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Abstract

The enormous quantities of biological and chemical files and databases are likely to grow year
on year, consequently giving rise to the need to develop string-matching algorithms capable of
minimizing the searching response time. Being aware of this need, this thesis aims to develop string
matching algorithms to search biological sequences and chemical structures by studying exact string
matching algorithms in detail. As a result, this research developed a new classification of string matching
algorithms containing eight categories according to the pre-processing function of algorithms and
proposed five new string matching algorithms;, BRBMH, BRQS, Odd and Even algorithm (OE), Random

String Matching algorithm (RSMA) and Skip Shift New algorithm (SSN).

The main purpose behind the proposed algorithms is to reduce the searching response time and
the total number of comparisons. They are tested by comparing them with four well- known standard

algorithms, Boyer Moore Horspool (BMH), Quick Search (QS), TVSBS and BRF'S.

This research applied all of the algorithms to sample data files by implementing three types of
tests. The number of comparison tests showed a substantial difference in the number of comparisons our
algorithms use compared to the non-hybrid algorithms such as QS and BMH. In addition, the tests
showed considerable difference between our algorithms and other hybrid algorithm such as TVSBS and
BRFS. For instance, the average elapsed search time tests showed that our algorithms presented better
average elapsed search time than the BRFS, TVSBS, QS and BMH algorithms, while the average number

of tests showed better number of attempts compared to BMH, QS, TVSBS and BRFS algorithms.

A new contribution has been added by this research by using the fastest proposed algorithm, the
SSN algorithm, to develop a chemical structure searching toolkit to search chemical structures in our
local database. The new algorithms were paralleled using OpenMP and MPI parallel models and tested
at the University of Science Malaysia (USM) on a Stealth Cluster with different number of threads and
processors to improve the speed of searching pattern in the given text which, as we believe, is another

contribution.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Bioinformatics is an important research area for scientific research, involving enormous
amounts of data (Degrave et al., 2002). It covers several fields including biology applications
and management of bioinformatics infrastructure using computer science’s software (Searls &
Hogeweg, 2011). It involves computer science as a discipline giving tools for storing,

manipulating, analysis, searching and integration data and for developing applications.

Chemoinformatics is the application of computer software and technology in the field of
Chemistry and Pharmacy research to deal with chemical structures and drugs (Xu, 2002).
Moreover, string matching algorithms play a vital role in different applications such as

bioinformatics and chemoinformatics (SaiKrishna et al., 2012).

Files contain enormous quantities of biological and chemical data presented in a linear string
format such as amino acids (proteins), Deoxyribonucleic acids (DNA) and the chemical

structures (Horton, 2004).

Great numbers of biological and chemical files are likely to be produced every year, and that
is why effective string-matching algorithms are used to reduce the searching response time and

the total number of comparisons.

Chapter number one is divided as following: section 1.2 includes the research background,
section 1.3 demonstrates research motivation, section 1.4 includes the research hypothesis and
the general research methodology, section 1.5 comprises research questions, section 1.6 lists

research objectives, section 1.7 includes the main contribution of this research and finally section
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1.8 gives an overview of the thesis.

1.2 Background

In this section, we provide a brief explanation of the biological data, DNA, proteins,
chemical data representation, antimicrobial structures, sequence databases, biological databases,

chemical databases, and string-matching algorithms.

1.2.1 Biological Data

Biological experiments produce various types of data are divided into three main sequences
such as DNA, Ribonucleic acid (RNA) and protein. Protein has four different types of structures;
primary, secondary, tertiary and quaternary as shown in Figure 1-1 (Bailey, 2006). In this
research, DNA and primary protein structures are being focused because they are presented as
sequences of string and the quantities of their data files are likely to increase year on year. The
next sub-section 1.2.1.1 presents the first and basic biological data DNA followed by sub-section

1.2.1.2 which represents protein sequences.
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Primary structure
amino ack sequence

P13 _
protein
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imensional

structure

_-""
Quaternary structure
complex of protein molecules

Figure 1- 1: Primary, secondary, tertiary and quaternary structures (Bailey, 2006)

1.2.1.1 DNA

Deoxyribonucleic acid (DNA) is the molecule that stores genetic information. Moreover,
James Watson and Francis Crick were the first scientists who proposed the basic structure of

DNA in 1953 (Crick, 1974).

DNA is a nucleic acid, made up of a double chain of small molecules called nucleotides.
Four different kinds of nucleotides make up a DNA and four bases distinguish these nucleotides.

DNA sequences are strings over the alphabet Y DNA = {Adenine (A), Cytosine (C), Guanine
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(G), and Thymine(T)} (Kim et al., 2007). According to the U.S. National Library of Medicine,
2013 “There are two DNA bases chained to a phosphate group and a sugar molecule together,

and make a base pair like C binds with G and A binds with T as shown in Figure 1-2.

n——

Adenine Thymine

— )

Guanine Cylosine

Figure 1- 2: DNA base pairs

Nucleotide is a combination of phosphate group and ribose sugar and they can be arranged in
two long strands shaping the double helix where they look like a twisted ladder as shown in

Figure 1-3 (Setubal et al., 1997; Agustina, 2012)
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Figure 1- 3: DNA double helix (Setubal et al., 1997; Agustina, 2012)

1.2.1.2 Proteins

The most important contents of the biological databases are proteins. In addition, they are
considered as a compound comprising twenty amino acids in string chain linked by peptide
bonds (Berg JM, 2002). However, the secondary structure of protein presents the shape of
hydrogen bonding built primarily from the primary structure of protein. The tertiary and
quaternary structures are globular in shape. The tertiary shows the atomic position in three
dimensional space and the quaternary structures are made up of more than one polypeptide
chains (Horton, 2004). Furthermore, there are three letter codes and a single letter code of

protein as presented in Table 1-1 (Waterman, 1995).
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ID | Amino Acid Three Letter Code One Letter Code
1 | Alanine Ala A
2 | Arginine Arg R
3 | Asparagine Asn N
4 | Aspartate Asp D
5 | Cysteine Cys C
6 | Glutamine Gln Q
7 | Glutamate Glu E
8 | Glycine Gly G
9 | Histidine His H
10 | Isoleucine Ile I
11 | Leucine Leu IL
12 | Lysine Lys K
13 | Methionine Met M
14 | Phenylalanine Phe F
15 | Proline Pro P
16 | Serine Ser S
17 | Threonine Thr T
18 | Tryptophan Trp \\
19 | Tyrosine Tyr Y
20 | Valine Val A%

Table 1- 1: Twenty amino acid abbreviations (Waterman, 1995)

1.2.2 Chemical Data Representation

A fundamental issue in chemoinformatics is the representation of chemical structures on
computer systems. The Simplified Molecular Input Line Entry System (SMILES) presents
chemical structures in digital databases as a linear string notation (Weininger et al., 1989;

Weininger, 1988), rather than the traditional two dimensional structure formula.
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1.2.2.1 Antimicrobial Structures

Antimicrobial structures are important substances functioning as self-defense against
infection by various harmful pathogens (Fujimura et al., 2003; G Wang, 2010). They exist in all
life categories and they found to kill viruses, bacteria and fungi (DeGray et al., 2001;Frecer et
al., 2004). They can be searched in databases using the antimicrobial structure keywords such as
the antibiotics, anticancer, antiviral activity, antifungal activity and antibacterial activity (Wang

& Wang, 2009).

1.2.3 Sequence Databases

Biologists and chemists have produced a large number of protein sequences, DNA, RNA,
and chemical structures. In addition, the number of sequences uploaded to these databases
increases every year. For example, as shown in Figure 1-4 in UniprotKB/Swiss-Prot database
(Expasy Bioinformatics Resource Portal, 2013), in 1997 there were fifty thousand entries and in
2005 there were more than one hundred and fifty thousand entries, the size of the database grew
three times in ten years. In 2007, more than fifty thousand entries were added in the database
within a year. In 2013 there were more than five hundred and thirty thousand entries in the

database.
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Figure 1- 4: Growth of protein sequence entries in the Swiss-Prot database since
1985 to July 2013 (Expasy Bioinformatics Resource Portal, 2013)

The following sub-sections 1.2.3.1 and 1.2.3.2 lists some of the databases that are used to

store the biological and chemical data.

1.2.3.1 Biological Databases

There are a lot of distributed public databases with different aims and contents which are
designed to integrate data. The GenBank database is endorsed by the help of the U.S. National
Center of Biotechnology Information (NCBI). It comprises millions of DNA sequences (NCBI,
2013). In addition, the SWISS-PROT database contains protein sequences which provide a high
percentage of integration, annotation, and the slightest level of repetition comparing to other
databases (Bairoch A, 2000) . The Antimicrobial Peptide Database (APD) which maintained by
the Department of Pathology and Microbiology at the University of Nebraska USA, contains

detailed information for 2426 peptides. In addition, this database combines peptide inquiry,
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forecasts, structure and data for a specific group of the peptides (Wang & Wang, 2009). The
Protein Data Bank (PDB) database is a globular warehouse of proteins tertiary structures
(Berman et al., 2000; Nakamura, 2003; Bourne et al., 2004). The RNAdb is an inclusive non-
coding RNAs (ncRNAs) database of warm-blooded animals. Furthermore, it contains more than

800 unique different practically studied non-coding RNAs(Pang et al., 2007).

1.2.3.2 Chemical Databases

A chemical database is developed to store chemical structures’ data such as the

NMRShiftDB which stores organic structures and their core details.(Kuhn, 2010).

1.2.4 String Matching Algorithms

String matching algorithms take part in solving many computer problems and research issues
such as text processing, image processing, signal processing, network security, information
retrieval, and speech recognition (Baeza-Yates, 1992; Navarro & Raffinot, 2002; Y. Wang &
Kobayashi, 2006; Raju & Babu, 2007; Wang & Li, 2011; SaiKrishna et al., 2012; Bhandari
2014). In addition, they were used widely in computational biology and computational chemistry
such as proteins, DNA and RNA searching (Thathoo et al., 2006, Huang et al., 2008; Almazroi,

2011; Naser et al., 2012; Bhandari & Kumar, 2014).

String-matching algorithms target to find a pattern “sequence of characters” with length m
plp: p2...m] in a given text with length n 7[¢; t, ... n] by matching the text window characters

with the pattern characters (Lecroqg, 1998; Deusdado & Carvalho, 2009; Sleit et al., 2009) and if
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a whole match or a mismatch encountered, the pattern is shifted to the right. An example is to
search a pattern “matching” in a text “string matching algorithms”. Text (T) is depicted as T; ...
T, and pattern (P) as P; ...P, (Navarro & Raffinot, 2000; Fredriksson & Grabowski, 2005;

Lecroq, 2007; Lokman & Zain, 2010).

Most algorithms consist of preprocessing and searching phases. The process which controls
the pattern shift is called preprocessing phase and it analyses pattern characters to determine the
shift value. The process of comparing pattern and text characters is called the searching phase

(Chai et al, 2009; Radhakrishna et al., 2010).

Efficient string algorithms aim to maximize the pattern shifting value and therefore enhance
the searching time (Chen, 2007). This research proposes new string matching algorithms to

search protein sequences, DNA sequences and chemical structures.

1.3 Research Motivation

One of the main research issues in biology and chemistry is searching proteins, DNA, RNA
and chemical structures from public databases such as UniProt, SWISS-PROT, APD, PDB,
RNAdb and NMRShiftDB databases (EMBL-EBI, 2002). This gives the computer researcher a
new research field to help researchers in biological and chemical sciences to use computer

technologies, methodologies and capabilities for searching sequences and structures.

1.4 Research Hypothesis and General Research Methodology
Our research is based on the following hypothesis:

1- The existing string matching algorithms can be classified in a new way.
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These

The new classification can be used to understand the mechanism of each searching

algorithm.

The understanding of algorithm mechanism and features can help to enhance current

algorithms or developing a new algorithm.

The enhanced algorithms or developed one(s) can be used to search biological sequences

and chemical structures.

hypotheses are implemented by using the System Development Methodology (SDM)

(Nunamaker Jr & Chen, 1990; Morrison & George, 1995; Hevner, 2004). The SDM is used by

information system analysts and software developers in order to implement their hypothesis

(Abdelaziz et al., 2008; Baydaa, 2011). Figure 1-5 below shows the three main levels of SDM:

1-

Identifying research problems: problems involve difficulties, conditions or questions
where researchers wish to solve these problems, improve conditions or seek to answer
questions. In our thesis, the research questions built up depends on classifying string
matching algorithms, enhancing one or more of searching algorithms and then applying

the one(s) developed to searching biological sequences and chemical structures.

Prototype and evaluation: in this level the System Development Methodology aims to
prototype and implement the suggested work. It starts with designing the model, then
identifying model requirements, implementing the model and finally evaluating the
model by testing and analyzing results. In this thesis, the designing process and
methodology framework are explained in CHAPTER 3. The model developing is
presented in CHAPTER 4, the model implementation is presented in CHAPTER 5 and

the testing evaluation and analysis part is presented in CHAPTER 6.
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3- Conceptual and practical contributions: This level defines the main contribution to the

knowledge. According to the results gained from the evaluation, the discussion is

presented in section 6.7 and finally, the conclusion and the future work are presented in

CHAPTER 7.
Research Problems

Mo theory yet Existing theory [l Resea_rt:h

developed in question question

Protatyping
Conceptual Requirements Architecturef Analysis/ i
Development Identification Methodology Design Implementation
Development

'

Evaluation
Revise Prototype Observation,
Testing,
Analysis
Conceptual Contributions Practical Contributions
Development Confirmafion/ Mew domain System Prototype
of new theo Refutation of knowledge o
ry existing theary 9 Specification System

Figure 1- 5: System development methodology (Morrison & George, 1995)

1.5 Research Questions

Which of the existing string pattern matching algorithm(s) is/are the most suitable for

searching biological sequences and chemical structures?

Can we enhance one or more of the proposed algorithms in 1, or develop (a) new

algorithm(s) for string-matching?
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3- How we can measure the success of the newly developed algorithm(s) compared to the

best algorithm in 1?

4 - Can we develop a classification of string matching algorithms which will help with

achieving our aims?

1.6 Research Objectives

In this section, we explain the main parameters and factors that we intend to include in our

study. Thus our study includes the following objectives:

e To study the existing string-matching algorithms in order to develop a taxonomy of such

algorithms.

e To apply insights gained in the previous phase to enhance one or more of the existing
algorithms, or to develop (a) new algorithm(s) to search biological sequences and

chemical structures.

e To measure the success of the newly developed algorithm(s) compared to currently

existing algorithms.

1.7 Main Contribution

The main contributions for this research are:

1. Classifying the main string matching algorithms into a new classification containing eight

categories according to the preprocessing function in the algorithm.

2. Enhancing and developing five new string matching algorithms which improve the
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searching response time by decreasing the number of comparisons in the searching stage

and enhancing the preprocessing stage by maximizing the shifting value.

3. Applying enhanced and developed algorithms to search DNA and protein sequences.

4. Implementing a local database containing relational tables to store downloaded chemical

structures from NMRShiftDB.

5. Using the fastest algorithm to develop a searching toolkit aims to search chemical

structures in a local database.

6. Speeding up the fastest algorithm using parallel models.

1.8 Overview of the Thesis

This chapter (CHAPTER 1: INTRODUCTION) gives an overview of the background to the
study which includes biological data such as DNA and proteins, chemical data representation
such as antimicrobial structures, biological sequence databases, chemical databases and string
matching algorithms. Then it deals with the research motivation, the research hypothesis, general
research methodology, the research questions and ends with the research objectives and expected

the outcomes of this study.

CHAPTER 2: A CURRENT STATE OF THE ART gives a survey, a new classification and
summary of string matching algorithms. In addition, chapter 2 describes Simplified Molecular
Input Line Entry System format (SMILES) with the syntax rules and finally it presents a

discussion of parallel computing.
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CHAPTER 3: METHODOLOGY AND DESIGN. This chapter gives an overview of the
proposed work in this study which includes the research methodology framework. In addition, it
includes the chemical structure toolkit design and the parallel algorithm design. The research
methodology framework includes six main methodology stages which aim to achieve our
research objectives. The chemical toolkit design includes four stages which aim to develop the
toolkit in order to search chemical structures in our local database. Finally the parallel algorithm
design includes two phases of parallelizing the SSN algorithm; the first phase parallelizes the

SSN algorithm using the OpenMP model and the second phase uses the MPI model.

CHAPTER 4: DEVELOPING NEW ALGORITHMS. In this chapter, after classifying the
main string matching algorithms in CHAPTER 2 into eight categories according to the
preprocessing function in each algorithm, five new algorithms are developed which aim to

maximize the pattern shifting value and therefore enhance the searching time.

CHAPTER 5: IMPLEMENTATION. In this chapter, the chemical structure toolkit has been
implemented. This includes four stages. The first stage includes downloading and mining
structures from NMRShiftDB. The second stage builds a local database to host structures. The
third stage connects the toolkit to the local database and searches structures using Java Molecule
Editor (JME), SMILES and the SSN algorithm. Finally, the proportion of matching characters is

used in the fourth stage to measure the similarity between structures.

CHAPTER 6: RESULTS AND DISCUSSION. In this chapter all developed algorithms and

some of the standard algorithms are implemented and tested. The chemical searching toolkit has
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been tested in this chapter as well. A parallel version of the SSN algorithm is implemented and
tested using OpenMP and MPI models. Finally, the discussion section analyses the results of

three types of tests are implemented on the developed algorithms and other standard algorithms.

CHAPTER 7: CONCLUSION AND FUTURE WORK. This chapter gives a summary of
research contribution and results. It also suggests some future work that can be used to expand

the current research.
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CHAPTER 2: A CURRENT STATE OF THE ART

In this chapter the main string matching algorithms are classified into eight categories
according to the preprocessing function in the algorithm (Klaib & Osborne, 2009a).The first
category shifts the pattern only one position at each attempt (section 2.2). The second category
uses two preprocessing functions to shift the pattern (section 2.3). The third category uses one
preprocessing function based on the rightmost character in the current window (section 2.4). The
fourth category uses one preprocessing function based on the next character to the current
window (section 2.5). The fifth category uses one preprocessing function based on the two
characters next to the current window (section 2.6). The sixth category uses a preprocessing
hashing function (section 2.7). The seventh category uses a single preprocessing function
depends on computing buckets for all characters of the alphabet (section 2.8). The final category

uses hybrid algorithms (section 2.9).

A summary describing and comparing all previous classification of algorithms is presented in
section 2.10. Section 2.11 describes the SMILES format for chemical structures and finally

section 2.12 contains a brief discussion of parallel computing concept.

2.1 Conventions

In this discussion, (T) is the text, (P) is the pattern, (m) is the pattern’s length, (n) is the text’s

length, and the size of the alphabet used in T is o.

2.2 The First Category: Shift the Pattern a Single Position

In this group, the pattern is shifted a single position whether there is a whole match or a
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mismatch. The Brute Force algorithm (BF) is an example of this classification (Navarro &

Raffinot, 2002).

2.2.1 The Brute Force Algorithm (BF)

The BF is the basic algorithm of searching algorithms and there is no preprocessing phase is
used to shift the pattern. The searching order starts from the leftmost character moving forward
to the rightmost character of both the text window and pattern characters, and if there is a whole

match or a mismatch it shifts the pattern only a single position.

The disadvantage of this algorithm is the low efficiency by going through all characters of
the string (Charras & Lecroq, 2004). This algorithm can work well with small strings, but not
with large strings such as those in biological and chemical data (Stephen, 1994; Levitin, 2008).
Figure 2-1 below shows an example which illustrates the main principles of the Brute Force
algorithm where in each attempt the first line presents the text characters, the second line
presents the search order and the third line shows the search pattern characters. This convention

will be used for all examples.

Figure 2-1: First attempt
CO2pB4O CO2C2C2CH2H2O02CHZ2O0C

1
C022C2C

In the first attempt, the fisrt three characters have found a match. The fourth comparison
produces a mismatch which causes a shift to the right by one position and starts the search again

from position two as shown in the second attempt and so on.
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Figure 2-1: Second attempt
CE2HOC02C2C2CH2H202CH20C

1
O2C2C2C

Figure 2-1: Third attempt
COHOCO2C2C2CH2H202CH20C

1
02C2C2C

Figure 2-1: Fourth attempt
CO2pO0O C O 2C2C2CH2H2O02CHZ2O0C¢C

1
02C2C2C

Figure 2-1: Fifth attempt
COZHEC02C2C2CH2H202CH20C

1
02C2C2C

Figure 2-1: Sixth attempt
CO2HOCO2C2C2CH2H202CHZ2O0CcC
1 2 3 7 8

cCO0O2cC2¢cC2C

I
W

Figure 2-1: Seventh attempt

CO2HOCE2C 2 CH2H202CH2O0C

S}
(@)

1
02C2C2C

39



Figure 2-1: Eighth attempt

COZHOCOCZCZCHZ
1
O2C2C2C

Figure 2-1: Ninth attempt
COZHOCOZCC2CH2

1 2
CE2C2C2

Figure 2-1: Tenth attempt
COZHOCOZCC2CH2
1

02C2C

Figure 2-1: Eleventh attempt
C02HOC02C2CCH2

1 2
@ <:

Figure 2-1: Twelfth attempt
CO2HOCO2C2CCH2

1
02C

Figure 2-1: Thirteenth attempt
C02HOC02C2C2C2

1 2
‘@:
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H2O02CH2O0C

H202CH2O0OUZC

H2 O0O2CHZ2O0UZC

H2O02CHZ2O0OC

H202CHZ2O0OZC

H2O02CHZ2O0OZC



Figure 2-1: Fourteenth attempt
CO2HOCO2C2C2Cps2 H?2O2CHZ2O0C

Figure 2-1: Fifteenth attempt
C02HOC02C2C2CHH202CH20C

Figure 2-1: Sixteenth attempt
CO2HOC02C2C2CH2202CH20C

1
02C2C2C

Figure 2-1: Seventeenth attempt
C02HOC02C2C2CH2H02CH20C

1
02C2C2C

Figure 2- 1: The Brute Force algorithm example

In the previous example, the Brute Force algorithm performs seventeen attempts and thirty
character comparisons to find the pattern in the text. Figure A-1 shows the Brute Force algorithm

code (Charras & Lecroq, 1997).

2.3 The Second Category: Using Two Preprocessing Functions

In this group, whether there is a whole match or a mismatch, the pattern is shifted using two
preprocessing functions. Examples of this group are the Boyer-Moore algorithm (BM) (Boyer &

Moore, 1977), the Zhu Takaoka algorithm (ZT) (Feng & Takaoka, 1988) and the Fast Search
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Algorithm (FS) (Cantone & Faro, 2003).

2.3.1 The Boyer Moore Algorithm (BM)

The BM algorithm was developed by R.S. Boyer and J.S. Moore in 1977(Boyer & Moore,
1977; J. Lee, 2004). It searches the pattern from the rightmost character to the leftmost character
in each attempt. If there is a whole match or a mismatch, two preprocessing functions are used
to shift the pattern by n positions. The first preprocessing function is named the bad-character
function (bmBc) and the second one the good-suffix function (bmGs) (Wu & Manber, 1994;

Fredriksson & Grabowski, 2005; Danvy & Rohde, 2006).

A bmBc is applied when the mismatch is caused by a text character that exists in different
position in the pattern. And in this case, it shifts the pattern to align similar characters and start a

new attempt. Table 2-1 shows an example for the bad-character case (Charras & Lecroq, 2004):

Table 2- 1: Bad-character shift in Boyer-Moore algorithm example

A mismatch found between characters E and D at position 4. The text character E can be
found in pattern characters at position 2. The bad-character function shifts the pattern to the right

to align the text character E with the same character in the pattern which exists at position 4.

The bmGs function is used if the mismatch text character is not the first character and the
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matched substring “suffix” exists in pattern characters, it shifts the pattern to align similar

characters between the suffix and pattern characters (Charras & Lecroq, 2004).

The best case for the BM algorithm occurs if the first compared text character does not exist
in the pattern characters, so in this case the algorithm needs only O(n/m) comparisons. Table 2-2

below shows an example for this situation(Charras & Lecroq, 2004):

Table 2- 2: The best case example of the Boyer-Moore algorithm

A mismatch is found between characters X and D at position 4 and X does not exist in the

pattern. Therefore, it shifts the pattern to start from the next position to X at position number 5.

The worst case for the BM searching algorithm is O(mn) and this happens if the text consists
solely of a number of repetitions of the search pattern (Tsai, 2006). If the text alphabet is small,

then the BM bad-character shift is not very efficient (Crochemore et al., 1994; Lecroq, 1995).

The time complexity of the bmBc function is O(m+a), the bmGs is O(. m’ ) and of the average
searching phase is O(mn) (Charras & Lecroq, 2004). Figure 2-2 below shows an example
illustrating the main principles of the Boyer-Moore algorithm, Table 2-3 shows the bmBc table

and Table 2-4 shows the bmGs table:
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Table 2- 3: The Boyer-Moore bmBc table

The bmBc table in Table 2-3 shows the rightmost occurrence of each character in the pattern,
while the bmGs table in Table 2-4 shows the maximum shift distance from the structure of the
pattern that can be used in good suffix cases to shift the pattern to the right. In Table 2-3, the
rightmost occurrence of character ‘C’ is 2, character ‘2’ is 1, character ‘O’ is 6 and character ‘H’
is 8. The occurrence of character ‘H’ is the same length of the pattern which should be shifted 8
positions to the right if character ‘H’ is causing the mismatch. In Table 2-4, the suffix “2C” starts
at positions 2, 4, and 6. The suffix “C2C” starts at positions 3 and 5. If the mismatch occurs at
position 5, then pattern is shifted 4 positions. If the mismatch occurs at position 3, then the
pattern is shifted 2 positions. If the mismatch occurs at position 4, then the pattern is shifted 3

positions, otherwise the suffix does not exist in the text window and the shift value is 7.

Pattern ArrayIndex [0 |1 (2|3 |4|5]6

Pattern Array [Index] |C|O |2 |C|2|C|2]|C

bmGsli] T171712(3]4]7]1

Table 2- 4: Boyer-Moore bmGs table

Figure 2-2: First attempt

C02HOCOC2C2CH2H202CH20C
1

C02C2C2

Total Shift Value = 1 (bmBc[2])

In the first attempt, the first comparison produces a mismatch which causes a shift to the
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right by one position depends on the rightmost occurrence of character ‘2’ in the text window.
The second attempt, the first two characters have found a match. The third comparison produces
a mismatch which causes a shift to the right using the rightmost occurrence of character ‘O’ in

the text window. It aligns similar characters and starts new comparisons.

Figure 2-2: Second attempt
COZHOCEZCZCZCHZHZOZCHZOC

321

CO2C2fa2 C

Total Shift Value = 4 (bmBc[O])

Figure 2-2: Third attempt
CO2HOCO2C2C2CH2H202CH?2O0C
8 76 543 21
co2cCc2¢cC2CcC

Total Shift Value = 7 (bmGs[0])

Figure 2-2: Fourth attempt
C02HOC02C2C2CH2H2E2CH20C

C02C22C

Total Shift Value = 4 (bmBc[O])

Figure 2-2: Fifth attempt
COZHOCOZCZCZCHZHZOZCHZEC

2 1
C02C2CC

Figure 2- 2: The Boyer-Moore algorithm example
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In this example the Boyer Moore algorithm performs five attempts and seventeen character
comparisons to find the pattern in the text. Figure A-2 shows the Boyer-Moore algorithm code

(Charras & Lecroq, 1997).

2.3.2 The Zhu Takaoka Algorithm (ZT)

Another example of this classification is the ZT algorithm which was developed by R. F. Zhu
and T. Takaoka in 1988 ((Zhu & Takaoka, 1987). It uses the same rules as the bmGs
preprocessing function and improves only the bmBc function by shifting the pattern using the
last two characters of each text window (a, b) rather than using a single character same as the
bmBc function (Kalsi, et al., 2008). This is done by constructing the Zhu-Takaoka bad character

table (ztBc) table.

The ztBc table counts the shifting value of each pair of characters (a, b) as following Figure

2-3 (Zhu & Takaoka, 1987).

Fora, be 2
k<m-2 andx|m-k.m-k+1]=ab
and ab does not occur
mx[m-k+2.m-2],
ziBda,bl=k < {k=m-1 x[0]=band abdoesnot OCCUI  erererererseerenmnenesieieetsisieieaenes @®
inx[0..m-2],
k=m x[0] # b and ab does not occer
m x[0..m-2]

Figure 2- 3: Zhu Takaoka ztBc equation

The ZT searching phase searches the pattern from the rightmost to the leftmost character in
each attempt. The time complexity of the ztBc is O(m+d°), the bmGs is O(m’) and of the
searching phase is O(mn) (Zhu & Takaoka, 1987). Figure 2-4 below shows an example

illustrating the main principles of the Zhu Takaoka algorithm, Table 2-5 shows the ztBc and
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Table 2-6 shows the bmGs table:

Character | 2| O| C| H|
8] 8[2]8]

[518[7]8]

|1]6]7]8]
|8|8]7]8]

Table 2- 5: The Zhu-Takaoka ztBc table

The ZT algorithm uses the bmGs table of the BM algorithm as shown in Table 2-4 and
enhanced the bmBc table by using the rightmost occurrence of each pair of characters as shown
in Table 2-5. In this example the rightmost occurrence of each pair of characters [C2] is 1, [2C]
is 2, [02] is 5 and [CO] is 6. The shift value for any pair ends with character ‘C’ is 7 because it is
the first character in the pattern while other pairs will be shifted 8 positions because they do not

exist in the pattern.

Figure 2-4: First attempt

CO2HOCKmwREC 2 C2CH2H2O02CHZ2O0UC

2 1

C O 2C 2 CpHe

Total Shift Value = 5 (ztBc[O][2])

Figure 2-4: Second attempt

CO2HOCO2C2C2CH2H202CHZ2O0CcC
8 76 543 21

co2cCc2¢cC2CcC

Total Shift Value = 7 (bmGs[0])
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Figure 2-4: Third attempt

COZHOCOZCZCZCHZHZEZCHZOC
321

C02C22C

Total Shift Value = 7 (bmGs[6])

Figure 2- 4: The Zhu-Takaoka algorithm example

In the previous example the Zhu-Takaoka algorithm performs three attempts and thirteen
character comparisons to find the pattern in the text. Figure A-3 shows the Zhu-Takaoka

algorithm code (Charras & Lecroq, 1997).

