be seen in Figure 5.3 (a and b), that the rate and extent of HPMC dissolution decreased with 

increasing HPMC concentration. This can be attributed to a thicker, more durable, gel layer formed 

on the matrix surface at higher concentrations. The HPMC release rates were concentration 

dependant and a similar trend was seen for both the formulations containing FBP and THP (Table 

5.3), i.e. 20 > 40 > 60 > 80 > 100%.  However,  HPMC is relatively soluble at pH 7.2 but the 

mobility of the macromolecule is decreased with increasing HPMC content in the matrix tablet with 

chain self-entanglement occurring once hydrated. Moreover, Methocel® K4M has is relatively 

resistant to polymer erosion compared to lower molecular weight and viscosity grades. The 

concentration of HPMC necessary to develop a rapid and strong gel layer around the matrix tablet is 

termed as critical concentration and indicates an ability to withstand the influence of different 

factors during dissolution or hydration. This is a desirable property of a polymer in controlled drug 

delivery system and the critical concentration is related to the thickness of the gel layer that forms 

and specific to each polymer (Maderuelo et al., 2011). It is obvious from Figure 5.3 (a and b) and 

Table 5.3 (t60 and t120), that HPMC dissolution from FBP-containing matrices was higher than 

THP formulations. This is due to the poor solubility of FBP as it can jeopardise the integrity of gel 

layer, which can lead to faster HPMC release. The presence of poorly soluble particles in the gel 

layer hinders the expansion of the polymer and decreases the resistance of the system to erosion, 

which increases the rate of release of the drug via erosion mechanisms (Table 1). Therefore, THP 

matrices have slower HPMC dissolution rates in comparison to FBP matrices (Table 5.3). 
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Figure 5.3, Effect of HPMC concentration on the HPMC release from (a) FBP and (b) THP 

containing matrix tablets (n = 3). 
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Table 5.2, HPMC (K4M) and drug release kinetics parameters of THP and FBP matrix tablets (n = 3, standard deviation are in 

parenthesis) 

 

 

 

 

 

 

 

 

                          t60 / t120 = Percent drug/HPMC release after 60/120 minutes 

 

 

 

 

 

HPMC:THP 

 

HPMC:FBP 

Drug release kinetics 

parameters 

 

t60 (%) 

 

t120  (%) 

n R
2
 Drug HPMC Drug HPMC 

100:0 100:0 - - - 1.05 - 1.56 

80:20 - 0.50 0.999 20.57 (1.02) 2.50 (0.12) 28.64 (1.43) 3.85 (0.19) 

60:40 - 0.61 0.990 25.38 (1.26) 3.58 (0.17) 38.31 (1.91) 5.50 (0.27) 

40:60 - 0.66 0.997 33.58 (2.43) 7.30 (0.36) 48.95 (2.44) 11.20 (0.56) 

20:80 - 0.75 0.999 48.69 (1.67) 17.67 (0.88) 80.32 (4.01) 28.52 (1.42) 

- 80:20 0.62 0.997 13.65 (0.68) 4.33 (0.21) 21.37 (1.06) 6.98 (0.34) 

- 60:40 0.64 0.994 20.64 (1.03) 9.65 (0.48) 32.68 (1.63) 17.32 (0.86) 

- 40:60 0.83 0.999 25.36 (1.26) 12.36 (0.61) 45.87 (2.29) 22.36 (1.11) 

- 20:80 0.88 0.995 40.31 (2.01) 21.98 (1.09) 68.96 (3.44) 34.89 (1.74) 
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5.3.4- Matrix tablet erosion studies  

The water in the hydrated gel layers of matrix tablet exists in three different states; type I ( 

freezable free or bulk water), type II (freezable bound water) and type III (bound water) 

(Asare-Addo et al., 2013a; Jhon and Andrade, 1973). Moreover, there is a moisture gradient 

which is present between the outer surface which is in contact with liquid and the inner dry 

polymeric matrix core (McCrystal et al., 1997). Over time, the outer surface of the hydrated 

matrix tablet tends to dissolve and this leads to matrix erosion.  

The extent of matrix erosion is shown in Figure 5.4 and 5.5, reported as % matrix erosion (E) 

and shows the cumulative amount of both dissolved drug and HPMC. In this study, the mass 

loss from the matrices increased gradually over time. The matrices fabricated from 100 % 

HPMC eroded slowly compared to those containing drugs (FBP or THP). Both methods for 

determining erosion, GM and PSA, gave similar results, with the erosion rate of 100% 

HPMC matrices being 0.011 % min
-1

 (Table 5.4). The erosion rate of 80:20, HPMC:FBP was 

slower (GM = 0.027 % min
-1 

PSA = 0.028 % min
-1

) increasing to 0.104 and 0.100 % min
-1

 

respectively for both PSA and GM methods as the HPMC levels declined in the  matrix 

tablets, suggesting that these matrices have reduced resistance to erosion. Similarly, the 

matrices prepared with 80:20 HPMC: THP have the slowest erosion rate (GM = 0.033 and 

PSA = 0.028 % min
-1

) and the rate tends to decrease as HPMC content increases. The erosion 

rates of matrices containing 20:80, HPMC: THP were 0.089 and 0.088 % min
-1

 respectively 

with PSA and GM methods. Moreover, it can be concluded that erosion increased as the 

drugs were incorporated in the matrices (Table 5.4), with erosion rates being higher for the 

poorly water soluble drug, FBP, as described before.  
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Figure 5.4, Erosion profiles of HPMC/FBP matrix tablets, (a) gravimetrical technique 

and (b) phenol-sulphuric acid assay method (n = 3). 
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Figure 5.5, Erosion profiles of HPMC/THP matrix tablets, (a) gravimetrical technique 

and (b) phenol-sulphuric acid assay method (n = 3). 
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Table 5.3, Erosion kinetic parameters for THP and FBP matrix tablets (n = 3). 

 

 

 

 

 

 

 

 

                                                       

            *PSA = Phenol sulphuric acid assay technique,  **GM = Gravimetrical method,  ***He  =  HPMC erosion rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HPMC:THP 

 

HPMC:FBP 

Erosion rates 
(k, %min-1) 

PSA* R
2
 GM** R

2
 He*** R

2
 

100:0 100:0 0.011 0.918 0.011 0.915 0.011 0.918 

80:20 - 0.028 0.989 0.033 0.996 0.018 0.970 

60:40 - 0.052 0.946 0.049 0.937 0.027 0.997 

40:60 - 0.083 0.917 0.078 0.939 0.051 0.990 

20:80 - 0.089 0.716 0.088 0.716 0.099 0.903 

- 80:20 0.028 0.952 0.027 0.931 0.024 0.979 

- 60:40 0.050 0.874 0.047 0.874 0.047 0.899 

- 40:60 0.081 0.890 0.080 0.833 0.080 0.976 

- 20:80 0.104 0.734 0.100 0.710 0.112 0.853 
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5.3.5- Quantitative relationship between GM and PSA  

 

Application of the PSA assay technique to study matrix erosion during tablet dissolution 

processes was validated by comparing the findings of PSA assays with the more established 

and conventional gravimetric method. A mass balance was achieved in all cases and the 

matrix erosion rates and degree of matrix erosion (%) calculated using both techniques are 

reported in Table 5.4 and Figures 5.4 and 5.5, respectively.  

The erosion data obtained from both techniques was used to construct residual plots where 

the bisector of first quadrant line is y = x. The residual plot, comparing the matrix erosion 

rates of both techniques, is depicted in figure 5.8. The extent of matrix erosion (E, %) of both 

the techniques with respect to time was also used to generate residual plots and these are 

depicted in Figure 5.9a and b.  Analysis of residuals showed random distribution about the 

horizontal axis and there was a strong correlation between the results from both techniques 

(Figure 5.6), with adjusted R
2
 of 0.998 and 0.988 (Table 5.5) for FBP and THP, respectively. 

Additionally, matrix erosion (%) with respect to time showed a higher degree of correlation 

when both methods were compared (Fig. 5.7a and b), with residual R
2
 ranging between 

0.986–0.998 (Table 5.6).  

The assay can provide a simple, cheap, robust and rapid analysis, and has been successfully 

applied in this study to determine dissolved HPMC and to characterise matrix erosion of 

hydrophilic matrices in in vitro dissolution studies. 
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Figure 5.6, Comparative analysis of erosion rates calculated from both techniques. 
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Figure 5.7, Comparative analysis of degree of erosion calculated from both techniques, 

(a) FBP and (b) THP based hydrophilic matrices. 
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Figure 5.8, Residual plot of erosion rate, a comparison between GM and PSA 

techniques 

 

 

 

 

Table 5.4, Comparison of erosion rates of matrix tablets from gravimetrical and PSA 

assay from residual plots.  

 

 

 

 

 

 

 

 

 

Type of matrices Adjusted R
2
 Standard error 

FBP matrices 0.998 0.0016 

THP matrices 0.988 0.0034 
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Table 5.5, Comparison of degree of erosion (%) of matrix tablets from gravimetrical 

and PSA assay from residual plots (n = 3, standard error is in parenthesis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HPMC:THP HPMC:FBP Correlation co-efficient  

R
2
 

100:0 100:0 0.998 (0.18) 

80:20 - 0.986 (1.45) 

60:40 - 0.988 (1.99) 

40:60 - 0.991 (2.53) 

20:80 - 0.998 (1.17) 

- 80:20 0.994 (0.86) 

- 60:40 0.997 (0.87) 

- 40:60 0.986 (3.57) 

- 20:80 0.995 (2.68) 
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Figure 5.9, Residual plot of comparative degree of erosion between GM and PSA assay, 

(a) FBP and (b) THP matrices. 
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5.3.6- Inter-relationship between HPMC erosion and drug release kinetics  

It is evident from the drug release kinetics shown in Table 5.2 that HPMC concentration has a 

significant impact on the drug release diffusional coefficient (n).It can be anticipated from the 

n values (Table 5.2) that all the matrix tablets have an anomalous drug release mechanism. 

Thus, both diffusion and erosion are involved during drug release. It has been reported in the 

past that poorly soluble drugs were released dominantly by erosion of the matrix tablet; 

however, water soluble drugs were released dominantly by diffusion through the gelatinous 

layer (Bettini et al., 2001; Yang and Fassihi, 1997). This is confirmed in this study where 

erosion dominated when FBP was released and diffusion in the case of THP release. Figure 

5.10 shows the relationship between the n values of drugs and HPMC erosion rate (k). A 

simple regression analysis was applied to model their relationship and the values of R
2
 were 

0.9275 and 0.8549 for FBP and THP matrices, respectively. 

Moreover, it is possible to conclude that there is a linear relationship between the n values 

and HPMC erosion rate (k); the diffusional exponents (n) values are lower for the less water 

soluble drug, FBP, at all HPMC: drug levels. So, it can be concluded that the hydrophilic 

matrices containing FBP are less dependent on diffusional drug release and thus a better 

correlation was apparent between n and polymer erosion rate. 
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Figure 5.10, Comparative analysis between HPMC erosion rate (k) and drug release 

diffusional exponent (n). 

 

5.4- Summary 

A PSA assay was successfully applied to study polymer erosion kinetics from MC/HPMC 

compacts with varied physicochemical properties. It can be concluded that particle size, 

substitution ratios and viscosity (molecular size) of MC and HPMC significantly influence 

erosion kinetics parameters.  

Hydrophilic matrices, containing HPMC K4M as the polymer, and different drugs, FBP and 

THP, were evaluated for drug content, degree of matrix erosion, HPMC and drug release 

properties. The phenol-sulphuric acid assay was again successfully adopted for the 

quantification of dissolved HPMC in the dissolution media. The HPMC dissolution rate 

increased as the level of HPMC decreased in the matrix tablets. Thus it leads to a conclusion 

that HPMC levels and solubility of drugs are important factors to consider during the 

designing of hydrophilic matrix tablet formulations.   
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The release of FBP and THP was an anomalous transport mechanism, however, Fickian 

diffusion and erosion dominated for THP and FBP matrices, respectively. The PSA assay 

also identified an inter-relationship between HPMC erosion rates (k) and Korsmeyer– 

Peppas parameter, n,  

The matrix erosion results obtained from newly adopted PSA method confirm that the 

solubility of the drug, and levels of HPMC in a particular matrix tablet, significantly affect 

the matrix erosion rate and the results were similar to those determined using the much 

more labour-intensive gravimetric method. Moreover, the combination of conventional UV 

drug analysis technique and PSA assay can be used to simultaneously quantify the matrix 

erosion, polymer dissolution and drug release kinetics in a single set of experiments 

avoiding the need for separate studies. 
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6- Compaction studies of hydrophilic matrices 
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6- Compaction studies of hydrophilic matrices 

6.1- Introduction 

The use of pills and powders to administer drugs was reported as early as 1550 BC in 

Papyrus Ebers. The pill continued to be one of the most common dosage forms until the 

middle of the 20th century, when mass-production of tablets was introduced following the 

invention of the tableting machine, patented in 1843 by William Brockedon (Swarbrick, 

2007). Pharmaceutical products have historically been administered to the body using a 

relatively basic drug and excipient combination in suitable dosage form, usually resulting in 

rapid release and systemic absorption of the drugs. Different drug delivery technologies and 

routes of administration have been used to ensure optimal administration of therapeutic 

agents (Yihong 2009). All through the history of pharmacy, the oral route has been the most 

preferred way of drug administration and tablets are regarded as most commonly used 

pharmaceutical dosage form. The advantages of this dosage form are manifold: convenient to 

dispense and store, and easy administration, and they provide a versatile means of delivering 

the drug. Release of drug from the tablet can be controlled by altering the design and content 

of the formulation. Also, since this is a dry dosage form, tablets provide a supportive 

environment for maintaining drug stability and generally have a relatively long shelf life 

(Remington and Allen, 2013).  

The characteristics of the tablet (mechanical strength, disintegration time and drug release) 

are affected by both the properties of the constituent materials and the manufacturing process. 

For instance, tablets must be sufficiently strong to withstand handling during manufacturing 

and usage, but should also disintegrate and release the drug in a predictable and reproducible 

manner (Sandell, 1992). All the aforesaid features of tablets are essentially dependant on the 

properties of the powder particles usually used as raw materials. A powder is a heterogeneous 
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system of solid dry particles and the air can be present both between, and inside, the particles 

(Riepma et al., 1993; Sandell, 1992). According to British Standard (BS2955, 1958) the 

maximum dimension of a particle in a material to be called as powder, is less than 1000 µm 

(York, 1980). Moreover, powder mixtures intended to fabricate tablets comprise several 

component materials with different properties and functions. In most cases these can be 

divided in active pharmaceutical ingredients (APIs) and excipients. The powders can be 

granulated to improve manufacturability, however direct compression is preferred and more 

economical method for tablet manufacturing (Masuda et al., 2006). 