2.3.3 The Fast Search Algorithm (FS)

Another example in this classification is the FS algorithm which was developed by D.
Cantone and S. Faro in 2003 (Cantone & Faro, 2003). It searches the pattern from the rightmost
character to the leftmost character (Cantone & Faro, 2003). It always uses the good-suffix
preprocessing function of BM algorithm to shift the pattern (Table 2-4), but if there is a whole
match or a mismatch at the rightmost character, the bmBc table (Table 2-3) is used. The time
complexity of the preprocessing phase is O(m+0¢°) and of the searching phase is O(mn) (Charras
& Lecroq, 2004). Figure 2-5 below shows an example illustrating the main principles of Fast

Search algorithm.

Figure 2-5: First attempt

C02HOCOC2C2CH2H202CH20C
1

C02C2C2

Total Shift Value = 1 (fsBc[2])
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Figure 2-5: Second attempt
COZHOCEZCZCZCHZHZOZCHZOC

321

CO2C2fa2 C

Total Shift Value =4 (fsGs[5])

Figure 2-5: Third attempt
CO2HOCO2C2C2CH?2H2O02CH?2O0C
8 76 543 21
co2cCc2cCc2CcC

Total Shift Value = 7 (fsGs[0])

Figure 2-5: Fourth attempt
C02HOC02C2C2CH2H2E2CH20C

C02C22C

Total Shift Value =4 (fsGs[5])

Figure 2-5: Fifth attempt
COZHOCOZCZCZCHZHZOZCHZEC

2 1
C02C2CC

Figure 2- 5: The Fast Search algorithm example

In this example the Fast Search algorithm performs five attempts and seventeen character
comparisons to find the pattern in the text. Figure A-4 shows the Fast Search algorithm code

(Cantone & Faro, 2003).
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2.4 The Third Category: Depending on the Rightmost Character

In this group, the pattern is shifted using a single preprocessing function depending on the

last character. The Boyer Moore Horspool algorithm (BMH) is an example (Horspool, 1980).

2.4.1 The Boyer Moore Horspool Algorithm (BMH)

The BMH algorithm was developed by N. Horspool in 1980. It is a modification of the BM
algorithm (Tarhio & Peltola, 1997). It is faster than the BM algorithm and the preprocessing
function computes the shifts using only one heuristic function depending on the last character
comparing to the BM algorithm (Crochemore & Rytter, 1994). The searching phase of the BMH
algorithm starts from the rightmost character, then starts from the leftmost character and then

moves forward up to the penultimate character (Raita, 1992).

Table 2-6 below shows an example for the Boyer-More algorithm and compares it with

Horspool algorithm in Table 2-7 (Charras & Lecroq, 2004):

Table 2- 6: An example of the bmBc function
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Table 2- 7: An example of hrBc function

In this example, the current text window starts from position O to position 4. The BM
algorithm in Table 2-6 starts the comparison from the rightmost character to the leftmost
character. The fourth comparison produces a mismatch at position 1. The bmBc function of the
BM algorithm uses the letter D at position 1 to shift the pattern to the right and align character D
with the same character which exists at position 2. The BMH algorithm in Table 2-7 starts from
the rightmost character, then starts from the leftmost character and then moves forward up to the
penultimate character. The third comparison produces a mismatch at position 1. The hrBc
function of the BMH algorithm shifts the pattern to position number 5 depending on the last

character of the current text window ‘E’ which does not exist in the pattern in this example.

“The average time complexity of the preprocessing phase is O(m+a) and of the searching
phase is O(mn)” (Regnier & Szpankowski, 1998). Figure 2-6 below shows an example
illustrating the main principles of the Horspool algorithm and Table 2-8 shows the Horspool

algorithm bad character table (hsBc):

Table 2- 8: Horspool hsBc table
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The hsBc table in Table 2-8 follows the same way as the bmBc table which shows the

rightmost occurrence of each character in the pattern.

Figure 2-6: First attempt

C02HOCOC2C2CH2H202CH20C
1

C02C2C2

Total Shift Value = 1 (hsBc[2])

In the first attempt, the first character comparison produces a mismatch which causes a shift

to the right by one position depends on the last character of current text window ‘2’.

Figure 2-6: Second attempt
CEZHOCOZCZCZCHZHZOZCHZOC

2 1
02C2C2C

Total Shift Value = 2 (hsBc[C])
In the second attempt, the first comparison (rightmost character) has found a match. The
second comparison (leftmost character) produces a mismatch which causes a shift to the right by
two positions depends on the last character of current text window ‘C’. It starts the search again

in other attempts following the same procedure.

Figure 2-6: Third attempt
C020C02C2C2CH2H202CH20C

2 1
02C2C2C

Total Shift Value = 2 (hsBc[C])
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Figure 2-6: Fourth attempt
CO2HOCO2C2C2CH2H202CH?2O0C¢C
2 3456781
cCcoO2cC2cC2C¢C

Total Shift Value = 2 (hsBc[C])

Figure 2-6: Fifth attempt
CO2HOC02C2C2CHH202CH20C

1
C02C2C2

Total Shift Value = 1 (hsBc[2])

Figure 2-6: Sixth attempt
C02HOC02C2C2CH2202CH20C

1
C02C2C2

Total Shift Value = 8 (hsBc[H])

Figure 2-6: Seventh attempt
C02HOC02C2C2CH2H02CH20C

2 1
02C2C2C

Figure 2- 6: The Horspool algorithm example
In this example the Horspool algorithm performs seven attempts and seventeen character
comparisons to find the pattern in the text. Figure A-5 shows the Horspool algorithm code

(Charras & Lecroq, 1997).
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2.5 The Fourth Category: Depending on the Next Character to the Rightmost Character

In this group, the pattern is shifted using a single preprocessing function depending on the
next character to the rightmost character. An example is the Quick Search algorithm (QS)

(Sunday, 1990).
2.5.1 The Quick-Search Algorithm (QS)

The QS algorithm was developed by D. M. Sunday in 1990. The preprocessing phase of QS
(gsBc) shifts the pattern by m+1 if the next character to the rightmost character does not exist in
the pattern. The searching phase searches the pattern from leftmost character to the rightmost
character (Sunday, 1990; Lecroq, 1998). “The time complexity of the preprocessing phase is
O(m+o0) and of the searching phase is O(mn)” (Charras & Lecroq, 2004). Figure 2-7 below
shows an example illustrating the main principles of Quick-Search algorithm and Table 2-9

shows the preprocessing qsBc table:

Character |c|2|o]|H|

gsBc[character] | 1 | 2 | 7 | ) |

Table 2- 9: Quick Search gsBc table

The gsBc table in Table 2-8 follows the same way as the bmBc table which shows the

rightmost occurrence of each character in the pattern.

Figure 2-7: First attempt
C020C022C2CH2H202CH20C
1 2 3 4

C022C2C

Total Shift Value = 1 (gsBc[C])
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In the first attempt, the first three comparisons (leftmost characters) have found a match. The
fourth comparison produces a mismatch which causes a shift to the right by one position depends
on the next character to the current text window ‘C’. It starts the search again in other attempts

following the same procedure.

Figure 2-7: Second attempt
CEZHOCO2CC2CH2H202CH2OC

1
02C2C2C

Total Shift Value = 2 (gsBc[2])

Figure 2-7: Third attempt
C020C02C2CCH2H202CH20C

1
0O2C2C2C
Total Shift Value =2 (gsBc[2])

Figure 2-7: Fourth attempt
CO2HOCO2C2C2Cp82H202CH?2O0C
1 23456738
cCcoO2cC2¢cC2C

Total Shift Value = 9 (gsBc[H])

Figure 2-7: Fifth attempt
COZHOCO2C2C2CHH202CH2EC

1
02C2C2C

Total Shift Value = 7 (gsBc[O])

Figure 2- 7: The Quick Search algorithm example
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Applying the Quick Search algorithm on the above example performs five attempts and
fifteen character comparisons to find the pattern in the text. Figure A-6 shows the Quick-Search

algorithm code (Charras & Lecroq, 1997).

2.6 The Fifth Category: Depending on Two Characters Next to the Rightmost Character

In this group, the pattern is shifted using a single preprocessing function depending on two
characters next to the rightmost character. The Berry—Ravindran algorithm (BR) is an

example(Berry & Ravindran, 1999).

2.6.1 The Berry—Ravindran Algorithm (BR)

The BR algorithm was developed by T. Berry and S. Ravindran in 1999. The searching phase
of the BR algorithm searches the pattern from the leftmost to the rightmost character. In addition,
the preprocessing phase uses a two-dimensional array to shift the pattern by m+2 if the next two

characters to the rightmost character do not exist in the pattern (Thathoo et al., 2006).

“The time complexity is O(m+a°) for the preprocessing phase and O(mn) for the searching
phase” (Charras & Lecroq, 2004). Figure 2-8 below shows an example that illustrates the main
principles of Berry-Ravindran algorithm and Table 2-10 shows the Berry Ravindran algorithm

bad character table (brBc):

Table 2- 10: The Berry-Ravindran brBc table
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The brBc table in Table 2-10 calculates the shift value using the next two characters to the
current text window. If the next two characters do not exist in the pattern, then the shift value is
m+2 and in this example is 10 positions. The rightmost occurrence of characters [2C] is 2 and of
characters [O2] is 7. In the following example the pattern starts and ends with character ‘C’, so if
the next character to the current text window is ‘C’, the shift value is 1. Otherwise if the second

character next to the current text window is ‘C’ then the shift value is 9.

Figure 2-8: First attempt

COZOCOZCZCHZHZOZCHZOC
1 2 3 4

C022C2C

Total Shift Value = 1 (brBc[C][2])
In the first attempt, the first three comparisons (leftmost characters) have found a match. The
fourth comparison produces a mismatch which causes a shift to the right by one position depends
on the next two characters to the current text window [C2]. It starts the search again in other

attempts following the same procedure.

Figure 2-8: Second attempt

CEZHOCOZCZCHZHZOZCHZOC
1

02C2C2C

Total Shift Value = 2 (brBc[2][C])
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Figure 2-8: Third attempt

C020C02C2CH2H202CH20C
1

O2C2C2C

Total Shift Value = 2 (brBc[2][C])

Figure 2-8: Fourth attempt

C02HOC02C2C2CH202CH2OC
1 2345678

co2cC2cC2C¢C

Total Shift Value = 10 (brBc[HI[2])

Figure 2-8: Fifth attempt

C02HOC02C2C2CH2202CH20
1

02C2C2C

Total Shift Value = 1 (brBc[C][0])

Figure 2-8: Sixth attempt

C02HOC02C2C2CH2HO2CH20C
1

02C2C2C

Total Shift Value = 10 (brBc[0][0])

Figure 2- 8: The Berry-Ravindran algorithm example
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Applying the Berry-Ravindran algorithm on the above example performs six attempts
and sixteen character comparisons to find the pattern in the text. Figure A-7 shows the Berry-

Ravindran algorithm code(Charras & Lecroq, 1997).

2.7 The Sixth Category: Using a Hashing Function

The preprocessing phase here is shifting the pattern based on a single preprocessing hashing

function. The Karp-Rabin (KR) algorithm is an example (Karp & Rabin, 1987).

2.7.1 The Karp-Rabin Algorithm (KR)

The KR algorithm was developed by R. M. Karp and M. O. Rabin in 1987 ( Karp & Rabin,
1987).. The KR algorithm uses a hashing value to find patterns inside the text. The hashing
function counts a numeric value for the text window and the pattern, if it is a different value then
a definite mismatch is encountered, therefore, it moves the pattern to the right one position each
time (Stephen, 1994). The MOD (modulus) operation is used to reduce the hash value of
substring. There is a big problem using the hashing method called “spurious hits” where different
substring can have the same hashing value. This is why the searching phase of KR searches the
pattern again from leftmost to rightmost character to check if the search pattern and text window
characters are similar. In most cases in a good hashing function, this will not happen, which

keeps the average search time good (Karp & Rabin, 1987; Cormen, et al. 1990).

The time complexity of the preprocessing phase is O(m) and of the searching phase is O(mn)
(Cantone, et al., 2004) . Figure 2-9, Figure 2-10 below show examples which illustrate the main
principles of Karp-Rabin algorithm and Table 2-11 shows the Hash value for the searched

pattern:
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[ABABG—>hash

BCACABABABCCA initial hash ~ BCACABABABCCA
BCACABABABCCA update in O(1) BCACABABABICCA
BCACABABABCCA BCACABABABCCA
BCA[CABABABCCA

Figure 2- 9: First Example of the Karp-Rabin algorithm

Figure 2-9 illustrates the KR algorithm preprocessing and searching phases. It starts with
calculating the hash value of the pattern “ABABC”. It searches the text by calculating the hash
value of m length of the text “BCACA”. In this attempt the hash values are different, so it moves
one position to the right and calculates the hash value for each text window until a match is

found in the last attempt.

Character

Hash value[substring]

Table 2- 11: Hash value for the searched pattern

Table 2-11 calculates the hashing value of the pattern “CO2C2C2C” using the basic hashing
function of the KR algorithm in Figure A-8. The hashing value of the pattern is 15246. The
searching phase of the KR algorithm in Figure 2-16 starts with calculating the hashing value of
each text window with length m. The first five attempts produce a different hashing value from
the pattern hashing value. The sixth attempt produces the same hashing value of the pattern. The
KR searching phase in the same attempt compares characters from the leftmost character to the
rightmost character to check if the search pattern and text window characters are similar and to
avoid the “spurious hits” problem which explained in section 2.7.1. After the whole match it
moves again one position to the right and performs seventeen attempts to reach to the end of

given text.
60



Figure 2-10: First attempt Hash [0 .. 7] 15468
C O2HOCOZ2C2C2CH2H202CH?2O00C

c O2 C 2 C 2 C

Figure 2-10: Second attempt Hash [1 .. 8] 15182
C O 2 HOC CUO2C2C2CH2H202CHZ2O0C

c O 2 C 2 C 2C¢C

Figure 2-10: Third attempt Hash [2 .. 9] 15628
C O 2 HOZC COZ?2C?2C2CH2H202CHZ2O0C¢C

C O 2 C 2 C2C

Figure 2-10: Fourth attempt Hash [3 .. 10] 17038
C O 2 HOU COZ?2C2C2CH2H202CHZ2O0C¢C

cC O 2 C 2C2C

Figure 2-10: Fifth attempt Hash [4 .. 11] 14988

Cc O2HOCO?2C2C2CH2H202CH2O0C¢C

C O 2 C2C2C

Figure 2-10: Sixth attempt Hash [5 .. 12] 15246
C O2 HOC COQ2C2C2CH2H2O02CHZ2O00C¢cC

1 2 345678
C O2C2¢c¢C2C¢C
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Figure 2-10: Seventh attempt Hash [6 .. 13] 14751

C O 2 HOZCOZ 2C2C2CH?2H202CH?2O0CcC
C O2C2¢cC2C¢C
Figure 2-10: Eighth attempt Hash [7 .. 14] 14766
C O 2 HOZ CUOZ 2C2C2CHZ2H202CH?2O00C¢C
co2cCc2c¢C2CcC
Figure 2-10: Ninth attempt Hash [8 .. 15] 15327
C O2 HOZC COZ2C2C2CHZ2H202CH?2O0C¢C

CO0O2C2¢C2C

Figure 2-10: Tenth attempt Hash [9 .. 16] 14894

C O2HOCO2C2C2CHZ2H2O02CH?2O00C¢C

cCcOo02cC2¢C2C

Figure 2-10: Eleventh attempt Hash [10 .. 17] 15566
C O 2 HOUC O=2C2C2CH?2H202CH?2O00C¢C

co2cC2cC2C

Figure 2-10: Twelfth attempt Hash [11 .. 18] 15372
C O2HOCOZ2C2C2CH2H2O02CHZ2O0C

co2cC2¢cC2C
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Figure 2-10: Thirteenth attempt Hash [12 .. 19] 16526

C O 2 H O C O2C2C2CH2H202CHZ2O0C¢C
co2cC2¢C2C¢cC
Figure 2-10: Fourteenth attempt Hash [13 .. 20] 17311

c O 2 HOCUOZ2C2C2CHZ2HZ2O02CHZ2O0CcC

cCcOo2C2C¢C2C

Figure 2-10: Fifteenth attempt Hash [14 .. 21]

15534
Cc 0O 2 H O C O2C2C2CHZ2H2O02CH?2O00C

co2cCc2c¢Cc2z2C

Figure 2-10: Sixteenth attempt Hash [15 .. 22]

16846
cC O 2 H O C OZ2C2C2CHZ2H?202CH?2O00C¢C

CO2C2CcC2C

Figure 2-10: Seventeenth attempt Hash [16 .. 23]
C O 2

14610
H O C O 2C2C2CH2H2O02CHZ2O0CcC

co2cC2¢C2C
Figure 2- 10: Second Example of the Karp-Rabin algorithm

Applying the Karp-Rabin algorithm on the above example performs seventeenth attempts

and twenty five character comparisons to find the pattern in the text. Figure A-8 shows the Karp-

Rabin algorithm code (Charras & Lecroq, 1997).
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2.8 The Seventh Category: Computing Buckets for All Characters of the Alphabet

In this group, the pattern shift depends on a single preprocessing function depending on
computing buckets for all characters of the alphabet. The computing buckets process presents all
the locations of each character in the pattern where if a character occurs k times in the pattern,
there are k corresponding positions in the bucket of the character as explained in sections 2.8.1
and 2.8.2. Examples are the Skip Shift algorithm (SS) (Charras et al., 1998) and the Alpha Skip

Shift algorithm (ASS) (Charras et al., 1998).

2.8.1 The Skip Shift Algorithm (SS)

The SS algorithm was developed by C. Charras, T. Lecroq and J. D. Pehoushek in 1998. The
preprocessing phase of the SS algorithm preprocesses the pattern by computing buckets for all
characters that exist in the text and the pattern. The search phase scans the m-th symbol to define
a possible starting search point and to align identical symbols in the pattern and executes
matching starting from the rightmost character to the leftmost character of remaining characters.
When a whole match or a mismatch is encountered, the pattern is moved to align the next
identical character in the pattern to the one in the text and start matching the other characters in
the same previous order. (Charras & Lecroq, 2004). The time complexity of the preprocessing
phase is O(m+o0) and of the searching phase is O(mn). Figure 2-11 illustrates the main principles

of the SS algorithm and Table 2-12 shows the SS table of the Skip Search algorithm:

Character | Skip table[character]

2

{7,5,3,0}
D=3

Table 2- 12: Skip Search table used by SS algorithm
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Table 2-12 computes a bucket for each alphabet by presenting the k location(s) for each
character. Character ‘2’ is located in locations 6,4 and 2, character ‘O’ in location 1, character
‘C’ in locations 7, 5, 3 and 0 and character ‘H’ is not in the pattern and will cause a shift to the

right by 8 positions.

Figure 2-11: First attempt

COZHOCEZCZCZCHZHZOZCHZOC
31 2
CO2C2§82 C

Total Shift Value = 3 (Alpha Skip Search [2])

The searching phase of the SS algorithm defines a possible starting point by locating the m™
character of the text window with the same character of pattern using the bucket. In this attempt
the m™ character is 2’ and it is rightmost location at position 2. It aligns similar characters and
starts comparison from the right to the left. The third comparison produces a mismatch and in
this case it aligns the next location of character 2’ from the bucket and in the second attempt is
location 4. It follows the same procedure until a whole match is occurred in the third attempt and

six attempts performed to reach to the end of the given text sample.

Figure 2-11: Second attempt

COZHOCEZCZCZCHZHZOZCHZOC
514 32
C022C2C

Total Shift Value =2 (Alpha Skip Search [2])
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Figure 2-11: Third attempt
CO2HOCO2C2C2CH2H202CH?2O0C¢C
8 76 54321
cCcoO2cC2cC2C¢C

Total Shift Value = 1 whole match occur

Figure 2-11: Fourth attempt

COZHOCOZCZCZCZHZOZCHZEC

1
C O2C2C¢C 2
Total Shift Value = 8 (Skip Search [H])

Figure 2-11: Fifth attempt

COZHOCOZCZCZCHZHZOZCHZEC
1

cCco2cC2¢c¢C2C

Total Shift Value = 1 (Skip Search [O])

Figure 2-11: Sixth attempt

C02HOC02C2C2CH2H202CH2C
1

cCO02C2C2

Figure 2- 11: The Skip Search algorithm example

Applying the SS algorithm on the above example performs sixth attempts and nineteen
character comparisons to find the pattern in the text. Figure A-9 shows the SS algorithm code

(Charras & Lecroq, 1997).
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2.8.2 The Alpha Skip Shift Algorithm (ASS)

The ASS algorithm was developed by C. Charras, T. Lecroq and J. D. Pehoushek in 1998. It
is as an improvement of the SS algorithm (Charras, et al., 1998). The SS bucket list uses single
identical characters to move the pattern, while the ASS algorithm uses substrings whose length
may be longer than one character (Cantone et al, 2004). For any sub-text (b) in the text, find a
nearest (b) in the pattern. If such (b) in the pattern exists, then move the pattern to align the two
portions. If does not exist, then maybe consider a new text window. The preprocessing phase of
the ASS algorithm depends on constructing a tree T(x) of all sub-texts of length L. There is then
one bucket for each leaf of T(x) which stores the list of positions of all substrings with length L=
logs(m) assuming that the size of the alphabet X of the text and the pattern is . The searching
phase uses the information stored in the bucket to compare text T with pattern P (Cantone et al.,
2005). Figure 2-12 below shows an example for a tree T(x) of all substrings of the pattern

“ababbaba” with length 8. The T(x) length is L= log; (8) = 3.

01 2 3 4 5 6 7
P: ababbaba

[01 [2] [4.1] [3] [5.01[2] [4.1] [3]

Figure 2- 12: An example for tree T(x) of all substrings with L=3

Figure 2-12 structures a tree T(x) for the given pattern “ababbaba” with substrings of length
3 and the location of each substring. For example substring “aba” is located at position [0],

substring “bab” is located at positions [1] and [4], substring “abb” is located at position [2],
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substring “bba” is located at position [3], and substring “aba” is located at positions [0] and [5].

The time complexity of the preprocessing phase is O(m+ao) and of the searching phase is
O(mn) (Charras, et al., 1998). Figure 2-13 below shows an example that illustrates the main
principles of the ASS algorithm and Table 2-13 shows the Alpha Skip Search algorithm skip
table:

Character | Alpha Skip table[character] = m-position-length |

2C2 {42} =1
02C (1) =4

CO2

H

|
|
c2C {53} =2 |
|
|

Table 2- 13: Alpha Skip Search table used by ASS algorithm

Table 2-13 computes a bucket in the same way as the preprocessing function of the SS
algorithm. But the ASS algorithm uses substrings whose length may be longer than one character
comparing to the SS algorithm. It presents the k location(s) for each substring. The substring
length in this example is 3. So the substring “2C2” is located in locations 4 and 2, substring
“O2C” in location 1, substring “C2C” in locations 5 and 3, substring “CO2” in location 0 and

character ‘H’ is not in the pattern and will cause a shift to the right by 8 positions.

Figure 2-13: First attempt

CO2HOC2C2CH2H202CH20C
3 21

Total Shift Value =5 (Alpha Skip Search [CO2])
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The first attempt using the last three characters of current text window produces a mismatch.
The SS algorithm defines a possible starting point by locating the text window’s substring with
the same substring of pattern using the bucket. In this attempt the text window’s substring is
“CO2” and it is rightmost location at position 0 of the pattern. It aligns similar characters and
starts comparison from the right to the left as shown in the second attempt. It follows the same
procedure until a whole match is occurred in the second attempt and four attempts performed to

reach to the end of the given text sample.

Figure 2-13: Second attempt

CO2HOCO2C2C2CH2H202CH2O0CcC
1 2387654
co2cCc2¢cC2C¢C

Total Shift Value = 1 whole match occur

Figure 2-13: Third attempt

C02HOC02C2C2H202CH20C
321

Total Shift Value = 8 (Alpha Skip Search [H])

Figure 2-13: Fourth attempt

C02HOC02C2C2CH2H2020C
321

Total Shift Value = 8 (Alpha Skip Search [H])

Figure 2- 13: The Alpha Skip Search algorithm example
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Applying the ASS algorithm on the above example performs four attempts and nineteen
character comparisons to find the pattern in the text. Figure A-10 shows the ASS algorithm code

(Charras & Lecroq, 1997).

2.9 The Eighth Category: Using Hybrid Algorithms

In this classification, to enhance the efficiency of searching algorithms, a combination of
two or more algorithms is used. Examples are the SSABS (Sheik et al., 2004), FJS (Franek, et
al., 2005), TVSBS (Thathoo, et al., 2006), ZTMBH (Huang et. al, 2008), BRFS (Huang et Al.,
2008), BM-KMB (Xian-feng et al., 2010), BRSS (Almazroi & Rashid, 2011), ASSBR
(Almazroi, 2011), MRCA (Mhashi, 2012), KRBMH (Hasan & Rashid, 2012), QSS (Naser, et al.,

2012) and AKRAM (AbdulRazzaq, et al., 2013) algorithms.

2.9.1 The SSABS Algorithm

The SSABS algorithm was developed by S. S. Sheik, S. K. Aggarwal, A. Poddar, N.
Balakrishnan and K. Sekar in 2004 (Sheik, et al., 2004). The SSABS searching phase firstly
compares the rightmost character, then the leftmost character, and finally it starts from position
m-1 moving backward to the second position of the pattern (Kalsi, et al., 2008). The
preprocessing phase of SSABS algorithm uses the same gsBc function of the QS algorithm

(Sheik, et al., 2004).

The time complexity of the preprocessing phase is O(m+a) and of the searching phase is

O(mn) (Sheik, et al., 2004). Figure 2-14 illustrates the main principles of the SSABS algorithm
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and Table 2-14 shows the Quick Search algorithm bad character table (qsBc) which is used by

the SSABS algorithm:

Character | C | 2 | (0] | H |

217191

quc[Character]| 1 | 2

Table 2- 14: The gsBc table used by SSABS algorithm

Figure 2-14: First attempt
CO2HOCOpE®aE2 C2CH2H2O02CH?2O0C

1
C02C2C2

Total Shift Value = 1 (gsBc[C])

Figure 2-14: Second attempt
CEZHOCOZCCZCHZHZOZCHZOC

2 1
02C2C2C

Total Shift Value =2 (gsBc[2])

Figure 2-14: Third attempt
C020C02C2CCH2H202CH20C

2 1
02C2C2C

Total Shift Value = 2 (gsBc[2])

Figure 2-14: Fourth attempt
C02HOC02C2C2C2H202CH20C

2 87 65431
co2cCc2¢cC2C¢C

Total Shift Value = 9 (gsBc[H])
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Figure 2-14: Fifth attempt
CO2HOCO2C2C2CHZ2H?2O02C HppmeC
1
C02C2C2

Figure 2- 14: The SSABS algorithm example

Applying the SSABS algorithm on the above example performs five attempts and
fourteen character comparisons to find the pattern in the text. Figure A-11 shows the SSABS

code (Sheik, et al., 2004).
2.9.2 TheFJS Algorithm

The FJS algorithm was developed by F. Franek, G. J. Christopher, and F. S. William in
2005. It uses both the Knuth Morris Pratt (KMP) and the Quick Search algorithms (Franek, et al.,

2005).

The FJS searching phase searches the pattern in the same way as the KMP searching
phase where it starts from the leftmost character and moves forward to the rightmost character
(Franek, et al., 2005). In each window if the mismatch occurs in the first position or if a whole
match is encountered it shifts the pattern using the gsBc table of the Quick Search algorithm
which depends on the rightmost character of the current window. Otherwise it uses the KMP
preprocessing phase which uses the matched characters in each window as a sub-pattern (prefix)
for shifting the pattern (Knuth, et al., 1977). The time complexity of the qsBc is O(m+a), the
KMPBc is O( m’ ) and of the searching phase is O(mn). Figure A-12 below shows the code for the

FIJS algorithm.
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2.9.3 The TVSBS Algorithm

The TVSBS algorithm was developed by R. Thathoo, A. Virmani, S. S. Lakshmi, N.
Balakrishnan and K. Sekar in 2006. In addition, the searching phase of the TVSBS algorithm
searches the pattern in the same way as the SSABS searching phase which compares the
rightmost character, then the leftmost character, and finally it starts from position m-1 moving
backward to the second position of the pattern. If a whole match or a mismatch is encountered,

the brBc function of the BR algorithm is used.

The time complexity of the preprocessing phase is O(m+c~) and of the searching phase is
O(mn) (Thathoo, et al., 2006). Figure 2-15 illustrates the main principles of the TVSBS

algorithm and Table 2-15 shows the brBc table which used by the TVSBS algorithm:

Character | 2 | O | C| H |
|10]10] 2] 10]

| 7 10]9]10]

EEBERYRY
|10] 10| 9] 10]

Table 2- 15: The brBc table used by TVSBS

Figure 2-15: First attempt
COZHOCOCZCHZHZOZCHZOC

1
C02C2C2

Total Shift Value = 1 (brBc[C][2])
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Figure 2-15: Second attempt
CE2HOC02C2CH2H202CH20C

2 1
O2C2C2C

Total Shift Value = 2 (bmBc[2][C])

Figure 2-15: Third attempt
C020C02C2CH2H202CH20C

2 1
02C2C2C

Total Shift Value = 2 (bmBc[2][C])

Figure 2-15: Fourth attempt
CO2HOC02C2C2C2H202CH20C

2 87 65 431
co2cCc2cC2C

Total Shift Value = 10 (gsBc[H][2])

Figure 2-15: Fifth attempt
CO2HOCO2C2C2CH2HZ2O02CH 2}jeNe

1
C02C2C2

Figure 2- 15: The TVSBS algorithm example

Applying the TVSBS algorithm on the above example performs five attempts and

fourteen character comparisons to find the pattern in the text. Figure A-13 shows the TVSBS

code (Thathoo, et al., 2006; Kalsi, et al., 2008)).
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294 The ZTBMH Algorithm

The ZTBMH algorithm combines the ZT and BMH algorithms. The algorithm was
developed in 2008 by Y. Huang, X. Pan, Y. Gao, and G. Cai (Huang et al., 2008a). It searches
the pattern in the same way as the BMH searching phase and it shifts the pattern if there is any

mismatch or a whole match using the ztBc of the ZT algorithm.

The time complexity of the preprocessing phase is O(m+¢°) and of the searching phase is
O(mn) (Huang et al., 2008a). Figure 2-16 illustrates the main principles of ZTBMH algorithm
and Table 2-16 shows the Zhu-Takaoka algorithm bad character table (ztBc) which is used by

ZTBMH algorithm:

Character | 2| O| C| H|

|8]8[2]8]
|51 8]7]8]
[ 1]6]7]8]
|8]8[7]8]

Table 2- 16: The ztBc table used by ZTBMH

Figure 2-16: First attempt

C2C2CH2H202CH2O0C

Total Shift Value = 5 (z¢Bc[O][2])
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Figure 2-16: Second attempt

CO2HOCO2C2C2CH2H202CHZ2O0C¢C
2 34567281

co2cCc2cC2C

Total Shift Value = 2 (ztBc[2][C])

Figure 2-16: Third attempt

C02HOC02C2C2CHH202CH20C

1
C02C2C2

Total Shift Value = 8 (ztBc[H][2])

Figure 2-16: Fourth attempt

COZHOCOZCZCZCHZHZOZCHZEC

1
C02C2C2

Figure 2- 16: The ZTBMH algorithm example

Applying the ZTBMH algorithm to the above example performs four attempts and eleven

character comparisons to find the pattern in the text. Figure A-14 shows the ZTBMH code

(Huang et al., 2008a).

2.9.5 The BRFS Algorithm

The BREFS algorithm combines the BR and the FS algorithms. The algorithm was developed

in 2008 by Y. Huang, L. Ping, X. Pan, and G. Cai (Huang, Ping et al., 2008). The preprocessing
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phase of the BRFS algorithm uses two preprocessing functions of the BR and the FS algorithms.
In addition, the searching phase searches the pattern in the same way as the searching phase of
the FS algorithm (Huang et al., 2008b). The preprocessing function of the BRFS always uses the
good-suffix preprocessing function of the FS algorithm to shift the pattern, but if there is a whole
match or a mismatch at the last text character, it uses the BR preprocessing function (Huang,
Ping et al., 2008). The time complexity of the brBc function is 0(m+(72 ), the fsGs is O(m2 ) and

of the searching phase is O(mn) (Huang et al., 2008b). Figure 2-17 illustrates the main principles

of the BRFS algorithm, Table 2-20 shows the Berry-Ravindran algorithm, the bad character table
(brBc) and Table 2-17 shows the Fast Search good suffix (fsGs) table which is used by the BRFS

algorithm:

Table 2- 17: The brBc table used by the BRFS algorithm

Figure 2-17: First attempt

C02HOCOC2C2CH2H202CH20C
1

C02C2C2

Total Shift Value = 1 (brBc[C][2])
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Figure 2-17: Second attempt
COZHOCEZCZCZCHZHZOZCHZOC

321

CO2C2fa2 C

Total Shift Value =4 (fsGs[O])

Figure 2-17: Third attempt
CO2HOCO2C2C2CH2H2O02CH?2O0C
8 7 6 543 21
co2cCc2cCc2CcC

Total Shift Value = 10 (brBc[HI[2])

Figure 2-17: Fourth attempt

COZHOCOZCZCZCHZHZOZCHZEC

1
C02C2C2

Figure 2- 17: The BRFS algorithm example

In this example the BRFS searching algorithm performs four attempts and thirteen character

comparisons to find the pattern in the text. Figure A-15 shows the BRFS algorithm code (Huang

et al., 2008b).

2.9.6 The BM-KMB Algorithm

The BM-KMB algorithm was developed by H. Xian-feng, Y. Yu-bao and X. Lu in 2010.

It combines two searching phases of the KMP and the BM algorithms (Xian-feng et al., 2010).

Firstly, it starts from the rightmost character in the same way as the BM algorithm. If there is a
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mismatch, the BM preprocessing functions are used to shift the pattern. If there is a match it
starts from the leftmost character in the same way as the KMP algorithm and moves forward to
the right. If there is a mismatch while using the KMP searching phase it uses the KMP
preprocessing function to shift the pattern (Xian-feng et al., 2010). The time complexity of the

bmGs function is O(m’), the KMP table is O(m’) and of the searching phase is O(mn). Figure A-

16 shows the code for the BM-KMB algorithm.

2.9.7 The BRSS Algorithm

The BRSS algorithm was developed by A. Almazroi and N. Rashid in 2011. It combines the
BR and the SS algorithms (Almazroi & Rashid, 2011). It uses a hybrid preprocessing phase by
building two tables: the first one is the bucket list table of the SS algorithm, and the second table
is the brBc(a,b) of the BR bad character function. The bucket list table contains all the location
of the pattern and the text alphabets which will be used to align the next similar character if there
is a mismatch (Almazroi & Rashid, 2011). The searching phase of the BRSS algorithm uses the
SS searching phase to scan text window characters for a possible start point and if a whole match
or a mismatch occurs, the pattern is shifted using the bigger shift value between the brBc and the

bucket list (Almazroi & Rashid, 2011).

The time complexity of the brBc is 0(m+c72 ), the SS table is O(m+0) and of the searching
phase is O(mn) (Almazroi & Rashid, 2011). Figure 2-18 below shows an example which
illustrates the main principles of the BRSS algorithm, Table 2-18 shows the Berry-Ravindran
bad character table (brBc) and Table 2-19 shows the Skip Search table which are used by the

BRSS algorithm:
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Character | 2 | O | C| H |

|10]10] 2] 10]
| 7 10]9]10]
[t rfaf

|10] 10| 9] 10]

Table 2- 18: The brBc table used by the BRSS algorithm

Character | Skip table[character]

2 | (6,42} =2
{1} =7

o |
C | {7.53.0)=1
H |

D=3

Table 2- 19: Skip Search table used by BRSS algorithm

Figure 2-18: First attempt

COZHOCEZCZCZCHZHZOZCHZOC
312
CO2C2§832 C

Total Shift Value =3 (Max(brBC [C][2], Skip Search [2])

Figure 2-18: Second attempt

COZHOCEZCZCZCHZHZOZCHZOC
514 32
CO 22 C 2 C

Total Shift Value =2 (Max(brBC [2][C], Skip Search [2])
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Figure 2-18: Third attempt
CO2HOCO2C2C2CH2H202CH?2O0C¢C
8 76 54321
cCcoO2cC2cC2C¢C

Total Shift Value = 1 whole match occur

Figure 2-18: Fourth attempt

COZHOCOZCZCZCZHZOZCHZEC
1
C02C2C2

Total Shift Value = 10 (Max(brBC [2][H], Skip Search [H])

Figure 2-18: Fifth attempt

C02HOC02C2C2CH2H02CH20C
2 1
02C2C2C

Figure 2- 18: The BRSS algorithm example

In this example the BRSS searching algorithm performs five attempts and nineteen character
comparisons to find the pattern in the text. Figure A-17 shows the BRSS algorithm code

(Charras & Lecroq, 1997).

2.9.8 The ASSBR Algorithm

The ASSBR algorithm was developed by A. Almazroi in 2011. It combines the ASS and the
BR algorithms (Almazroi, 2011). The searching phase of the ASS algorithm searches the pattern
using the ASS searching phase and if a whole match or a mismatch occurs it shifts the pattern

using the brBc(a,b) function of Berry-Ravindran algorithm (Almazroi, 2011).
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The time complexity of the brBc is 0(m+<72 ), the ASS table is O(m+ac) and of the searching
phase is O(mn) (Almazroi, 2011). Figure 2-19 illustrates the main principles of the BRSS
algorithm, Table 2-20 shows the Berry-Ravindran algorithm bad character table (brBc) and the
Table 2-21 shows the ASS table which used by the ASSBR algorithm:

Character | 2 | O | C| H |
|10]10] 2] 10]

| 7 110]9]10]

EEBERYRY
|10] 10| 9] 10]

Table 2- 20: The brBc table used by the ASSBR algorithm

Character | Alpha Skip table[character] = m-position-length |
2C2 {42} =1

02C (1) =4

CO2

H

|
|
C2C . |
|
|

Table 2- 21: Alpha Skip Search table used by ASSBR algorithm.

Figure 2-19: First attempt

C02HOC2C2CH2H202CH20C
3 21

Total Shift Value =1 (brBC[C][2])
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Figure 2-19: Second attempt

C02HOC2C2CH2H202CH20C
321

Total Shift Value =2 (brBC[2][C])

Figure 2-19: Third attempt

CO2HOCO2C2C2CH2H202CHZ2O0C¢C
4 56 78321
co2cCc2cC2C

Total Shift Value = 1 whole match occur

Figure 2-19: Fourth attempt

C02HOC02C2C2H202CH20C
321

Total Shift Value =10 (brBC[2][H])

Figure 2-19: Fifth attempt

COZHOCO2C2C2CH2H202CH

3 21

Figure 2- 19: The ASSBR Algorithm Example

In this example the ASSBR searching algorithm performs five attempts and twenty character
comparisons to find the pattern in the text. Figure A-18 shows the ASSBR algorithm code
(Charras & Lecroq, 1997).
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2.9.9 The MRCA Algorithm

The Multiple Reference Character algorithm (MRCA) was developed by M. Mhashi in

2012. It combines the KMP and QS algorithms (Mhashi, 2012).

The preprocessing phase of the MRCA algorithm depends on a “multiple references” role to
shift the pattern. It stores the last character of the text window in (ref;). Furthermore, it stores the
last character of the next text window (2 * pattern length) in (ref>) and whenever the letter does
exist in the pattern it allocates the pattern and starts the comparisons from the leftmost character
to the rightmost character (Mhashi, 2012). The time complexity of the preprocessing function is

O(m+o0) and of the searching phase is O(mn). Figure A-19 shows the MRCA algorithm code.

2.9.10 The KRBMH Algorithm

The KRBMH algorithm was developed by A. Hasan and N. Abdul Rashid in 2012. It

combines the KR and BMH algorithms (Hasan & Rashid, 2012).

The searching phase of the KRBMH algorithm searches the pattern using the hashing
value of the Karp Rabin algorithm, if a whole match or a mismatch is founded, the hrBc table of
the BMH algorithm is used to shift the pattern (Hasan & Rashid, 2012). The time complexity of
the hrBc is O(m+a), the KR hashing table is O(m) and of the searching phase is O(mn). Figure

A-20 shows the KRBMH algorithm code.

2.9.11 The Quick-Skip Search Algorithm (QSS)

The QSS algorithm was developed by M. Naser, N. Abdul Rashid and M. Aboalmaaly in

2012. It combines the Skip Search and Quick Search algorithms (Naser, et al., 2012).
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The searching phase of the QSS algorithm uses the SS searching phase. In addition, the
preprocessing phases of the SS and QS algorithms are used where if a whole match or a
mismatch is found, the pattern is shifted by choosing the bigger shifting value from either the
gsBc or the Skip Search tables. The time complexity of the qsBc is O(m+ac), the SS table is

O(m+o0) and of the searching phase is O(mn). Figure A-21 shows the QSS algorithm code.

2.9.12 The AKRAM Algorithm

The AKRAM algorithm was developed by A. A. AbdulRazzaq, N. Abdul Rashid and M.
F. Aboalmaaly in 2013. It combines the Two-way, QS and KR algorithms (AbdulRazzaq, et al.,

2013).

The preprocessing phase of the AKRAM algorithm divides the pattern into two blocks
(prefix and suffix). In addition, the preprocessing phase of KR which depends on hashing value

is used for both blocks (AbdulRazzaq, et al., 2013).

The searching phase of the AKRAM algorithm starts with the prefix block. If the hashing
value of the prefix does match, then it starts comparing all prefix characters from the leftmost
character to the rightmost character. If a whole match in the prefix part is found, it follows the
same procedure with the suffix part. If there is a whole match in both blocks and a mismatch
either in the prefix or suffix, the pattern is shifted using the qsBc function of the QS algorithm
(AbdulRazzagq, et al., 2013). The time complexity of the qsBc is O(m+0), the KR hashing table is

O(m) and of the searching phase is O(mn). Figure A-22 shows the AKRAM algorithm code.

2.10 Summary of String Matching Algorithms

This chapter gives a survey and a new classification of main string matching algorithms
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which includes the Brute Force algorithm (BF), the Boyer-Moore algorithm (BM), the Zhu

Takaoka algorithm (ZT), the Fast Search algorithm (FS), the Boyer Moore Horspool algorithm

(BMH), the Quick Search algorithm (QS), the Berry—Ravindran algorithm (BR), the Karp-Rabin

algorithm (KR), the Skip Shift (SS), the Alpha Skip Shift (ASS), the SSABS, FJS, TVSBS,

ZTBMH, BRFS, BM-KMP, BRSS, ASSBR, MRCA, KRBMH, QSS and AKRAM algorithms.

Table 2-22 summarizes and compares the algorithms that used in this research:

Algorithm
Name

Brute
Force
Algorithm
(BF)

Year

Very
Old

Compar
ison
Order

The First Category: Shift the Pattern a Single Position

From left
to right

The Second Category: Using Two Preprocessing Functions

Preprocessing Time

First
Function

Second

N/A N/A

Function Time

O(mn)

Searching

Searching Shifting
Value

Main
Characteristics

Shifts the pattern
only a single
position each

attempt. It does not
use the information
that could be gained
from the last
comparison made

Boyer-
Moore
Algorithm
(BM)

1977

Form
right to
left

O(m?)
bmGs

O(m+o)
bmBc

O(mn)

Uses two  pre-
processing

functions; the bad-
character shift and
the good-suffix shift
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It is a variant of the
BM algorithm by
improving only the
bmBc function. It
uses the last two text

characters to

Zhu- From compute the bad
Takaoka . Om+c?) | Omd) P .

. 1987 | right to O(mn) character shift

Algorithm ztBc bmGs .

@T) left instead of only one
character being used
in the BM
algorithm. The good
suffix rules are still
used to compute
shifts
Uses the  bad-
character  function
only if the character

Fast is. causi.ng the

From ’ mismatch is the last

Search . O(m+o) O(m")

. 2003 | right to O(mn) character of the

Algorithm fsBc fsGs

(FS) left pattern or a whole

Boyer-
Moore
Horspool
Algorithm
(BMH)

1980

match occurs,
otherwise the good-
suffix function is to
be used.

The Third Category: Depending on the Rightmost Character

Right-
most
character
then left-
most
character
then
moves
forward

O(m+o)
hrBc

N/A

O(mn)

Uses the Horspool
bad-character  pre-
processing function
based on the
rightmost character
in the  current

window.
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The Fourth Category: Depending on the Next Character to the Rightmost Character

Quick-
Search
Algorithm

(QS)

1990

From left
to right

O(m+o0)

B N/A

O(mn) m+1

Uses the Quick-
Search bad-
character
preprocessing

function based on
the next character to
the current window.

The Fifth Category: Depending on Two Characters Next to the Rightmost Character

Berry-
Ravindran
Algorithm
(BR)

1999

O(m+c°)
brBc

From left

N/A
to right

O(mn) m+2

The Sixth Category: Using a Hashing Function

Uses the Berry-
Ravindran pre-
processing function
based on the next
two characters after
the current window
in order to increase
the shifting value of
the pattern

Karp-
Rabin
Algorithm
(KR)

1987

O(m)
From left KMP
A 1
to right Hashing N/ O(mn)
Function

Uses the Karp-
Rabin pre-
processing hashing
function.
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The Seventh Category: Computing Buckets for All Characters of the Alphabet

Computes a bucket
for pattern and text
Form alphabets, with start
. O(m+o) o
1998 | right to N/A O(mn) 1 positions of each

SS Table .
left alphabet in the
pattern to be used

for a possible shift

Skip Shift
(SS)

Computes a bucket
for substrings with

length L= logs(m),
Alpha Form O(m+o)

ith start iti
Skip Shift | 1998 | right to ASS Table N/A O(mn) 1 Ovzleacil Sub};gsi; 101;;
(ASS) left g

the pattern to be
used for a possible
shift

The Eighth Category: Using Hybrid Algorithms

Right-
most
character o
then left A Combination of
ent . the  Quick-Search
mos
O bad-charact -
SSABS 1 5004 | character | O | /A Omn) | mer | 2CCharacker  pre
Algorithm gsBc processing functions
then .
with a new
starts searching order
from m-2 & '
moving
backword
Uses the Karp-
Rabin pre-
o) processing hashing
FJS . 2005 Fro.m left] O(m+o) KMP O(mn) mtl function and. shifts
Algorithm to right gsBc Table the pattern using the
preprocessing
function of the QS
algorithm
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A combination of
the Berry Ravindran

Same pre-processing
) -
zl\:)?:hm 2006 :ﬁiy s OE;?];:) N/A O(mn) m+2 functi(?n and the
SSABS searching phase of
the SSABS
algorithm.
A combination of
the Zhu Takaoka
) preprocessing
igxﬁm 2008 ‘s;r;e N O(ng;:) N/A O(mn) M |function and the
the BMH searching phase of
the Boyer Moore
Horspool algorithm.
Using
the A combination of
searchin the Berry Ravindran
hase ) ) reprocessin
BREFS 2008 if ’ the | Om+or) | Omtan) ) m+2 If)unition afd the
Algorithm brBc fsGs ]
Fast searching phase of
Search the Fast Search
algorith algorithm.
m
If last chracter is
casuing the
BM-KMP Same 0 (m+c52) O(mz) .mismatch, the mec
Algorithm 2010 fway as bmGs KMP O(mn) M is used. Otherwise
the BMH Table the KMP table is
used to shift the
pattern
It shifts the pattern
Same 9 using the bigger
izifithm 2011 { way as OE;?];:) S()S(r"lfl:lfl)e O(mn) m+2 shift value between
the the SS Table and the
SSABS brBc function
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ASSBR
Algorithm

2011

Form
right to
left

O(m+c?)
brBc

O(m+o)
ASS Table

O(mn)

m+2

Uses  the
searching phase as
the ASS table and
shifts the pattern
using the brBc
function

same

MRCA
Algorithm

2012

From left
to right

O(m+o)
MRCA
Table

N/A

O(mn)

Uses the “multiple
references” role to
shift the pattern. It
stores the position of
the last character of
current window and
next windows in
references and move

pattern accordingly.

KRBMH
Algorithm

2012

From left
to right

O(m+o)
hrBc

O(m)
KR
Hashing
Function

O(mn)

Uses the KR pre-
processing hashing
function. If same
value then searches
from left to right. It
and shifts the pattern
using the (gsBc
function

QSS
Algorithm

2012

From left
to right

O(m+o)
gqsBc

O(m+o)
SS Table

O(mn)

m+1

Uses  the
searching phase as
the SS algorithm. It
shifts the pattern
using the SS table
and the
function

same

gsBc

AKRAM
Algorithm

2013

From left
to right

O(m+o)
gqsBc

O(m)
KR
Hashing
Function

O(mn)

m+1

Divide the text
window and the
pattern to prefix and
suffix. Use the same
searching phase as
the KRBMH for
prefix part first then
suffix part. If there
i1s a whole match,
the gsBc is used

Table 2- 22: Summary of algorithms been used in this research
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2.11 SMILES Format

SMILES is a chemical language that is commonly used amongst chemists which presents
chemical structures in digital databases as a linear string notation (Weininger et al., 1989;
Weininger, 1988). In addition, the linear string notation can be easily used and implemented

using computer programs rather than using graphical structures (Rowley et al., 2001).

It was originally developed in the 1980’s by David Weininger, and has since been modified

by Daylight Chemical Information Systems Incooperation.

The SMILES system was designed in order to achieve three main objectives — (1) the
representation of the chemical structure can be uniquely designed to include structure
components such as atoms and bonds. (2) Unique notations are to be interpreted and generated
through a machine friendly and machine independent system, (3) A structure specification

should be provided in order to provide ease for the user (Weininger, 1988).

SMILES can be used as a text to represent a chemical structure. It is a language paradigm
rather than a data structure, and this is why it is more valuable and important. “It takes 50% to
70% less space than an equivalent connection table. For example, a database of 23,137
structures, with an average of 20 atoms per structure, uses only 1.6 bytes per atom when they

represented with SMILES format” (Daylight Chemical Information Systems, 2008).

SMILES is a formal language with a well-defined grammar over an alphabet of symbols,
atoms and bonds with certain grammar rules. SMILES’s format strength lies in the unique
generated format for each molecule which makes it easy to search the molecule structure
(Weininger et al., 1989; Neglur et al., 2005). Table 2-23 below shows some examples of

structures in SMILES format:
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CC Ethane
0=C=0 Carbon Dioxide
CHEN Hydrogen cyanide
CCN(CCO)CC Triethylamine
CC(=0)O Acetic acid
ClCccCccCl Cyclohexane
[OH;'] Hydronium ion
[2H]O[2H] Deuterium oxide

Table 2-23: Structures in SMILES format examples

SMILES consists of 6 syntax rules that can be applied to any chemical structure which allow
two-dimensional chemical structures to be represented in SMILES as follows (Rowley et al.,
2001; De Raedt & Kramer, 2003 ; Daylight Chemical Information Systems, 2008; U.S.

Environmental Protection Agency EVA, 2009):

1) SMILES Atoms: there are two types of SMILES atoms rule. The first one presents
compounds of elements not in the organic subset “S, O, C, I, B, F, N, P, CI and Br” which are
represented in SMILES using their atomic symbol enfolded between square brackets. The second
type presents compounds of the “organic subset” elements which are represented in SMILES
using their atomic symbol (a letter) without hydrogen atom symbols and without the square
brackets. Some of the organic subset needs to be enfolded between square brackets if they have
atoms with valences ‘“unusual number of bonds an atom forms”. For both types of atoms the
second letter of a two character symbol is represented in a lower case. Below Table 2-24 and

Table 2-25 are examples of how atoms are represented in SMILES for botth types.
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Structure  Structure Name SMILES Atoms Rule

(CHy) Methane C
(PH5) Phosphine P
(NHj3) Ammonia N
(H.S) Hydrogen sulphide S
(H,O) Water O
(HCI) Hydrochloric acid Cl

Table 2-24: The SMILES atom rule of structures with organic subset elements

Element Structure Name SMILES Non-Hydrogen Atoms Rule

S Sulfur [S]

Au Gold [Au]

Table 2-25: The SMILES atom rule of non-organic elements

Hydrogens and charges attached to elements in brackets must always be stated. Ions that
have one or more electrical charges are represented in SMILES by either a + for a positively
charged or — for a negative charge then followed by the number which indicates the number of
charges, all of which is enclosed in brackets, below Table 2-26 is an example. An alternative
method in which a charge can be represented in SMILES is by having the sign for the number of
ions that are to be represented, below Table 2-27 is an example.

Structure Name SMILES

Iron (II) Cation [Fe+2]
Sulphides [S-2]

Table 2- 26: Examples of positive and negative charges represented by numbers
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Structure Name SMILES

Iron (II) Cation [Fe++]
Sulphides [S--]

Table 2-27: Examples of positive and negative charges represented by signs

2) Bonds: a single bond can either be ignored or be represented by the symbol “-“, double
bond are presented by the symbol “=", a triple bond is represented by the symbol “#” and an
aromatic bond is represented by “:” (Daylight Chemical Information Systems, 2008). In the
instance of SMILES, adjacent atoms are to consider to be either connected via single or aromatic

bonds. A typical example of how SMILES represent bonds is as follows in Table 2-28:

Structure Structure Name Bond SMILES ‘
(CH;CH3) Ethane Single C-C
(CH;CH3) Ethane Single CC
(CH,0O) Formaldehyde Double C=0
(CH,=CH,) Ethene Double C=C
(HCN) Hydrogen cyanide Triple C#N
clceeeel Benzene Aromatic | cl:c:c:c:cicl

Table 2-28: Examples of SMILES bonds

3) Branches: A branch is represented in SMILES by placing the symbol between round
brackets. The string in bracket is always placed after the symbol of the atom from which
branches. If there is a double or triple bond then bond symbol follows the left hand side of the

bracket (U.S. Environmental Protection Agency EVA, 2009) as shown in Table 2-29.
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Isobutyric acid Triethylamine 3-propyl-4-isopropyl-1-heptene

T
Cf* CH, CHy
CHy © CH, | |

|| | o e

— CH—C— —CH,—N—CH,—C
HoC—CH—C—0H | RC—Cl aCHe | by c=CH—CH—CH—CH,—CHy—CHy

CC(C)C(=0)O CCN(CO)CC C=CC(CCO)C(C(O)O)ccC

Table 2-29: Examples of SMILES branches rule

4) Cyclic Structures: or cyclic bonds can be defined by referencing the carbon atoms with
numbers. For example, CICCCCCI1 (cyclohexane) is a string of six carbon atoms where the first
and sixth atoms are bonded together as defined with the number 1. In the instance where there
may be a multiple bond more numbers can be used to denote where multiple bonds exist. Below

Table 2-30 is an example:

Cyclohexane Structure

CHp_ c c
HC CH ¢ e ey

| | = | | = | => C1CCeect
HiC ~ CHy C C C Cy

“cHy "\.C,-f" “‘\-.c,.-"’

Table 2-30: Example of SMILES cyclic structure rule

5) Disconnected Structures — In order to represent disconnected compounds, which do not
have a covalent bond to join the two structure together, these are constructed by writing

individual structures which are separated by a “.” as below in Table 2-31.
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Sodium Phenoxide

Ha™t O'@ —» [Ha+].[0-]clcococel

Table 2-31: Example of SMILES disconnected rule

6) Aromaticity — Aromaticity is a chemical property that defines unsaturated bonds, empty
orbitals or lone pairs of a conjugated ring (Daylight Chemical Information Systems, 2008).

Aromaticity rule presents S, O, N and C atoms in SMILES as lower-case (s, 0, n and c). Table 2-

32 below shows some examples:

Structure Name SMILES

Benzene clcceeel
Pyridine nlccccecl
Furan olccecl

Table 2-32: Example of SMILES aromaticity rule

The complete EBNF (Extended Backus-Naur Form) of SMILES language is listed in

Appendix B.
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2.12 Parallel Computing

In this section, a brief explanation of the parallel computing concept, Flynn’s Taxonomy, and

parallel programing models are provided.

In a sequential program, tasks (ti,t; ... t,) will run on a single CPU and one task will be

executed at any moment as shown in Figure 2-20 (Barney, 2010).

problem

instructions

Figure 2- 20: An example for the sequential program tasks execution

The simplest definition of parallel computing is a simultaneous use of more than one CPU to
run a computational problem as shown in Figure 2-21 (Barney, 2010). The multi CPU computing
resources could be a single computer with multiple CPUs or a number of computers connected
by a network, or a combination of both. The computational problem should be able to be broken
down into tasks that can be solved simultaneously, executing multiple tasks at any time and be

solved in less time with multiple CPUs.

98




problem instructions

N i3 2 i1

Figure 2-21: An example for the parallel program tasks execution

A
SRR

Parallel computing has been used in many areas of engineering and sciences such as
molecular sciences, biotechnology, medical imaging and diagnosis, bioscience, pharmaceutical
design, computer science, networked video and multi-media technologies, mathematics,

atmosphere, etc. (Barney, 2010; Rajasekaran & Reif, 2007).

2.12.1 Flynn’s Taxonomy

The best known way of classifying parallel computing is called Flynn’s Taxonomy,
introduced in 1966, and depends on two independent types the instruction stream and data stream
(Flynn, 1966). These types can have only one state, either single or multiple (Tucker, 2004) . The

following Figure 2-22 shows the classifications of Flynn’s taxonomy (Flynn, 1972).
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Single Multiple
Instruction Instruction
Stream Stream

Multiple
Data

Figure 2- 22: Flynn’s taxonomy (Flynn, 1972)

1. Single Instruction, Single Data (SISD): There is no parallelism in data or instruction

streams.

2. Single Instruction, Multiple Data (SIMD): Running same instruction stream on

parallelized data sets such as running the same algorithm on different blocks of text.

3. Multiple Instruction, Single Data (MISD): Operating multiple instruction streams on

the same data such as running different algorithms on the same block of text.

4. Multiple Instructions, Multiple Data (MIMD): Operating multiple instruction streams

independently on multiple data streams.

In this research, the SSN algorithm is paralleled using the MISD type to implement the

OpenMP model and the SIMD type to implement the MPI model as explained in section 3.3.
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2.12.2 Parallel Computing Speedup:

The parallel computing speedup calculates the increase of running time after finding the
sequential and parallel execution time of an algorithm as Equation(2) in Figure 2-23 (Akl, 1997,

Wilkinson & Allen, 2005):

Figure 2- 23: Parallel computing speedup equation

where S, is the speed up, T is the sequential execution time on a single processor and T, is
the parallel execution time with p processors. The following Figure 2-24 (Willmore, 2012)
presents the different types of speedup using different number of processors and Figure 2-25
(Barney, 2010) presents the relationship between the common speedup (sub-linear) and the

number of processors used based on the fraction of code that can be parallelized.

super-linear speedup (wonderful)

linear speedup

speedup

sub-linear speedup (common)

W

# of processors

Figure 2- 24: Different type of speedup using different number of processors
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Parallel Partion
25%
50%
80%
85%

Numher of Processors

Figure 2-25: The relationship between the common speedup and number of processors

2.12.3 Parallel Programing Models:

There are several parallel programming models can be used to program data and instructions
on processors such as the shared memory model, distributed memory model or a hybrid model
combining more than one model (Kontoghiorghes, 2010). Note that there is no “best” model. It

depends on the machines available and on the nature of the problem being addressed.

2.12.3.1 The Shared Memory Model:

In the shared memory model, jobs share a common memory address to write and read from

as shown in Figure 2-26 (Barney, 2010).
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Figure 2- 26: The shared memory model

The threads model is a type of shared memory model, but a single big job can be divided into

small ones and implemented with simultaneous execution paths as shown in Figure 2-27:

a.out
T1 T2

T3
T4

aw)

Figure 2-27: The threads model

“The Open Multi Processing (OpenMP) model was released in 1997 as a standard
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Application Programming Interface (API) for writing shared memory parallel applications in C,
C++ and FORTRAN” (Kiessling, 2009). It is easy to implement and widely used with multicore

architecture to parallelize serial code.