6.2- Powder compaction  

Compaction can be defined as the compression and consolidation of a particulate solid–gas 

system as a result of an applied pressure and compression involves a reduction in bulk 

volume as a result of reduced gaseous phase.  (Patel et al., 2006). Compaction is a 

mechanical process in which the state of the material is changed from powder into a compact 

of desired porosity. Compaction is one of the most important step in tablet production as the 

physical properties of the compacts, as well as the pressing forces, are determined not only by 

the properties of the powders constituting the powder mixture (such as particle size 

distribution, shape, morphology, lubrication conditions) but also by the processing conditions 

(Alderborn and Nystrom, 1995).  

Over the years, there has been considerable confusion in literature around tableting 

terminology. Different terms like compressibility, compactibility, and tabletability, have been 

used by authors to describe the same type of relationship. The root cause of this confusion is 

that three variables, pressure, tablet tensile strength and porosity, are not always studied 

simultaneously (Alderborn and Nystrom, 1995; Nyström et al., 1993). Compressibility is the 

ability of a material to undergo a reduction in volume as a result of an applied pressure and is 
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represented by a plot of tablet porosity against compression pressure; compactibility is the 

ability of a material to produce tablets with sufficient strength under the effect of 

densification and is represented by a plot of tablet tensile strength against tablet porosity; and 

finally, tabletability is the capacity of a powder to transformed into a tablet of specified 

strength under the effect of pressure and is represented by a plot of tablet tensile strength 

against compression pressure (Patel et al., 2006; Swarbrick, 2007). 

6.3- Mechanism of powder compaction 

When pressure is applied to a powder bed, the bulk volume of the powder is reduced and the 

amount of air is decreased; this is an endothermic process as energy is consumed during this 

initial volume reduction of powder bed. Under compression, the particles are moved into 

closer proximity to each other and inter-particulate bonds may be established between the 

powder particles. The formation of bonds is associated with a reduction in the energy of the 

system as energy is released (exothermic process) (Coffin-Beach and Hollenbeck, 1983). In 

the literature, the term compression is often used to describe the process of volume reduction 

and the term compaction is used to describe the whole process, including the subsequent 

establishment of inter-particulate bonds ( Alderborn and Nystrom, 1995; Sandell, 1992). The 

strength of a tablet composed of a certain material can be used as a measure of the 

compactability of that material and volume reduction takes place by various mechanisms and 

different types of bonds may be established between the particles depending on the pressure 

applied and the properties of the powder. The process of powder compression into a tablet 

(compaction) can be generally divided into four predominant stages, which although 

sequential, in reality can occur simultaneously. These are; rearrangement of powder particles, 

elastic deformation of powder particles, plastic deformation and/or fragmentation of powder 

particles, and elastic recovery/relaxation after unloading and tablet ejection (Figure 6.1). 
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When powder is filled into the tablet die, it is loosely packed. The powder particles are able 

to translate and rotate with respect to one another to reach a state of dense packing. Soon 

thereafter, the system reaches a state where its capacity to rearrange itself is exhausted as the 

powder particles are constrained or locked into position by more structurally stable contact 

with their neighbours. This junction can be referred to as a constrained state, however there is 

also a degree of fragmentation that can occur during this initial stage of powder compression 

( Alderborn and Nystrom, 1995; Frenning et al., 2009). Upon reaching the constrained state, 

any further reduction in the porosity of the powder bed can only occur as a result of a 

mechanical change in the structure of each of its composing particles. Simply put, there are 

two major routes of accommodation: deformation and fragmentation/breakage (Alderborn 

and Nystrom, 1995; Çelik, 2011; Frenning et al., 2009; Leuenberger, 1982, , Roberts et al., 

1989). If the particles are elastic or plastic, they will deform to accommodate the increasing 

applied compression pressure. However, if a particle is brittle in nature, it will break into 

smaller pieces and, as the compression pressure increases, the surface inter-particulate voids 

which were formed during the initial consolidation of powder particles, will displace. 

Assuming the applied compression pressure is large enough, the powder particles may go 

through one or all of these structural changes. It is during this transitional phase that bonding 

occurs between the contacting surfaces of the powder particles, either as in the case of 

deformation, by an increased area of contact between particles, or by an increase in the 

number of bonding sites as in the case of breakage (Duberg and Nyström, 1981). Finally, at 

the maximum compression pressure, porosity is reduced to a minimum (Sonnergaard, 2000). 

Consequently, when the pressure is removed (unloading), the solid (tablet) begins to relax 

into its final dimensions, a process referred to as elastic recovery (Leuenberger, 1982). Elastic 

recovery/relaxation is a reversible part of deformation and higher values of elastic recovery 

are indicative of poor inter-particulate bonding between powder particles. The last stage in 
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compression cycle is ejection from die. The ejection phase also requires force to overcome  

adhesion between the die wall and compact surface and other forces are needed to complete 

ejection of tablet (Çelik, 2011). 
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Figure 6.1, Schematic illustration of different phases of powder compaction.
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6.4- Bonding during powder compaction 

Powder particles move during the compression process and come in close proximity to each 

other. This provides ample opportunities for inter-particulate bonding, yet, the mechanism of 

consolidation phenomena by which inter-particulate bonding happens is still elusive. 

However Rumpf (1958) and Turba and Rumpf (1964) proposed five possible bonding 

mechanisms discussed in the following sub-sections. 

6.4.1- Distance attraction forces 

It has been reported by various authors that mainly three different types of attraction forces 

are responsible for inter-particulate bonding during the compression process. However, the 

intensity of these forces is affected by the type of material but more importantly the distance 

between the powder particles in a compression die (Alderborn and Nystrom, 1995; Çelik, 

2011; Leuenberger, 1982; Nyström and Karehill, 1996; Sandell, 1992) . Van der Waals forces 

are considered to be the most important attraction forces holding particles together 

(Leuenberger et al., 1989). These can operate in vacuum, gas and liquid and act at a distance 

of 100 – 1000 Å. The second most important bonding forces are those generated because of 

hydrogen bonding, considered important for certain pharmaceutical materials. Moreover, 

various authors have proposed that electrostatic forces have a role during compaction (Patel 

et al., 2006) but Nyström and Karehill (1996) argued that these forces may not have a 

significant role in tablet formation. The electrostatic forces are generally developed from 

tribo-electric charging during mixing and compaction. However, electrostatic forces can be 

neutralised relatively quickly and are not often considered to be of significance in tablets of 

pharmaceutical materials. 
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6.4.2- Solid bridges 

The formation of solid bridges, also referred to as the diffusion theory of bonding, occurs 

when two solids are mixed and  form a continuous solid phase at their interface (Israelachvili, 

2011). Such a mixing process requires that molecules in the solid state are movable, at least 

temporarily, during compression. An increased molecular mobility can occur due to melting 

or as a result of a glass-rubber transition of an amorphous solid phase (Adolfsson et al., 1998; 

Führer, 1977). 

6.4.3- Non- freely movable bridges 

The powders normally absorb water from the moist air. The thickness of sorbed water layers 

depends on the polarity of powder surface and the humidity of the atmosphere. In a fairly dry 

environment, the water will be tightly bound as a non-freely movable layer of water, which is 

denoted monolayer-absorbed moisture (Sandell, 1992) or water vapour adsorption (Ahlneck 

and Alderborn, 1989). If two powder particles of this kind are brought in contact, the water 

sorption layers can interact (Van Campen et al., 1980). This results in a strong inter-

particulate attraction and a joint water sorption layer (Zografi, 1988).  

6.4.4- Bonding due to movable bridges 

At high relative humidity, the amount of water in the powder can increase so much that, in 

addition to the sorption of water, there will be a separate movable water phase, which is 

denoted as condensed water (Çelik, 2011). Molecules of the solids can dissolve in this water 

which can lead to deliquescence of the solid. The critical humidity at which this takes place is 

characteristic of the solid and is the point above which the absorbed water assumes the 

character of the bulk solution or condensate (Lordi and Shiromani, 1984). Because of the 

high surface tension of pure water, there will be a strong attraction between power particles.   
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6.4.5- Mechanical interlocking 

Mechanical interlocking describes the hooking and twisting of powder particles together in a 

tablet. This is possible because of particle irregularities and roughness on the surface of the 

powder particles (Führer, 1977). 

6.5- Compaction properties of Methocel
®
 

Methocel
® 

grades, especially MC/HPMC, are commonly used as a carrier polymer for 

extended drug release applications. However, various authors has been reported their use as a 

binder in direct compression because they have good compaction properties. The high 

compactability of MC/HPMC has been attributed to a relatively high propensity for plastic 

deformation, which enables large surfaces to come close to each other and a large number of 

bonds, mainly intermolecular forces, to be established between the particles (Karehill et al., 

1990; Nyström et al., 1993). Mechanical interlocking may also contribute to the mechanical 

strength (Karehill and Nyström, 1990). Other commonly used binders in direct compression 

processes include microcrystalline cellulose, starches and their derivatives, such as pre-

gelatinised and granulated starches. A common feature of many such filler-binders is that 

they undergo plastic deformation during compaction. However, dibasic calcium phosphate 

dihydrate deforms via fragmentation which might be due to its brittle nature. Lactose is also 

used in direct compression but, compared to other filler-binders, lactose exhibits relatively 

poor bonding properties. By modifying lactose, for example by spray drying, a material with 

enhanced bonding properties can be obtained (Adolfsson and Nyström, 1996; Bolhuis and 

Chowhan, 1996). 
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6.5- Factors affecting compaction properties of Methocel
®
 

The compaction of Methocel
® 

(MC/HPMC) is a complex processes affected by different 

factors. In this section, the principal factors that can affect the compaction properties of 

MC/HPMC are discussed; and are summarised in Table 6.2.    

6.5.1- Effect of particle size 

The particle size of Methocel
®

 (MC/HPMC) powders may determine the deformation 

mechanism and therefore have the tendency to dictate the consolidation phenomena 

(Malamataris et al., 1994; Nokhodchi and Rubinstein, 2001; Rajabi-Siahboomi et al., 1998). 

Malamataris and Karidas (1994) showed that when the particle size of Methocel
®
 (K4M and 

F4M) was reduced from <320 µm to <120 µm, the tensile strength of tablets was increased.  

Nokhodchi et al. (1995) investigated the effect of particle size on the compaction properties 

of Methocel
®
  (K100, K4M, K15M and K100M) and it was reported that the particle size has 

a noticeable impact on the tensile strength of HPMC compacts with smaller particle sizes 

leading to compacts with higher tensile strength. This is consistent with the theory that a 

smaller particle size allows greater packing density and a larger number of contact points 

between the powder particles for inter-particulate bonding. Moreover, the compressibility 

index (CI, %) of  HPMC decreased with increasing particle size, as CI is frequently used to 

assess the powder compressibility and it gives information regarding the flowability of 

powders. However, the yield pressure (Py) values of different HPMC grades were reported to 

be independent of particle size. Additionally, it was reported by Nokhodchi et al. (1995) in 

the same study that the elastic recovery increased as the particle size increased, indicating the 

greater inter-particulate bonding between the finer powder particles.  
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6.5.2- Effect of substitution 

The levels of Hpo and Meo substitution of HPMC grades (%)  (i.e. F4M, E4M and K4M) 

showed a marked effect on the compaction properties of matrices (Rajabi-Siahboomi et al., 

1998; Nokhodchi and Rubinstein, 2001). It was noticed that K4M exhibited greater packing 

ability than F4M and E4M. However, F4M produced compacts with higher strength than 

K4M at the same compression pressure. Moreover, it was also reported that the increase in 

Meo/Hpo substitution ratios leads to an increase in Py (Malamataris and Karidas, 1994; 

Malamataris et al., 1994). It is further reported by Rajabi-Siahboomi and Nokhodchi (1999) 

that A4M (MC) has the ability to produce tablets with higher tensile strength in comparison 

to F4M, E4M and K4M. Gustafsson et al. (1999) studied the effects of substitution on the 

particle characteristics and compaction behaviour of HPMC obtained from two different 

suppliers. Low, medium and high substitution ratios were studied using Methocel
®

 K4M, 

E4M and F4M and compared with Metolose
®
 90 SH 4000, 60 SH 4000 and 65 SH 4000, 

respectively. Differences in drug release from Methocel
®
 E4M matrices compared with the 

other two Methocel
®
 products were related to a reduced powder surface area, differing 

particle morphology and lower fragmentation propensity (Gustafsson et al., 1999). 

Additionally, its compacts were weaker and had different porosity and elastic recovery 

properties. There were no differences between the polymers in degree of disorder, as 

evaluated by solid-state NMR spectroscopy (Gustafsson et al., 1999). The different behaviour 

of Methocel
®
 E4M may be related to the overall higher total degree of substitution of this 

polymer and, in particular, the high content of hydrophobic methoxy groups, which may 

change the particulate and mechanical properties of the powder. Presence of methoxy groups 

might also decrease the development of inter-particulate hydrogen bonds during compaction. 

After a series of studies, Escudero et al. (2008, 2010 and 2012) concluded that A4M (MC) 

has best compaction properties, which might be due to the absence of hydrophilic Hpo 
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groups. It was reported that the A4M has a plasticity index (PI) of 99.0 %, which is higher 

than F4M (96.8 %), E4M (95.2 %) and K4M (97.0 %). Moreover, it was also reported that 

the substitution levels influenced  pores on the surface of tablets as the K4M compacts have 

macroscopic pores (601 Å) whereas A4M, F4M and E4M have microscopic surface pores 

(Escudero et al., 2008; Escudero et al., 2012).  

6.5.3- Effect of molecular size (viscosity) 

The compression and compaction properties of HPMC are affected by viscosity grade 

(Nokhodchi and Rubinstein 2001). It was reported by Nokhodchi et al. (1996) that as the 

viscosity of HPMC decreases, the ability of powder particles to deform plastically increases 

and the tensile strength of HPMC K100 is much higher than other HPMC grades as a 

consequence of its viscosity. However, Malamataris et al. (1994) found that the Py of HPMC 

tablets was not affected by polymer viscosity grade The average surface pore size of K100M 

based compacts was 434.5 Å and considered to be microscopic in magnitude, comapred to a 

pore size in K4M compacts (601.0 Å) of macroscopic dimensions but the molecular size have 

no effect of the PI (Escudero et al., 2008).  