OpenMP model use the Fork and Join Model. They start sequentially as a single thread,
called the “master thread”, until they reach a parallel section where they fork into multiple
“worker threads” as shown in Figure 2-28 (Kiessling, 2009; Barney, 2010). At the end of a
parallel section, the threads re-join to become a master thread again. It is possible to run more
than one thread on a single processor but it is common and safer to run a single thread per

processor (Kiessling, 2009).

master thread - Ll
\ .J ‘ =1 2N
L el threads
threads .
. threads .
parallel region parallel region parallel region
Figure 2- 28: The Fork and Join model
2.12.3.2 The Distributed Memory Model:

In the distributed memory model, jobs use their own memory and can exist either on their
own physical machine or they can be transferred between a number of machines over a network

using sending and receiving procedures as shown in Figure 2-29 (Barney, 2010).
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Machine A Machine B

task 0

network

Figure 2-29: The distributed memory model

The Message Passing Interface (MPI) was released in 1991 as a programming interface for
writing distributed memory applications, which include one or more communicators to send and
receive messages through available nodes by calling library procedures to other processors. It is
widely used on High Performance Computing (HPC) platforms. Figure 2-30 shows the MPI

model structure (Barney, 2013).
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' MPI include file

Declarations, prototypes, etc.
Program Begins

Serial code

| Initialize MPI| environment  Parallel code begins

| Do work & make message passing calls

| Terminate MPI environment parallel code ends

Serial code

Program Ends

Figure 2- 30: The MPI Model structure

2.12.3.3 The Hybrid Memory Model:

The shared and distributed memory models are combined in the hybrid memory model as
shown in Figure 2-31. In this model both the OpenMP and MPI models can be used. In this

research, the hybrid model is not used and it is suggested as a future work.
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OpenMP OpenMP

Figure 2- 31: The hybrid memory model

2.13 Summary

This chapter provided a survey of string matching algorithms where a new classification
containing eight categories was developed depending on the preprocessing phase of searching

algorithms.

The first category shifts the pattern only one position at each attempt. The second category
uses two preprocessing functions. The third category uses one preprocessing function based on
the rightmost character in the current window. The fourth category uses one preprocessing
function based on the next character to the current window. The fifth category uses one
preprocessing function based on the two characters next to the current window. The sixth
category uses a preprocessing hashing function. The final category uses hybrid algorithms. A

summary of all algorithms used in this research was listed in Table 2-26.

The SMILES chemical language with the syntax rules which can be used to convert two-
dimensional chemical structure to a sequence was presented in section 2.11 and finally the
parallel computing, Flynn’s taxonomy and parallel programming models were presented in

section 2.12.
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CHAPTER 3: METHODOLOGY AND DESIGN

In this chapter, we present the research methodology framework, chemical toolkit design and
parallel algorithm design. The research methodology framework achieves our initial research
objectives. The new toolkit design shows the stages of developing a chemical structure searching
toolkit using the developed SSN searching algorithm. Furthermore, the parallel algorithm design
shows the phases of parallelizing the developed SSN algorithm using the OpenMP and the MPI

models.

3.1 Framework of Research Methodology

The framework of the research methodology achieves the research objectives and consists of
six stages as shown in Figure 3-1. The first stage studies the current existing algorithms. In
addition, the second stage implements the algorithms studied in the first stage. Moreover, the
third stage identifies (the) suitable algorithm(s) to be applied for searching biological sequence
and chemical structure databases. The fourth stage is to enhance one or more of the existing
algorithms or to develop (a) new algorithm(s). The fifth stage is to apply the new algorithm(s) to
search biological sequence and chemical structure databases. The final stage is to measure the

success of the new developed algorithm(s) compared to the currently existing algorithms.
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Study current Implement current

algorithms algorithms

Identify (the) suitable algorithm(s) to be Enhance one or more of the existing

algorithms or to develop (a) new

applied for searching chemical structures and

biological sequences in files and database algorithm(s)
EE——

UniProt ]
— .

Apply (the) new algorithm(s) to search
ProT |
roes o chemical structures and biological

pE— sequences in files and database

algorithm(s) compared to currently existing

algorithms
SWISS-PROT i

ProDom
: Measure the success of the new developed

NMRShiftDB

Figure 3- 1: Research objective framework
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3.2 Chemical Structures Toolkit Design

The chemical structures toolkit design consists of four stages as shown in figure 3-2. The
first stage downloads a sample data set from the NMRShiftDB (Kuhn, 2010). The second stage
stores the downloaded data in a local database. The third stage uses Java Molecular Editor
(JME), which was developed by Peter Ertl in 2000, to convert structures to SMILES format
(Ertl, 2006, 2010 in press). Then our SSN matching algorithm searches a structure query in the
local database as shown in section 5.2.3. The final stage uses the proportion of matching
characters to measure the similarity between matched structures. Each stage will be discussed in

detail in the following sections.
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Download a sample
structures from

NMRShiftDB

Build a local

database

NMRShiftDB :I:
Structure query
using JME editor
Compare a

structure query in Convert the

SMILES format structure into

with the local SMILES format

database using

our SSN

algorithm

List similar structures from

Use the proportion
of matching
characters to

calculate similarity

the local database

between structure

query and listed

Figure 3- 2:

structures

Chemical toolkit design
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3.2.1 The First Stage: Downloading and Mining Structures

We used the NMRShiftDB (Kuhn, 2010) database to download and mine chemical structures
using keyword/category search such as “Antimicrobial”, ‘“Antibacterial”, “Antifungal” and

“Antiviral” from NMRShiftDB. Figure 3-3 below shows the mining process flowchart:

Extract structures using

Download and mine keyword/category search

structures from

NMRShiftDB

Local

database

Figure 3- 3: Mining and downloading structures from NMRShiftDB

3.2.2 The Second Stage: Building the Local Database

Downloaded structures from the previous stage are stored in the local database. The local
database includes relational tables to connect chemical molecules and their corresponding

information. Figure 3-4 below shows the schema for the local database (Kuhn, 2010):
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3.2.3 The Third Stage: Using the JME Editor, SMILES and the SSN Algorithm

The JME allows users to draw chemical structure and then converts the drawn structure into
SMILES format (Ertl, 2006, 2010 in press). Figures 3-5 and 3-6 illustrate the structure drawing
and conversion using the JME tool. The SSN algorithm is used to search the local database as

described in section 4.5. Figure 3-7 below shows the structure matching flowchart using the SSN

algorithm.

4 IME Molecular Editor - Google Chrome

[ helios.hud.acuk/scomak/klaib/jme_wind

@ELR DEL O-R +-
= —==~A0000

| Submit Molecule || Close

Figure 3- 5: Drawing a structure using JME tool
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Figure 3- 6: Results of applying SMILES rules on Figure 3-5 example

Search structure in the local
database using the SSN algorithm

Pattern found Local

database

List similar structures

Figure 3- 7: Search structure in the local database using the SSN algorithm

3.24 The Fourth Stage: Measuring Similarity Using the Proportion of Matching

Characters

Similarity is a quantity function that reflects the strength of relationship between two objects
or two features with the idea that a higher value indicates greater similarity. In this stage the
similarity is presented using the proportion of matching characters as the similarity measure, and

that this is acceptable as a Jaccord’s coefficient (Teknomo, 2006; Schulz, 2008).
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3.3 Parallel Algorithm Design

Parallel computing can be used where tasks, calculation and problems can be divided into
smaller ones that can be worked on simultaneously. Our parallel algorithm design includes a
new contribution where the SSN algorithm will be parallelized using the OpenMP and the MPI
models to improve the speed of searching a pattern in the given text. In this framework we are

dividing the parallel algorithms on two levels.

3.3.1 Parallel Algorithm Design for Shared Memory Model

In this level the DNA text file is stored in a shared memory address and the SSN algorithm is
parallelized using the OpenMP model. In the SSN algorithm, independent “for loops” and “‘if
conditions” are defined in parallel regions. This gives a MISD system where, in the parallel
regions, separate threads run on the same data. Figure 3-8 shows an example of the “for loop”

parallelized using the OpenMP model.
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sequential Execution
on a single thread

for (1=0; 1<1000; 1++)
daest[i] = srcl[i]*128 + sro2[i]:

MASTER THREAD

L J

End - Result

Execution .
P Thread
& hreads
for (1=0; 1<280; 1++)
Fork dest[i] = srel[i]*128 + sre2[i]:
T T 1 ]liitart Thread 2
1111 for (9=250; 9<500; 9++)
dest[j] = srcl[jl*l28 srac2[il:
Thread
for (k=500; k<750; k++)
P dest[k] = srcl[k]*®128 sra2 (k]

Thread 4
E | | | | End
for (1=T50; 1<1000; 1++)

Join dest[1l] = srel[l]*128 + sre2[l];

Aol sl

MASTER THREAD

L}

End - Result

Figure 3- 8: An example of parallelizing the “for loop” using the OpenMP model

3.3.2 Parallel Algorithm Design for Distributed Memory Model

Here a SIMD system is created using the MPI model. The DNA text file is divided by the
master node (first processor) into subtexts. The number of subtexts is based on the number of

available nodes.

The master sends the subtext and query pattern to each available node. Each node starts
comparing the pattern with the text using the SSN algorithm and sends the result back to the
master. Finally, the master combines the results together and prints out the final result. Figure 3-
9 shows the parallel algorithm design using the MPI model.
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x I I ) A ) P T
I [ | |
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(

Compare subtext 1 Compare subtext 2 Compare subtext n
with pattern using with pattern using with pattern using
the SSN algorithm the SSN algorithm the SSN algorithm

o o 7

Every node sends the results to the master

Master combines results and print out
the final result

Figure 3- 9: Parallel algorithm design using the MPI Model

3.4 Summary

This chapter provided an overview of the proposed work in this thesis. It also includes the
research methodology framework, chemical toolkit design and parallel algorithm design. The
research methodology framework achieved our research objectives through six stages as
explained in section 3.1. The new toolkit design developed a chemical structure searching toolkit
using the SSN algorithm through four stages as explained in section 3.2. The parallel algorithm
design presented the OpenMP model of the SSN algorithm in sub-section 3.3.1 and the MPI

model in sub-section 3.3.2.
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CHAPTER 4: DEVELOPING NEW ALGORITHMS

As mentioned earlier, efficient string algorithms aim to maximize the pattern shifting value
and therefore enhance searching time. In this research the main string matching algorithms were
therefore classified in chapter two into eight categories according to the preprocessing function
of the algorithm (Klaib & Osborne, 2009a). In addition, we propose five new algorithms which

aim to maximize the pattern shifting value and therefore enhance searching time.

The BRBMH (Klaib & Osborne, 2008) algorithm is explained in section 4.1, the BRQS
(Klaib & Osborne, 2009a) is explained in section 4.2, the OE algorithm (Klaib & Osborne,
2009b) is explained in section 4.3, the RSMA (Klaib & Osborne, 2009¢) algorithm is explained

in section 4.4 and the SSN algorithm is explained in section 4.5.

4.1 The BRBMH Algorithm

The BRBMH algorithm uses the same searching process as the BMH algorithm and if there
is a whole match or a mismatch, the enhanced brBc table is used as described in section 4.1.1

(Klaib & Osborne, 2008).

4.1.1 The Preprocessing Phase of the BRBMH Algorithm:

The preprocessing function of the BMH algorithm computes the shifts using only one
heuristic function based on the last character in the current text window (Crochemore, et al.,

1994). In addition, the preprocessing phase of the BR algorithm scans all text characters and uses
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a two-dimensional array to shift the pattern to m+2 if the two characters located after the current

window do not exist in the pattern.

In order to maximize the pattern shifting value and therefore enhancing the searching time,
firstly the BR preprocessing function (brBc) was enhanced and then it was used instead of the

BMH preprocessing function (hsBc).

The enhancement of the brBc preprocessing function includes creating a one dimensional
array to store the pattern characters rather than using a two dimensional array to store the text
characters. Therefore, using the enhanced brBc over the hsBc results in two benefits: the first one
is the brBc table shifts the pattern to the right by m+2 compared to the hsBc which shifts pattern
only m positions if there is a whole match or a mismatch encountered. Furthermore, the second
benefit is reducing the preprocessing time by scanning only the pattern characters rather than

scanning the text characters as in the original brBc.

There are four shift cases in the BRBMH preprocessing phase as shown in Figure 4-1, Figure

4-2, Figure 4-3 and Figure 4-4 where:

e (a) and (b) are the first and the second characters next to the current text window and

any of them or both of them can be exist in pattern characters at location (i).

® (g) and (t) are the first and the second characters next to the current text window and

they do not exist at all in pattern characters.

e (k) is the size of the previous compared text portion which starts from t0O to the

beginning of current text window.
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Case 1: when the pattern [m-1] = text [m+k], then the pattern will be shifted only one

position.

Text any mismatch alb
-
0
P ,:'l
[~ — - -
g
Fa m
Text I any musmatch alb
P a

Figure 4- 1: The first shift case of the BRBMH algorithm

Case 2: when the pattern [i] = text [m+k] and pattern [i+1] = text [m+k+1], then the pattern

will be shifted m-i+1.

Text I any mismatch alb I I
P a |b I
i
=
k
Text I any mismatch IE’I Ib
P 8 alb

Figure 4- 2: The second shift case of the BRBMH algorithm
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Case 3: when the pattern [0] = text [m+k+1], then the pattern will be shifted m+1.

Texr any mismatch a b
E—
P b
"—'r—'
k
Tm‘fl any mismatch alhb I
P - vl

Figure 4- 3: The third shift case of the BRBMH algorithm

Case 4: when the pattern [i] and pattern [i+1] do not exist in the text window, then the

pattern will be shifted m+2.

g
pury
__

Text I any nuismatch

|

If characters (g) and (t) are not in the pattern, then shift = m+2

Text any mismatch o I t I

Figure 4- 4: The fourth shift case of the BRBMH algorithm
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4.1.2 The Searching Phase of the BRBMH Algorithm:

The searching phase of the BRBMH algorithm starts from the rightmost character in the
current window, and then starts from the leftmost character and moves to the right until the
penultimate character. Figure 4-5 shows the BRBMH algorithm code for the preprocessing and

searching phases.

void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {

int iCounter, jCounter;

char *enhancedBrBcCharacters;

for (iCounter = 0; iCounter < patternlength; ++iCounter) {
enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);

}

for (jCounter = 0; jCounter <= patternLength-2; ++jCounter){
enhancedBrBc[jCounter] = patternLength - jCounter;

}
}

void BRBMH(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];
char nextTwoCharacters;
/* Preprocessing */
preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = patternLength - 1;
jCounter = iCounter + patternLength - 1;
lastCharacter = iCounter + patternLength - 1;
if (pattern[jCounter] == text[lastCharacter]){
patternCounter = 0;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter; ++patternCounter;

}

if (jCounter < iCounter) {
OUTPUT (iCounter);

}

}
nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];
iCounter += enhancedBrBc[nextTwoCharacters];

Figure 4- 5: The BRBMH algorithm code
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4.1.3 The BRBMH: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.1.3.1,

4.1.3.2 and 4.1.3.3 respectively, provide an example of the BRBMH algorithm.

4.1.3.1 Input Sample

Text LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

Length (n) = 64 IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) =12

LAVKLATAIVLA

Table 4- 1: The BRBMH input sample

4.1.3.2 The BRBMH Example’s Preprocessing Phase

Figure 4-1 calculates the enhanced brBc table for input sample, as shown in the Table 4-2:

LA AV | VK KL | LA | AT | TA| Al | IV | VL | LA
12 11| 10| 9 8 7 6 5 4 3 2

Table 4-2: The enhanced brBc table of the BRBMH algorithm

4.1.3.3 The BRBMH Example’s Searching Phase

As explained in sub-section 4.1.2, the searching order of the BRBMH algorithm is shown in

Table 4-3.
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Po Pi | P2 | P3s | P4 Ps

Ps Pz | Ps | Po | Pio | P
8 9 10 | 11 | 12 1

Table 4-3: The BRBMH algorithm searching order

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-4.

1 ATT TO T1 T2 T3 T4 T5 T6 T7 T8 T9 TI10 T14 TI15 TI16

Text L R F D S L Y K Q I L

V5]

BRBMH | 2

Pattem | L A V K L A T A I V L A

1= ATT PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Shift by 14 (brB¢[MG])

Table 4-4: The first attempt of the BRBMH algorithm

e The BRBMH Algorithm: the first comparison between t;; and p;; causes a match. The
searching phase in sub-section 4.1.3.3 starts from the leftmost character ty with po which
matched. Furthermore, the algorithm moves forward to the next character t; with p,

which produces a mismatch.

o The preprocessing phase in sub-section 4.1.3.2 uses the brBc table for t;; and t;3 (MG).
However, (MG) does not exist in Table 4-2, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-5.
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omd ATT | T14 T15 Tle TI17 T18 TI9 T20 T21 T22 T23 T24 T25 T28 T29 T30
Text L A v K A N Q H I v L A L A
BRBMH 3 4 5 1
Pattern L A v K L A T A I Vv L A
2 ATT | PO PL P2 P3 P4 PS5 P6 P7 P8 P9 P10 Pl1

Shift by 10 ( brBc[VK])

Table 4-5: The second attempt of BRBMH

e The BRBMH Algorithm: the first comparison in the second attempt is between ty5 and py;

which produces a match. The searching phase in sub-section 4.1.3.3 starts from leftmost

character t;4 with py which matched. The algorithm moves forward to the next character

and follows the same procedure until the comparison between t;s with ps produces a

mismatch.

e The preprocessing phase in sub-section 4.1.3.2 uses the brBc table for tys and tz; (VK).

The shifting value of (VK) from Table 4-2 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-6.

3d ATT | T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T38 T39 T40
Text L A v K L A T A I v L A T S
BRBMH 3 4 5 7 8 9 10 11 12 1
Pattern L A v K L A T A I v L A
34 ATT | PO Pl P2 P3 P4 PS5 P6 P7 P8 P9 P10 Pl11

Shift by 14 ( brBc[TH])

Table 4-6: The third attempt of BRBMH

e The BRBMH Algorithm: the first comparison in the third attempt is between t3s and py;

which creates a match. The searching phase in sub-section 4.1.3.3 starts from leftmost
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character tp4 with py which matched. The algorithm moves forward to the next character

and follows the same procedure until a whole match of the pattern is found in the text.

After a whole match is found in the current attempt, the preprocessing phase in sub-
section 4.1.3.2 uses the brBc table for t3¢ and t3; (TH). However, (TH) does not exist in

Table 4-2, so the shifting value of (TH) is m+2 and in this case is 14 positions.

In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-7.

40 ATT | T38 T39 T40 T4l T42 T43 T44 T45 T46 T47 T48 T49 T52 T53 T54
T S P v v P v T T P G T D L

Text
BRBMH 1
Pattern L A A% K L A T A I A% L A

4 ATT | PO Pl P2 P3 P4 P5 Pe P7 P8 P9 P10 Pll

Shift by 14 ( brBe[TH])

Table 4-7: The fourth attempt of BRBMH

In BRBMH, the first comparison in the fourth attempt is between t4s9 and p;; which

generates a mismatch.

The preprocessing phase in sub-section 4.1.3.2 uses the brBc table for tsy and ts; (KP).
However, (KP) does not exist in Table 4-2, so the shifting value of (KP) is m+2 and in

this case is 14 positions.

The BRBMH algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of the BRBMH algorithm are presented and discussed in chapter 6.
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4.2 The BRQS Algorithm

The BRQS algorithm (Klaib & Osborne, 2009a) uses the same searching process as the QS
algorithm and if there is a whole match or a mismatch, the enhanced brBc table is used as

described in sub-section 4.1.1.

4.2.1 The Preprocessing Phase of the BRQS Algorithm:

The BRQS algorithm uses the same enhanced pre-processing phase as the BRBMH

algorithm as shown in sub-section 4.1.1.

4.2.2 The Searching Phase of the BRQS Algorithm:

The searching phase of BRQS algorithm starts from the leftmost character then it moves
forward single position each occasion up to the rightmost character. Figure 4-6 shows the BRQS

algorithm code for the preprocessing and searching phases.
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void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {
int iCounter, jCounter;
char *enhancedBrBcCharacters;
for (iCounter = 0; iCounter < patternlength; ++iCounter) {
enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);
}
for (jCounter = 0; jCounter <= patternlength-2; ++jCounter){
enhancedBrBc[jCounter] = patternLength - jCounter;
}
}

void BRQS(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];
char nextTwoCharacters;
/* Preprocessing */
preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
1
if (jCounter < iCounter){
OUTPUT(@iCounter);
}
nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];
iCounter += enhancedBrBc[nextTwoCharacters];

Figure 4- 6: The BRQS algorithm code

4.2.3 The BRQS: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.2.3.1,

4.2.3.2 and 4.2.3.3 respectively, provide an example of the BRQS algorithm.

129



4.2.3.1 Input Sample

Text LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

Length (n) = 64 IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) =12

LAVKLATAIVLA

Table 4-8: BRQS input sample

4.2.3.2 The BRQS Example’s Preprocessing Phase

Figure 4-6 calculates the enhanced brBc table for the input sample, as shown in Table 4-9:

LA |AV | VK | KL | LA | AT | TA| Al | IV | VL | LA
12 11 ] 10| 9 8 7 6 5 4 3 2

Table 4- 9: The BRQS enhanced brBc preprocessing table

4.2.3.3 The BRQS Example’s Searching Phase

As explained in sub-section 4.2.2, the searching order of the BRQS algorithm is shown in the

Table 4-10.

Po | Pr | P2 | P3 | P4 | Ps

P5 P7 PS P9 P]O Pll

Table 4- 10: The BRQS algorithm searching order
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1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-11.

1ISsATT JTO T1I T2 T3 T4 T5 Te T7 T8 T9 TI0 T11 T4 T15 Tie
Text L R F D S L Y K Q I L A L A

BRQS 1 2

Pattem | L A V K L A T A I V L A

1sATT |J PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Shift by 14 (brBe[MG])

Table 4-11: The BRQS algorithm: the first attempt in the searching phase

The BRQS Algorithm: the first comparison between ty and po causes a match. The

searching phase in sub-section 4.2.3.3 moves to the next position t; with p; which

produces a mismatch.

The preprocessing phase in sub-section 4.2.3.2 uses the brBc table for t;; and t;3 (MG).

However, (MG) does not exist in Table 4-9, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

2. In the second attempt: the current text window starts from position 14 to position 25 as
shown in Table 4-12.
ond ATT [ T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 125 T28 T29 T30
Text L A A% K A N Q H I \Y% L A L A
BRQS 1 2 3 4 5
Pattern L A A% K L A T A I \% L A
24 ATT | PO Pl P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Shift by 10 ( brBe[VK])

Table 4-12: The BRQS algorithm: the second attempt in the searching phase
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The BRQS Algorithm: the first comparison in the second attempt is between t;4 and po
which creates a match. The searching phase in sub-section 4.2.3.3 moves forward and
compares the next positions until the comparison between t;g with ps produces a

mismatch.

The preprocessing phase in sub-section 4.2.3.2 uses the brBc table for ty6 and tx7 (VK).

The shifting value of (VK) from Table 4-9 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as
shown in Table 4-13.
3dATT [T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T38 T39 T40
Text L A V K L A T A I VvV L A T S
BRQS | 1 2 3 4 5 6 7 8 9 10 11 12

Pattern L A v

~

L A T A I AY L A

3 ATT | PO Pl P2 P3 P4 P5 Ps P7 P8 P9 P10 P11

Shift by 14 ( brBe[IH])

Table 4-13: The BRQS algorithm: the third attempt in the searching phase

The BRQS Algorithm: the first comparison in the third attempt is between ty4 and po
which creates a match. The searching phase in sub-section 4.2.3.3 starts from next
position tys with p; which matched. The algorithm moves forward to the next characters

and follows the same procedure until a whole match of the pattern is found in the text.

After a whole match is found in the current attempt, the preprocessing phase in sub-
section 4.2.3.2 uses the brBc table for t3¢ and t3; (TH). However, (TH) does not exist in

Table 4-9, so the shifting value of (TH) is m+2 and in this case is 14 positions.
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4. In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-14.

A0 ATT | T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T52 T53 T54
Text T S P A% \Y P v T T P G T D L

BRQS | 1

Pattern L A v K L A T A I v L A

42 ATT | PO Pl P2 P3 P4  P5 P6 pP7 P8 P9 P10 Pl1

Shift by 14 ( brBc[TH])

Table 4-14: The BRQS algorithm: the fourth attempt in the searching phase

¢ In BRQS, the first comparison in the fourth attempt is between tsg and po which generates

a mismatch.

e The preprocessing phase in sub-section 4.2.3.2 uses the brBc table for tsp and ts5; (KP).
The shifting value of (KP) from Table 4-2 is 10 positions. However, (KP) does not exist

in Table 4-9, so the shifting value of (KP) is m+2 and in this case is 14 positions.

e The BRQS algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of the BRQS algorithm are presented and discussed in chapter 6.

133



4.3 The Odd and Even Algorithm (OE)

The OE algorithm searches the pattern in the text using a new searching order and if there is
a whole match or a mismatch, the enhanced brBc table is used as described in sub-section 4.1.1

(Klaib & Osborne, 2009b).

4.3.1 The Preprocessing Phase of the OE Algorithm:

The OE algorithm uses the same enhanced pre-processing phase as the BRBMH

algorithm as shown in sub-section 4.1.1.

4.3.2 The Searching Phase of the OE Algorithm:

The OE algorithm searches the pattern in the text using a new searching order. It starts with
the rightmost position, and then it moves toward the rear to compare the odd index positions of
pattern and text window characters. If all these characters match, it starts from right and
compares the whole even index pattern and text window characters. Figure 4-7 shows the OE

algorithm code for the preprocessing and searching phases.
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void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {
int iCounter, jCounter;
char *enhancedBrBcCharacters;
for (iCounter = 0; iCounter < patternlength; ++iCounter) {
enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);
}
for (jCounter = 0; jCounter <= patternlength-2; ++jCounter){
enhancedBrBc[jCounter] = patternLength - jCounter;
}
}

void OddAndEven(char *pattern, int patternlength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];
char nextTwoCharacters;
bool Odd=false;
/* Preprocessing */
preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
if(patternLength % 2 != 0){
jCounter = patternLength-2;

Odd=true;
}
else{
jCounter = patternLength - 1;
}
while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){
jCounter -=2;
if(jCounter == 1 && Odd == true)
{
jCounter = patternLength-1;
}
else{
jCounter = patternLength-2;
}
}
if (jCounter < 0){
OUTPUT (iCounter);
}

nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];
iCounter += enhancedBrBc[nextTwoCharacters];

Figure 4-7: The OE algorithm code

4.3.3 The OE: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.3.3.1,
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4.3.3.2 and 4.3.3.3 respectively, provide an example of the BRBMH algorithm.

4.3.3.1 Input Sample

Text LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

Length (n) = 64 IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) =12

LAVKLATAIVLA

Table 4- 15: OE input sample

4.3.3.2 The OE Example’s Preprocessing Phase

Figure 4-7 calculates the enhanced brBc table for input sample, as shown in Table 4-15:

LA AV | VK KL | LA | AT | TA| Al | IV | VL | LA
12 11| 10| 9 8 7 6 5 4 3 2

Table 4-15: The OE enhanced brBc preprocessing table

4.3.3.3 The OE Example’s Searching Phase

As explained in sub-section 4.3.2, the searching order of the OE algorithm is shown in Table

4-16.
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Po P P> | Ps3 P4 Ps
12 6 11 5 10 4
Ps P7 Ps P9 PlO Pll

Table 4- 16: The OE algorithm searching order

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-17.

1sATT JTO T1 T2 T3 T4 T5 Té T7 T8 T9 TI10 TI11 T14 TI15 TI16

Text L R F D S L Y K Q I L A L A

OE 2 1

Pattem | L A V K L A T A I V L A

1*ATT | PO P1 P2 P3 P4 P5 P6 P7 P8 P9 PIO Pll

Shift by 14 ( brBc[MG])

Table 4- 17: The OE algorithm: the first attempt in the searching phase

e The OE Algorithm: the first comparison between t;; and p;; causes a match. The
searching phase in sub-section 4.3.3.3 compares the next odd position t9 with pg which

produces a mismatch.

® The preprocessing phase in sub-section 4.3.3.2 uses the brBc table for t;» and t;3 (MG).
However, (MG) does not exist in Table 4-15, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-18.
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ond ATT | T14 T15 Tle T17 T18 T19 T20 T21 T22 T23 T24 T25 T28 T29 T30

Text L A v K A N Q H I A% L A L A
OE 3 2 1
Pattern L A A K L A T A I \% L A

2nd ATT | PO P1 P2 P3 P4 P5 P66 P7 P8 P9 P10 P11

Shift by 10 ( brBe[VK])

Table 4-18: The OE algorithm: the second attempt in the searching phase

e The OE Algorithm: the first comparison in the second attempt is between tps and py;
which creates a match. The searching phase in sub-section 4.3.3.3 moves forward and
compares the next odd index positions until the comparison between t;; with p; produces

a mismatch.

e The preprocessing phase in sub-section 4.3.3.2 uses the brBc table for ty¢ and tp7 (VK).

The shifting value of (VK) from Table 4-15 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-19.

34 ATT | T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T38 T39 T40
Text L A v K L A T A I v L A T S
OE 12 6 11 5 10 4 9 3 8 2 7 1

Pattern L A v K L A T A I v L A

3dATT | PO Pl P2 P3 P4 P5 P6 P7 P8 P9 PI10 P11

Shift by 14 ( brBe[TH])

Table 4-19: The OE algorithm: the third attempt in the searching phase

e The OE Algorithm: the first comparison in the third attempt is between t3s and p;; which

creates a match. The searching phase in sub-section 4.3.3.3 moves forward and compares
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the next odd index positions until the comparison between tys with p; produces a match.
It then returns and compares t34 with pjo and follows the same procedure for all even

indices until a whole match of the pattern is found in the text.

After a whole match is found in the current attempt, the preprocessing phase in sub-
section 4.3.3.2 uses the brBc table for t3¢ and t3; (TH). However, (TH) does not exist in

Table 4-15, so the shifting value of (TH) is m+2 and in this case is 14 positions.

In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-20.

A0 ATT | T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49

T52 T53 T54

Text T S P v v P A T T P G T D L
OE 1
Pattern L A v K L A T A I v L A

42 ATT | PO Pl P2 P3 P4 P5 Pe P7 P8 P9 P10 PIll

Shift by 14 ( brBe[TH])

Table 4-20: The OE algorithm: the fourth attempt in the searching phase

In OE, the first comparison in the fourth attempt is between t49 and p;; which generates a

mismatch.

The preprocessing phase in sub-section 4.3.3.2 uses the brBc table for tsy and ts; (KP).
However, (KP) does not exist in Table 4-15, so the shifting value of (KP) is m+2 and in

this case is 14 positions.

The OE algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of OE algorithm are presented and discussed in chapter 6.
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4.4 The Randon String Matching Algorithm (RSMA)

The RSMA searches the pattern in the text using a new searching order and if there is a
whole match or a mismatch, the enhanced brBc table is used as described in sub-section 4.1.1

(Klaib & Osborne, 2009c).

4.4.1 The Pre-processing Phase of the RSMA Algorithm:

This RSMA algorithm uses the same enhanced pre-processing phase as the BRBMH

algorithm as shown in section 4.1.1.

4.4.2 The Searching Phase of the RSMA Algorithm

The RSMA algorithm starts with the rightmost character, and then it searches the pattern in

the text using a new searching order using a random value (Klaib & Osborne, 2009¢).

A random step size S is generated, with 3 < S < m, where m is the pattern length. The search
will then move along the pattern visiting every i"™ character until reaching or passing the end of
the pattern, to return to the start, and repeat the process one character further down the pattern.
This is shown in Equation (2) and Equation (3) where P;;is the position visited on the jth step of
the i"™ pass. Figure 4-8 shows the RSMA searching phase equations and Figure 4-9 shows the

RSMA algorithm code for the preprocessing and searching phases.
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Figure 4- 8: The RSMA algorithm searching phase equations
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void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {
int iCounter, jCounter;
char *enhancedBrBcCharacters;
for (iCounter = 0; iCounter < patternLength; ++iCounter){
enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);
}
for (jCounter = 0; jCounter <= patternLength-2; ++jCounter) {
enhancedBrBc[jCounter] = patternLength - jCounter;
}
}

void RSMA(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, nCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];
char nextTwoCharacters;
/* Preprocessing */
preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

/* Searching */
int aCounter = 1, bCounter = 0, randomValue, *newOrder;
randomValue = rand() % patternLength +1;
newOrder[0]=patternLength-1;
for (iCounter=1; iCounter<= randomValue; i++){
while(newOrder[aCounter]- randomValue >=0 && bCounter<patternlength)

{

newOrder[bCounter]=newOrder[aCounter]- randomValue;

++aCounter;
++bCounter;
}
if (bCounter < patternLength)
{
newOrder[bCounter]=newOrder[0]-randomValue;
aCounter=bCounter;
++bCounter;
}

}
iCounter = 0, jCounter=0, nCounter=0;
while (iCounter <= textLength - patternLength) {
jCounter = patternlength-1;
while (jCounter >= 0 && pattern[newOrder[nCounter]] == text[iCounter + newOrder[nCounter]]){

--jCounter;
++nCounter;

}

if (jCounter < 0){
OUTPUT (iCounter);

}

nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];
iCounter += enhancedBrBc[nextTwoCharacters];

Figure 4- 9: The RSMA algorithm code
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4.4.3 The RSMA: Working Example

The input sample in sub-section 4.4.3.1, the preprocessing phase in sub-section 4.4.3.2

and the searching phase in sub-section 4.4.3.3 provide an example of the RSMA algorithm.

4.4.3.1 Input Sample

Text LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

Length (n) = 64 IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) =12

LAVKLATAIVLA

Random Division

Value (RD) = 3 (Random Value)

Table 4-21: RSMA Input Sample

4.4.3.2 The RSMA Example’s Preprocessing Phase

Figure 4-1 calculates the enhanced brBc table for input sample, as shown in Table 4-22:

LA AV | VK KL | LA | AT | TA| Al | IV | VL | LA
12 11| 10| 9 8 7 6 5 4 3 2

Table 4-22: The RSMA enhanced brBc preprocessing table
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4.4.3.3 The RSMA Example’s Searching Phase

As explained in section 4.4.2, in this example the random value size (S) is equal to three. The
RSMA algorithm uses Equations (2) and (3) in Figure 4-8 to calculate the new searching order as

shown in Table 4-23.

Po | Py | P, | P3| Py | Ps
12 8 4 11 7 3
Ps | P | Ps | Ps | Pio | P
10 6 2 9 5 1

Table 4-23: The RSMA algorithm searching order

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-24.

1sATT JTO T1 T2 T3 T4 T5 Te T7 T8 T9 Ti0 TI1 T14 T15 Ti6

Text L R F D S L Y K Q I L A

RSMA 2 1

Pattem | L A V K L A T A I VvV L A

1*ATT | PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Pll

Shift by 14 ( brBc[MG])

Table 4-24: The RSMA algorithm: the first attempt in the searching phase

e The RSMA Algorithm: the first comparison between t;; and p;; causes a match. The
searching phase in sub-section 4.4.3.3 compares the next position tg with pg which

produces a mismatch.

® The preprocessing phase in sub-section 4.4.3.2 uses the brBc table for t;» and t;3 (MG).
However, (MG) does not exist in Table 4-22, so the shifting value of (MG) is m+2 and in

this case is 14 positions.
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2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-25.

ond ATT | T14 TI5 Tle T17 T18 T19 T20 T21 T22 T23 T24 T25 T28 T29 T30
Text L A A% K A N Q H 1 v L A L A

RSMA 3 2 1

Pattern L A A% K L A T A 1 A% L A

24 ATT | PO Pl P2 P3 P4 PS5 P6 P7 P8 PS P10 P11

Shift by 10 ( brBc[VK])

Table 4-20: The RSMA algorithm: the second attempt in the searching phase

e The RSMA Algorithm: the first comparison in the second attempt is between tys and py;

which creates a match. The searching phase in sub-section 4.4.3.3 moves forward and

compares the next positions until the comparison between tj9 with ps produces a

mismatch.

e The preprocessing phase in sub-section 4.4.3.2 uses the brBc table for tys and tz; (VK).

The shifting value of (VK) from Table 4-22 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-26.

3WATT | 124 T25 126 T27 T28 T20 T30 T31 T32 133 T34 T35 T38
Text L A V K L A T A I Vv L A
RSMA |12 8 4 11 71 3 10 6 2 9 51
Pattem L A W K L A T A I WV L A
3@ATT | PO PI P2 P3 P4 P3 P& P] P§ PO PI0 PII
Shift by 14 { brBe[TH])
Table 4-21: The RSMA algorithm: the third attempt in the searching phase
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4.

The RSMA Algorithm: the first comparison in the third attempt is between t3s and p;;
which creates a match. The searching phase in sub-section 4.4.3.3 moves forward and
follows the same procedure for all indices until a whole match of the pattern is found in

the text.

After a whole match is found in the current attempt, the preprocessing phase in sub-
section 4.4.3.2 uses the brBc table for t3¢ and t3; (TH). However, (TH) does not exist in

Table 4-22, so the shifting value of (TH) is m+2 and in this case is 14 positions.

In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-27.

4 ATT | T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T52 T53 T54
T S P v v P v T T P G T D L

Text
RSMA 1
Pattern L A Vv K L A T A I A% L A

4t ATT PO Pl P2 P3 P4 P5 P6 P7 P3 P9 P10 P11

Shift by 14 ( brBe[KP])

Table 4-22: The RSMA algorithm: the fourth attempt in the searching phase

In RSMA, the first comparison in the fourth attempt is between ts9 and p;; which

generates a mismatch.

The preprocessing phase in sub-section 4.4.3.2 uses the brBc table for tsy and ts; (KP).
However, (KP) does not exist in Table 4-22, so the shifting value of (KP) is m+2 and in

this case is 14 positions.

The RSMA algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of RSMA algorithm are presented and discussed in chapter 6.
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4.5 The Skip Shift New (SSN) Algorithm

The searching phase of our algorithms RSMA, OE, BRQS and BMH starts from the first m
positions to compare pattern and text characters and if a whole match or a mismatch it uses the
enhanced brBc table to shift the pattern depending on the next two characters to the rightmost
character as described in section 4.1.1. Starting from the first m positions may cause m

comparisons before the pattern is shifted to the right.

The preprocessing function of the SS and the ASS algorithms aim to find a possible starting
point before comparing the pattern with the text which reduces the number of comparisons.
However, the disadvantages of using the searching phase of the SS algorithm is the use of all text
and pattern alphabets to create the bucket for shifting the pattern as explained in sub-section
2.8.1 (Almazroi & Rashid, 2011) and then moves the pattern only a single position if the last
character does not exist in the pattern.. The disadvantages of using the searching phase of the
ASS algorithm is the use of all substrings positions with length L=log;(m) for each leaf of T(x)
to shift the pattern as explained in sub-section 2.8.2 and then moves the pattern only a single

position if the T(x) does not exist in the pattern (Charras, et al., 1998)

An enhancement of the ASS algorithm was presented in 2011 through the ASSBR algorithm
(section 2.27) which uses the brBc table to shift the pattern using the next two characters to the
rightmost character which causes a bigger shifting value comparing to the original ASS
algorithm. However, the disadvantage of the ASSBR algorithm is the use of two preprocessing

function to determine the starting point and then to shift the pattern (Almazroi, 2011).

In our SSN algorithm, if there is a whole match or a mismatch the ASS table is used to define
a possible starting point to compare the text and the pattern characters. In addition, the ASS table

is used as a new preprocessing phase to shift the pattern as described in section 4.5.1.
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4.5.1 The Preprocessing Phase of the SSN Algorithm:

The preprocessing phase of the SSN algorithm uses the ASS table only in contrast to the
ASSBR algorithm. It determines the starting position of each three character sequence in the
pattern as presented in the given example in sub-section 4.5.3.2. The shifting value of the three

letters depends on the following Equation (5) as shown in Figure 4-10:

ShifitingValue = m-position ...........ccecuveerneeenee 5)

Figure 4- 10: The SSN algorithm preprocessing phase equation

4.5.2 The Searching Phase of the SSN Algorithm:

In the searching phase, the algorithm first checks for a possible starting point by checking the
last three characters in the text window, if they exist in the pattern it aligns the pattern with the
text and then compares the remaining characters from the leftmost character to the rightmost
character. If a whole match or a mismatch is found it compares the next three characters to the
rightmost character with the ASS table instead of two characters in the same way as the
enhanced brBc table. If the next three characters exist in the pattern, then they are aligned again,
otherwise the pattern is shifted m+3 positions. An example is presented in sub-section 4.5.3.3.

Figure 4-11 shows the SSN algorithm code for the preprocessing and searching phases.
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void preprocessing_enhanced ASS(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {
int iCounter, jCounter;
char *enhancedBrBcCharacters;
for (iCounter = 0; iCounter < patternLength; ++iCounter){
enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,3);
}
for (jCounter = 0; jCounter <= patternLength-3; ++jCounter){
enhancedBrBc[jCounter] = patternLength - jCounter;
}
}

void SSN(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, patternCounter, enhancedASS[patternLength-1];

/* Preprocessing */
preprocessing_enhanced ASS(pattern, patternLength, enhanced ASS);

/* Searching */
int wStart = 0, wEnd = patternLength -1;
char currentThree, nextThree;
while (WEnd <= textLength) {
currentThree = text[wEnd-2] + text{fwEnd-1] + text[wEnd];
if ((WEnd +3) < textLength){
nextThree = text{wEnd+1] + text{wEnd+2] + text{wEnd+3];
}
for(iCounter=0; iCounter<= patternLength-3; iCounter++) {
if(currentThree == enhanced ASS[iCounter])

{
wStart = wStart+enhanced ASS[iCounter]-3;
wEnd = wStart + (patternLength - 1);

}

else if(nextThree == enhanced ASS[iCounter])

{
wStart = wStart+enhanced ASS[iCounter];
wEnd = wStart + (patternLength - 1);

}

else

{
wStart = wStart+ patternLength + 3;
wEnd = wStart + (patternLength - 1);

}

}

patternCounter = 0;
while (WEnd >= wStart && pattern[patternCounter] == text[wStart]) {

--wEnd;
++patternCounter;

}

if (wWEnd < wStart){
OUTPUT (iCounter);

}

wStart = wEnd+1;
wEnd = wStart + (patternLength - 1);

Figure 4- 11: The SSN algorithm code
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4.5.3 The SSN: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.5.3.1,

4.5.3.2 and 4.5.3.3 respectively, provide an example of the SSN algorithm.

4.5.3.1 Input Sample

Text LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

Length (n) = 64 IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) =12

LAVKLATAIVLA

Table 4- 21: The SSN input sample

4.5.3.2 The SSN Example’s Preprocessing Phase

The preprocessing phase calculates the ASS table for input sample using three characters, as

shown in Table 4-22:
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Character | Alpha Skip table[character] = m-position |
LAV {0} =12
AVK {1} =11
VKL } =10

KLA {3}=9

LAT {4} =8

TAI
AIV

IVL

|
|
|
|
|
ATA
|
|
|
|

VLA

Table 4-22: The ASS table of the SSN algorithm

4.5.3.3 The SSN Example’s Searching Phase

As explained in sub-section 4.5.2, the searching phase checks for a possible starting point
by checking the last three characters in the text window. If it exists in the pattern it aligns the
pattern with the text and then compares the remaining characters from the leftmost character to
the rightmost character, otherwise it shifts pattern to the right depending on the next three

characters to the rightmost character.

1. In the first attempt: the last three characters in the current text window starts

from position 9 to position 11 as shown in Table 4-23.
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ISATT | To T1 T2 T3 T4 T5 T6 T7 T8 [y T2 Ti13 Ti4 Ti15

T16

Text L R F D 8§ L Y K Q I L A M G L A

Does Not Exist

Does Not Match: MGL (m+3) = 15

Table 4-23: The SSN algorithm: the first attempt in the searching phase

e The SSN Algorithm: the (ILA) portion in positions to, tjp and t;; does not exist in the ASS

table in Table 4-22.

e The new preprocessing phase uses the ASS table for t;, t;3 and t;4 (MGL). However,

(MGL) does not exist in Table 4-22, so the shifting value of (MGL) is m+3 and in this

case is 15 positions.

2. In the second attempt: the last three characters in the current text window starts from

position 24 to position 26 as shown in Table 4-24 (a).

2ATT | T15 Ti6é T17 Ti18 TI19 T20 T21 T22 T23 QuerSENviEEN VIS T27 T28 T29 T30 T3l

Text A v K A N Q H I Vv K L A T

A

Does Match: LAV (m) = 12

Table 4-24 (a): The SSN algorithm: the second attempt in the searching phase

e The SSN Algorithm: the (LAV) portion in positions to, t;pand t;; exists in the ASS table.

e The searching phase in this attempt aligns the pattern to match the similar portions as

shown in Table 4-24 (b).
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T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40

K L A T A I A% L A T H T S P

P3 P4 P5 P6 P7 P8 PS5 PI0 Pl1

A whole match and (THT) Does Not Match: (m+3) =15

Table 4-25(b): The ASS_NEW algorithm: the second attempt in the searching phase

e The searching phase compares the remaining characters from the leftmost character to the
rightmost character starting from a comparison between ty; with P; and moving forward

until a comparison between tss with P;; which causes a whole match.

e After a whole match is found in the current attempt, the new preprocessing phase uses the
ASS table for ts¢, t37 and tsg (THT). However, (THT) does not exist in Table 4-22, so the

shifting value of (THT) is m+3 and in this case is 15 positions.

3. In the third attempt: the last three characters in the current text window starts from

position 48 to position 50 as shown in Table 4-25.

39ATT | T39 T40 T41 T42 T43 T44 T45 T46 T47 QECEENVCRENWOE T51 T52 T53 TS54 TS5

Text S P v v P v T T P G T K P D L N A

Does Not Exist

Does Not Match: (m+3) = 15 T54 — T65

Table 4-26: The ASS_NEW algorithm: the third attempt in the searching phase

e The SSN Algorithm: the (GTK) portion in positions tss, ts9 and tso does not exist in the

ASS table.

e The new preprocessing phase uses the ASS table for ts;, ts; and ts3 (PDL). However,
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(PDL) does not exist in Table 4-22, so the shifting value of (PDL) is m+3 and in this case

is 15 positions.

e The SSN algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of SSN algorithm are presented and discussed in chapter 6.

4.6 Summary

This chapter illustrated five new string matching algorithms: The BRBMH, BRQS, OE,

RSMA and the SSN algorithms.

The BRBMH algorithm uses a searching process in the same way as the BMH searching
phase and if there is a whole match or a mismatch it uses the enhanced brBc table of the Berry-
Ravindran algorithm. The BRQS algorithm uses a searching process in the same way as the QS
searching phase and if there is a whole match or a mismatch it uses the pre-processing phase of
the BRBMH algorithm. The OE algorithm searches the pattern in the text using a new searching
order by comparing the odd indices first and then even indices and if there is a whole match or a
mismatch it uses the pre-processing phase of the BRBMH algorithm. The RSMA algorithm
starts with the rightmost character, and then it searches the pattern in the text using a new
searching order using a random value with size S to visit all pattern character positions and if
there is a whole match or a mismatch it uses the pre-processing phase of the BRBMH algorithm.
Finally, the SSN algorithm uses the ASS table to define a possible starting point to compare the
text and the pattern characters. If the last three characters in the current text window or the next
three characters exists in the ASS table, the pattern is aligned and compared otherwise the ASS

table is used again to shift the pattern.
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CHAPTER 5: IMPLEMENTATION

5.1 System Specification

In this project, sequential algorithms have been implemented and tested on our PC (Windows
7 64-bit, RAM is 4.00GB and CPU is Intel Core 13 2.40 GHz). The chemical toolkit is developed
using Dreamweaver CS6 using HTML/JavaScript, MySQL and PHP code.

The parallel algorithm part was implemented and tested at the University of Science
Malaysia (USM) on two units of the Stealth Cluster. Each unit is Sun Fire V210 which contains
2 x UltraSPARC IIIi 1002 Mhz processors, IMB L2 Cache 2GB of RAM. They use the

following software: Solaris9 (SunOS 2.9) as an operating system.

5.2 Chemical Structures Toolkit Implementation

The toolkit implementation is presented in four stages as explained in sub-sections 5.2.1,

5.2.2,5.2.3 and 5.2.4.

5.2.1 Downloading and Mining Structures

The NMRShiftDB database contains more than forty thousand records representing different

molecular structures (Kuhn, 2010).

The extraction process of structures, as mentioned in chapter 3 (section 3.3), is done via

search by Keyword/Category such as antiviral activity, antifungal activity and antibacterial

activity. Figure C-1 shows a sample of extracted structures.
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5.2.2 Building the Local Database

Downloaded structures from the previous stage are stored in the local database. The local
database includes 78 relational tables to connect chemical molecules and their corresponding

information.

5.2.2.1 Local Database Design

Our Local Database schema is shown in Figures C-2, C-3, C-4 and C-5.

5.2.2.2 Table Format and Description

In this section we provide descriptions for three tables as examples while the remaining
tables are shown in Appendix D. These main tables are related to each other as they store the
details of the chemical structure such as keyword_id, keyword, molecule_id, molecule_weight,

SMILES_string and so on.

1- Molecule Table
This table contains seven fields storing the main information about a particular molecule. An

example is given in Table 5-1:

Field Type Null | Key Example
MOLECULE_ID int(11) PRI 22207
DATE datetime 2006-06-14 14:53:57
MOLECULAR WEIGHT float MUL 542.572

O=C10C4C(=C1C)CC=C(CO
“30C(COC20CC(ONCOYC2A(

SMILES STRING mediumblob MUL ONC(O)(O)CHONCCC=C(C
)C4
USER ID int(11) MUL 30003481
SAR int(11) 5
COMMENT longblob YES NULL

Table 5- 1: Molecule table design and example
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The following is a brief explanation for each field:

e MOLECULE_ID: is a unique number assigned to each molecule in the database.

e Date: is the date and time when the molecule was inserted in the NMRShiftDB.

e MOLECULAR_WEIGHT: is the total weight of all molecular atoms and can be
presented by mass units (u) where u is the mass of 1/12 of Carbon atom (Clz) (Steven,
2011; NIST, 2013).

e SMILES_STRING: is the chemical structure presentation in sequence format (Daylight
Chemical Information Systems, 2008).

e USER_ID: is a unique number assigned for each user using the NMRShiftDB database.

e SAR: is the Structure Activity Relationships (SAR) which presents relations between the
molecular structure and biological or physicochemical activity of chemicals (Hulzebos et
al., 2001).

e COMMENT: any additional information can be added about the molecule.

2- Keyword Table
This table stores the keyword information about a particular molecule. It contains 3 fields
as shown in Table 5-2. Note that the entire keyword field in our database should be one of the

antimicrobial keywords mined in section 5.2.

Field Type Null | Key | Default Example
KEYWORD ID int(11) PRI 0 20010639
KEYWORD varchar(255) antibacterial and

antitumor effects

KEYWORD SOUNDEX | mediumtext 53123645353561232

Table 5- 2: Keyword table design and example
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3- Molecule-Keyword Table
This table presents the relationship between the Keyword and Molecule tables which

includes two primary key fields as shown in Table 5-3:

Field Type | Null | Key | Default | Example
MOLECULE ID | int(11) PRI |0 22207
KEYWORD ID | int(11) PRI |0 20010639

Table 5- 3: Molecule_Keyword table design and example

5.2.3 Using JME Editor, SMILES and the SSN Algorithm

The implementation of this stage includes the development of the chemical searching toolkit,
which allows users to draw the molecular structure and then converts it into a structure in
SMILES format. Figure C-6 shows the toolkit login page and Figure C-7 shows the searching
toolkit webpage. The SMILES’s format for any chemical structure can either be typed straight
into the specified text field or can be drawn using the JME editor after clicking the “Draw
molecule” button. After the drawn chemical structure is submitted, it is converted to SMILES
format as shown in Figure C-8. The “Check SMILES” button in Figure C-9 allows users to
check whether the entered SMILES sequence is correct or not. Finally, the “Search structure
using the Skip Shift New Algorithm” button searches the structure pattern in the local database

using the SSN algorithm.

5.2.4 Implementation of Similarity Measuring

In this phase the proportion of matching characters is used as a measure of the similarity

percentage between two structures.
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Table 5-4 shows an example where the pattern structure is “C3CCC4” and the text structure
is “OCCCCI1CC(OC)C20C(CC2(C1))C3CCC40COC4(C3)”, then the implementation process

will be done according to the following steps:

1) Find the length of the searched text and the searched pattern:

OCCCCICC(0OC)C20C(CC2(C1))C3CCC40COC4(C3)=> Text Length = 40
C3CCC4=> Pattern Length = 5

Table 5- 4: Finding the text and pattern length for similarity measuring
2) Calculate the proportion of matching (S, ) characters by dividing the pattern length

on the text length as following:

s, = Pattern Length _ S = 0.125
Text Length 40

The above example shows that the searched pattern is only similar to the compared structure

by 12.5% and different by 87.5%.

5.3 Parallel Algorithm Implementation

The parallel algorithm is designed using the OpenMP model (shared memory model) and the
MPI model (distributed memory model). Both models were implemented and tested at the
University of Science Malaysia (USM) on a Stealth Cluster which consists of four Sun Fire
V210 containing 2 x UltraSPARC IIIi 1002 Mhz processors, IMB L2 Cache 2GB of RAM. They

use the SunOS 2.9 operating system and Sun Studio 12 as a Compiler.

5.3.1 OpenMP Model Implementation

The OpenMP model is implemented on a single unit of the Sun Fire V210 using four threads.

Microsoft Visual Studio 2013 Express is used to write the C++ code of the OpenMP model. The
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OpenMP model should be activated on Microsoft Visual Studio before writing the program as

shown in Figure C-10.

The results of the OpenMP model of the SSN algorithm are presented and discussed in

chapter 6. Table 5-5 lists the main OpenMP functions which are used to parallelize the SSN

algorithm:

Function The function’s job

#pragma omp parallel To define an OpenMP parallel region

#pragma omp parallel for The for refers that we are parallelizing the for loop.
#pragma omp parallel for Shared will specify the number of shared variables
shared(patternLength, shiftArray, | used by the threads and num_threads specifies the
iCounter) number of threads to use for the parallel portion.

num_threads(NUM_THREADS)

#pragma omp critical Specifies a region of code that must be executed by
only one thread at a time. If a thread is currently
executing inside a CRITICAL region and another
thread reaches that CRITICAL region and attempts
to execute it, it will block until the first thread exits
that CRITICAL region.

#pragma omp for schedule (static, chunk) | Describes how iterations of the loop are divided
among the threads in the team. The default
schedule is implementation dependent. In our
program we have used the STATIC keyword where
loop iterations are divided into pieces of size chunk
and then statically assigned to threads.

#pragma omp parallel | Specifies the number of threads that should execute

num_threads(NUM_THREADS) the following block. It is used in the mean
searching phase where if conditions have been

applied.

Table 5- 5: The main OpenMP functions which used to parallelize the SSN algorithm

160



5.3.2 MPI Model Implementation

The MPI model is implemented on two units of the Sun Fire V210 using four processors.

Microsoft Visual Studio 2013 Express is used to write the C++ code of the MPI model. The HPC

package should be installed from the Microsoft website to add the MPI model library to

Microsoft Visual Studio before writing the program as shown in Figure C-11. Table 5-6 shows

the main seven functions used by the MPI model to parallel the SSN algorithm:

Function

MPI_Init( );

MPI_Comm_size(MPI_COMM_WORLD,
&nproc);

MPI_Comm_rank(MPI_COMM_WORLD,
&rank);

MPI_Scatter (buffer, count, MPI_CHAR,
recvBuf, scount, MPI_CHAR, 0,
MPI_COMM_WORLD);
MPI_SEND(buffer, count, MPI_CHAR,
recvBuf, rank, MPI_COMM_WORLD);
MPI_RECV(buffer, count, MPI_CHAR,
sendBuf, rank, MPI_COMM_WORLD,
status);

MPI_Finalize ( );

The function’s job

Initializes the MPI program

Uses objects called communicators and groups to
define which collection of processes may
communicate with each other. It determines the
number of processes

Within a communicator, every process has its own
unique, id (label) assigned by the system when the
process initializes.

Involves data decomposition and division among
the master and slave processes e.g. spreading an
array to all processors.

Sends a message to a different process within a
communicator

Receives a message from different process within

a communicator

Terminates the MPI execution environment

Table 5- 6: The main seven functions of MPI which used to parallelize the SSN algorithm
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5.4 Summary

This chapter showed the implementation of the chemical toolkit and the parallel algorithm.
Four stages were used to implement the toolkit. The first stage included downloading and mining
structures from the NMRShiftDB. The second stage included the local database building process.
The third stage included the implementation of connecting the toolkit to the local database and
searching structures using JME Editor, SMILES and the SSN algorithm. The fourth stage
included the similarity measurement between structures using the proportion of matching
characters. The parallel algorithm was implemented using the OpenMP model (shared memory

model) and the MPI model (distributed memory model).
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CHAPTER 6: RESULTS AND DISCUSSION

To evaluate our new algorithms, and to compare them to standard algorithms, we
implemented our algorithms and some of the standard algorithms and tested them on DNA and
protein sample files by taking an average of 10 executions for each pattern length.

This is a well-established approach, heavily used by:

® (Sheik et al.) testing the SSABS algorithm in 2004;

e (Thathoo et al.) testing the TVSBS algorithm in 2006;

¢ (Huang et al.) testing the ZTBMH algorithm in 2008;

¢ (Huang et al.) testing the BRFS algorithm in 2008;

¢ (Almazroi and Rashid) testing the BRSS algorithm in 2011;

® (Almazroi) testing the ASSBR algorithm in 2011.

These were all tests of simple sequential implementations. We also implemented and tested the
best algorithm using the OpenMP model on a single Sun Fire unit and using the MPI model on
two Sun Fire units at the University of Science Malaysia (USM). Finally, we used our best

algorithm the SSN algorithm to develop the chemical structure searching toolkit.

This Chapter consists of the following sections: section 6.1 shows the results of testing
sequential algorithms on short DNA pattern sequences; section 6.2 shows the results of testing
sequential algorithms on long DNA pattern sequences; section 6.3 shows the results of testing
sequential algorithms on short protein pattern sequences; section 6.4 shows the results of testing
sequential algorithms on long protein pattern sequences, section 6.5 shows the results of testing

parallel algorithms on short and long DNA and protein pattern sequences on different numbers
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of processors; section 6.6 shows the results of testing the chemical toolkit using the SSN

algorithm; and finally section 6.7 discusses our research results.

6.1 Testing Algorithms Using a Short DNA Pattern

A sample file of FASTA format DNA sequences was downloaded from the U.S. National

Centre of Biotechnology Information (NCBI, 2012). The total number of characters of all

sequences in the downloaded sample file is 661080 characters. Our algorithms, and some

standard algorithms were applied to this file and three types of tests implemented. The first test

determines the number of comparisons, the second one calculates the number of attempts and the

final one finds the elapsed search time. Sub-sections 6.1.1, 6.1.2 and 6.1.3 show the results and

analysis of these tests on the short DNA pattern.

6.1.1 The Number of Comparisons Using a Short DNA Pattern

The total numbers of comparisons when searching for a DNA pattern using a short pattern

length is shown in Table 6-1:

Pattern
Length

4 VR 274575 263175 240175 275439 276175 278244 305023
7 LIRRLEL 195102 180369 171790 194777 197790 198852 204529
10 GIRTTAY 139168 140069 134835 138618 137131 147481 193313
13 P 7B 104696 101580 103342 106636 105320 115409 179328
16 (PAPAM 101014 97257 94281 102481 99815 111263 140112
19 SIVIEEL 79199 63472 76972 79405 83018 90771 114326
20 CLPEEE 67201 65586 66230 68346 73538 80807 109708
25 CREZEE 63881 56913 59509 64315 70794 78363 101637
28 CEIOEE 50898 50914 51164 52701 55291 60140 83130
31 APIERL 50158 48581 50142 50569 52377 59177 76001

Table 6- 1: The number of comparisons for a short DNA pattern

SSN | RSMA BRBMH BRFS
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From Table 6.1, we can see that our hybrid algorithms show a significant improvement
over the original single algorithms in the number of comparisons. For example, the BMH
algorithm processes the comparison for a DNA pattern with length 4 in the sample DNA file
341347 times, while the hybrid BRBMH algorithm processes the same pattern 275439 times.
Similarity, the QS algorithm processes the same sample 305023 times while the hybrid BRQS

algorithm processes it 240175 times.