6.5.4- Effect of humidity 

Increased moisture uptake causes a decrease in tensile strength of tablets due to weak inter-

particulate bonding caused by softening of the HPMC (Malamataris and Karidas 1994). The 

thickness of Methocel
®

 K4M compacts fell as the moisture content increased from 0 to 

14.9% w/w (Nokhodchi et al., 1996b), which also resulted in a marked increase in the tensile 

strength of the tablets. The increase in moisture content also reduced the elastic recovery of 

the compacts because of greater tablet consolidation. The influence of moisture content on 

Heckel analysis, energy analysis and strain-rate sensitivity of HPMC 2208 has also been 

reported. An increase in moisture content from 0 to 14.9 % w/w decreased the mean yield 
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pressure, probably because of a plasticising effect of moisture that reduced the resistance of 

particles to deformation (Nokhodchi et al., 1996a). The strain-rate sensitivity, which is the 

ability of the material to resist necking, increased from 21.6 to 50.7 % as the moisture content 

increased from 0 to 14.9% w/w, indicating that the plasticity of HPMC increased with an 

increase in moisture content (Nokhodchi et al., 1996a). 
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Table 6.1, Summary of factors affecting compaction properties of Methocel
®
 matrices 

Factor Effect References 

Effect of particle size 
A reduction in particle size leads to higher 

tensile strength of matrix tablets 

Malamataris and Karidas, 1994, Malamataris et al., 1994, Nokhodchi 

et al., 1995, Rajabi-Siahboomi et al., 1998, Nokhodchi and 

Rubinstein, 2001 

Effect of substitution 

Tensile strength of tablets increases with 

increased presence of the hydrophobic group 

(Meo). However, the Py values decrease 

Malamataris and Karidas, 1994, Malamataris et al., 1994, Rajabi-

Siahboomi et al., 1998, Rajabi-Siahboomi and Nokhodchi, 1999, 

Nokhodchi and Rubinstein, 2001, Escudero et al., 2008, Escudero et 

al., 2010, Escudero et al., 2012 

Effect of viscosity 

Higher viscosity grades have a tendency to 

produce low tensile strength tablets and have 

higher Py values. 

Malamataris et al., 1994, Nokhodchi et al., 1996b, Nokhodchi and 

Rubinstein, 2001, Escudero et al., 2008 

Effect of humidity 
Higher moisture content leads to increased 

tensile strength of tablets. 

Malamataris and Karidas, 1994, Nokhodchi et al., 1996a, Nokhodchi 

et al., 1996c, Rajabi-Siahboomi et al., 1998, Nokhodchi and 

Rubinstein, 2001 
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6.6- Mathematical models of powder compression 

6.6.1- The Heckel mathematical equation  

The natural logarithm of the tablet porosity as a function of the applied pressure can be used 

to describe the compression process (Alderborn and Nystrom, 1995; Çelik, 2011). However, 

the Heckel equation has become the most well-known and most commonly used (Heckel, 

1961b; Heckel, 1961a) relationship. The equation is based on the assumption that 

compression of powders is analogous to a first-order chemical reaction, the pores being the 

reactant and densification of the bulk being the product. The equation was first developed 

and applied to compression of metals, materials known to predominately deform plastically. 

A Heckel profile is normally distinguished by three different regions, an initial non-linear 

portion (Region I), followed by a linear part where the data obey the expression (Region II), 

and finally a non-linear region (Region III) (Figure 6.2). The existence of these three 

different regions is normally explained using the underlying rate controlling compression 

mechanisms that dominate the respective regions. For region I, there are two main 

explanations proposed: firstly that the curvature is regarded to be dependent on particle 

rearrangement during compression (Heckel, 1961b), and secondly that the curvature is due to 

particle fragmentation (Israelachvili, 2011). Regarding the second region, it is generally 

widely accepted that particle deformation, either elastic or plastic, is controlling the 

mechanism of powder compression. Finally for region III, it is proposed that elastic 

deformation of the compact controls the process (Sun and Grant, 2001). The parameter, A, in 

the Heckel equation (equation 2.16) is said to reflect low pressure densification by inter-

particulate motion. The inverse of the slope (parameter K) can be calculated using the linear 

region. This is referred to as the Heckel parameter or the yield pressure, Py, and is commonly 

used as an indicator of the relative plasticity or hardness of a particle (see section 2.2.9.2).  

Differences between reported values for the Heckel parameters exist in the literature and 
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may arise due to differences in determination of the linear region, deviations in the measured 

true densities or in the accuracy of the data acquisition. Negative porosities in the upper 

pressure part of the profile have also been reported, which could lead to substantially lower 

retrieved yield pressures, and might contradict the assumption that the particle density is 

constant during compression (Adolfsson et al., 1999; Adolfsson and Nyström, 1996). 

Finally, and most importantly, experimental conditions affect the result of the Heckel 

parameter, such as maximum applied pressure, punch velocity or punch diameter (Kiekens et 

al., 2004; Patel et al., 2010). 
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Figure 6.2, Schematic illustration of a typical Heckel plot, representing three different powder compression regions 
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6.6.2- The Kawakita mathematical equation 

The basis for the Kawakita equation for powder compression is that powder particles are 

subjected to a compressive load in equilibrium at all stages of compression, so that the 

product of pressure and volume is constant. The Kawakita equation, compression data 

subjected to Equation  (See chapter 2, section 2.2.9. ) and engineering strain (C) of a powder 

bed with respect to the applied pressure (P) is calculated, which relates the strain in a powder 

bed to the applied compression pressure (Kawakita and Lüdde, 1971).  

The linear relationship between P and C makes it possible to derive values for the 

parameters, a and b. The parameter ‗a‘ represents the maximal engineering strain, Cmax, of 

the powder bed, and mathematically the parameter ‗b‘ is equal to the reciprocal of the 

pressure when the value, C, reaches one-half of the limiting value (C = Cmax/2), as illustrated 

in Figure 6.3. The Kawakita equation is often considered to be best suited for analysis of 

soft, fluffy powders compressed under low pressures. However, setting the start volume for 

the calculation is a critical point that should be carefully considered; as this has a major 

influence on the parameters retrieved (Kawakita and Lüdde, 1971). Physical interpretation of 

the Kawakita parameters has been discussed in the literature, and the inverted b-parameter 

(b
-1

) is claimed to reflect the agglomerate strength (Adams et al., 1994), fracture strength of 

single particles or the plasticity of a granule (Nordström et al., 2008)  
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Figure 6.3, Schematic illustration of a typical engineering strain (C) and compressional pressure (MPa) and interpretation of Kawakita 

parameters 
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6.7- Section A, Compaction of model drugs 

6.7.1- Introduction 

The successful development of tablet matrices requires an understanding of the fundamental 

properties of both the drugs and hydrophilic carrier polymers. It has been estimated that less 

than 20 % of APIs can be processed by direct compression as the majority of the APIs lack 

the flow, cohesion and mechanical properties required (McCormick, 2005). Therefore, it is 

important to study the compaction properties of model drugs (FBP/THP) with an objective to 

understand the mechanism of compression and elastic relaxation.  

6.7.2- Experimental 

6.7.2.1- Materials 

6.7.2.1.1- Model drugs 

Model drugs, FBP (FBP) and THP (THP) were obtained as described in section 2.1.1. 

6.7.2.2- Methods 

SEM analysis was carried out as described in section 2.2.4.1 and all other methods are 

described in sections 2.2.9.1-2.2.9.3. 

6.7.3- Results and discussion  

The model drugs (FBP and THP) like many other APIs possess a high degree of crystallinity 

(Florence and Attwood, 2011). FBP powder particles are rectangular shaped with a density 

of 1.279 g cm
-3

, whereas THP comprises elongated crystals with a columnar habit and a 

particle density value of 1.466 g cm
-3 

(Figure 3.5 and Table 6.2). Additionally, it can also be 

noticed that the THP particles have a rougher surface than FBP (section 3.6.4.1 and Figure 
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3.5).  The compaction behaviour of the model drugs was studied using both in-die and out of 

die parameters as illustrated in Figure 6.4.   

When powder samples of model drugs (FBP/THP) were introduced into the die, the in-die 

relative densities (solid fractions) of the powder bed increased with increasing pressure 

(Figure 6.5), however, the increasing pressure reduced the porosity of the powder bed 

(Figure 6.6). The initial in-die relative densities of FBP and THP compacts were 0.443 and 

0.520, respectively. The relative densities of FBP and THP compact were increased to 0.798 

and 0.938, respectively, at the highest compression pressure (150.77 MPa), Table 6.2.  

Moreover, it can be determined from the findings that an increase in the solid fraction of a 

powder bed inside the die reduces its porosity. At zero pressure the in-die porosity of FBP 

and THP was 55.70 % and 48.00 %, respectively, however the porosity of powder bed was 

reduced to 20.20 % (FBP) and 7.60 % (THP) (Table 6.2). The in-die relative density and 

porosity data at maximum pressure (150.77 MPa) correlates well with the out-of-die data (0 

h) (Table, 6.2). It can also be noticed that the THP compacts have higher relative density 

than FBP compacts. As the relative density has a direct relationship with the porosity (%) of 

compacts, thus THP compacts have a lower porosity (%) than FBP compacts. This trend was 

maintained even after 24 hours, however, due to elastic relaxation over this period of time, 

the relative densities decreased with a consequent increase in porosity. The better 

densification properties of THP can be attributed to its good flow and adhesion compared to 

FBP (Crouter and Briens, 2014). Moreover, FBP particles have the tendency to generate 

more adhesion forces which may be the cause of their low densification with respect to 

pressure (Šupuk et al., 2013; Wang et al., 2004). Previously, it has been reported that 

powders which have a tendency to generate higher adhesion forces undergo reduced particle 

densification when pressure is applied, as a significant proportion of the powder particles 

stick to the die wall (Wang et al., 2004). 
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Figure 6.4, A typical force-displacement curve for FBP and THP (n = 3). 

 

The force-displacement data were then further subjected to Heckel and Kawakita 

compressional equations in order to analyse compressional behaviour of FBP and THP 

compacts. The Heckel parameters A, K and Py were calculated by using linear regression 

method on the straight line portions of the Heckel plots (Figure 6.7). The co-efficient of 

linearity (R
2
) was > 0.99 in all cases. The Kawakita compressional parameters a, b

-1
 and ab

-1
 

were calculated using Kawakita compression profiles (Figure 6.8) by applying linear 

regression over a wide range of pressure ranges with high correlation co-efficients (R
2
 > 

0.99). The parameters obtained from both Heckel and Kawakita analysis are summarised in 

Table 6.3 and show that the yield pressure (Py) and b
-1

 are higher for FBP compacts at an 

applied pressure of 150.77 MPa. It can be inferred from that FBP powder particles need a 

higher degree of compression pressure to deform, as both the parameters are related to the 

plasticity of the powder bed during compaction. The initial bends in the Heckel and 

Kawakita compression profiles (Figures 6.7 and 6.8) were proposed to be linked with the 
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initial particle rearrangement during compression which can be explained by Heckel 

parameter A and Kawakita ab
-1

. The A values for FBP and THP compacts were 0.960 and 

1.080, respectively, however FBP and THP have ab
-1 

values of 0.0316 and 0.0418, 

respectively. A value of ab
-1

 > 0.1 is indicative of significant particle rearrangement during 

powder compression (Nordström et al., 2009) so neither API showed significant 

rearrangement. However, the parameters were higher for THP than FBP, potentially due to 

its elongated crystal shape. When elongated crystals are filled into a compaction die, there 

may be more inter-particulate voids which might lead to more particle rearrangement than 

FBP powder compacts. Moreover fragmentation of THP particles may also contribute. The 

tensile strength (T) of THP compacts (2.11 MPa) was high whilst it was low for FBP (0.54 

MPa). The elastic recovery (ER, %) of the FBP compacts (16.24 %) was significantly higher 

than THP compacts (9.51 %). The low T, but higher ER, of FBP can be attributed to its poor 

inter-particulate bonding. A schematic illustration of FBP and THP powder compaction is 

represented in Figure 6.9.  
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Figure 6.5, In-die relative density profile of FBP and THP (n = 3). 

 

 

 

 

 

 

 

 

 

Figure 6.6, In-die porosity profile of FBP and THP. 
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Figure 6.7, Heckel plots of FBP and THP with respect to pressure. 

 

 

 

 

 

 

 

 

 

 

Figure 6.8, Kawakita plots of FBP and THP with respect to pressure.



 

252 
 

Table 6.2, Relative density, porosity (in-die and out-of-die), tensile strength and elastic recovery of FBP and THP compacts (n = 3, 

standard deviation given in parenthesis) 

   

 

 

 

 

                         T = Tensile strength (MPa),  ER = Elastic recovery (%) 

 

  

Table 6.3, Heckel and Kawakita compression parameters for FBP and THP compacts (n = 3).   

 

 

 

 

                                                         A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

 

Drug True density 
(ƿt, g cm-3) 

Relative density (ƿrel) Porosity (Ԑ, %) T (MPa) ER (%) 

In-die After ejection In-die After ejection 

zero P Max. P 0 hr 24 hr zero P Max. P 0 hr 24 hr 

FBP 1.279 0.443 0.798 0.789 0.768 55.70 20.20 21.10 23.20 0.54 (0.12) 18.14 (3.15) 

THP 1.466 0.520 0.938 0.924 0.887 48.00 6.20 7.60 11.30 2.11 (0.09) 9.51 (2.15) 

Drug Heckel parameters Kawakita parameters 

A K Py a b
-1

 ab 

FBP 0.960 0.0101 99.00 0.445 14.05 0.0316 

THP 1.080 0.0114 87.71 0.622 14.88 0.0418 
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Figure 6.9, Schematic illustrating the compaction mechanisms of FBP and THP. 
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6.9- Section B, Compaction properties of hydrophilic matrices. 

6.9.1- Introduction 

Poor compaction properties can lead to large variations in tablet weight, poor content 

uniformity and inconsistent tablet properties including hardness, disintegration and drug 

release (Masuda et al., 2006). Hydrophilic tablet matrices are commonly manufactured by 

using DC. During DC, powder particles consolidate into tablets, reducing pores in a powder 

bed while creating inter-particulate bonds (Sandell, 1992). Under compression, 

pharmaceutical materials experience multifaceted stresses which engender powder particle 

rearrangement, deformation (elastic or plastic) and fragmentation, and these processes are 

considered to be the events that brought structural changes to the in-die powder bed. 

Moreover, brittle materials consolidate predominantly by fragmentation whereas plastic 

materials deform plastically (Nyström et al., 1993). However, compaction of brittle materials 

is less speed dependent because fragmentation is rapidly achieved and prolonged exposure to 

the force has a more limited effect on tablet properties (Alderborn and Nystrom, 1995).  

Cellulose ethers, more specifically MC and HPMC, are the most frequently employed 

hydrophilic polymers for the development of compressed hydrophilic matrices (see section 

4.1 for more detail). The mechanical properties of MC and HPMC are important as most of 

matrix tablets are manufactured through DC. The physico-chemical attributes of MC and 

HPMC (particle size, substitution levels and molecular size) can significantly affect 

mechanical behaviour. A sound understanding of material properties either polymers 

(MC/HPMC) or model drugs (FBP/THP) is very important. It is critical and very important 

to investigate how any change in their physico-chemical properties can affect their 

performance. Physical characterization of powder compaction of MC/HPMC and their 
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respective powder mixtures is an attractive area of research from both performance and 

material consumption prospective.  