Our algorithms are also more efficient than the TVSBS hybrid algorithm, for example,
the odd and even algorithm processes a pattern with length 19 in the DNA sample file with

63472 comparisons while the TVSBS algorithm requires 90771.

Our algorithm also uses fewer comparisons than the BRFS algorithm. For example,
searching a pattern with length 28 using the BRFS algorithm requires 55291 comparisons while

the RSMA algorithm only requires 50898 times.

The best algorithm in this test is the SSN algorithm. It shows a significant improvement
over all algorithms, for example it searches a pattern with length 31 using 41269 comparisons
while the RSMA, OE, BRQS, BRBMH, BRFS, TVSBS, QS and BMH algorithms require

50158, 48581, 50142, 52377, 50569, 59177, 76001 and 93895 comparisons respectively.

6.1.2 The Number of Attempts Using a Short DNA Pattern

Table 6-2 shows the numbers of attempts in the same DNA sample file using a short pattern

length:
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Pattern
Length QS
4 VITYAN] 161219 161219 161219 161219 161219 161003 231464 243417
7 (TR0 115993 115993 115993 115993 115993 115795 171707 202675
10 PRV 88242 88242 88242 88242 89871 90077 159765 171911
13 SR 67406 67406 67406 67406 71476 71351 139545 155845
16 PRI 60969 60969 60969 60969 66861 67164 109967 138584
19 ot 49718 49718 49718 49718 55752 55472 95645 121018
e WARNREI 42538 42538 42538 42538 49199 49318 91843 107653
25 oJIPEE 41291 41291 41291 41291 49136 49134 86276 99130
28 BRPAE 33212 33212 33212 33212 37264 37270 65285 92937
31 IOV 29249 29249 29249 29249 35100 35268 59555 84363

Table 6- 2: The number of attempts for a short DNA pattern

SSN OE BRQS BRBMH

TVSBS

Numbers of attempts for all algorithms are counted when there is a whole match or a

mismatch encountered which shifts the pattern and starts a new attempt.

The pre-processing phase makes a significant contribution to the total number of attempts.
Our algorithms: RSMA, OE, BRQS and BRBMH algorithms use the enhanced Berry-Ravindran
pre-processing phase which means they have the same number of attempts for all algorithms on

the same pattern length.

The different number of attempts in our algorithms compared to the BRFS, TVSBS, QS and
BMH algorithm is due to the preprocessing phase used in our algorithms. The SSN algorithm is
the best one in this test as well. As an example our SSN algorithm requires 32257 attempts when
searching a pattern with length 16 while the RSMA, OE, BRQS and BRBMH algorithms require
60969 attempts. The BRFS, TVSBS, QS and BMH algorithms require 60969, 66861, 67164,

109967, 90685 and 138584 attempts respectively using the same pattern length.
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6.1.3 The Average Elapsed Search Time Using a Short DNA Pattern

Figure 6-1 and Figure 6-2 show the elapsed search time when searching for the search pattern

in the same DNA sample file using a short pattern length:

Average searching elapsed time for a short DNA pattern
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Figure 6- 1: BRQS and BRBMH searching time using a short DNA pattern
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Average searching elapsed time for a short DNA pattern
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Figure 6- 2: SSN, RSMA and OE searching time using a short DNA pattern

Our hybrid algorithms register a lower time. As an example in Figure 6-1, the BMH
algorithm searches the chosen DNA pattern with length 7 in the DNA sample file in 92.283
seconds while the hybrid BRBMH searches the same pattern in 36.617 seconds. The QS
algorithm finds the same sample in 68.907 seconds while the hybrid BRQS algorithm finds it in
34.593 seconds. Our algorithms such as the SSN, RSMA and OE algorithms find the pattern in
less time from the TVSBS and BRES algorithms. As an example in Figure 6-2, the SSN
algorithm searches pattern with length 4 in the same sample data file in 7.731 seconds while the
RSMA, OE, BRFS and TVSBS algorithms search the same pattern length in 11.843, 12.018,

18.741 and 17.928 seconds respectively.
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6.2 Testing Algorithms Using a Long DNA Pattern

The same sample file of DNA sequences in FASTA format is used to test the algorithms on a

long DNA pattern length. Sub-sections 6.2.1, 6.2.2 and 6.2.3 show the results and analysis of

tests on a long DNA pattern.

6.2.1 The Number of Comparisons Using a Long DNA Pattern

The following Table 6-3 shows the total number of comparisons when searching for a DNA

pattern using a long pattern length:

Pattern
Length Qs

32 51982 58842 70688 89585
48 30057 29479 28290 30345 46930 57556 63650 76379
64 27982 28936 25618 28964 43329 55898 45989 65854
96 19307 19150 17483 19906 42078 51578 32621 49769
14450 14410 12803 14714 32060 38821 24002 38208
7500 7568 6998 7607 21774 24114 18839 29614
5688 5703 5778 5794 16304 17553 15035 21147
3873 3909 3906 3942 11983 13321 10516 18335
3670 3468 3305 3588 12103 14957 6774 11063
2547 2549 2580 2620 6761 7445 5885 9168
5460 6384 5234 8081

SSN | RSMA OE

TVSBS

Table 6- 3: The number of comparisons for a long DNA pattern

Our hybrid algorithms show a significant important on the long DNA pattern as well. The

OE algorithm searches the DNA pattern with length 32 in the sample file with 46682

comparisons while the BMH requires 89585 comparisons. The TVSBS algorithm searches the

169



same pattern length using 48305 comparisons. A longer pattern such as the length 512 requires
3305 comparisons by the BRQS while the QS algorithm needs 6774 comparisons.

The SSN algorithm searches a pattern with length 768 using 2487 comparisons while the
RSMA, OE, BRQS, BRBMH, BREFS, TVSBS, QS and BMH algorithms require 2547, 2549,

2580, 2620, 6761, 7445, 5885 and 9168 comparisons respectively.

6.2.2 The Number of Attempts Using a Long DNA Pattern

Table 6-4 shows the numbers of attempts in the same sample file using a long pattern length:

Pattern
Length

32 34765
48 19509 19509 19509 19509 32687 33428 46192 73852
64 17298 17298 17298 17298 31511 31675 34956 58458
96 11718 11718 11718 11718 30239 30028 32259 49882
8523 8523 8525 8523 22683 22057 28063 37540
4858 4858 4858 4858 15206 15548 24839 26458
3541 3541 3541 3541 11002 10948 16810 18917
2287 2287 2287 2287 8006 8020 9076 10625
1846 1846 1846 1846 8316 8314 8641 9130
1153 1153 1153 1153 4069 4154 6095 7268
2977

SSN RSMA OE TVSBS

QS

Table 6- 4: The number of attempts for a long DNA pattern

Again RSMA, OE, BRQS, BRBMH and BRFS shift the pattern using the same pre-

processing phase, and therefore have the same number of attempts for each pattern length. They
also use fewer attempts than the BRQS, TVSBS, QS and BMH algorithms. For example, the
RSMA algorithm searches a pattern with length 48 in 19509 attempts while the BMH algorithm
searches the same pattern in 73852 attempts. The SSN algorithm searches the same pattern in

10926 attempts.
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6.2.3 The Average Searching Elapsed Time Using a Long DNA Pattern

Figures 6-3, 6-4 and 6-5 show the elapsed search used to search the enquired pattern in the

same DNA sample file using a long pattern length:
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Figure 6- 3: The average searching elapsed time for a long DNA (32-256)

171




Average searching elapsed time using a long DNA pattern
(BRQS and BRBMH comparing to QS and BMH)
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Figure 6- 4: The BRQS, BRBMH, QS and BMH searching time for a long DNA (384-1024)
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Figure 6- 5: The SSN, RSMA and OE searching time for a long DNA (384-1024)
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The BRQS and the BRBMH search a pattern with length 32 in 10.7666 and 11.495 seconds
respectively while the QS and the BMH search the same pattern in 25.164 and 33.004
respectively.

The SSN algorithm searches the same pattern length in 7.864 seconds while the OE, BRFS
and TVSBS algorithms search the same pattern in 12.863, 17.923 and 17.15 seconds

respectively.

6.3 Testing Algorithms Using a Short Protein Pattern

A sample file of FASTA format protein sequences was downloaded from the SwissProt

Database (UniProt Consortium, 2013). The total number of characters of all sequences in the

downloaded sample file is 1006778 characters. The same algorithms used to search DNA
sequences in section 6.1 and 6.2 were used again to search for amino acids sequences in the
downloaded sample file. Sub-sections 6.3.1, 6.3.2 and 6.3.3 show the results and analysis of tests

on a short protein pattern.

6.3.1 The Number of Comparisons Using a Short Protein Pattern

The following Table 6-5 shows the numbers of comparisons between the chosen patterns

with whole sequences in the protein sample file using a short pattern length:
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Pattern
Length

4 ICERYAA 191073 191078 185328 191053 185328 191071 270395 237848

7 IOIPAON 122636 121243 122530 122608 122530 122599 160645 154818
10 GUEPARE 99493 99621 94415 99602 94474 99742 116987 117756
13 (REERI 92390 86677 80828 92101 80862 92207 107765 111769
16 ORI 78730 78827 67664 77825 67779 77893 91054 97101
19 SYARREY 59886 59733 56609 59432 56691 59534 83225 87702
22 OWPZEL 57629 58245 50904 57440 51294 58464 76229 75425
25 SURPAE 46270 42193 43988 46049 44315 46137 71640 72248
28 SEIYAM 43890 44054 40330 43861 40658 44049 59379 65277
31 SILISEY 37931 36807 36030 37819 36294 38319 53115 58126

SSN 0) BRQS BRBMH BRFS TVSBS QS BMH

Table 6- 5: The number of comparisons for a short protein pattern

Our hybrid algorithms achieve better results than the original algorithms as shown in Table

6-5. The BMH algorithm requires 46795 more comparisons than the BRBMH algorithm when
searching for a pattern of length 4. The QS when searching for a pattern of length 13 requires
26937 more comparisons than the BRQS algorithm. When searching for a pattern of length 22
the TVSBS requires 835 more comparisons than the RSMA algorithm. The BRFS algorithm
requires 6985 more comparisons than the RSMA algorithm when searching a pattern with length

28.

6.3.2 The Number of Attempts Using a Short Protein Pattern

Table 6-6 shows the numbers of attempts where attempts are counted when the pattern is

shifted using a short protein pattern length:
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Pattern
Length QS

4 JUREREE 175258 175258 175258 175258 175258 175256 258512 213554
7 LIGYPA 115674 115674 115674 115674 115674 115674 156107 139026
10 rEsyA 89193 89193 89193 89193 89277 89281 110505 105585
13 (AP 76481 76481 76481 76481 76533 76511 97997 100402
16 PR ZIE 64029 64029 64029 64029 64114 64095 82208 87126
19 (S04 53390 53390 53390 53390 53460 53464 78922 78708
22 CIDEEA 48164 48164 48164 48164 48624 48619 73918 67674
25 SRS 41558 41558 41558 41558 41791 41791 68052 63437
28 SPRIL 38098 38098 38098 38098 38429 38429 55112 58642
31 A lo 34005 34005 34005 34005 34226 34219 50118 52246

SSN OE BRQS BRBMH TVSBS

Table 6- 6: The number of attempts for a short protein pattern

Table 6-6 shows that the pre-processing phase of RSMA, OE, BRQS and BRBMH

algorithms all have the same number of attempts for each length of short protein pattern lengths,
but they still provide better results than hybrid algorithms in most cases. The SSN algorithm
shows better results than all algorithms. As an example, there is a difference of 331 attempts
between RSMA and TVSBS with pattern length 28 and a difference of 6113 attempts between
the SSN and the BRFS algorithms. Additionally, they perform better than original algorithms
such as QS and BMH. For example, the OE algorithm searches a pattern with length 7 by 38296

attempts less than the BMH algorithm.

6.3.3 The Average Elapsed Search Time Using a Short Protein Pattern

Figures 6-6 shows the average elapsed search time using a short pattern length on protein

sample file:
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Average searching elapsed time for a short protein pattern (4 - 31)
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Figure 6- 6: The average searching elapsed time for a short protein pattern (4 - 31)

Figure 6-6 shows the shorter elapsed search time for our SSN algorithm compared to other
well-known ones. The SSN is faster than the RSMA, OE, BRQS, BRBMH, BRFS, TVSBS, QS
and BMH algorithms on patterns with length 7 by 37.7%, 52.9%, 39.6%, 31.5%, 65.2%, 61.1%,
70.4% and 71.4% respectively, and with length 25 by 26.6%, 31.4%, 26.3%, 22.7%, 52.8%,

47.5%, 64.5% and 65.6% respectively.

6.4 Testing Algorithms Using a Long Protein Pattern

The same sample file of protein sequences in FASTA format is used to test the algorithms on
a long protein pattern length. Sub-sections 6.4.1, 6.4.2 and 6.4.3 show the results and analysis of

tests on a long protein pattern.
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6.4.1 The Number of Comparisons Using a Long Protein Pattern

Table 6-7 shows the numbers of comparisons between the chosen patterns within the protein

sample file using a long pattern length:

Pattern
Length

32
48
64
96

SSN | RSMA OE BRFS TVSBS QS

Table 6- 7: The number of comparisons for a long protein pattern

The BMH algorithm requires 24554 more comparisons than the RSMA algorithm to search a
pattern with length 48 in the sample protein file. When searching for a protein pattern with
length 512 in the sample file, the BRQS algorithm requires 3931 comparisons while TVSBS
requires 5364 comparisons. In longer patterns the QS algorithm searches a pattern with a length
768 using 16327 more comparisons than the Odd and Even algorithm.

The BRFS algorithm searches a pattern with a length 1024 using 1731 more comparisons
than the SSN algorithm. Our hybrid algorithms show a significant improvement on the long

protein pattern as well.
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6.4.2 The Number of Attempts Using a Long Protein Pattern

Table 6-8 shows the numbers of attempts in the sample file using a long pattern length:

Pattern
Length

32 28586
48 19484
64 14770
96 9944
128 7480
192 4974
256 3699
384 2430
512 1778
768 1167
1024 850

SSN | RSMA 0) BRBMH BRFS TVSBS QS

Table 6- 8: Number of Attempts for Long Protein Pattern

The BMH algorithm searches the pattern of length 48 in the sample file in 46257 attempts
while the BMBMH algorithm needs 23371. The BRQS algorithm searches a pattern of length
192 in 30541 fewer attempts than the QS algorithm. The SSN algorithm searches a pattern of
length 1024 in 1835 fewer attempts than the BRFS algorithm. Our algorithms require fewer

attempts than the BRFS, TVSBS, BRQS and BMH algorithms due to their pre-processing phase.

6.4.3 The Average Elapsed Search Time Using a Long Protein Pattern

Figure 6-7, Figure 6-8 and Figure 6-9 show the elapsed search time in the protein sample file

using a long pattern length:
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Figure 6- 7: BRBMH and BRQS searching time using a long protein pattern
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Figure 6- 8: RSMA and OE searching time using a long protein pattern
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Average searching elapsed time using a long protein pattern
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Figure 6- 9: The SSN searching time using a long protein pattern

The SSN algorithm shows better average elapsed search time than the RSMA, OE, BRQS,
BRBMH, BRFS, TVSBS, QS and BMH algorithms. The difference is obvious in short patterns,
although the difference in searching time is very small between searching algorithms in long
patterns. As an example, the BMH searches a pattern with length 32 in 26.641 seconds while the
hybrid BRBMH is searching the same pattern in 13.685 seconds. Another example, the QS
algorithm searches the same sample in 25.715 seconds while the hybrid BRQS algorithm
searches in 13.304 seconds. The SSN algorithm is faster than the RSMA, OE, BRQS, BRBMH,
BRFS, TVSBS, QS and BMH algorithms on patterns with length 48 by 21.7%, 20.9%, 19.1%,
20.3%, 46.2%, 41.1%, 61.2% and 63.25% respectively, and with length 1024 by 16.5%, 16.5%,
10.3%, 13.9%, 26.9%, 23.9%, 41.8% and 50.4% respectively. Our algorithms such as the RSMA

algorithm search the pattern in less time from the TVSBS and the BRFS algorithms.
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6.5 Testing Parallel Algorithms

Four parallel experiments were implemented and tested. Each one represents the average of
ten execution times for parallel pattern searching. The first test in sub-section 6.5.1 shows the
OpenMP model searching DNA sequences file. The second test in sub-section 6.5.2 shows the
OpenMP model searching protein sequences file. The third test in sub-section 6.5.3 shows the

MPI model searching DNA sequences file and finally the fourth test in sub-section 6.5.4 shows

the MPI model searching protein sequences file.

6.5.1 Testing the OpenMP Model on DNA Sequences File
Figure 6-15 shows the average elapsed search time in the DNA sample file using the

OpenMP parallel model:

OpenMP Model: average elapsed search time on DNA sequences file
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Figure 6- 10: OpenMP model: the average elapsed search time on DNA sequences file
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6.5.2 Testing the OpenMP Model on Protein Sequences File

Figure 6-16 shows the average elapsed search time in the protein sample file using the

OpenMP parallel model:

OpenMP Model: average elapsed search time on protein sequences file
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Figure 6- 11: OpenMP model: the average elapsed search time on protein sequences file

6.5.3 Testing the MPI Model on DNA Sequences File

Figure 6-17 shows the average elapsed search time in the DNA sample file using the MPI

parallel model:
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MPI Model: average elapsed search time on DNA sequences file
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Figure 6- 12: MPI model: the average elapsed search time on DNA sequences file

6.5.4 Testing the MPI Model on Protein Sequences File
Figure 6-18 shows the average elapsed search time in the protein sample file using the MPI

parallel model:

MPI Model: average elapsed search time on protein sequences file
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Figure 6- 13: MPI model: the average elapsed search time on protein sequences file
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6.6 Testing the Chemical Searching Toolkit Using the SSN Algorithm

The chemical searching toolkit as described in section 5.4 allows user to either input the
chemical structure in SMILES format or draw the structure using the JME editor. Our SMILES
checking tool checks if the entered SMILES is correct or not. The searching button uses the SSN
string matching algorithm to search structures in the local database and list all similar structures
with the similarity percentage using the proportion of matching characters. Finally if one of the
found structures is chosen it shows the structure details. Figures 6-19, 6-20, 6-21 and 6-22 show

an example of searching a chemical structure pattern using the chemical toolkit.
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’ Draw molecule
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Figure 6- 14: Input a pattern chemical structure
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Figure 6- 15: Verify the SMILES input structure
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Figure 6- 16: Search and list similar structures with similarity percentage
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Figure 6- 17: Details of selected chemical structure
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6.7 Discussion

All algorithms except the Brute Force algorithm have a searching phase and a pre-processing

phase (Stephen, 1994; Levitin, 2008).

In this research, exact string matching algorithms were studied in detail and a new
classification based on the pre-processing phase of algorithms has been presented. The new

classification contains eight categories according to the pre-processing function in the algorithm.

After classifying string matching algorithms in this new taxonomy, the aim was to develop or
enhance (a) new string matching algorithm(s) in order to decrease the searching time by
increasing the shifting value of the pattern. This research therefore proposes some new string

matching algorithms for searching protein sequences, DNA sequences and chemical structures.

The first research methodology aimed to study string matching algorithms, classify them,
enhance them or develop new algorithms and then apply them to Protein, DNA sequences and

chemical structures.

The result of this methodology proposed five new string matching algorithms; BRBMH,
BRQS, OE, RSMA and SSN algorithms. These algorithms aimed to maximize the pattern

shifting value, decrease the number of comparisons and therefore enhance searching time.

We chose four well known standard algorithms, BMH, QS, TVSBS and BRFS for

comparisons with our algorithms. The BMH algorithm (Horspool, 1980) was chosen because it
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is an enhancement of the original BM algorithm (Boyer & Moore, 1977) and is the base

algorithm of our BRBMH algorithm (Klaib & Osborne, 2008). The pre-processing function of

BMH algorithm depends on the rightmost character. Furthermore, the QS algorithm (Sunday,

1990) is the basis of our second algorithm, the BRQS algorithm (Klaib & Osborne, 2009a) and
the pre-processing phase depends on a single character next to the rightmost character. The

TVSBS algorithm was developed in 2006 (Thathoo, et al., 2006) as an enhancement of the

SSABS algorithm (Sheik et al., 2004) and it uses the original pre-processing of the BR algorithm

which depends on two characters next to the rightmost character as well. The BRFS algorithm

was developed in 2008 (Huang et Al., 2008) as an enhancement of the ZTBMH algorithm

(Huang et. al, 2008) and it uses the original brBc¢ function of the BR algorithm which based on

two characters next to the rightmost character.

After implementing the standard algorithms and our enhancements, a sample file of FASTA
format DNA sequences was downloaded from the U.S. National Centre of Biotechnology

Information (NCBI, 2012) and another sample file of FASTA format protein sequences was

downloaded from the SwissProt Database (UniProt Consortium, 2013).

All of the algorithms were applied to these files and three types of tests were implemented.
The first test determines the number of comparisons. The second one calculates the number of
attempts and the final one finds the elapsed search time.

Short DNA and protein patterns with lengths 4 — 31 and long patterns with lengths 32-1024
were searched in sample DNA and protein files by taking an average of 10 executions for each
pattern length.

For short and long protein and DNA experiments in (section 6.1 — section 6.4) our algorithms

showed a lower elapsed search time and required fewer pattern comparisons than all the standard
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algorithms. Our algorithms RSMA, OE, BRQS and BRBMH need the same number of attempts
because they use the same pre-processing function which used in all of them. Our algorithms

require fewer attempts than BMH, QS, TVSBS and BRFS algorithms.

6.7.1 The Number of Comparisons Test Discussion

This test was implemented as described in sub-sections 6.1.1, 6.2.1, 6.3.1 and 6.4.1 and
applied to both short and long DNA and protein sequences, and shows a big difference in the
number of comparisons our algorithms use, compared to the non-hybrid algorithms and a good
difference between our algorithms and other hybrid algorithm such as the TVSBS and the BRFS

algorithms.

For example, the BRBMH algorithm searches for short DNA patterns with 41.7% fewer
comparisons than the BMH algorithm as shown in Table 6-1, 59.6% fewer when searching for
long DNA patterns as shown in Table 6-3, 23.2 % fewer when searching for short protein
patterns as shown in Table 6-5 and 68.2% fewer when searching for long protein patterns as

shown in Table 6-7.

Table 6-1 shows that the SSN algorithm searches for short DNA patterns with 40.2% fewer
comparisons than the TVSBS algorithm, Table 6-3 shows that the SSN algorithm searches for
long DNA patterns with 57.1% fewer comparisons than the TVSBS algorithm, Table 6-5 shows
that the SSN algorithm searches for short protein patterns with 24 % fewer comparisons than the
TVSBS algorithm and Table 6-7 shows that the SSN algorithm searches for long protein patterns

with 25.3% fewer comparisons than the TVSBS algorithm.
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To compare the RSMA and BRFS algorithms: searching for a DNA pattern with length 28
using the RSMA algorithm compares 45418 times while the BRFS algorithm compares the same

pattern for 55291 times.

The reason for this difference, as discussed in literature review and implementation chapters,
is that the BMH algorithm depends only on the last character and the QS algorithm depends on a
single character next to the rightmost character, while the pre-processing phase in BRBMH and
BRQS algorithms depends on two characters next to the rightmost character. This difference in
the pre-processing phase in both BRBMH and BRQS algorithms allow an extra shifting value for
the pattern which results in fewer comparisons between the pattern and the DNA and protein

files.

The TVSBS algorithm uses the BR preprocessing function which shifts the pattern depends
on two characters are next to the rightmost character, by at least one character but not more than
m+2 characters. The SSN algorithm finds a possible start point which reduces the number of
comparisons as well as it depends on three characters are next to the rightmost character, which
can shift the pattern by at least one character but not more than m+3.

This difference in shifting the pattern causes a bigger shift value which results a less comparison

time for our algorithms.

6.7.2 The Average Elapsed Search Time Test Discussion

The average elapsed search time tests, as described in sub-sections 6.1.3, 6.2.3, 6.3.3 and

6.4.3 which were applied to both short and long DNA and protein sequences, showed our
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algorithms presenting better average elapsed search time than the BRFS, TVSBS, QS and BMH

algorithms.

The BRQS algorithm searches for short DNA patterns in 57.7% less time than the QS
algorithm as shown in Figure 6-1, 57.4% less time when searching for long DNA patterns as
shown in Figure 6-3 and Figure 6-4, 52.1% less time when searching for short protein patterns
and 47.8% less time when searching for long protein patterns as shown in Figure 6-6 and Figure

6-7 respectively.

Figure 6-2 shows that the SSN algorithm searches short DNA patterns with an average of
69.2% less time than the BRFS algorithm, Figure 6-3 and Figure 6-5 show that the SSN
algorithm searches for long DNA patterns with an average of 57.9% less time than the BRFS
algorithm, Figure 6-6 shows that the SSN algorithm searches short protein patterns with 59.9%
less time comparing to the BREFS algorithm and Figure 6-9 shows that the SSN algorithm

searches for long protein patterns with average 32.3% less time than the BRFS algorithm.

The reason that our algorithms RSMA, OE, BRQS, and BRBMH performed the search in
less time comparing to other standard algorithm, that they use the enhanced brBc table which
scans only the pattern characters and depends on the next two characters to the rightmost
character. Additionally, the enhanced pre-processing phase in the RSMA, OE, BRQS, BRBMH

shifts the pattern to the right by m+2 comparing to the TVSBS, BMH and QS algorithms.

The variety of searching order in the searching phase in our algorithms such as the RSMA
and OE algorithm in certain cases will reduce the searching phase by comparing the odd

positions first then the even positions in the OE algorithm. The RSMA algorithm uses a random
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value with size S to visit all pattern character positions in a new searching order as explained in
sub-section 4.4.2. This gives a chance in certain cases to discover mismatched characters earlier

than other algorithms, which leads to fewer comparison numbers and ends after less search time.

The reason that our SSN algorithm performed the search in less time comparing to other
algorithms, that it searches for a possible starting point which will reduce the comparisons time
and therefore reduces the elapsed search time. In addition, it uses only one preprocessing phase
comparing to the BRFS algorithm. The preprocessing phase of the SSN algorithm shifts the
pattern to the right by m+3 comparing to the RSMA, OE, BRQS, BRFS, TVSBS, BMH and QS

algorithms.

6.7.3 The Number of Attempts Test Discussion

The total number of attempts is counted if there is a whole match or a mismatch is
encountered which shifts the pattern and a new attempt is started. The pre-processing phase plays

a significant role in determining the pattern shifts which affects the total number of attempts.

The average number of attempts tests, in sections 6.1.2, 6.2.2, 6.3.2 and 6.4.2 on both short
and long DNA and protein sequences, showed our algorithms, the SSN, RSMA, OE, BRQS and
BRBMH algorithms, achieve a better number of attempts compared to the BMH, QS, TVSBS
and BRFS algorithms due to the pre-processing phase used in our algorithms. The BRFS
algorithm uses two preprocessing functions, QS depends on a single character next to the
rightmost character and in the BMH algorithm depends on the rightmost character of the current

window.

192



As mentioned earlier, the RSMA, OE, BRQS and BRBMH algorithms use the enhanced
Berry-Ravindran pre-processing phase which results that all algorithms have the same number of

attempts on the same pattern length.

Table 6-2 shows that the SSN algorithm searches for short DNA patterns with 43.5% fewer
attempts than the RSMA, OE, BRQS and BRBMH algorithms, 46.71% fewer attempts than the
BRES algorithm, 46.7% fewer attempts than the TVSBS algorithm, 67.8% fewer attempts than

the QS algorithm and 72.5% fewer attempts than the BMH algorithm.

Table 6-4 shows that the SSN algorithm searches for long DNA patterns with 47.4% fewer
attempts than the RSMA, OE, BRQS and BRBMH algorithms, 73.8% fewer attempts than the
BRFS algorithm, 73.9% fewer attempts than the TVSBS algorithm, 79.6% fewer attempts than

the QS algorithm and 86.1% fewer attempts than the BMH algorithm.

Table 6-6 shows that the SSN algorithm searches for short protein patterns with 15.6% fewer
attempts than the RSMA, OE, BRQS and BRBMH algorithms, 15.76% fewer attempts than the
BREFES algorithm, 15.75% fewer attempts than the TVSBS algorithm, 39.8% fewer attempts than

the QS algorithm and 35.7% fewer attempts than the BMH algorithm.

Table 6-8 shows that the SSN algorithm searches for long protein patterns with 18.5% fewer
attempts than the RSMA, OE, BRQS and BRBMH algorithms, 23.81% fewer attempts than the
BREFS algorithm, 23.83% fewer attempts than the TVSBS algorithm, 68.9% fewer attempts than

the QS algorithm and 77.1% fewer attempts than the BMH algorithm.
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6.7.4 The Parallel Algorithm Tests Discussion

Our first algorithm, the BRBMH was parallelized by Prasad and Panicker (2010), and their
results show that our algorithm is the best algorithm compared to other ten well-known searching

algorithms.

Their result compares eleven searching algorithms on a file with size 12 MB running both
sequentially and in parallel on “two Beowulf cluster configurations (Dakshina I & Dakshina II)”.
They ran their experiments ten times for different pattern lengths and the results give the average
of these ten executions for each length. They had five experiments; sequential execution time,
parallel execution time with 5 Nodes on Beowulf cluster Dakshina I, parallel execution time with
5 Nodes on Beowulf cluster Dakshina II, parallel execution time with 10 Nodes on Beowulf
cluster Dakshina I, and finally parallel execution time with 10 Nodes on Beowulf cluster

Dakshina I (Prasad & Panicker, 2010).