The deformation and consolidation characteristics of MC and HPMC based matrices have 

been studied in the past (Maderuelo et al., 2011; Rajabi-Siahboomi et al., 1998) but there is 

limited information available regarding in-depth mechanics behind these processes and how 

these variations can affect their functionality. Furthermore, there is a lack of literature on 

inter-relationship between the various compressional mathematical models and the influence 

of MC and HPMC inherent deformation and consolidation properties on the derived 

constants. For this purpose, the present work was designed to focus on comparative 

evaluation of different cellulose ethers (MC/HPMC) and their respective powder mixtures 

with model drugs (FBP/THP) of varying polymer ratios, with a view to understand their 

compression, compaction and relaxation properties. Heckel and Kawakita mathematical 

compression models (Heckel, 1961a; Heckel, 1961b; Kawakita and Lüdde, 1971,) were 

applied to study the deformation properties of matrices. Moreover, the impact of physico-

chemical attributes related to MC and HPMC (concentration, particle size, molecular size 

(viscosity) and Hpo/Meo substitution levels) on the compaction and compression parameters 

was also studied. 

6.9.2- Experimental 

6.9.2.1- Materials 

6.9.2.1.1- Cellulose ethers 

Cellulose ethers (MC/HPMC) were obtained as described in the section 2.1.1 and their 

specifications are enlisted in Table 2.1. 
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6.9.2.1.2- Model drugs 

Model drugs, FBP (FBP) and THP (THP), were obtained as described in section 2.1.1. 

6.9.2.2- Methods 

SEM analysis was carried out as described in section 2.2.4.1 and all other methods are 

described in sections 2.2.9.1-2.2.9.3. 

6.9.3- Results and discussion  

6.9.3.1- Compaction properties of plain Methocel
®
 compacts 

All the polymer grades contained mixtures of irregular-shaped flat and fibrous particles 

(Figure 3.8, chapter 3). Generally the proportion of fibrous particles is higher for MC than 

HPMC. The K-chemistry grades of HPMC, and specifically K100M, contain more 

irregularly shaped particles with rough surfaces than all other grades of cellulose ethers. This 

might be due to the higher Hpo/Meo substitution ratio and molecular weight, which result in 

the particles having a complex surface (see section 3.7.4.1, chapter 3 for more detail). The 

physical responses of polymeric powders, especially relative density and porosity of matrix 

tablets in a compression process play an important role in determining their quality 

(Bonferoni et al., 1996; Gustafsson et al., 1999).  The true densities of MC and HPMC 

powders, which were determined by using helium pycnometer, were in the range of 1.288 -

1.373 g/cm
3
 (Table 6.4). The initial in-die relative density and porosity (Ԑ, %) of the powder 

bed at zero and maximum pressure were determined using the force-displacement profiles 

for each polymer grade, as exemplified in Figure 6.4. Moreover, both parameters were 

calculated promptly after ejection (out-of-die) at zero and 24 h. When MC and HPMC were 

introduced into the die, the in-die relative densities (solid fractions) of the powder bed 

increased with increasing pressure (Figure 6.10). Moreover, the increasing pressure brings 
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the powder particles closer and the porosity of the powder bed starts to decease with the 

increasing pressure (Figure 6.11). The rate of densification was rapid in the initial phase, but 

it became slower at higher pressures which causes packing of powder particles and results in 

an increased relative density and decreased porosity. Both of these factors are exceptionally 

important in the development of coherent matrix tablets. The in-die relative density and 

porosity data at maximum pressure (150.77 MPa) show a good correlation with the out of die 

data (0 h) (Table, 6.4). It can also be deduced from Figure 6.11 and Table 6.4 that the A4M 

(MC) had a higher relative density while K100M (HPMC) had the lowest relative density 

with respect to increasing pressure. As relative density is directly related to porosity, A4M 

and K100M are the grades of Methocel
®
, with lowest and highest porosity, respectively. The 

same trend persisted even after 24 hours; however, due to elastic relaxation over the period 

of time, the relative densities decreased which consequently enhances the porosity of the 

matrix tablets. 

Mechanistically, when the powder particles were filled in a tablet die and pressure is applied, 

powder particles rearrange themselves and undergo deformation and possibly fragmentation 

during compaction. These events appear sequentially or in parallel, but the physico-chemical 

properties of materials play an important role. Therefore, the present set of experiments was 

designed to investigate the effect of particle size, Hpo/Meo substitution and molecular size 

(viscosity) of cellulose ethers on parameters derived from Heckel and Kawakita 

mathematical models. An attempt was made to compare Heckel and Kawakita parameters, 

although, these models are based on different assumptions (Figures 6.12 and 6.13). The 

Heckel model provides a method for transforming a parametric view of the force and 

displacement data to a linear relationship for materials undergoing compaction. The equation 

is based on the assumption that the dependence of densification on pressure is of first-order 

kinetics. For studying the compression behaviour of MC and HPMC based matrix tablets on 
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the basis of derived Heckel parameters, linear regression was carried out on straight line 

portions of the Heckel plots (Figure 6.12a and b). The co-efficient of linearity (R
2
) was > 

0.99 in all cases. The Kawakita compressional parameters a, b
-1

 and ab were calculated using 

Kawakita compression profiles (Figure 6.13a and b) by applying linear regression over a 

wide range of pressure ranges with high correlation co-efficients (R
2
 >0.99). The parameters 

obtained from Heckel and Kawakita mathematical analysis for all the matrices having 

different particle size fractions (90-150 and 150-250 µm) are summarised in Table 6.5.  

The initial bends in the Heckle and Kawakita compression profiles (Figures 6.12 and 6.13) 

were proposed to be linked with the initial particle rearrangement during compression which 

can be explained by Heckel parameter, A, and Kawakita, ab. The Heckel parameter A 

ranged between 0.900 – 0.543, with E4M showing more particle rearrangement during 

compression while K100M showing the lowest. The ab values for all the grades of MC and 

HPMC were in the range of 0.086 - 0.025 (Table 6.5), therefore these grades expressed non-

significant particle rearrangement (see section 6.7.3). However F4M and K100M show 

highest and lowest extent of particle rearrangement during the compression cycle, 

respectively. The particle size also affects the particle rearrangement being higher for 

reduced particle size fractions. 

6.9.3.1.1- Effect of Methocel
®
 particle size 

It can be also inferred from Table 6.4 that, as the particle size is reduced from 150-250 to 90-

150 µm, the relative densities start to increase, which actually decreases the porosity of the 

matrix tablets; a similar trend has been noticed for all the grades of MC and HPMC used in 

the current study. This behaviour can be attributed to the fact that fine powder particles have 

more contact points and generate more intense compression forces during compression 

(Rajabi-Siahboomi et al., 1998). Therefore, the finer particles have a higher degree of 
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densification than coarser particles. Heckel and Kawakita analysis revealed that the values of 

yield pressure (Py) and b
-1

 were higher for larger sized fractions (150-250 µm) at maximum 

applied pressure for all the matrices (Table 6.5) thus requiring higher compression pressure 

to deform. Hence, mechanistically the increase in both parameters might be attributed to 

larger surface area and smaller particle to particle gaps increasing contact points for inter-

particulate bonding. Furthermore, a higher degree of densification was exhibited by the 

smaller particle fractions. The tensile strength of the resultant matrices increased but there 

was a decrease in elastic recovery of matrices, regardless of grade. The increase in strength 

and decrease in elastic recovery with particle size reduction can be attributed to the theory 

that particle size reduction allows a high degree of packing and densification (Table 6.4). 

Owing to this, a greater number of contact points were generated as powder particles are 

confined to close proximity, hence the chances of inter-particulate bonding increases. MC 

and HPMC matrices showed a dependence on particle size which indicates the absence of 

extensive fragmentation. These findings were in complete accordance with the previous 

studies (Gustafsson et al., 1999; Nokhodchi et al., 1995; Rajabi-Siahboomi et al., 1998; 

Rajabi-Siahboomi and Nokhodchi, 1999).  

6.9.3.1.2- Effect of Methocel
®
 substitution 

The total substitution levels also seem to play an important role during the compression 

process, as the E4M based matrix tablets (with highest level of collective Hpo and Meo 

groups, Table 2.1, see chapter 2) have the lowest relative densities and highest porosities, 

regardless if it is in-die or out of die (zero h) for a given particle size fraction (Table 6.4). 

However, after 24 h the trend is lost, which might be due to the variation in the inter-

particulate bonding and elastic relaxation of the compressed matrices. For a given particle 

size fraction, the variation in Hpo and Meo levels affect the apparent mean yield pressure. 

A4M (MC) which has only Meo substitution groups has the lowest Py value compared with 
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other grades. Moreover, E4M has the highest Py values, which might be due the presence of 

the high content of Meo, a hydrophobic group expected to prevent hydrogen bonding during 

the compression process. K4M shows higher Py values than F4M and the trend can be 

described as E4M >K4M >F4M >A4M (Table 6.5). From the present finding, it can be 

assumed that the total substitution levels seem to be directly related to the deformation 

behaviour of matrix tablets. However, K4M has lower total substitution than F4M but it has 

a rougher particle surface (Figure 3) which is hypothesized to affect the development of 

bonds during tableting. The Kawakita parameter of plasticity (b
-1

) was also affected when 

cellulose ethers having the same viscosity but varying substitutions were compared. The 

A4M has lower values than F4M but K4M has slightly lower values than E4M. However the 

trend of plastic deformation remains the same as per the findings of Heckel analysis. 

A4M, F4M, E4M and K4M were compared with the intention to study the effect of 

substitution levels as these grades have same molecular size but different chemistries as 

described before. The effect of substitution levels seems to be complex as A4M compacts, 

which have only Meo (~30%) substitution groups, produced tablets with a high tensile 

strength. E4M based matrices had the lowest tensile strength and elastic recovery. 

Furthermore, as various Hpo levels were introduced (F4M and K4M), the tensile strength 

begins to decrease but elastic recovery is enhanced. On the other hand, when both the Meo 

and Hpo levels were at their maximum (E4M), the strength of the tablets was perceptibly 

decreased. The low tensile strength of E4M based matrix tablets was previously reported by 

Gustafsson et al. (1999). It was assumed in that particular study that hydrophobic Meo 

groups hinder hydrogen bonding during compaction, which leads to the development of 

matrices having low tensile strength, but A4M was not included in the study. Rajabi-

Siahboomi and Nokhodchi, 1999 previously reported that A4M has the ability to produce 

matrices with high tensile strength which is in agreement with the present findings, however, 
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they compacted the powders at a lower compression pressure than the current study. 

Considering all these elements, it can be concluded that the effect of total substitution 

appeared to be more prominent than the individual levels of singular substitution groups. 

 

Figure 6.10, In-die relative density profiles of Methocel
®
 with respect to compression 

pressure (a) 90-150 µm and (b) 150-250 µm (n =3). 
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Figure 6.11, In-die porosity profiles of Methocel
®
 with respect to compression pressure 

(a) 90-150 µm and (b) 150-250 µm (n =3).
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 Table 6.4, Relative density, porosity (in-die and out-of-die), tensile strength and elastic recovery of Methocel
®
 compacts (n = 3, standard 

deviation given in parenthesis) 

 

ƿt  = True density 

 

 

 

 

 

 
Methocel

®
 

 

 
Particle size 

(µm) 

 

 

ƿt 

(gcm
-3

) 

 

Relative density (ƿrel) 

 

Porosity (Ԑ, %) 
T (MPa) ER (%) 

In die After ejection In die After ejection 

zero P Max. P 0 hour 24 hour zero P Max. P 0 hour 24 hour 

A4M 
90-150 

1.338 
0.3575 0.9560 0.9552 0.783 64.25 4.4 4.48 21.7 5.28 (0.22) 14.13 (1.33) 

150-250 0.3453 0.9236 0.9170 0.741 65.46 7.63 8.3 25.9 4.96 (0.11) 20.65 (1.15) 

F4M 
90-150 

1.309 
0.3512 0.9393 0.9294 0.782 64.88 6.07 7.06 21.8 4.87 (0.07) 12.57 (2.03) 

150-250 0.3344 0.8945 0.8862 0.737 66.55 10.54 11.38 26.3 4.45 (0.21) 19.37 (2.33) 

E4M 
90-150 

1.288 
0.3345 0.8946 0.8901 0.834 66.55 10.54 10.99 16.1 3.15 (0.10) 8.04 (1.15) 

150-250 0.3185 0.8519 0.8443 0.828 68.14 14.8 15.57 17.2 2.88 (0.09) 10.55 (1.11) 

K4M 
90-150 

1.327 
0.3424 0.9158 0.9051 0.807 65.76 8.42 10.49 19.3 4.30 (0.21) 15.05 (2.34) 

150-250 0.3261 0.8722 0.8711 0.785 67.39 12.8 12.89 21.5 3.98 (0.22) 18.28 (1.50) 

K15M 
90-150 

1.324 
0.3265 0.8732 0.873 0.834 67.35 12.68 12.70 16.6 3.61 (0.30) 9.47 (1.29) 

150-250 0.3109 0.8315 0.8294 0.792 68.91 16.84 17.06 20.8 3.15 (0.10) 15.26 (2.51) 

K100M 
90-150 

1.373 
0.3156 0.8439 0.8429 0.823 68.44 15.61 15.71 17.7 2.98 (0.08) 7.85 (1.33) 

150-250 0.3005 0.8037 0.8011 0.788 69.95 19.63 19.89 21.2 2.65 (0.11) 12.57 (1.12) 
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 Figure 6.12, Heckel plots of Methocel
®
 with respect to compression pressure (a) 

90-150 µm and (b) 150-250 µm (n = 3). 
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 Figure 6.13, Kawakita plots of Methocel
®
 with respect to compression pressure 

(a) 90-150 µm and (b) 150-250 µm (n = 3).
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Table 6.5, Heckel and Kawakita compression parameters of Methocel
®
 compacts (n = 3). 

 

 

 

 

 

 

 

 

 

                                                         A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

 

 

Methocel
®
 

 

 

Particle size 

(µm) 

 

Heckel parameters 

 

Kawakita parameters 

A K Py a b
-1

 ab 

A4M 
90-150 0.815 0.0126 79.37 0.721 8.97 0.080 

150-250 0.839 0.0115 86.96 0.690 9.60 0.072 

F4M 
90-150 0.800 0.0118 84.75 0.782 9.14 0.086 

150-250 0.780 0.0097 103.09 0.701 9.97 0.070 

E4M 
90-150 0.715 0.0096 104.17 0.556 10.78 0.052 

150-250 0.900 0.0083 120.48 0.515 11.64 0.044 

K4M 
90-150 0.785 0.0107 93.46 0.528 10.36 0.051 

150-250 0.727 0.0090 111.11 0.516 11.04 0.047 

K15M 
90-150 0.714 0.0086 116.28 0.562 11.50 0.049 

150-250 0.590 0.0079 126.58 0.548 12.25 0.045 

K100M 
90-150 0.636 0.0081 123.46 0.495 13.42 0.037 

150-250 0.543 0.0072 138.89 0.379 15.28 0.025 
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6.9.3.1.3- Effect of Methocel
®
 molecular size (viscosity) 

As the molecular size (viscosity) of the polymers increased, both the relative density and 

porosity of matrix tablet decreased (Figures 6.10 and 6.11) and the trend on the basis of 

molecular size was, K4M < K15M < K100M (Table 6.4). This phenomenon might be due to 

the rapid deformation of low molecular size HPMC powder particles under pressure during 

compression. To analyse the effect of the molecular size of HPMC on the compression 

features, K4M, K15M and K100M were selected. These HPMC grades essentially have the 

same chemistry but different chain lengths. The Py and b
-1

 both were increased with increase 

in chain length of HPMC for a specific particle size fraction (Table 6.5). K100M has longer 

chains compared with K15M and K4M with polymeric chain length being directly linked to 

molecular weight and size. The increase in molecular weight affects the material's ability to 

deform as the higher molecular weight HPMC (K100M) needs higher compression pressures 

to deform in comparison to other grades. The trend of plasticity was K4M > K15M > 

K100M. This might be due to low viscosity HPMC having shorter polymeric chains and 

these can deform readily to fill inter-particulate gaps (Nokhodchi et al., 1995). The matrices 

made of K4M were stronger than the matrices composed of either K15M or K100M (Table 

6.4). This behaviour might be attributed to the prompt deformation of the shorter chain 

lengths as described earlier. However, once these higher molecular size HPMC grades were 

compacted, they had low elastic recovery, which may be linked to their surface roughness 

(Table 6.4).  
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6.9.3.2- Mixing efficiency for Methocel
® 

: FBP/THP powders  

A uniform drug distribution in a powder mixture is desirable during tablet preparation. The 

FBP/THP content uniformity results (n = 3) of powder mixtures are shown in Table 4.4 (see 

chapter 4) and an acceptance limit of  95 - 105 %  was set (see section 2.2.5.1, chapter 2). All 

powder blends used in subsequent studies fell between these limits. 

6.9.3.3- Compaction properties of FBP/THP matrices  

The complexity of the compaction process has led to the majority of fundamental studies 

carried out on single pharmaceutical materials (Alderborn and Nystrom, 1995). As hydrophilic 

matrices consist of more than one material, so the prediction of compaction properties of 

powder mixtures from those of singular component materials is of obvious interest. However, 

the physico-chemical characteristics of model drugs and hydrophilic polymers can 

significantly affect the quality and functionality of these matrices (Ghori et al., 2014b; Li et al., 

2005; Maderuelo et al., 2011; Wen and Park, 2011).  Thus, the present experiments were 

designed to study the compaction, compression and elastic relaxation properties of FBP-and 

THP-containing hydrophilic matrices. The true density of all the powder mixtures was 

determined using helium pycnometry. The true densities of mixtures containing 5 % to 15 % of 

MC/HPMC were in the range of 1.279 -1.293 g/cm
3
 and 1.439 -1.461 g/cm

3
 for FBP and THP 

respectively (Tables 6.6, 6.10, 6.14, 6.18, 6.22 and 6.26). The initial in-die relative density and 

porosity (Ԑ, %) of the powder bed at zero and maximum pressure was determined by using the 

force-displacement profiles for each Methocel
®
: FBP/THP based powder mixtures, as 

exemplified in Figure 6.4. Moreover, both parameters were calculated promptly after ejection 

(out-of-die) at zero and 24 h. Additionally, to study, the compression features of FBP/THP 

hydrophilic matrices on the basis of derived Heckel parameters, linear regression was carried 

out on the straight line portions of the Heckel plots (Figures 6.17, 6.21, 6.25, 6.29, 6.33 and 
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6.37). The co-efficient of linearity (R
2
) was > 0.99 in all cases. The Kawakita compression 

parameters a, b
-1

 and ab were calculated by using Kawakita compression profiles (Figures 

6.18, 6.22, 6.26, 6.30, 6.34 and 6.38)  by applying linear regression over a wide range of 

pressure ranges with high correlation co-efficient (R
2
 > 0.99). The parameters obtained from 

Heckel and Kawakita mathematical analysis of all the matrices having different particle size 

fractions (90-150 and 150-250 µm) are summarised in Tables 6.9, 6.13, 6.17, 6.21, 6.25 and 

6.29.  In the following sections, compaction, compression and elastic relaxation data are 

presented with an in-depth mechanistic approach and discussion. 

6.9.3.3.1- Effect of Methocel
®
 concentration 

The presence of polymer can modulate the characteristics of hydrophilic matrices. In the 

current set of experiments the effect of Methocel
®

 concentration (5, 10 and 15 w/w %) on the 

compaction properties of FBP and THP-based matrices was studied. The relative density 

profiles are depicted in Figures 6.15, 6.19, 6.23, 6.27, 6.31 and 6.35 with respect to increasing 

compression pressure. The in-die and out-of-die relative density values are summarised in 

Tables 6.6, 6.10, 6.14, 6.18, 6.22 and 6.26. It can be inferred from the results that with an 

increase in the concentration of MC or HPMC, the relative density tends to increase. The 

relative densities of A4M: FBP tablet matrices were increased from 0.810 to 0.894 and A4M: 

THP from 0.853 – 0.910 as the A4M concentration was increased from 5 % to 15 % w/w. All 

other MC/HPMC based matrices showed a similar trend (Table 6.6, 6.10, 6.14, 6.18, 6.22 and 

6.26). Moreover, the porosity profiles with increasing compression pressure for the FBP/THP 

matrices are shown in Figures 6.16, 6.20, 6.24, 6.28, 6.32 and 6.36. The increasing relative 

density affects the porosity (%) of matrices. The in-die and out-of-die porosity (%) values were 

decreased as the MC/HPMC concentration was increased from 5 % to 15 % w/w (A4M: FBP 

from 19.03 to 10.61 %, A4M: THP from15.29 to 8.42 %, F4M: FBP from 19.13 to10.98 %, 

F4M: THP from 15.38 to 8.87 %, E4M: FBP from 19.50 to 14.04 %, E4M: THP from 15.84 to 
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10.16 %,  K4M: FBP from 21.51 to 14.13 %, K4M: THP from 17.19 to 11.16 %,  K15M: FBP 

from 19.68 to 13.76 %, K15M: THP from 14.44 to 9.02 %,  K100M: FBP from 21.72 to 14.13 

% and K100M: THP from 14.72 to 9.00 %), (Tables 6.7, 6.11, 6.15, 6.19, 6.23 and 6.27). This 

trend was consistent during the course of this study, regardless of MC/HPMC grade or drug 

used.  

Furthermore, the incorporation of MC/HPMC increased the tensile strength of the FBP and 

THP matrices. The tensile strength was increased as the concentration of MC/HPMC was 

increased from 5 % to 15 % w/w.  The tensile strength ranges were A4M: FBP 1.11 – 1.68 

MPa, A4M: THP 2.74 – 3.55 MPa, F4M: FBP 1.08 – 1.63 MPa, F4M: THP 2.54 – 3.29 MPa, 

E4M: FBP 1.06 – 1.60 MPa, E4M: THP 2.56 – 3.32 MPa, K4M: FBP 0.99 – 1.50 MPa, K4M: 

THP 2.42 – 3.13 MPa, K15M: FBP 0.95 – 1.44 MPa, K15M: THP 2.35 – 3.04 MPa, K100M: 

FBP 0.88 – 1.33 MPa, and K100M: THP 2.21 – 2.87 MPa. However, the elastic recovery of 

matrices decreased as the MC/HPMC concentration was increased from 5 % to 15 % w/w, 

(Tables 6.8, 6.12, 6.16, 6.20, 6.24 and 6.28). 

To study the in-depth compression features of matrices, the Heckel and Kawakita compression 

models were applied. It was noticed that the Py (yield pressure, Heckel parameter of particle 

plasticity) and b
-1 

(Kawakita parameter of particle plasticity) started to fall as the concentration 

of MC/HPMC increased from 5 % to 15 % w/w (Tables 6.9, 6.13, 6.17, 6.21, 6.25 and 6.29). 

The Py values of A4M: FBP matrices decreased from 77.52 to 66.23 MPa, similarly all other 

matrices showed the same behaviour as A4M: THP decreased from 87.72 to 76.19 MPa, F4M: 

FBP from 78.29 to 66.89 MPa , F4M: THP from 89.47 to 77.71 MPa , E4M: FBP  from 78.15 

to 67.56 MPa, E4M: THP from 89.16 to 78.49 MPa ,  K4M: FBP from 81.40 to 69.54 MPa, 

K4M: THP  from 92.17 to 80.06 MPa,  K15M: FBP from 82.95 to 70.55 MPa, K15M: THP 

from 93.22 to 80.86 MPa,  K100M: FBP from 84.25 to 72.28 MPa and K100M: THP from 

94.03 to 81.67 MPa. The b
-1 

values also decreased as the MC/HPMC concentration was 
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increased from 5 % to 15 % w/w (A4M: FBP 11.20 – 8.32 MPa, A4M: THP 7.84 – 6.12 MPa, 

F4M: FBP 11.31 – 8.40 MPa, F4M: THP 8.00 – 6.24 MPa, E4M: FBP 11.42 – 8.49 MPa, 

E4M: THP 7.92 – 6.18 MPa,  K4M: FBP 12.54 – 9.32 MPa, K4M: THP 8.00 – 6.24 MPa,  

K15M: FBP 13.05 – 9.69 MPa, K15M: THP 8.16 – 6.37 MPa, K100M: FBP  13.57 – 10.08 

MPa and K100M: THP 8.40 – 6.56 MPa). As both the compression parameters are inversely 

related to particle deformation, it can be inferred from the present findings that the deformation 

of powder mixtures, regardless of drug type and MC/HPMC grade, starts at low compression 

pressures. It can be noticed from the results that the concentration of MC/HPMC significantly 

affects the relative density, porosity, deformation, tensile strength and elastic relaxation of the 

FBP/THP matrices. In current scenario, the binary powder mixtures contain two component 

mixtures of drugs (FBP/THP) and Methocel
®
 (MC/HPMC). It can be assumed that three types 

of bonds (drug – drug, drug - Methocel
® 

and Methocel
® 

-
 
Methocel

®
) can be developed when 

these powder mixtures are subjected to compression pressure. Ghori et al. (2014) recently 

reported that FBP and THP attain negative tribo-electric charge during mixing, whereas the 

MC/HPMC has the tendency to gain positive charge (see sections 3.7.4.1 and 3.8.4.2, chapter 3 

for more detail). We postulate that as the tribo-electric charging of drugs and Methocel
®
 grades 

are opposite, so the negatively charged drug particles can be attached on the surface of 

MC/HPMC particles (see section 3.9.3.1, chapter 3 for more detail). Moreover, it was 

observed, from the SEM images of powder mixtures (Figures 3.10 and 3.11), that the 

negatively charged drug particles have a tendency to attach to the polymer surface (Figure 

6.14). So, it can be assumed that the propensity of particulate bonding between the drug - 

Methocel
® 

will be higher which can lead to a higher degree of densification and, as a result, 

reduced porosity and a decline in Py and b
-1  

is evident.  

Moreover, the mechanism of FBP/THP : MC/HPMC can be further explained using the 

qualitative tablet model described by Nyström et al. (1993). This model is considers the tablet 
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as powder particles dispersed in a gas. According to this model, three types of particulate 

fracture might be possible, (A) fracture through the drug particles only, (B) fracture through 

Methocel
®
 particles only and (C) fracture between the Methocel

®
 and drug particles. 

According the current results, it can be hypothesized that the fracture is more likely to be 

between the Methocel
®

 and drug particles, as the drug particles are attached on the carrier 

polymer surface (Ghori et al., 2014d) (Figure 6.14), thus enhancing the tensile strength of 

matrices (Alderborn, 1995; Adolfsson and Nyström, 1996).  However, the occurrence of other 

types of fracture pattern cannot be completely ruled out.  
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Figure 6.14, Compaction mechanism of MC/HPMC : FBP/THP matrices.
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Figure 6.15, In-die relative density profiles of matrices with respect to compression 

pressure (a) A4M: FBP and (b) A4M : THP (n = 3). 
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Figure 6.16, In-die porosity profiles of matrices with respect to compression pressure 

(a) A4M : FBP and (b) A4M : THP (n = 3). 
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Table 6.6, Summary of in-die and out-of-die relative density values of A4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

 

 

Table 6.7, Summary of in-die and out-of-die porosity values of A4M : FBP/THP matrices (n = 3). 

 

  

 

 

A4M 
(%) 

Particle size 
(µm) 

 

True density 
(ƿt, g cm-3) 

Relative density  (ƿrel ) Relative density (ƿrel ) 

FBP THP 
In-die After ejection In-die After ejection 

FBP THP Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 90-150 
1.281 1.459 

0.483 0.902 0.893 0.835 0.510 0.952 0.943 0.873 

150-250 0.469 0.875 0.866 0.810 0.495 0.924 0.915 0.847 

10 90-150 
1.284 1.450 

0.489 0.944 0.935 0.874 0.514 0.991 0.981 0.909 

150-250 0.479 0.925 0.916 0.856 0.504 0.971 0.961 0.890 

15 90-150 
1.287 1.447 

0.483 0.966 0.956 0.894 0.501 0.999 0.989 0.916 

150-250 0.474 0.947 0.938 0.876 0.496 0.989 0.979 0.907 

A4M 
(%) 

Particle size 
(µm) 

Porosity (Ԑ, %) Porosity (Ԑ, %) 

FBP THP 

In-die After ejection In-die After ejection 

Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 51.68 9.79 10.69 16.54 48.99 4.79 5.74 12.72 

150-250 53.09 12.41 13.37 19.03 50.48 7.56 8.51 15.29 

10 
90-150 51.10 5.59 6.53 12.65 48.60 0.93 1.88 9.15 

150-250 52.06 7.44 8.42 14.41 49.61 2.88 3.86 10.98 

15 
90-150 51.62 3.33 4.36 10.61 49.86 0.13 1.09 8.42 

150-250 52.57 5.23 6.24 12.37 50.36 1.12 2.08 9.33 
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Figure 6.17, Heckel plots of matrices with respect to compression pressure (a) A4M : 

FBP and (b) A4M : THP (n = 3). 
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Figure 6.18, Kawakita plots of matrices with respect to compression pressure (a) A4M : 

FBP and (b) A4M : THP (n = 3). 
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Table 6.8, Summary of tensile strength and elastic recovery of A4M : FBP/THP matrices (n = 3, standard deviation given in parenthesis) 

  

 

 

 

 

 

 

 

Table 6.9, Summary of Heckel and Kawakita compressional parameters of A4M : FBP/THP matrices (n = 3). 