In order to speed up the search time of sequential algorithms, the best algorithm SSN
algorithm was implemented and tested using the OpenMP model (shared memory model) and the
MPI model (distributed memory model) using the same sample files of DNA and Protein
sequences that used in the sequential tests. Both models were implemented and tested at the

University of Science Malaysia (USM) on a Stealth Cluster.

The OpenMP model was implemented on a single unit of the Sun Fire V210 using four
threads while the MPI model was implemented on two units of the Sun Fire V210 using four
processors. The average searching elapsed time result of the OpenMP model using the DNA and

protein sequences files was presented in Table 6-9 and Table 6-10 while the result of the MPI
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models was presented in Table 6-11 and Table 6-12. The following Table 6-9 and Table 6-10
summarize and compare the average searching elapse time for searching the DNA and protein

sequences using the OpenMP and the MPI models:

Pattern | MPI  OpenMP  MPI  OpenMP ~ MPI  OpenMP

Length Two Two Three Three Four Four
M Threads Processors Threads Processors @ Threads

Table 6- 9: MPI vs. OpenMP: average elapsed search time for searching DNA

Table 6-9 shows that the MPI model performed the search of DNA patterns in less time
compared to the OpenMP model. As an example, the MPI model searches a pattern with length 4
in 9.693 seconds using two processors, 3.752 seconds using three processors and 3.146 seconds
using four processors while the OpenMP model searched the same pattern length in 13.752
seconds using two threads, 6.038 seconds using three threads and 5.25 seconds using four
threads.

In addition, Table 6-9 shows that the MPI model searched for DNA patterns with an average
of 37.6% less time using two processors compared to the OpenMP using two threads, 33.8% less
time using three processors compared to the OpenMP using three threads and 21.6% less time

using four processors compared to the OpenMP using four threads.
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Pattern MEL Huanils MP1 OpenMP MPI OpenMP

Length Two Two Three Three Four Four
M Threads Processors Threads Processors @ Threads

Table 6- 10: MPI vs. OpenMP: average elapsed search time for searching protein

Table 6-10 shows that the MPI model performed the search of protein patterns in less time
compared to the OpenMP model. As an example, the MPI model searched a pattern with length
16 in 8.439 seconds using two processors, 3.386 seconds using three processors and 2.954
seconds using four processors while the OpenMP model searched the same pattern length in
16.832 seconds using two threads, 4.992 seconds using three threads and 3.672 seconds using
four threads.

In addition, Table 6-10 shows that the MPI model searched for protein patterns with an
average of 30.8% less time using two processors compared to the OpenMP model using two
threads, 33.4% less time using three processors compared to the OpenMP model using three
threads and 32.8% less time using four processors compared to the OpenMP model using four
threads.

To evaluate the speedup of using the MPI and OpenMP models over the original SSN
algorithm we used the equation that mentioned in sub-section 2.12.2. Table 6-11 and Table 6-12

shows the speedup of using the MPI and OpenMP models
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MPI OpenMP MPI OpenMP MPI OpenMP

Pattern Two Two Three Three Four Four
Length Processors | Threads Processors @ Threads Processors Threads

4
8
16
32
64

Table 6- 11: The speedup of MPI and OpenMP models for DNA patterns

Pattern MET Huanils MP1 OpenMP MPI OpenMP

Length Two Two Three Three Four Four
M Threads Processors Threads Processors @ Threads

Table 6- 12: The speedup of MPI and OpenMP models for protein patterns

Table 6-11 and Table 6-12 show that the average speedup of searching DNA and protein

sequences using the OpenMP and MPI models is a sub-linear speedup.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

This thesis introduced a new classification of string matching algorithms, developed five new
string matching algorithms, developed a chemical searching tool kit using the best string
matching algorithm and ends by parallelizing the best algorithm to speed up the searching time.
This chapter includes the main conclusion of the research and suggests some possible future

work.

7.1 Conclusion

The massive amount of biological and chemical data which is used daily and stored in files
and databases requires an efficient string matching algorithm to speed up the searching processes
for required sequences and structures. Here is a recap of the research questions for chapter 1. The

answers developed in this thesis are discussed below:

1. Which of the existing string pattern matching algorithm(s) is/are the most suitable for

searching biological sequences and chemical structures?

2. Can we enhance one or more of the proposed algorithms in 1, or develop (a) new

algorithm(s) for string-matching?

3. How we can measure the success of the new developed algorithm(s) compared to the best

algorithm in 1?

4. Can we develop a classification of string matching algorithms which will help with

achieving our aims?
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The answers to questions one and four are presented by studying the standard string
matching algorithms. Question number four was answered by developing a new classification
containing eight categories based on the pre-processing function of each algorithm. Question
number one was answered by analysing the standard algorithms and choosing the appropriate

ones before we tested them with our algorithms.

The above helped us to answer question number two by studying, in depth, most of standard
algorithms and applying changes to enhance them. Firstly we enhanced the pre-processing phase
of Berry Ravindran algorithm by creating a one dimensional array to store the pattern characters
rather than using a two dimensional array to store the text characters. In addition, the use of the
enhanced brBc over the hsBc and gsBc tables provided two benefits: the first one is the enhanced
brBc table shifts the pattern to the right by m+2 positions comparing to the hsBc which shifts
pattern only m positions as well as the gsBc which shifts pattern only m+1 positions if there is a
whole match or a mismatch encountered. The second benefit is reducing the preprocessing time

by scanning only the pattern characters.

Secondly we developed five new algorithms, the BRBMH, BRQS, OE, RSMA and SSN
algorithms. The BRBMH algorithm used the enhanced preprocessing phase instead of the
preprocessing phase of Horspool algorithm and combined it with the searching phase of
Horspool algorithm. The BRQS algorithm used the enhanced preprocessing phase instead of the
preprocessing phase of Quick Search algorithm and combined it with the searching phase of the
Quick Search algorithm. The OE algorithm combined the enhanced pre-processing phase and
searches the pattern in the text using a new searching order. The RSMA algorithm combined the
enhanced pre-processing phase and reduced the searching phase by comparing the pattern with

text window in a new order depending on a generated random value of size S. The SSN
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algorithm uses the ASS table to define a possible starting point to compare the text and the
pattern characters. If the last three characters in the current text window or the next three
characters exists in the ASS table, the pattern is aligned and compared otherwise the pattern is

shifted to the right by m+3 positions.

Question three was answered by downloading sample DNA and proteins sequence FASTA
files, applying our algorithms and four well known standard algorithms and then measuring the
success through three types of tests. The number of comparisons tests, showed a big difference in
the number of comparisons our algorithms use, compared to the non-hybrid algorithms and a
good difference between our algorithms and other hybrid algorithm such as TVSBS and BRFS.
The average elapsed search time tests showed our algorithms presenting better average searching
elapsed time than the BRFS, TVSBS, QS and BMH algorithms. The average number of attempts
tests showed our algorithms achieve better number of attempts comparing to the BMH, QS,

TVSBS and BREFS algorithms.

A chemical toolkit was developed to draw chemical structures and convert them to SMILES

format and then use the SSN algorithm to search for structures in the local database.

And finally the parallel algorithm design included a new contribution where the SSN

algorithm was parallelized using the OpenMP and the MPI models.
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7.2 Future Work

Several research issues can be explored in the future:
- The toolkit can be developed by applying approximate string matching algorithms.
This enhancement will help biologists and chemists in their advanced search

purposes where they can predict missing sequences and structures.

- The toolkit can be expanded by adding more sequences and structures from different

available sources.

- Cooperating with biologists and chemists can lead to the addition of more features to

the toolkit.

- The toolkit can be presented as a portal or searching engine for different users.

- Our SSN algorithm can be implemented alongside up to date string matching

algorithms to test the efficiency of the new algorithm.

- The parallel algorithm design in section 3.3 can be implemented to improve the
searching time using the hybrid memory model which combines both the Open

Multi-Processing (OpenMP) and Message Passing Interface (MPI) parallel models.

- To run the parallel algorithm on all processors of the Stealth Cluster at the University
of Science Malaysia which contains eight processors running on four Sun Fire

machines.

- The parallel algorithm tests and results in section 6.5 can be expanded to test large

files size which will show the efficiency of parallel algorithms and the used cluster.
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APPENDIX A: STRING MATCHING ALGORITHMS CODE

void BruteForce(char *text, int textLength, char *pattern, int patternLength) {
int iCount = 0, jCount = 0;

/* Preprocessing */
// There is no preprocessing phase in the BF algorithm

/* Searching */

for (iCount = 0; iCount <= textLength - patternLength; ++iCount) {
jCount =0
for (; jCount < patternLength && pattern [jCount] == text [iCount + jCount]; ++jCount);
if (jCount = patternLength){

OUTPUT@{Count);

}

}

}

Figure A- 1: The Brute Force algorithm code
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void preprocessing_bmBc(char *pattern, int patternLength, int bmBc[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
bmBc[iCounter] = -1;
}
for (jCounter = 0; jCounter < patternlength; ++jCounter) {
iCounter=pattern[jCounter];
bmBc[iCounter] = jCounter;
}
}

void preprocessing_bmGs(char *pattern, int patternLength, int bmGs[XSIZE]) {
int iCounter= patternLength, jCounter= patternLength + 1;
bmGs[iCounter] = jCounter;
while (iCounter > 0) {
while (jCounter <= patternLength && pattern[iCounter - 1] != pattern[jCounter - 1]){
if (bmGs [jCounter] == 0) {
bmGs [jCounter] = jCounter — iCounter;
}
jCounter = bmGs[jCounter];
}
iCounter--, jCounter--;
bmGs[iCounter] = jCounter;

}

void BoyerMoore(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, bmBc[ASIZE], bmGs[XSIZE];

/* Preprocessing */
preprocessing_bmBc(pattern, patternLength, bmBc);
preprocessing_bmGs(pattern, patternLength, bmGs);

/* Searching */
iCounter = 0;
while (iCounter <= textlength - patternLength) {
jCounter = patternLength - 1;
while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){
--jCounter;
}
if (jCounter < 0){
OUTPUT(@{Counter);
iCounter += bmGs|[0];
}
else{
iCounter += MAX(bmGs[jCounter+1], jCounter - bmBc[text[iCounter + jCounter]);
}
}
}

Figure A- 2: The Boyer-Moore algorithm code
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void preprocessing_ztBc(char *pattern, int patternLength, int ztBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter){
ztBc[iCounter][jCounter] = patternLength;

}

}
for (iCounter = 0; iCounter < ASIZE; ++iCounter){

ztBc[iCounter][pattern[0]] = patternLength - 1;
}

for (iICounter = 1; iCounter < patternLength - 1; ++iCounter){
ztBc[pattern[iCounter - 1]][pattern[iCounter]] = patternLength - 1 - iCounter;

}
}

void preprocessing_ztGs(char *pattern, int patternLength, int ztGs[XSIZE]) {
/I Same preprocessing code as the bmGs function

}

void ZhuTakaoka(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, ztBc[ASIZE][ASIZE], ztGs[XSIZE];

/* Preprocessing */
preprocessing_ztBc(pattern, patternLength, ztBc);
preprocessing_ztGs(pattern, patternLength, ztGs);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
jCounter = patternLength - 1;
while (jCounter < patternLength && pattern[jCounter] == text[iCounter + jCounter]){
--jCounter;
}
if (jCounter < 0){
OUTPUT (iCounter);
iCounter += ztGs[0];
}

else{
iCounter += MAX(ztGs[jCounter], ztBc[text[iCounter + patternLength - 2]][text[iCounter +

patternLength - 1]]);
}
}
}

Figure A- 3: The Zhu-Takaoka algorithm code
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void preprocessing_fsBc(char *pattern, int patternLength, int fsBc[ASIZE]) {
/I Same preprocessing code as the bmBc function

}

void preprocessing_fsGs(char *pattern, int patternLength, int fsGs[XSIZE]) {
/I Same preprocessing code as the bmGs function

}

void FastSearch(unsigned char *pattern, int patternLength, unsigned char *text, int textLength) {
int iCounter, jCounter, fsBc[ASIZE], fsGs[XSIZE];

/* Preprocessing */
preprocessing_fsBc(pattern, patternLength, fsBc);
preprocessing_fsGs(pattern, patternLength, fsGs);

/* Searching */
iCounter = 0;
while (fsBc[text[iCounter + patternLength -1] > 0){
iCounter = iCounter + fsBc[text[iCounter + patternLength -1];

while (iCounter <= textlength - patternLength){

jCounter = patternLength - 2;

while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){
jCounter = jCounter - 1;

}

if (jCounter < 0){
OUTPUT (iCounter);

}

iCounter += fsGs[jCounter + 1];

while (fsBc[text[iCounter + patternLength -1] > 0){
iCounter = iCounter + fsBc[text[iCounter + patternLength -1];

}

Figure A- 4: The Fast Search algorithm code
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void preprocessing_hrBc(char *pattern, int patternLength, int hrBc[ASIZE]) {
/I Same preprocessing code as the bmBc function

}

void Horspool(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, hrBc[ASIZE];

/* Preprocessing */
preprocessing_hrBc(pattern, patternlength, hrBc);

/* Searching */
iCounter = 0;
while (iCounter <= textlength - patternLength) {
patternCounter = patternLength - 1;
jCounter = iCounter + patternLength - 1;
lastCharacter = iCounter + patternLength - 1;
if (pattern[jCounter] == text[lastCharacter]){
patternCounter = 0;
while (jCounter > iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter; ++patternCounter;

}

if (jCounter == iCounter) {
OUTPUT (iCounter);

}

}
iCounter += hrBc [patternLength-1];
}
}

Figure A- 5: The Horspool algorithm code
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void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
gsBc[iCounter] = -1;
}
for (jCounter = 0; jCounter < patternLength-1; ++jCounter){
gsBc[jCounter] = patternLength - jCounter;

}
}

void QuickSearch(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, qsBc[ASIZE];

/* Preprocessing */
preprocessing_qsBc(pattern, patternLength, qsBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
1
if (jCounter < iCounter){
OUTPUT(@iCounter);
}

iCounter += qsBc [patternLength];

Figure A- 6: The Quick-Search algorithm code
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void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter){
brBc[iCounter][jCounter] = patternLength+2;

}
}

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[iCounter][pattern[0]] = patternLength + 1;

1

for (iICounter = 0; iCounter < patternLength - 1; ++iCounter){
brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

1

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[pattern[iCounter-1]][iCounter] = 1;

1

}

void BerryRavindran(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, brBc[ASIZE][ASIZE];

/* Preprocessing */
preprocessing_brBc(pattern, patternlength, brBc);

/* Searching */
iCounter = patternlength-1;
while (iCounter <= textLength){
jCounter= iCounter — patternLength + 1;
patternCounter = patternLength-1;
while (jCounter <= iCounter && pattern[patternCounter] == text[iCounter]) {
--iCounter;
--patternCounter;
}
if (iCounter < jCounter) {
OUTPUT (iCounter);
}

iCounter = iCounter+brBc[patternLength][patternLength+1];

Figure A- 7: The Berry-Ravindran algorithm code

221



int preprocessing_krHashing(char *pattern_OR_textWindow, int patternLength) {

/I This function compute the hashing value for either the pattern characters or the current text from
text[start] ... text[end] and then return the hashing value

int theHashingValue;

return theHashingValue;

}

void KarpRabin(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, iCounter2, jCounter, jCounter2, patternCounter,
int patternHashingValue = 0, textHashingValue = 0;
char *textWindow;

/* Preprocessing */
patternHashingValue = preprocessing_krHashing(pattern, patternLength);

/* Searching */
iCounter = 0;
while (iCounter <= textLength- patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
iCounter2=iCounter;
jCounter2=jCounter;
while (jCounter >= iCounter){
textWindow += text[jCounter];
++iCounter;
}
textHashingValue= preprocessing_krHashing(textWindow, patternLength);
if (patternHashingValue == textHashingValue){
while (jCounter2 >= iCounter2 && pattern[patternCounter] == text[iCounter2]){
--jCounter2;
++patternCounter;
}

1
if (jCounter2 < iCounter2){

OUTPUT@iCounter2);
1

iCounter ++;

Figure A- 8: The Karp-Rabin algorithm code.
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void preprocessing_SSTable(char *pattern, int patternLength, int ssTable[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
ssTable[iCounter] = pattern[iCounter];
}
for (jCounter = 0; jCounter < patternLength-1; ++jCounter){
ssTable[jCounter] = patternLength - jCounter;

}
}

void SkipShift(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ssTable[ASIZE];
char currentChar;

/* Preprocessing */
preprocessing_SSTable(pattern, patternLength, ssTable);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = patternLength-1;
startCounter = patternLength-1;
jCounter = iCounter + patternLength - 1;
currentChar = pattern[patternCounter];
for (;patternCounter >= 0;--patternCounter){
if(currentChar == ssTable[startCounter]){
iCounter = ssTable[startCounter]+startCounter;
jCounter = iCounter + patternLength-1;

}

patternCounter = 0;

while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;

}

if (jCounter < iCounter){
OUTPUT (iCounter);

}

iCounter ++;

Figure A- 9: The Skip Search algorithm code
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void preprocessing_ASSTable(char *pattern, int patternLength, int ASSTable[ASIZE]) {

int bCounter, iCounter, jCounter,tCounter, logPattern, trieLength;

char *trieCharacters;

logPattern = 0;

bCounter = 0;

tCounter = patternLength;

while (tCounter > ASIZE) {
++logPattern;
tCounter /= ASIZE;

1

if (logPattern == 0){
logPattern = 1;

1

trieLength = 2 + (2*patternLength - logPattern + 1)*logPattern;

trieCharacters = newTrie(trieLength, trieLength*ASIZE);

for (iCounter = logPattern; iCounter < ASIZE; ++iCounter){
ASSTable[iCounter] = trieCharacters[iCounter];

}

for (jCounter = logPattern; jCounter < patternLength-1; ++jCounter){
ASSTable[jCounter] = patternLength - bCounter;
++bCounter;

1

}

void AlphaSkipShift(char *pattern, int patternLength, char *text, int textLength, char *trieCharacters, int
trieLength) {

int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ASSTable[ASIZE];

char *patternTrieCharacters;

/* Preprocessing */
preprocessing_ ASSTable(pattern, patternLength, ASSTable);
/* Searching */
iCounter = 0;
while (iCounter <= textlength - patternLength) {
patternCounter = patternLength-1;
startCounter = patternLength-1;
jCounter = iCounter + patternLength - 1;
patternTrieCharacters = newTrie(trieL.ength, trieLength*pattern);
for (;patternCounter >= logPattern;--patternCounter) {
if(patternTrieCharacters == ASSTable[startCounter]){
iCounter = ASSTable[startCounter]+startCounter;
jCounter = iCounter + patternlength-1;

}

patternCounter = 0;

while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;

1

if (jCounter < iCounter){
OUTPUT(@iCounter);

1

iCounter ++;

Figure A- 10: The Alpha Skip search algorithm code

224



void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
gsBc[iCounter] = -1;
}

for (jCounter = 0; jCounter < patternlength-1; ++jCounter){
gsBc[jCounter] = patternLength - jCounter;
}
}
void SSABS(char *pattern, int patternlength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, qsB¢c[ASIZE];

/* Preprocessing */
preprocessing_qsBc(pattern, patternLength, gsBc);

/* Searching */

iCounter = 0;

while (iCounter <= textLength - patternLength) {
patternCounter = patternLength - 1;
jCounter = iCounter + patternLength - 1;
lastCharacter = iCounter + patternLength - 1;
if (pattern[jCounter] == text[lastCharacter]){

patternCounter = 0;

while (jCounter > iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter; ++patternCounter;

}

if (jCounter == iCounter) {
OUTPUT (iCounter);

}

}

iCounter += gsBc [patternLength-1];

Figure A- 11: The SSABS algorithm code
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void preprocessing_ KMPBc(char *pattern, int patternLength, int KMPBc[ASIZE]){
int iCounter,jCounter;
KMPBc[0]=-1;
for (iCounter = 1; iCounter < patternLength; iCounter++){
jCounter = KMPBc[iCounter-1];
while (jCounter>=0){
if(pattern[jCounter] ==pattern[iCounter-1]){
break;
}
elsef
jCounter=KMPBc[jCounter];

1
KMPBcl[iCounter] = jCounter + 1;

}
}

void preprocessing_qgsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
gsBc[iCounter] = -1;
}
for (jCounter = 0; jCounter < patternlength-1; ++jCounter){
qsBc[jCounter] = patternLength - jCounter;
}
}

void FJS(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, qgsBc[ASIZE], KMPBc[ASIZE];

/* Preprocessing */
preprocessing_qsBc(pattern, patternLength, qsBc);
preprocessing_ KMPBc(pattern, patternLength, KMPBc);

/* Searching */
iCounter = 0;
while (iCounter <= textlength - patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
}
if (jCounter < iCounter){
OUTPUT@{Counter);
}
if(pattern[patternCounter] != text[iCounter]){
iCounter += gsBc [patternLength];
}
else{
iCounter += KMPBc [patternCounter];
}
}
}

Figure A- 12: The FIS algorithm code

226



void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter){
brBc[iCounter][jCounter] = patternLength+2;
}
}

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[iCounter][pattern[0]] = patternLength + 1;

1

for (iICounter = 0; iCounter < patternLength - 1; ++iCounter){
brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

1

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[pattern[iCounter-1]][iCounter] = 1;

}

}

void TVSBS(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, brBc[ASIZE][ASIZE];

/* Preprocessing */
preprocessing_brBc(pattern, patternLength, brBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = patternLength - 1;
jCounter = iCounter + patternLength - 1;
lastCharacter = iCounter + patternLength - 1;
if (pattern[jCounter] == text[lastCharacter]){
patternCounter = 0;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter; ++patternCounter;

}

if (jCounter < iCounter) {
OUTPUT (iCounter);

}

}

iCounter += brBc [patternLength][ patternLength+1];

Figure A- 13: The TVSBS algorithm code
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void preprocessing_ztBc(char *pattern, int patternLength, int ztBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter){
ztBc[iCounter][jCounter] = patternLength;

}
}

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
ztBc[iCounter][pattern[0]] = patternLength - 1;

1

for (iICounter = 1; iCounter < patternLength - 1; ++iCounter){
ztBc[pattern[iCounter - 1]][pattern[iCounter]] = patternLength - 1 - iCounter;

}
}

void ZTBMH(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, ztBc[ASIZE][ASIZE];

/* Preprocessing */
Preprocessing_ztBc(pattern, patternLength, ztBc);

/* Searching */
iCounter = 0;
while (iCounter <= textlength - patternLength) {
patternCounter = patternLength - 1;
jCounter = iCounter + patternLength - 1;
lastCharacter = iCounter + patternLength - 1;
if (pattern[jCounter] == text[lastCharacter]){
patternCounter = 0;
while (jCounter > iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter; ++patternCounter;

}

if (jCounter == iCounter) {
OUTPUT (iCounter);

}

}
iCounter += ztBc [patternLength-2][ patternLength-1];

Figure A- 14: The ZTBMH algorithm code
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void preprocessing_fsGs(char *pattern, int patternLength, int fsGs[XSIZE]) {
/I Same preprocessing code as the bmGs function

}

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter){
brBc[iCounter][jCounter] = patternLength+2;

}
}

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[iCounter][pattern[0]] = patternLength + 1;

1

for (iICounter = 0; iCounter < patternLength - 1; ++iCounter){
brBce[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

1

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBe[pattern[iCounter-1]][iCounter] = 1;

}
}

void BRFS(unsigned char *pattern, int patternLength, unsigned char *text, int textLength) {
int iCounter, jCounter, fsGs[XSIZE], brBc[ASIZE][ASIZE];

char *lastTextCharacter;

char *lastPatternCharacter = pattern[patternLength -1];

/* Preprocessing */
preprocessing_fsGs(pattern, patternLength, fsGs);
preprocessing_brBc(pattern, patternLength, brBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength){
if (lastPatternCharacter != lastTextCharacter){

iCounter = iCounter + brBc[pattern[iCounter + patternLength] [pattern[iCounter + patternLength+1];

}

jCounter = patternLength - 2;

while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){
jCounter = jCounter - 1;

}

if (jCounter < 0){
OUTPUT (iCounter);

iCounter = iCounter + brBc[pattern[iCounter + patternLength] [pattern[iCounter + patternlength+1]

}
else{
iCounter += fsGs[jCounter + 1];

}

Figure A- 15: The BRFS algorithm code
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void preprocessing_ KMPBc(char *pattern, int patternLength, int KMPBc[ASIZE]){
int iCounter,jCounter;
KMPBc[0]=-1;
for (iCounter = 1; iCounter < patternLength; iCounter++){
jCounter = KMPBc[iCounter-1];
while (jCounter>=0)

{

if(pattern[jCounter] ==pattern[iCounter-1]){

break;
}
else{

jCounter=KMPBc[jCounter];
}

KMPBcl[iCounter] = jCounter + 1;

}
}
void preprocessing_bmGs(char *pattern, int patternLength, int bmGs[XSIZE]) {
int iCounter= patternLength, jCounter= patternLength + 1;
bmGs[iCounter] = jCounter;
while (iCounter > 0) {
while (jCounter <= patternLength && pattern[iCounter - 1] != pattern[jCounter - 1]){
if (bmGs [jCounter] == 0) {
bmGs [jCounter] = jCounter — iCounter;

}

jCounter = bmGs[jCounter];
}
iCounter--, jCounter--;
bmGs[iCounter] = jCounter;
}
}
void BM-KMB(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, patternCounter, lastCharacter, bmGs[ASIZE], KMPBc[ASIZE];
/* Preprocessing */
preprocessing_bmGs(pattern, patternLength, bmGs);
preprocessing_ KMPBc(pattern, patternL.ength, KMPBc);
/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
if(pattern[patternCounter + patternLength-1 ] != text[jCounter]){
iCounter += bmGs[jCounter];

}
else{
while (jCounter-1 >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
}
}
if (jCounter-1 < iCounter){
OUTPUT (iCounter);
}

iCounter += KMPBc [patternCounter];

Figure A- 16: The BM-KMB algorithm code
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void preprocessing_SSTable(char *pattern, int patternLength, int ssTable[ASIZE]) {
int iCounter, jCounter;
for (iICounter = 0; iCounter < ASIZE; ++iCounter){
ssTable[iCounter] = pattern[iCounter];
1
for (jCounter = 0; jCounter < patternlength-1; ++jCounter){
ssTable[jCounter] = patternLength - jCounter;
1
1
void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter){
brBc[iCounter][jCounter] = patternlength+2;
1
1

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[iCounter][pattern[0]] = patternLength + 1;
1
for (iICounter = 0; iCounter < patternlength - 1; ++iCounter){
brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;
1
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[pattern[iCounter-1]][iCounter] = 1;
1
1
void BRSS(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ssTable[ASIZE], brBc[ASIZE][ASIZE];
char currentChar;
/* Preprocessing */
preprocessing_SSTable(pattern, patternLength, ssTable);
preprocessing_brBc(pattern, patternLength, brBc);

/* Searching */
iCounter = 0;
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = patternLength-1;
startCounter = patternLength-1;
jCounter = iCounter + patternLength - 1;
currentChar = pattern[patternCounter];
for (;patternCounter >= 0;--patternCounter){
if(currentChar == ssTable[startCounter]){
iCounter = ssTable[startCounter]+startCounter;
jCounter = iCounter + patternl_ength-1;
}
}

patternCounter = 0;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
}
if (jCounter < iCounter){
OUTPUT({Counter);

}

iCounter += MAX(ssTable[text[iCounter + patternLength]], brBc[text[iCounter + patternLength]] [text[iCounter
+ patternLength +1]]);

}
}

Figure A- 17: The BRSS algorithm code
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void preprocessing_ASSTable(char *pattern, int patternLength, int ASSTable[ASIZE]) {

int bCounter, iCounter, jCounter,tCounter, logPattern, trieLength;

char *trieCharacters;

logPattern = 0;

bCounter = 0;

tCounter = patternLength;

while (tCounter > ASIZE) {
++logPattern;
tCounter /= ASIZE;

1

if (logPattern == 0){
logPattern = 1;

1

trieLength = 2 + (2*patternLength - logPattern + 1)*logPattern;

trieCharacters = newTrie(trieLength, trieLength*ASIZE);

for (iCounter = logPattern; iCounter < ASIZE; ++iCounter){
ASSTable[iCounter] = trieCharacters[iCounter];

}

for (jCounter = logPattern; jCounter < patternLength-1; ++jCounter){
ASSTable[jCounter] = patternLength - bCounter;
++bCounter;

1

}

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
for (jCounter = 0; jCounter < ASIZE; ++jCounter) {
brBc[iCounter][jCounter] = patternLength+2;
}
}

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBc[iCounter][pattern[0]] = patternLength + 1;

1

for (iICounter = 0; iCounter < patternLength - 1; ++iCounter){
brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

1

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
brBe[pattern[iCounter-1]][iCounter] = 1;

}

}

void ASSBR(char *pattern, int patternLength, char *text, int textLength, char *trieCharacters, int trieLength) {
int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ASSTable[ASIZE], brB¢c[ASIZE][ASIZE];
char *patternTrieCharacters;

/* Preprocessing */
preprocessing_ASSTable(pattern, patternLength, ASSTable);
preprocessing_brBc(pattern, patternLength, brBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = patternLength-1;
startCounter = patternLength-1;
jCounter = iCounter + patternLength - 1;
patternTrieCharacters = newTrie(trieL.ength, trieLength*pattern);
for (;patternCounter >= logPattern;--patternCounter) {
if(patternTrieCharacters == ASSTable[startCounter]){
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iCounter = ASSTable[startCounter]+startCounter;
jCounter = iCounter + patternlength-1;

}

patternCounter = 0;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
}
if (jCounter < iCounter){
OUTPUT@{Counter);

1
iCounter += brBc[text[iCounter + patternLength]] [text[iCounter + patternLength +1]]);

Figure A- 18: The ASSBR algorithm code
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void preprocessing_mrcaTable(char *pattern, int patternLength, int *refl, int *ref2) {
int iCounter, jCounter;
char currentcharacter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
ref1[iCounter] = 0;
ref2[iCounter] = 2 * patternLength;
}
for (jCounter = 0; jCounter < patternLength; ++jCounter){
currentcharacter = pattern[jCounter];
refl[currentcharacter] = jCounter + 1;
ref2[currentcharacter] = 2 * patternLength - jCounter -1;
}
}

void MRCA(char *pattern, int patternLength, char *text, int textLength, int *refl, int *ref2) {
int iCounter, jCounter, startCounter, patternCounter, patternCounterNew, lastCharacter, mrcaTable[ASIZE];
int ref1_CharPos, ref2_CharPos;