 

 

 

  

                               

 

                                     A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

A4M 
(%) 

Particle size 
(µm) 

Tensile strength (T, MPa) Elastic recovery (ER, %) 

FBP THP FBP THP 

5 
90-150 1.26 (0.01) 2.88 (0.05) 13.12 (0.83) 7.50 (0.89) 

150-250 1.11 (0.10) 2.74 (0.01) 14.25 (1.23) 8.60 (0.31) 

10 
90-150 1.31 (0.11) 3.19 (0.11) 12.15 (1.14) 7.10 (0.72) 

150-250 1.23 (0.09) 3.08 (0.05) 13.33 (0.94) 7.80 (1.11) 

15 
90-150 1.68 (0.07) 3.55 (0.10) 10.78 (0.21) 5.90 (0.38) 

150-250 1.43 (0.08) 3.32 (0.11) 11.50 (1.50) 6.90 (0.62) 

 

A4M   
(%) 

 

Particle size 
(µm) 

Heckel parameters Kawakita parameters 

FBP THP FBP THP 

A K Py A K Py a b
-1

 ab a b
-1

 ab 

5 
90-150 0.81 0.0129 77.52 0.94 0.0119 84.03 0.539 10.15 0.053 0.754 7.55 0.100 

150-250 0.70 0.0133 75.19 0.90 0.0114 87.72 0.523 11.20 0.047 0.732 7.84 0.093 

10 
90-150 0.80 0.0136 73.53 0.86 0.0125 80.00 0.573 9.11 0.063 0.803 7.1 0.113 

150-250 0.66 0.0139 71.94 0.80 0.0122 81.97 0.560 10.21 0.055 0.785 7.45 0.105 

15 
90-150 0.79 0.0144 69.44 0.82 0.0128 78.13 0.630 8.32 0.076 0.891 6.12 0.146 

150-250 0.65 0.0151 66.23 0.78 0.0131 76.19 0.612 9.33 0.066 0.856 6.89 0.124 
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6.9.3.3.2- Effect of Methocel
®
 particle size 

The Methocel
®

 (MC/HPMC) particle size has the potential to affect the compaction 

properties of hydrophilic matrices and thus their performance (see section 6.5.1 for more 

detail). Therefore, the present study was designed to investigate the impact of MC/HPMC 

particle size on the compaction, compression and elastic relaxation properties of FBP/THP: 

MC/HPMC matrices.  

In the present study, the reduction in MC/HPMC particle size fraction from 150 – 250 µm to 

90 – 150 µm, showed that the relative density profiles of FBP/THP matrices start to increase 

(Figures 6.15, 6.19, 6.23, 6.27, 6.31 and 6.35). The in-die and out of die relative density 

values also showed a similar trend. This increase in relative density of tablet matrices was 

attributed to a greater degree of powder densification, which in turn reduces the overall 

porosity of matrix tablets (Figures 6.16, 6.20, 6.24, 6.28, 6.32 and 6.36). Moreover the in-die 

and out of die relative density and porosity values showed a good correlation (Tables 6.6,6.7, 

6.10, 6.11, 6.14, 6.15, 6.18, 6.19, 6.22, 6.23, 6.26 and 6.27). This behaviour can be attributed 

to the fact that fine powder particles have more contact points and generate more intense 

compressional forces during compression (Sandell, 1992, Dabbagh et al., 1996). Therefore, 

the smaller particle size fraction has a higher degree of densification than the larger size 

fraction. The FBP/THP matrices fabricated from MC/HPMC with particle sizes between 90 

– 150 µm, has a higher tensile strength (MPa) but a reduced elastic recovery (%) of matrices 

regardless of Methocel
®
 grade.  

To further analyse the in-die compression behaviour of these binary mixtures having 

different polymer size fractions, Heckel and Kawakita models were used (Figures 6.17, 6.18, 

6.21, 6.22, 6.25, 6.26, 6.29, 6.30, 6.33, 6.34, 6.37 and 6.38).  The findings of compressional 

mathematical modelling revealed that the values of yield pressure (Py) were higher for small 
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particle size based binary mixtures (with the exception of 5 and 10 % MC/HPMC : THP 

matrices where the Py values fell with the reduction in particle size) (Tables 6.9, 6.13, 6.17, 

6.21, 6.25 and 6.29).  However, the values of the Kawakita plasticity constant decreased as 

the particle size of MC/HPMC was reduced to 90-150 µm and these Kawakita findings were 

consistent regardless of drug and MC/HPMC grade. Furthermore, the Py and b
-1

 values show 

an explainable direct relationship with the abovementioned relative density and porosity 

data, where a reduction in particle size increases relative density but decreases the overall 

porosity of the matrix tablet. This increase in tensile strength, reduction in the elastic 

recovery and variations in the compression parameters can be explained in the light of the 

theory that particle size reduction allows a high degree of packing and densification. Owing 

to this, a greater number of contact points were generated as powder particles are confined 

within close proximity, hence the chances of inter-particulate bonding increases ( Alderborn 

and Nystrom, 1995; Malamataris et al., 1994;  , Rajabi-Siahboomi et al., 1998). All the 

matrices showed a dependence on particle size which indicates the absence of extensive 

fragmentation (Adolfsson et al., 1997). 
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Figure 6.19, In-die relative density profiles of matrices with respect to compression 

pressure (a) F4M : FBP and (b) F4M : THP (n = 3). 
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Figure 6.20, In-die porosity profiles of matrices with respect to compression pressure 

(a) F4M : FBP and (b) F4M : THP (n = 3).
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Table 6.10, Summary of in-die and out-of-die relative density values of F4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

 

Table 6.11, Summary of in-die and out-of-die porosity values of F4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

F4M 
(%) 

 

Particle size 
(µm) 

 

True density 
(ƿt, g cm-3) 

Relative density  (ƿrel ) Relative density (ƿrel ) 

FBP THP 
In-die After ejection In-die After ejection 

FBP THP Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 

1.280 1.458 
0.487 0.900 0.891 0.833 0.509 0.950 0.941 0.871 

150-250 0.469 0.874 0.865 0.809 0.495 0.923 0.914 0.846 

10 
90-150 

1.282 1.450 
0.476 0.931 0.922 0.861 0.513 0.987 0.977 0.905 

150-250 0.471 0.922 0.913 0.853 0.503 0.968 0.958 0.887 

15 
90-150 

1.283 1.442 
0.482 0.962 0.952 0.890 0.499 0.994 0.984 0.911 

150-250 0.472 0.943 0.934 0.873 0.495 0.984 0.974 0.902 

F4M 
(%) 

Particle size 
(µm) 

Porosity (Ԑ, %) Porosity (Ԑ, %) 

FBP THP 
In-die After ejection In-die After ejection 

Zero P Max. P 0 h. 24 h Zero P Max. P 0 h 24 h 

5 
90-150 51.27 9.95 10.89 16.72 49.06 4.96 5.94 12.91 

150-250 53.15 12.58 13.47 19.13 50.55 7.73 8.61 15.38 

10 
90-150 52.41 6.85 7.82 13.85 48.73 1.28 2.28 9.52 

150-250 52.89 7.77 8.71 14.68 49.74 3.21 4.16 11.26 

15 
90-150 51.81 3.84 4.75 10.98 50.05 0.64 1.58 8.87 

150-250 52.75 5.72 6.63 12.74 50.55 1.62 2.57 9.79 
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Figure 6.21, Heckel plots of matrices with respect to compression pressure (a) F4M : 

FBP and (b) F4M : THP (n = 3). 
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Figure 6.22, Kawakita plots of matrices with respect to compression pressure (a) F4M : 

FBP and (b) F4M : THP (n = 3). 
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Table 6.12, Summary of tensile strength and elastic recovery of F4M : FBP/THP matrices (n = 3). 

 

 

  

 

 

 

 

Table 6.13, Summary of Heckel and Kawakita compressional parameters of F4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

                                 A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

F4M 
(%) 

Particle size 
(µm) 

Tensile strength (T, MPa) Elastic recovery (ER, %) 

FBP THP FBP THP 

5 
90-150 1.22 (0.05) 2.67 (0.10) 12.74 (1.52) 6.94 (1.14) 

150-250 1.08 (0.06) 2.54 (0.08) 13.83 (1.11) 7.96 (0.31) 

10 
90-150 1.27 (0.01) 2.93 (0.02) 11.80 (0.29) 6.57 (0.55) 

150-250 1.21 (0.10) 2.85 (0.08) 12.94 (0.89) 7.22 (0.89) 

15 
90-150 1.63 (0.04) 3.29 (0.04) 10.47 (1.19) 5.46 (0.34) 

150-250 1.39 (0.07) 3.07 (0.01) 11.50 (0.39) 6.39 (0.33) 

F4M 
(%) 

Particle size 
(µm) 

Heckel parameters Kawakita parameters 

FBP THP FBP THP 

A K Py A K Py a b
-1

 ab a b
-1

 ab 

5 
90-150 0.79 0.01277 78.29 0.87 0.0117 85.71 0.519 10.25 0.051 0.741 7.70 0.096 

150-250 0.68 0.01317 75.94 0.83 0.0112 89.47 0.514 11.31 0.045 0.719 8.00 0.090 

10 
90-150 0.78 0.01347 74.26 0.80 0.0123 81.60 0.549 9.20 0.060 0.769 7.24 0.106 

150-250 0.64 0.01376 72.66 0.74 0.0120 83.61 0.537 10.31 0.052 0.752 7.60 0.099 

15 
90-150 0.76 0.01426 70.14 0.76 0.0125 79.69 0.602 8.40 0.072 0.800 6.24 0.128 

150-250 0.63 0.01495 66.89 0.73 0.0129 77.71 0.579 9.42 0.061 0.785 7.03 0.112 
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6.9.3.3.3- Effect of Methocel
®
 substitution 

The level of different substitution groups has the potential to affect the compaction properties 

of MC/HPMC matrices (Rajabi-Siahboomi et al., 1998). In the present study the influence of 

substitution ratios (Hpo/Meo) on compaction, compression and relaxation properties of 

matrices were studied. For this purpose, A4M, F4M, E4M and K4M were selected because 

these Methocel
® 

grades have similar viscosity ranges but have varying levels of Hpo/Meo 

substitution ratios, A4M = 0.238, F4M = 0.286, E4 = 0.381 and K4M = 0.403, (Table 2.1, see 

Chapter 2 for more detail).  

The present results showed that the A4M: FBP/THP matrices have a higher relative density, 

but lower porosity than F4M, E4M and K4M based matrices (Figures 6.15,6.16, 6.19, 6.20, 

6.23, 6.24, 6.27 and 6.28). After 24 h following ejection, the out-of-die relative density of 

A4M: FBP matrices were in the range of 0.810 – 0.894, however the A4M: THP matrices 

were in the range of 0.873 – 0.916. The A4M is a MC grade of Methocel
®
 having only Meo 

hydrophobic substitution groups.  When hydrophilic substitution groups were introduced the 

relative density decreased with those of K4M: FBP (0.808 – 0.859) and K4M: THP (0.828 – 

0.888) being the lowest in the series. Moreover, the porosity decreased with an increase in the 

relative density of tablet matrices, attributed to increased densification of powder particles 

inside the die. There was a strong correlation between in-die and out-of-die values of relative 

density and porosity (Tables 6.6,6.7, 6.10, 6.11, 6.14, 6.15, 6.18 and 6.19).   

The substitution ratio had a marked impact on the tensile strength and elastic relaxation of 

matrices. A4M matrices, regardless of the drug, produced tablets of highest tensile strength in 

the series. With the introduction of Hpo levels (F4M, E4M and K4M) the tensile strength 

decreases but elastic recovery is enhanced. K4M based matrices had the lowest tensile 

strength, but highest elastic recovery (%) (Tables 6.8, 6.12, 6.16 and 6.20). The inclusion of 
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Hpo groups in the various Methocel
®
 grades makes their particle surface rougher and the 

greater strength of A4M based matrices may be because it possesses a higher percentage of 

fibrous polymer particles compared to F4M, E4M and K4M (Ghori et al., 2014d; Gustafsson 

et al., 1999).  

To further analyse the mechanism of compression, the Heckel and Kawakita mathematical 

models were applied (Figures 6.17, 6.18, 6.21, 6.22, 6.25, 6.26, 6.29 and 6.30). The findings 

of these models revealed that A4M (MC) based matrices have lowest Py values b
-1

 values. 

However, the K4M based matrices (regardless of type of drug), have the highest Py and b
-1

 

values. Differences for F4M and E4M based matrices were less pronounced, however these 

were higher than A4M (Tables 6.9, 6.13, 6.17 and 6.21). The increase in both Py and b
-1

 

values may be linked to the incorporation of hydroxyl groups on the parent glucose ring of 

the polymer. As it is a hydrophilic substitution group and has a tendency to change the 

surface morphology of polymer particles (Gustafsson et al., 1999), so it can be assumed that 

due to surface irregularities it may need a higher compression pressure to deform, however, 

the more fibrous A4M based matrices deform plastically at low compression pressure 

(Rajabi-Siahboomi et al., 1998).  
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Figure 6.23, In-die relative density profiles of matrices with respect to compression 

pressure (a) E4M : FBP and (b) E4M : THP (n = 3). 
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Figure 6.24, In-die porosity profiles of matrices with respect to compression pressure 

(a) E4M : FBP and (b) E4M : THP (n = 3). 
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Table 6.14, Summary of in-die and out-of-die relative density values of E4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

 

 

              Table 6.15, Summary of in-die and out-of-die porosity values of E4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

E4M 
(%) 

Particle size 
(µm) 

True density 
(ƿt, g cm-3) 

Relative density  (ƿrel ) Relative density (ƿrel ) 

FBP THP 

In-die After ejection In-die After ejection 

FBP THP Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 

1.279 1.457 
0.486 0.896 0.887 0.829 0.493 0.918 0.909 0.842 

150-250 0.467 0.870 0.861 0.805 0.508 0.946 0.937 0.867 

10 
90-150 

1.279 1.448 
0.473 0.922 0.913 0.853 0.499 0.959 0.950 0.879 

150-250 0.468 0.913 0.904 0.845 0.509 0.978 0.968 0.897 

15 
90-150 

1.280 1.439 
0.466 0.929 0.920 0.860 0.490 0.970 0.960 0.889 

150-250 0.457 0.911 0.902 0.843 0.494 0.980 0.970 0.898 

E4M 
(%) 

Particle size 
(µm) 

Porosity (Ԑ, %) Porosity (Ԑ, %) 

FBP THP 
In-die After ejection In-die After ejection 

Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 51.45 10.42 11.29 17.09 50.71 8.18 9.11 15.84 

150-250 53.31 13.02 13.86 19.50 49.23 5.42 6.34 13.27 

10 
90-150 52.72 7.76 8.71 14.68 50.07 4.11 5.05 12.08 

150-250 53.19 8.67 9.60 15.52 49.07 2.19 3.17 10.34 

15 
90-150 53.36 7.08 8.02 14.04 51.05 2.96 3.96 11.07 

150-250 54.27 8.90 9.80 15.70 50.56 1.99 2.97 10.16 



 

293 
 

 

 

 

Figure 6.25, Heckel plots of matrices with respect to compression pressure (a) E4M : 

FBP and (b) E4M : THP (n = 3). 
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Figure 6.26, Kawakita plots of matrices with respect to compression pressure (a) E4M : 

FBP and (b) E4M : THP (n = 3). 
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Table 6.16, Summary of tensile strength and elastic recovery of E4M : FBP/THP matrices (n = 3, standard deviation given in 

parenthesis) 

 

 

 

 

  

 

Table 6.17, Summary of Heckel and Kawakita compressional parameters of E4M : FBP/THP matrices (n = 3). 

 

 

 

 

                          A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

E4M 
(%) 

Particle size 
(µm) 

Tensile strength (T, MPa) Elastic recovery (ER, %) 

FBP THP FBP THP 

5 
90-150 1.20 (0.07) 2.69 (0.08) 12.50 (1.23) 7.01 (0.59) 

150-250 1.06 (0.02) 2.56 (0.12) 13.57 (0.56) 8.04 (0.81) 

10 
90-150 1.25 (0.09) 2.95 (0.05) 11.57 (1.20) 6.64 (0.23) 

150-250 1.17 (0.03) 2.88 (0.09) 12.70 (1.33) 7.29 (1.09) 

15 
90-150 1.60 (0.01) 3.32 (0.03)     9.95 (0.68) 5.51 (0.23) 

150-250 1.37 (0.05) 3.10 (0.01) 10.95 (0.89) 6.45 (1.06) 

E4M 
(%) 

Particle size 
(µm) 

Heckel parameters Kawakita parameters 

FBP THP FBP THP 

A K Py A K Py a b
-1

 ab a b
-1

 ab 

5 
90-150 0.78 0.0126 78.15 0.88 0.0116 86.57 0.524 10.35 0.051 0.684 7.63 0.089 

150-250 0.67 0.0130 76.70 0.84 0.0111 89.16 0.518 11.42 0.045 0.705 7.92 0.089 

10 
90-150 0.76 0.0133 75.01 0.81 0.0121 82.41 0.547 9.29 0.059 0.703 7.17 0.098 

150-250 0.63 0.0136 74.26 0.75 0.0118 84.44 0.535 10.41 0.051 0.719 7.52 0.095 

15 
90-150 0.75 0.0141 70.84 0.77 0.0124 79.95 0.610 8.49 0.072 0.734 6.18 0.118 

150-250 0.62 0.0148 67.56 0.73 0.0127 78.49 0.598 9.52 0.063 0.734 6.96 0.105 
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6.9.3.3.4- Effect of Methocel
®
 molecular size (viscosity) 

The previous studies showed that the molecular size of Methocel
® 

(MC/HPMC) can 

influence the compaction, compression and elastic relaxation properties of hydrophilic 

matrices (Nokhodchi and Rubinstein, 2001). To study the impact of MC/HPMC molecular 

size in binary mixtures, K4M, K15M and K100M grades were used, having different 

viscosity but a similar range of Hpo/Meo substitution ratios, K4M = 4351 cps, K15M = 

17129 cps  and K100M = 79279 cps, Table 2.1 (see chapter 2 for more detail), were selected.  

The results confirmed that the relative density and porosity of the matrix tablet decreased as 

the molecular size of HPMC increased. The present results showed that the K4M: FBP/THP 

matrices have higher relative density but lower porosity than K15M and K100M based 

matrices (Figures 6.27, 6.28, 6.31, 6.32, 6.35 and 6.36). Twenty-four hours following 

ejection, the out-of-die relative density of K4M: FBP matrices ranged from 0.808 – 0.859, 

however the K4M: THP matrices were in the range of 0.828 – 0.888. Moreover, the porosity 

values were increased with increasing HPMC chain length, which might be attributed to poor 

densification of the powder particles inside the die. Moreover, the in-die and out-of-die 

values of relative density and porosity showed a good correlation (Tables 6.18, 6.19, 6.22, 

6.23, 6.26 and 6.27). Additionally, the molecular size of HPMC impacted the tensile strength 

and relaxation properties of matrices. K4M matrices, regardless of drug, had the highest 

tensile strength in the series; the tensile strength begins to decrease with increasing polymer 

particle size but elastic recovery was enhanced. K100M based matrices had the lowest 

tensile strength but highest elastic recovery (%), (Tables 6.20, 6.24 and 6.28).  

To further analyse the mechanism of compression, the Heckel and Kawakita mathematical 

models were applied (Figures 6.29, 6.30, 6.33, 6.34, 6.37 and 6.38). The findings of these 

models revealed that K4M based matrices have lowest Py values b
-1

 values. However, the 
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K100M based matrices (regardless of type of drug) have highest Py and b
-1

 values (Tables 

6.21, 6.25 and 6.29). The increase in the Py values b
-1

 may be linked to the rapid deformation 

of shorter chain lengths under pressure during compression. The increase in molecular 

weight affects the materials‘ ability to deform, as the higher molecular weight HPMC 

(K100M) needs a higher pressure to deform in comparison with other grades. Thus HPMC 

with shorter polymeric chains may deform more readily to fill inter-particulate gaps 

(Nokhodchi et al., 1995).  
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Figure 6.27, In-die relative density profiles of matrices with respect to compression 

pressure (a) K4M : FBP and (b) K4M : THP (n = 3). 
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Figure 6.28, In-die porosity profiles of matrices with respect to compression pressure 

(a) K4M : FBP and (b) K4M : THP (n = 3).
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Table 6.18, Summary of in-die and out-of-die relative density values of K4M : FBP/THP matrices (n = 3). 

 

  

 

 

 

 

 

 

 

Table 6.19, Summary of in-die and out-of-die porosity values of K4M : FBP/THP matrices (n = 3). 

 

 

K4M 
(%) 

Particle size 
(µm) 

 

True density 
(ƿt, g cm-3) 

Relative density  (ƿrel ) Relative density (ƿrel ) 

FBP THP 
In-die After ejection In-die After ejection 

FBP THP Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 

1.281 1.459 
0.482 0.898 0.889 0.808 0.508 0.948 0.939 0.853 

150-250 0.468 0.872 0.863 0.785 0.494 0.920 0.911 0.828 

10 
90-150 

1.283 1.452 
0.486 0.936 0.927 0.842 0.511 0.982 0.972 0.884 

150-250 0.476 0.918 0.909 0.826 0.501 0.963 0.953 0.867 

15 
90-150 

1.286 1.445 
0.479 0.954 0.945 0.859 0.497 0.987 0.977 0.888 

150-250 0.470 0.936 0.927 0.842 0.492 0.977 0.967 0.879 

K4M 
(%) 

Particle size 
(µm) 

Porosity (Ԑ, %) Porosity (Ԑ, %) 

FBP THP 
In-die After ejection In-die After ejection 

Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 51.83 10.20 11.09 19.17 49.15 5.21 6.14 14.67 

150-250 53.23 12.81 13.66 21.51 50.63 7.97 8.91 17.19 

10 
90-150 51.41 6.41 7.33 15.75 48.91 1.76 2.77 11.61 

150-250 52.36 8.24 9.11 17.37 49.91 3.68 4.65 13.32 

15 
90-150 52.07 4.56 5.54 14.13 50.32 1.35 2.28 11.16 

150-250 53.01 6.43 7.33 15.75 50.81 2.33 3.27 12.06 
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Figure 6.29, Heckel plots of matrices with respect to compression pressure (a) K4M : 

FBP and (b) K4M : THP (n = 3). 
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Figure 6.30, Kawakita plots of matrices with respect to compression pressure (a) K4M : 

FBP and (b) K4M : THP (n = 3). 
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Table 6.20, Summary of tensile strength and elastic recovery of K4M : FBP/THP matrices (n = 3, standard deviation given in 

parenthesis) 

 

 

 

  

 

 

Table 6.21, Summary of Heckel and Kawakita compressional parameters of K4M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

                                   A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

K4M 
(%) 

Particle size 
(µm) 

Tensile strength (T, MPa) Elastic recovery (ER, %) 

FBP THP FBP THP 

5 
90-150 1.13 (0.06) 2.54 (0.05) 13.78 (0.21) 7.43 (1.02) 

150-250 0.99 (0.02) 2.42 (0.02) 14.96 (1.35) 8.52 (1.55) 

10 
90-150 1.17 (0.05) 2.79 (0.01) 12.76 (1.05) 7.03 (0.66) 

150-250 1.09 (0.09) 2.72 (0.04) 14.00 (0.33) 7.73 (0.23) 

15 
90-150 1.50 (0.03) 3.13 (0.06) 11.32 (1.55) 5.84 (1.02) 

150-250 1.28 (0.01) 2.93 (0.07) 12.08 (1.03) 6.84 (0.39) 

K4M 
(%) 

Particle size 
(µm) 

Heckel parameters Kawakita parameters 

FBP THP FBP THP 

A K Py A K Py a b
-1

 ab a b
-1

 ab 

5 
90-150 0.73 0.0123 81.40 0.83 0.0113 88.30 0.495 11.37 0.044 0.686 7.70 0.089 

150-250 0.63 0.0127 78.95 0.79 0.0108 92.17 0.480 12.54 0.038 0.666 8.00 0.083 

10 
90-150 0.72 0.0130 75.62 0.76 0.0119 84.06 0.532 10.20 0.052 0.732 7.24 0.101 

150-250 0.59 0.0132 76.33 0.71 0.0116 86.13 0.520 11.44 0.046 0.716 7.60 0.094 

15 
90-150 0.70 0.0137 72.92 0.72 0.0122 82.44 0.579 9.32 0.062 0.775 6.24 0.124 

150-250 0.58 0.0144 69.54 0.69 0.0125 80.06 0.551 10.45 0.053 0.760 7.03 0.108 
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Figure 6.31, In-die relative density profiles of matrices with respect to compression 

pressure (a) K15M : FBP and (b) K15M : THP (n = 3). 

 

 

 



 

305 
 

 

 

Figure 6.32, In-die porosity profiles of matrices with respect to compression pressure 

(a) K15M : FBP and (b) K15M : THP (n = 3). 
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Table 6.22, Summary of in-die and out-of -die relative density values of K15M : FBP/THP matrices (n = 3). 

 

 

  

 

 

 

 

 

Table 6.23, Summary of in-die and out-of -die porosity (%) values of K15M : FBP/THP matrices (n = 3). 

 

 

 

K15M 
(%) 

Particle size 
(µm) 

True density 
(ƿt, g cm-3) 

Relative density (ƿrel ) Relative density (ƿrel ) 

FBP THP 
In-die After ejection In-die After ejection 

FBP THP Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 

1.281 1.459 
0.480 0.894 0.885 0.827 0.507 0.944 0.935 0.882 

150-250 0.466 0.868 0.859 0.803 0.492 0.916 0.907 0.856 

10 
90-150 

1.283 1.452 
0.483 0.927 0.918 0.858 0.508 0.974 0.964 0.910 

150-250 0.473 0.909 0.900 0.841 0.498 0.955 0.946 0.892 

15 
90-150 

1.285 1.445 
0.470 0.932 0.923 0.862 0.492 0.974 0.964 0.910 

150-250 0.465 0.923 0.914 0.854 0.487 0.964 0.954 0.900 

K15M 
(%) 

Particle size 
(µm) 

Porosity (Ԑ, %) Porosity (Ԑ, %) 

FBP THP 
In-die After ejection In-die After ejection 

Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 51.99 10.64 11.49 17.28 49.32 5.65 6.53 11.83 

150-250 53.39 13.24 14.06 19.68 50.79 8.39 9.31 14.44 

10 
90-150 51.73 7.28 8.22 14.22 49.23 2.63 3.56 9.02 

150-250 52.68 9.10 10.00 15.89 50.23 4.54 5.45 10.80 

15 
90-150 53.03 6.79 7.72 13.76 50.80 2.64 3.56 9.02 

150-250 53.49 7.71 8.61 14.59 51.29 3.61 4.55 9.96 
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Figure 6.33, Heckel plots of matrices with respect to compression pressure (a) K15M : 

FBP and (b) K15M : THP (n = 3). 
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Figure 6.34, Kawakita plots of matrices with respect to compression pressure (a) 

K15M: FBP and (b) K15M : THP (n = 3).  
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Table 6.24, Summary of tensile strength and elastic recovery of K15M : FBP/THP matrices (n = 3, standard deviation given in 

parenthesis) 

 

 

 

 

 

 

 

Table 6.25, Summary of Heckel and Kawakita compressional parameters of K15M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

                                   A and K = Heckel constants , Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

K15M 
(%) 

Particle size 
(µm) 

Tensile strength (T, MPa) Elastic recovery (ER, %) 

FBP THP FBP THP 

5 
90-150 1.08 (0.05) 2.47 (0.01) 14.33 (0.94) 7.65 (0.88) 

150-250 0.95 (0.03) 2.35 (0.06) 15.56 (1.33) 8.78 (0.52) 

10 
90-150 1.13 (0.01) 2.70 (0.04) 13.27 (0.49) 7.24 (1.10) 

150-250 1.05 (0.06) 2.64 (0.02) 14.56 (1.55) 7.96 (0.56) 

15 
90-150 1.44 (0.09) 3.04 (0.09) 11.66 (2.12) 6.02 (1.01) 

150-250 1.23 (0.03) 2.84 (0.08) 12.56 (1.32) 7.04 (0.55) 

K15M 
(%) 

Particle size 
(µm) 

Heckel parameters Kawakita parameters 

FBP THP FBP THP 

A K Py A K Py a b
-1

 ab a b
-1

 ab 

5 
90-150 0.70 0.0121 82.95 0.81 0.0112 89.18 0.486 11.82 0.041 0.680 7.86 0.087 

150-250 0.60 0.0124 80.45 0.77 0.0107 93.22 0.471 13.05 0.036 0.654 8.16 0.080 

10 
90-150 0.69 0.0127 78.68 0.74 0.0118 84.90 0.510 10.61 0.048 0.764 7.39 0.103 

150-250 0.57 0.0130 76.98 0.69 0.0115 86.99 0.498 11.89 0.042 0.691 7.75 0.089 

15 
90-150 0.67 0.0135 74.02 0.70 0.0121 82.91 0.526 9.69 0.054 0.788 6.37 0.124 

150-250 0.56 0.0141 70.55 0.67 0.0124 80.86 0.516 10.87 0.047 0.772 7.17 0.108 
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Figure 6.35, In-die relative density plots of matrices with respect to compression 

pressure (a) K100M : FBP and (b) K100M : THP (n = 3). 
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Figure 6.36, In-die porosity plots of matrices with respect to compression pressure (a) 

K100M : FBP and (b) K100M : THP (n = 3). 
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Table 6.26, Summary of in-die and out-of -die relative density values of K100M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

 

 

Table 6.27, Summary of in-die and out-of -die porosity (%) values of K100M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

 

 

K100M 
(%) 

Particle size 
(µm) 

 

True density 
(ƿt, g cm-3) 

Relative density (ƿrel ) Relative density (ƿrel ) 

FBP THP 
In-die After ejection In-die After ejection 

FBP THP Zero P Max. P 0 h 24 h Zero P Max. P 0 h 24 h 

5 
90-150 

1.283 1.461 
0.464 0.863 0.854 0.799 0.506 0.941 0.932 0.879 

150-250 0.455 0.846 0.838 0.783 0.491 0.913 0.904 0.853 

10 
90-150 

1.288 1.457 
0.475 0.911 0.902 0.843 0.505 0.968 0.958 0.904 

150-250 0.461 0.885 0.876 0.819 0.496 0.949 0.940 0.886 

15 
90-150 

1.293 1.452 
0.469 0.928 0.919 0.859 0.494 0.974 0.964 0.910 

150-250 0.462 0.914 0.905 0.846 0.484 0.955 0.946 0.892 

K100M 
(%) 

Particle size 
(µm) 

Porosity (Ԑ, %) Porosity (Ԑ, %) 

FBP THP 
In-die After ejection In-die After ejection 

Zero P Max. P 0 hr. 24 hr. Zero P Max. P 0 hr. 24 hr. 

5 
90-150 53.61 13.67 14.55 20.14 49.43 5.95 6.83 12.11 

150-250 54.52 15.37 16.24 21.72 50.90 8.69 9.60 14.72 

10 
90-150 52.53 8.86 9.80 15.70 49.46 3.22 4.16 9.58 

150-250 53.92 11.52 12.38 18.11 50.45 5.12 6.04 11.36 

15 
90-150 53.13 7.21 8.12 14.13 50.64 2.56 3.56 9.02 

150-250 53.82 8.59 9.50 15.43 51.61 4.47 5.45 10.80 
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Figure 6.37, Heckel plots of matrices with respect to compression pressure (a) K100M : 

FBP and (b) K100M : THP (n = 3). 
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Figure 6.38, Kawakita plots of matrices with respect to compression pressure (a) 

K100M : FBP and (b) K100M : THP (n = 3). 
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Table 6.28, Summary of tensile strength and elastic recovery of K100M : FBP/THP matrices (n = 3, standard deviation given in 

parenthesis) 

 

 

 

  

 

 

 

Table 6.29, Summary of Heckel and Kawakita compressional parameters K100M : FBP/THP matrices (n = 3). 

 

 

 

 

 

 

                    A and K = Heckel constants, Py  (MPa) = Yield pressure,   a, b
-1 

(MPa) and ab = Kawakita constants 

K100M 
(%) 

Particle size 
(µm) 

Tensile strength (T, MPa) Elastic recovery (ER, %) 

FBP THP FBP THP 

5 
90-150 1.01 (0.01) 2.33 (0.02) 14.61 (1.12) 8.11(1.07) 

150-250 0.88 (0.03) 2.21 (0.09) 15.87 (1.30) 9.30 (1.21) 

10 
90-150 1.09 (0.01) 2.55 (0.02) 13.53 (0.56) 7.68 (1.06) 

150-250 0.97 (0.06) 2.49 (0.05) 14.85 (2.15) 8.44 (1.12) 

15 
90-150 1.33 (0.02) 2.87 (0.03) 11.68 (1.06) 6.38 (0.55) 

150-250 1.18 (0.01) 2.68 (0.07) 12.82 (0.91) 7.46 (0.67) 

K100M 
(%) 

Particle size 
(µm) 

Heckel parameters Kawakita parameters 

FBP THP FBP THP 

A K Py A K Py a b
-1

 ab a b
-1

 ab 

5 
90-150 0.65 0.0118 84.25 0.76 0.0111 90.08 0.500 12.30 0.041 0.673 8.09 0.083 

150-250 0.56 0.0122 82.51 0.73 0.0106 94.03 0.476 13.57 0.035 0.648 8.40 0.077 

10 
90-150 0.64 0.0125 80.25 0.70 0.0117 85.75 0.534 11.04 0.048 0.694 7.61 0.091 

150-250 0.53 0.0127 78.52 0.65 0.0114 87.86 0.516 12.37 0.042 0.679 7.98 0.085 

15 
90-150 0.62 0.0132 75.79 0.66 0.0119 83.74 0.545 10.08 0.054 0.750 6.56 0.114 

150-250 0.52 0.0138 72.28 0.63 0.0122 81.67 0.529 11.30 0.047 0.741 7.38 0.100 
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6.9.3.4- Inter-relationship between Py and b
-1

 

Figures 4.39 (FBP : MC/HPMC ) and 4.40 (THP : MC/HPMC ) show the correlation between 

the derived plasticity parameters of Heckel and Kawakita compression models. There is a 

reasonable correlation between the parameters, as predicted, as both are inversely related to the 

propensity of powder particle deformation during compression pressure. The correlation co-

efficient (R
2
) values of FBP based matrices were in the range of 0.912 – 0.992 (90 - 150 µm) 

and 0.913 – 0.974 (150 – 250 µm).  However, the R
2 

of THP based matrices was in the range 

of 0.721 – 0.879 (90 - 150 µm) and 0.974 – 0.999 (150 – 250 µm), Table 6.30.  

There is unanimous agreement in literature that the Heckel and Kawakita models are the 

compression equations considered most important (Çelik, 2011; Denny, 2002). It can be 

inferred from the present finding that, if pressure dependant parameters are derived from 

Heckel equation, the results are very similar to the generalised Kawakita equation.  

 

Table 6.30, Correlation co-efficients of Py and b
-1

 inter-relationship (n = 3).

 

 

 

 

 

 

 

 

Type of matrix tablet 
Correlation co-efficient (R

2
) 

Particle size 
 (90-150 µm) 

Particle size 
 (150-250 µm) 

A4M/FBP 0.912 0.963 

F4M/FBP 0.992 0.964 

E4M/FBP 0.974 0.913 

K4M/FBP 0.984 0.923 

K15M/FBP 0.989 0.957 

K100MFBP 0.988 0.974 

A4M/THP 0.834 0.989 

F4M/THP 0.835 0.990 

E4M/THP 0.879 0.999 

K4M/THP 0.800 0.974 

K15M/THP 0.721 0.988 

K100M/THP 0.833 0.989 
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Figure 6.39, Relationship between Py and b
-1

 of FBP based matrices, (a) A4M, (b) F4M, (c) E4M, (d) K4M, (e) K15M AND (f) K100M. 
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Figure 6.40, Relationship between Py and b
-1

 of THP based matrices, (a) A4M, (b) F4M, (c) E4M, (d) K4M, (e) K15M AND (f) K100M. 
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6.9- Summary 

In summary, the current study confirmed that the FBP has poor compaction properties, with a 

low ability to develop inter-particulate bonding during the compression process. However, 

THP had relatively good compaction properties.   

The particle size, substitution ratios and viscosity (molecular size) of Methocel
®
 affect the 

compaction and consolidation behaviour of plain MC/HPMC compacts. It can also be 

concluded all the MC/HPMC powders deform plastically and have non-significant particle 

rearrangement during compression phases.  

Regarding FBP and THP based matrices, it can be concluded that the concentration of 

MC/HPMC (5 – 15 % w/w) has a noticeable positive effect on the compaction properties of 

FBP and THP. Moreover, it can be concluded that the physico-chemical attributes like 

particle size, chemistry and molecular size, of MC and HPMC significantly influence the 

densification and consolidation process of hydrophilic matrices. The fine particle size 

fractions and increase in total substitution levels tends to increase matrix relative density, but 

a causes a reduction in the porosity, Py, b
-1

 and elastic relaxation. Furthermore, these 

properties have the potential to modify relative density, porosity and tortuosity of the matrix 

network within a tablet which can further impact the drug release mechanism. The 

information extracted from the current study can be used in the future to develop and adopt 

strategies for development and further optimization of compressed hydrophilic matrices.  
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Chapter 7  

Conclusions and future work 
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7- Conclusions and future work 

7.1- Conclusions 

The main goals of this thesis were to contribute to the field of electrostatics, powder 

compaction and drug release kinetics from hydrophilic matrices. To understand the governing 

mechanisms various physical parameters were determined which can be utilised to improve 

the functionality and performance of pharmaceutical formulation development. Moreover, the 

objectives of this thesis, as stated in chapter 1 (section 1.6) were successfully achieved and 

summarised in the following sub-sections.  

7.1.1- Electrostatic and adhesion studies of powder mixtures 

Chapter 3 discussed the tribo-electrification and adhesion studies of model drugs, MC/HPMC 

and their binary mixtures. It can be confirmed that both drugs charged negatively, with the 

electrostatic behaviour of FBP and THP categorised as highly charging and low charging 

materials, respectively, when compared to other APIs and pharmaceutical excipients. It can 

be inferred that the MC and HPMC powder particles charged positively, moreover, the 

physico-chemical properties associated with MC and HPMC, such as particle size, chemical 

heterogeneity and molecular size of cellulose ethers all have a significant impact on charging 

and adhesion behaviour. It can also concluded that the concentration, particle size, chemical 

heterogeneity and molecular size of MC/HPMC all significantly impact the charging and SA 

propensity of FBP and THP. The decrease in SA and charge dissipation for FBP and THP 

powder mixtures is intuitively expected to improve flowability and compaction, which is 

expected to have a positive effect on the finished pharmaceutical dosage forms.   

7.1.2- Swelling, erosion and dissolution studies 

Chapter 4 explored the swelling, erosion and dissolution properties of FBP and THP 

hydrophilic matrices. The present study confirmed that the particle size, substitution ratios 
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and viscosity of Methocel
®
 affect the swelling and erosion of plain MC/HPMC matrices. 

Moreover, results also confirmed that the physico-chemical attributes (concentration, particle 

size, substitution and viscosity) of MC/HPMC and drug solubility have a significant impact 

on the extent of swelling, erosion, mechanism of erosion, dissolution rate and drug release 

kinetics.  

The swelling and dissolution results confirm that the extent of swelling, swelling rate,  

swelling exponent, dissolution rate and drug release kinetic parameters were affected by 

physico-chemical attributes (concentration, particle size, substitution and viscosity) of 

MC/HPMC and drug solubility. The mechanism of swelling and drug release is largely 

considered to be anomalous. However, it inclined towards more diffusion-oriented 

swelling/drug release with higher MC/HPMC levels, viscosity, Hpo/Meo substitution ratios, 

drug solubility but smaller MC/MC particle size. 

7.1.3- Development and validation of PSA assay for erosion analysis 

In Chapter 5, a Phenol-sulphuric acid (PSA) assay was applied to study polymer erosion. 

The assay was successfully applied to study polymer erosion kinetics from MC/HPMC 

compacts with varied physico-chemical properties. It can be concluded that particle size, 

substitution ratios and viscosity (molecular size) of MC and HPMC significantly influence 

erosion kinetics parameters.  

The matrix erosion results obtained from newly adopted PSA method confirmed that the 

solubility of the drug, and levels of HPMC in a particular matrix tablet, significantly affect 

the matrix erosion rate and the results were similar to those determined using the much 

more labour-intensive gravimetric method. Moreover, the combination of conventional UV 

drug analysis technique and PSA assay can be used to simultaneously quantify the matrix 
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erosion, polymer dissolution and drug release kinetics in a single set of experiments 

avoiding the need for separate studies. 

7.1.4- Compaction studies 

Chapter 6 discussed the compaction properties of model drugs, plain MC/HPMC and their 

respective powder mixtures. It can be confirmed that the FBP has poor compaction properties 

and with a low propensity to develop inter-particulate bonding during the compression 

process. However, THP had relatively good compaction properties. The particle size, 

substitution ratios and viscosity (molecular size) of Methocel
®

 affect the compaction and 

consolidation behaviour of plain MC/HPMC compacts. Furthermore, it can be concluded that 

the concentration and physico-chemical attributes(particle size, chemistry and molecular size) 

of MC/HPMC have a significant influence on the densification and consolidation process of 

hydrophilic matrices. The information extracted from the current study can be used in the 

future to develop and adopt strategies for development and further optimization of 

compressed hydrophilic matrices. 
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7.2- Future work 

There are many areas of potential opportunities to expand this work, including;  

7.2.1- Tribo-electrification  

Tribo-electrification is an area of research which is still considered elusive. To better 

understand the electrostatic behaviour of powders during processing, a dynamic tribo-electric 

charging apparatus attached to UV-photoelectron spectroscopy, having the power to quantify 

the propensity of work function alongside the electrostatic charging, can be developed. 

Moreover, the present work has confirmed that the physico-chemical attributes of 

pharmaceutical materials have significant impact on the electrostatic and adhesion behaviour 

of final powder mixtures.  Therefore, the present studies can be further expand to investigate 

how the experimental factors (mixing speed, type of mixer, type of contacting surface, the 

charging induction techniques, humidity and temperature) on the electrostatic and adhesion 

properties of pharmaceutical powder.  

7.2.2- Swelling, erosion and drug release kinetics 

The present work has open up potential options to explore the mechanism of swelling, matrix 

erosion and drug release by using different imaging techniques, especially atomic force 

microscopy (AFM) and X-ray micro-tomography (X-µT).  

7.2.2- Applications of PSA assay 

The PSA assay technique gives a unique opportunity to study drug release alongside polymer 

erosion. In the future, potential studies can be carried out to investigate its validity of more 

complex formulation systems. 
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7.2.2- Powder compaction studies 

This study has demonstrated the option to simultaneously study various compaction 

parameters in a single study with the utilisation of a minimum amount of powder. In future, 

a potential opportunity can be carried out to determine Youngs‘ modulus, alongside these 

derived physical parameters of compaction. It has been noticed that deformation and 

fragmentation have a marked effect on the tablet characteristics. Potentially AFM and X-µT 

may be utilised in future to quantify any change in the surface morphology of powder 

particles. Moreover, there is a continuous debate regarding the validity of the compaction 

modelling equation, so considering these; attempts can be made to modify the Heckel and 

Kawakita equations.  

In summary, the information given in this thesis can be used to improve different processing 

stages of pharmaceutical product development. However, there is far more that could be 

conducted to fully explore the areas of electrostatics, drug release kinetics and powder 

compaction. 
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