/* Preprocessing */
preprocessing_mrcaTable(pattern, patternLength, refl, ref2);

/* Searching */

iCounter = 0;
mrcaTable[pattern[0]]=1;
lastCharacter =patternLength;
patternCounter = 0;

while (lastCharacter <= textLength - patternLength) {
if(mrcaTable[lastCharacter - patternLength + patternCounterNew] == pattern[patternCounter];
{
for (iCounter = 0; patternCounter = patternLength -1; --patternCounter) {
if(text[lastCharacter - ++iCounter] != pattern[patternCounter])
{
patternCounterNew = patternCounter;
goto next;

}

next:
ref1_CharPos = refl[text[lastCharacter]];

if(Iref1_CharPos){
lastCharacter = refl +patternLength;
ref2_CharPos = refl[text[lastCharacter];

}
else
{
refl = refl + patternLength - ref1_CharPos;
lastCharacter += ref2[text[ref1]]- ref1_CharPos + 1;
}

Figure A- 19: The MRCA algorithm code
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int preprocessing_krHashing(char *pattern_OR_textWindow, int patternLength) {

/I This function compute the hashing value for either the pattern characters or the current text from
text[start] ... text[end] and then return the hashing value

int theHashingValue;

return theHashingValue;

}

void preprocessing_hrBc(char *pattern, int patternLength, int hrB¢c[ASIZE]) {

/I Same preprocessing code as the bmBc function

int iCounter, jCounter;

for (iCounter = 0; iCounter < ASIZE; ++iCounter){
hrBc[iCounter] = -1;

}

for (jCounter = 0; jCounter < patternlength; ++jCounter){
iCounter=pattern[jCounter];
hrBc[iCounter] = jCounter;

void KRBMH(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, iCounter2, jCounter, jCounter2, patternCounter, hrBc[ASIZE];
int patternHashingValue = 0, textHashingValue = 0;
char *textWindow;
/* Preprocessing */
patternHashingValue = preprocessing_krHashing(pattern, patternLength);
preprocessing_hrBc(pattern, patternLength, hrBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength- patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
iCounter2=iCounter;
jCounter2=jCounter;
while (jCounter >= iCounter){
textWindow += text[jCounter];
++iCounter;
}
textHashingValue= preprocessing_krHashing(textWindow, patternLength);
if (patternHashingValue == textHashingValue){
while (jCounter2 >= iCounter2 && pattern[patternCounter] == text[iCounter2]){
--jCounter2;
++patternCounter;
}
}
if (jCounter2 < iCounter2){
OUTPUT@{iCounter2);
}

iCounter += hrBc [patternLength-1];

Figure A- 20: The KRMBH algorithm code
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void preprocessing_SSTable(char *pattern, int patternLength, int ssTable[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
ssTable[iCounter] = pattern[iCounter];
}
for (jCounter = 0; jCounter < patternLength-1; ++jCounter){
ssTable[jCounter] = patternLength - jCounter;
}
}

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
gsBc[iCounter] = -1;
}
for (jCounter = 0; jCounter < patternLength-1; ++jCounter){
gsBc[jCounter] = patternLength - jCounter;
}
}

void QuickSkipSearch(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ssTable[ASIZE], qsBc[ASIZE];
char currentChar;

/* Preprocessing */
preprocessing_SSTable(pattern, patternLength, ssTable);
preprocessing_qsBc(pattern, patternLength, qsBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength - patternLength) {
patternCounter = patternLength-1;
startCounter = patternLength-1;
jCounter = iCounter + patternLength - 1;
currentChar = pattern[patternCounter];
for (;patternCounter >= 0;--patternCounter){
if(currentChar == ssTable[startCounter]){
iCounter = ssTable[startCounter]+startCounter;
jCounter = iCounter + patternLength-1;

}

patternCounter = 0;
while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {
--jCounter;
++patternCounter;
1
if (jCounter < iCounter){
OUTPUT(@Counter);
}

iCounter += MAX(ssTable[text[iCounter + patternLength]], gsBc[text[iCounter + patternLength]]);

Figure A- 21: The QSS algorithm code

236



int preprocessing_krHashing(char *pattern_OR_textWindow, int patternLength) {

/I This function compute the hashing value for either the pattern characters or the current text from text[start] ...
text[end] and then return the hashing value

int theHashingValue;

return theHashingValue;

}

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {
int iCounter, jCounter;
for (iCounter = 0; iCounter < ASIZE; ++iCounter){
gsBc[iCounter] = -1;
}
for (jCounter = 0; jCounter < patternlength-1; ++jCounter){
qsBc[jCounter] = patternLength - jCounter;
}
}

void AKRAM(char *pattern, int patternLength, char *text, int textLength) {
int iCounter, iCounter2, jCounter, jCounter2, tCounter, patternCounter, qsBc[ASIZE];
int patternPrefixHashingValue = 0, patternSuffixHashingValue = 0;
int textPrefixHashingValue = 0, textSuffixHashingValue = 0;
int prefixLength, suffixLength;
char *patternPrefix, *patternSuffix, *textWindow, *textPrefix, *textSuffix;
prefixLength = (int)patternLength/2;
suffixLength = patternLength - prefixLength;
for (iCounter = 0; iCounter < prefixLength; iCounter++){
patternPrefix += pattern[iCounter];
}
for (iCounter = prefixLength; iCounter < patternLength; iCounter++){
patternSuffix += pattern[iCounter];

}

/* Preprocessing */

/Ipattern hashing here while the text hasing in searching phase
patternPrefixHashingValue = preprocessing_krHashing(patternPrefix, prefixLength);
patternSuffixHashingValue = preprocessing_krHashing(patternSuffix, suffixLength);
preprocessing_qsBc(pattern, patternLength, gsBc);

/* Searching */
iCounter = 0;
while (iCounter <= textLength- patternLength) {
patternCounter = 0;
jCounter = iCounter + patternLength - 1;
iCounter2=iCounter;
jCounter2=jCounter;
while (jCounter >= iCounter){
textWindow += text[jCounter];
++iCounter;
}
for (tCounter = 0; tCounter < prefixLength + iCounter2; tCounter++){
textPrefix += text[tCounter];
}
for (tCounter = prefixLength + iCounter2; tCounter < jCounter2; tCounter++){
textSuffix += text[tCounter];
}
textPrefixHashingValue= preprocessing_krHashing(textPrefix, prefixLength);
textSuffixHashingValue= preprocessing_krHashing(textSuffix, suffixLength);
if (patternPrefixHashingValue == textPrefixHashingValue && patternSuffixHashingValue ==
textSuffixHashingValue){
while (jCounter2 >= iCounter2 && pattern[patternCounter] == text[iCounter2]){
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--jCounter2;
++patternCounter;
}

}
if (jCounter2 < iCounter2){

OUTPUT(@iCounter?2);
}

iCounter += qsBc [patternLength];
}
}

Figure A- 22: The AKRAM algorithm code
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APPENDIX B: SMILES EBNF

The complete EBNF of the SMILES is listed in this appendix.

smiles ;2= chain
chain :: = branched_atom
| branched_atom chain
| branched_atom bond chain
| branched_atom DOT chain
bond = BOND_1
| BOND_2
| BOND_3
| BOND_4
| BOND_ARO
branched_atom :» = atom kleene_ringbond kleene_branch kleene_ringbond
kleene_ringbond ::= kleene_ringbond ringbond
| ringbond
|
kleene_branch :: = kleene_branch branch
| branch
|
ringbond ::= RINGBOND
| DIGIT
branch :: = LPAREN chain RPAREN
| LPAREN bond chain RPAREN
| LPAREN DOT chain RPAREN
atom :: = bracket_atom
| aliphatic_organic

| aromatic_organic

| WILDCARD
bracket_atom :: = LBRACKET isotope symbol chiral hcount charge class RBRACKET
aliphatic_organic ::= ELEMENT
aromatic_organic ::= AROMATIC
isotope :: = number
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symbol

chiral

hcount

charge

class

number

ELEMENT

| AROMATIC

| WILDCARD

CHIRAL

| CHIRAL CHIRAL

| CHIRAL CHIRAL_CODE
[

ELEMENT

| ELEMENT DIGIT

[

CHARGE_MINUS

| CHARGE_MINUS DIGIT
| CHARGE_PLUS

| CHARGE_PLUS DIGIT

| DEPR_MIN

| DEPR_PLUS

I nn

CLASS_COLON NUMBER

I nn

number DIGIT
| DIGIT
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APPENDIX C: TOOLKIT AND PARALLEL MODELS

IMPLEMNTATION

3 MySQL-Front - [New Connection - /nmrshiftdb]
ﬁF\Ie Edit Tools Im-/Export Window Help

a MySQL-Front - [Mew Connection - /nmirshiftdb]
ﬁ File Edit Tools Im-/Export Window Help

ﬁ rooh@locahost
Ahmadtlaib
mysal SQL-Query on Database nmrshiftdb: 121 Characters b E M H # ;!,tg
nrmirshiftdd r — -

-3 atticle -

-] atom

0 author keyword_id molecule_id I\iterature_id Jliteralule Jspeclrum_id ISMi\es_slringJ hyperlink,
[ bord 20008439 & 1 21947 20002746 (MEMO) 62128 | (BLOB) (MEMO)
[ bond_atam N 20010639 |antbacterial and antitumer effects 22207 ) 62458 (BLOB)
[ boak 2487 antimicrobial activity 104835 3124 (MEMO) 135944 | (BLOE)
-[F] book_publisher — 2497 |antimicrobial activity 105208 3143 (MEMO) 136164 | {(BLOB)
[ baokmark 2497 | antimicrobial activity 10010220 10000984 (MEMO) 10020173 | (BLOE)
e Ca"”"ﬁca'-”amﬁ 208 |antbacterial activity 10014078 10001442 (MEMO) 10032154 | (BLOE)
=) canoriical_name_| 10004141 | antiprotozoal activity 10019469 10001606 {MEMO) 10047921 | (BLOB)
g E::;:Ti—name 2497 |antmicrobial actvity 10019536 10001621 (MEMO) 10048353 | (BLOB)
[ condiion,_type 1698 |antiviral activity 10019787 10001661 (MEMO) 10050357 | (BLOB)
[0 coordinate_sel_ 2 10004301 antibacterial 10027766 10002573 | {MEMO) 10093540 | (BLOB)
3 coordinate_set_3c 10004301 antibacterial 10027767 20002303 (MEMO) 20128622 | (BLOB)
-[Z] coodinate_set_ty 10004301 antbacterial 10027768 20002803 | (MEMO) 20128524 | (BLOE)

)

)

)

)

)

)

)

)

)

i antibacterial

& coupling 10004301 antbacterial 10027786 10002573 (MEMO 10093986  (BLOE)
- d2 10004301 antbacterial 10027806 20002803 (MEMO 20128629  (BLOE)
g :escr?p:m—f‘?cm 10004301 antibacterial 10027807 10002573 (MEMO 10093950  (BLOB)
s 10004301 antbacteria 10027808 10002573 (MEMC] 10093991 | (BLOE]
0 deepins 2 — o (108)
0 desciptors 3 20008907 antiviral 10027908 10002634 (MEMO 10097315 | (BLOB)
1] descriptors 4 20008307 antiviral 10027909 10002634 (MEMO 10095544 (BLOB)
1 descriptors_al 20008907 antiviral 10028006 2307 (MEMO] 10096870 (ELOB)
[ fingerprints 10004301 antbacterial 10028026 10002673 (MEMO 10097092 | (BLOB)
[ guestbock i 10004301 antbacterial 10028027 10002673 (MEMO 10097094 | (BLOE)

SOL ELOB-E ditor

SHOW PROCESSLIST
SHOW DATABASES

SHOW TABLES FROM ‘Lhmadilaib’
SHOW TABLES FROM “mysgl®
SHOW TABLES FROM “nmrshiftdb’
SHMW TARILES FROM “te”

Figure C- 1: A sample of extracted Antimicrobial structures
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B File  Window Help
= Ry b

=%

% SQL Server Enterprise Manager - [New View in ‘nmrshiftdb’ on "AHMADKLAIB']

article [—]

bond_stom

chemical_name

bookmark

[T= (Al Columns) 7
LITERATURE_ID

[_|PAGES_FROM

[ lpaGes_To

|PUBLISHED _IN_BOOK

bond

[ [= (Al Columns)

[ 1= (Al Columns)

15_CONFIGURATION_SPECIFIED
|STEREO

condition

__|* (Al Columns)

| CONDITION_ID

ALUE
| CONDITION_TYPE_ID
JUSER_ID

H|

condition_type

" [= (Al Columns)
| | TYPE_ID
| CONDITION_NAME
| CONDITION_TYPE
DATA_TYPE

descriptors 1

|* (All Columns)

Q ATOM_ID

_|SIGHAL_ID

= (All Colurmns)

[ INAME_SOUNDEX

o3

3 canonical_name

(] (all Columns)
|MoLEQULE D
CANONICAL_NAME_TYPE_ID
[ Iname

|NAME_SOUNDEX

|| * (all Columns)
MOLEQLE ID

USER_ID

cananical name type

|| * (Al Columns)
CANONICAL_NAME TYPE ID
CANONICAL_NAME_TYPE

1
coordinate set type

|| = {all Columns)
[ | COORDINATE_SET_TYPE_ID

DESCRIPTION

[
coordinate set 3d

descriptors 2

[T+ (all Columns]

coordinate_set_2d

[ = (All Columns)

[T (all Columns)

= (All Calumns)

\TOM_ID

COORDINATE_SET_TYPE_ID

_COORDINATE

[_lv_coorDmaTE

descriptors 4

descriptors._all

[ (All Columns)
[_laToM_1D
[_s1GNAL_ID

| |des0

[dest

| = (Al Columns)

Figure C- 2: The local database schema (1)

‘1 File Window Help

% SQL Server Enterprise Manager - [Mew View in ‘nmrshiftdb’ on 'AHMADKLAIB']

[Jvarue
[IspecTRUM_ID

isotope
|| * (All Columns)

A
[_|ELEMENT_SYMBOL
| ATOMIC_MASS

journal

literature

[]= (all Columns)
[ umeraTRe D
=

TITLE_TOTAL_SOUNDEX

is_editor

Eall
hcountnew

(All Columns)
MOLECULE _ID

measurement_condition

T+ (all Columns)

[luser_navE

is_author

{All Columns)
D

IMEDIA_TYPE

[|LABGROUP_NAME
[ lLEADER

molecule

* (All Columns)
MOLEQAE_ID

keyword

[ (all Columns)

] _CONDITION_ID
TEMPERATURE

TELD_STRENGTH

[ |soLvenT

= (All Colurns)

KEYWORD_ID
KEYWORD

__IKEYWORD _SQUNDFY

raw_file_spectrum

i

identifier

|* (Al Columns)
LD

[ |LITERATURE ID

[ menTIFIER

jetspeed_group_pr... - |
| (All Columns) .
_|psa. D

[ |GROUP_NAME
[ ImMep1a_TvrE
_lLanGUAGE

hcount

[ ]= (all Columns)
[ IMoLECULE_ID
[ IH_count

[Jcount

[ jetspeed_anon_pro... — |

[ (All Colurns)
[ psa D
[ |mEDIA TYPE
[_lLancuace
[ |counTRY
jetspeed_role_profile

= (all Columns)
PSML_ID

[_|ROLE_NAME
[Imenta TYRE

publisher

1= (Al Columns)
PUBLISHER_ID

[ namE
CIpLACE

=l

Figure C- 3: The local database schema (2)
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%} SQL Server Enterprise Manager - [New View in 'nmrshiftdb’ on "AHMADKLAIB']
“fy File Window Help

HE | cEag

p T T T
/ l molecule ‘

_ [ T= (all Columns) =
measurement_condition 0 - : ' 3 [ 130uRNAL_ID
[_|= (a1 columns) [lpate
[ | MEASUREMENT_CONDITION_ID [lcas_numser
[ TEMPERATURE [_INMRSHIFTDB_NUMBER
[ IFIELD_STRENGTH

[ |souvent

T
publisher

raw_file

f ‘I{ ‘| W g = (all Columns)
- ] RAW_FILE_ID
reviewgroup_user [_] ‘ O [IsaMPLE_ID
—_— | URL
|= (all Columns) e | = =
e

| 2
Cusm [ 1* (Al Columns)

raw_file_spectrum J
= (All Columns)

[ |raw_FLE D
[_|sPECTRUM_ID

L E
E‘]TFLE_TOTAL_SOUNDEX

shift = (All Columns) signal

T =l Comrs) | 6 SPECTRUM_ID x

[T (All Columns) L = (4l Columns)
SIGNAL_ID CAIL :

[T & . SIGNAL_ID

was SPECFILE N

m LITERATURE —

[ lvatue - __|sPECTRUM_ID 1 SEclimns

_IMULTIPLICTTY EEHALID

| |= (Al Columns)

r—— [ Iname
spectrum_type (=] h _d

5 [5]
[ ]* (Al Columns) /:\:yt;z:tat
- mﬁ—m & spectrum_keyword =i
On

= (all Columns)

AME Bl
[ Juser_1o

™

Figure C- 4: The local database schema (3)
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nﬁ] SQL Server Enterprise Manager - [New View in ‘nmrshiftdb’ on' AHMADKLAIB']
& File Window Help
| BB P KIE®

i T TUSER I

T TSPECTROFID
et || kerworn_D

="

sysforeignkeys 1

il i T ] sysfulitextcatalogs  — |
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I |Clpath
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Figure C- 10: Enabling OpenMP Model in Microsoft Visual Studio
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Figure C- 11: Enabling MPI Model in Microsoft Visual Studio
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APPENDIX D: LOCAL DATABASE TABLES FORMAT AND

DESCRIPTION

We mentioned in chapter 5 (section 5.5), three tables of our Local Database. The following

tables show the remaining relational tables which connecting chemical molecules and their

corresponding information:

Literature Table (8 Fields)

Field Type Null | Key | Default Example
LITERATURE_ID int(11) PRI 0 2366
TITLE varchar(255) Hepatoprotective Sesquiterpene
Glycosides from Sarcandra glabra
SUBTITLE varchar(255) YES NULL
TITLE_TOTAL_SOUNDEX varchar(255) 131632312361524
2321652625362416
TITLE_TOTAL varchar(255) Hepatoprotective Sesquiterpene
Glycosides from Sarcandra glabra
ET AL enum('false’,'true’) false false
URL varchar(255) YES NULL http://pubs3.acs.org/acs/journals
/toc.page?incoden=jnprdf&indecade
=0&involume=69&inissue=4
DOI varchar(255) YES NULL 10.1021/np050480d
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Spectrum Table ( 15 Fields)

Field Type Null | Key Default Example
SPECTRUM_ID int(11) PRI 0 62458
DATE datetime MUL | 0000-00- 2006-06-14 14:53:57
00
00:00:00
SPECFILE mediumtext MUL
LITERATURE mediumtext
LITERATURE_SOUNDEX mediumtext
REVIEW_FLAG enum('false’,'true’, rejected’, MUL false false
'change','edited’,'hidden")
REVIEW_KEY varchar(6) 42370
NMRSHIFTDB_NUMBER varchar(255) MUL nmrshiftdb.ice.mpg.
de_patel_2006-06-
14_02:53:57_0652
FINGERPRINT bigint(20) 0 0
USER_ID int(11) MUL 0 30003481
SPECTRUM_TYPE_ID int(11) MUL 0 1
COMMENT longblob YES NULL
COMMENT_SOUNDEX mediumtext
MOLECULE_ID int(11) MUL 0 22207
SIMPLE_SPECFILE varchar(255) 8.8;0116.7;0127.1;0127.8;0I

35.9;0148.1;0165.6;0168.2;01
68.6;0171.8;0175;0175.1;01
77.1;0178;0178.2;0180.5;0!
84.5;01104.2;01111;01
126.8;01129.6;01131.3;01
134;01165.5;01176.1;01
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Spectrum__ Literature Table ( 2 Fields)

Field Type | Null | Key | Default | Example
SPECTRUM_ID | int(11) PRI 0 62458
LITERATURE_ID | int(11) PRI 0 2366

Spectrum_ Type Table (4 fields)

Field Type Null | Key | Default | Example
SPECTRUM_TYPE_ID int(11) PRI 0 1
DIMENSIONALITY int(11) MUL 0 1
NAME varchar(255) 13C
USER_ID int(11) MUL 0 30003481
Chemical_Name Table (3 fields)
Field Type Null | Key | Default Example
MOLECULE_ID int(11) PRI 0 22207
NAME varchar(255) PRI Sarcaglaboside E
NAME_SOUNDEX | varchar(255) 2624123
Canonical_Name Table (4 fields)
Field Type Null | Key | Default Example
MOLECULE_ID int(11) PRI 0 22207
CANONICAL_NAME_TYPE_ID int(11) PRI 0 4
NAME varchar(255) MUL InChI=1/C26H38012/c1-13-4-3-5-15(6-7-

16-14(2)23(32)37-17(16)8-13)9-34-24-
21(30)20(29)19(28)18(38-24)10-35-25-
22(31)26(33,11-27)12-36-25/h4.6,17-
22,24-25,27-31,33H,3,5,7-12H2,1-
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2H3/b13-4+,15-6-/t17-
,182,192,207,21+,22?,24+,252,26?/m0/s 1

NAME_SOUNDEX mediumtext 521263812134351567161
423237171681393424213
291928183824135252312
631271236254617242527
313571212313415631718

1921242526521
Molecule_Hyperlink Table (4 fields)
Field Type Null | Key | Default Example
) int(11) PRI 0 22207
HYPERLINK mediumtext PRI http://pubs3.acs.org/acs/journals/toc.

page?incoden=jnprdf&indecade=0&

involume=69&inissue=4

DESCRIPTION mediumtext

DESCRIPTION_SOUNDEX | mediumtext

Article Table ( 6 Fields)

Field Type | Null | Key | Default | Example
LITERATURE_ID int(11) PRI 0 2366
PAGES_FROM int(11) 0 616
PAGES_TO int(11) 0 620

PUBLISHED_IN_BOOK int(11) | YES | MUL | NULL NULL
PUBLISHED_IN_JOURNAL | int(11) | YES | MUL | NULL | 10000681
ISSUE_NUMBER int(11) | YES NULL 4
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Atom Table ( 10 Fields)

Field

Type Null | Key | Defaul Example
t
ATOM_ID int(11) PRI 0 458931
SYMBOL char(3) C
MOLECULE_ID int(11) MUL 0 22207
HOSE_CODE_WITH_RINGS text YES | MUL | NULL C-3-
10;=CC(CC,C/C,,C/
CO,=CC)=CC,C,&,0/&
C
,&,=0&,C/
ATOMIC_MASS int(11) 0 6
FORMAL_CHARGE int(11) 0 0
IS_AROMATIC enum('false','true") false false
IS_VISIBLE enum('false','true’) false true
HETERO varchar(5) false false
HOSE_CODE varchar(120) C-3;=CC(CcC.,c/C,.C/
C0O,=CC)=CC,C,&,0/
&C,&,=0&.,C/
Author Table ( 5 Fields)
Field Type Null | Key | Default | Example
AUTHOR_ID int(11) PRI 0 211
SURNAME varchar(255) A.
NAME varchar(255) Hisham
NAME_TOTAL_SOUNDEX | varchar(255) 25
NAME_TOTAL varchar(255) A Hisham
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Bond Table ( 5 Fields)

Field

Type Null | Key | Default | Example
BOND_ID int(11) PRI 0 561393
DEGREE int(11) 0 1
IS_CONFIGURATION_SPECIFIED | enum('false’,'true") false false
STEREO int(11) 0 0
IS_AROMATIC enum('false','true") false false
Bond_Atom Table ( 3 Fields)
Field Type | Null | Key | Default | Example
BOND_ID int(11) PRI 0 561393
ATOM_ID int(11) PRI 0 10070728
ORDER_NUMBER | int(11) 0 1
Book Table ( 1 Field)
Field Type | Null | Key | Default | Example
LITERATURE_ID | int(11) PRI 0 10000651
Book_Publisher Table ( 3 Fields)
Field Type | Null | Key | Default | Example
PUBLISHER_ID | int(11) PRI 0 140
LITERATURE_ID | int(11) PRI 0 10000651
YEAR int(11) 0 1972
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Bookmark Table ( 2 Fields)

Field Type | Null | Key | Default | Example
MOLECULE_ID | int(11) PRI 0 2217
USER_ID int(11) PRI 0 20003220

Canonical_Name_Type Table ( 2 Fields)

Field Type Null | Key | Default | Example
CANONICAL_NAME_TYPE_ID int(11) PRI 0 4
CANONICAL_NAME_TYPE varchar(255) INChI
Condition Table ( 4 Fields)
Field Type Null | Key | Default | Example
CONDITION_ID int(11) PRI 0 1
VALUE varchar(255) Unknown
CONDITION_TYPE_ID int(11) MUL 0 11
USER_ID int(11) MUL 0 1
Condition_Type ( 7 Fields)
Field Type Null | Key | Default Example
CONDITION_TYPE_ID int(11) PRI 0 11
CONDITION_NAME varchar(255) Assignment Method
CONDITION_TYPE char(1) MUL M
DATA_TYPE varchar(255) String
DICT_REF varchar(255) nmr:assignmentMethod
UNITS varchar(255)
CML_ENTRY_TYPE varchar(255) metadata
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Coordinate_Set_2d Table ( 4 Fields)

Field Type | Null | Key | Default | Example
COORDINATE_SET _TYPE_ID | int(11) PRI 0 1
ATOM_ID int(11) PRI 0 10070728
X_COORDINATE double 0 84
Y_COORDINATE double 0 45
Coordinate_Set_3d ( 5 Fields)
Field Type | Null | Key | Default | Example
COORDINATE_SET _TYPE_ID | int(11) PRI 0 2
ATOM_ID int(11) PRI 0 10070728
X_COORDINATE double 0 -1.6107
Y_COORDINATE double 0 6.0441
Z_COORDINATE double 0 -1.229
Coordinate_Set_Type ( 2 Fields)
Field Type Null | Key | Default Example
COORDINATE_SET_TYPE_ID | int(11) PRI 0 2
DESCRIPTION longblob | YES NULL | Corina generated
Coupling ( 4 Fields)
Field Type | Null | Key | Default | Example
SPECTRUM_ID | int(11) PRI 0 62151
ATOM_ID_1 int(11) PRI 0 11353692
ATOM_ID_2 int(11) PRI 0 11353701
CONSTANT double 0 9.4
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D2 ( 2 Fields)

Field Type Null | Key | Default | Example
SPECTRUM_ID | int(11) MUL 0
C bigint(21) 0
Descriptor_Factors Table ( 4 Fields)
Field Type Null | Key | Default | Example
PROTONCLASS int(11) YES NULL 1
DESCRIPTOR | varchar(6) | YES NULL desO
MIN_VALUE float YES NULL | -4.85783
DIVISOR float YES NULL | 15.6864
Descriptors_1 Table ( 12 Fields)
Field Type | Null | Key | Default Example
ATOM_ID | int(11) 0 10025644
SIGNAL_ID | int(11) 0 118780
des0 float 0 0.870193
desl float 0 1
des2 float 0 1
des3 float 0 0
des5 float 0 0
des6 float 0 0.577553
des7 float 0 3.88273E-36
des8 float 0 0.631443
des9 float 0 0.261656
des10 float 0 0.787642
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Descriptors_2 Table ( 13 Fields)

Field Type | Null | Key | Default | Example
ATOM_ID | int(11) 0 10032017
SIGNAL_ID | int(11) 0 294112
desO float 0 0.802921
desl float 0 4.76838E-7
des2 float 0 1
des3 float 0 0
des4 float 0 0.5
des5 float 0 0
des6 float 0 0.0925837
des7 float 0 0.528582
des8 float 0 0.180124
des9 float 0 0.713736
des10 float 0 0.751165

Descriptors_3 Table ( 13 Fields)

Field Type | Null | Key | Default | Example
ATOM_ID | int(11) 0 10032068
SIGNAL_ID | int(11) 0 294084
desO float 0 0.929478
desl float 0 1
des2 float 0 1
des3 float 0 0
des4 float 0 0
des5 float 0 0
des6 float 0 0.159696
des7 float 0 0.748386
des8 float 0 0.315996
des9 float 0 0.846154
des10 float 0 0.724766
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Descriptors_4 Table ( 11 Fields)

Field Type | Null | Key | Default Example
ATOM_ID | int(11) 0 10025646
SIGNAL_ID | int(11) 0 118778
des0 float 0 0.789115
desl float 0 0.310345
des4 float 0 0
des5 float 0 0
des6 float 0 0.547023
des7 float 0 1.32143E-36
des8 float 0 0.305556
des9 float 0 0.5
des10 float 0 0.960485
Descriptors_All Table ( 13 Fields)
Field Type | Null | Key | Default | Example
ATOM_ID | int(11) 0 10025646
SIGNAL_ID | int(11) 0 118778
desO float 0 8.37889
desl float 0 1.7
des2 float 0 0
des3 float 0 0
des4 float 0 1
des5 float 0 4
des6 float 0 0.420249
des7 float 0 3.54736
des8 float 0 0.6875
des9 float 0 0.375
des10 float 0 7.49834
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Fingerprints Table ( 17 Fields)

Field Type Null | Key | Default | Example
MOLECULE_ID int(11) 0
fp0 bigint(20) unsigned | YES NULL
fpl bigint(20) unsigned | YES NULL
fp2 bigint(20) unsigned | YES NULL
fp3 bigint(20) unsigned | YES NULL
fp4 bigint(20) unsigned | YES NULL
fp5 bigint(20) unsigned | YES NULL
fp6 bigint(20) unsigned | YES NULL
fp7 bigint(20) unsigned | YES NULL
fp8 bigint(20) unsigned | YES NULL
fp9 bigint(20) unsigned | YES NULL
fp10 bigint(20) unsigned | YES NULL
fpll bigint(20) unsigned | YES NULL
fpl2 bigint(20) unsigned | YES NULL
fp13 bigint(20) unsigned | YES NULL
fpl4 bigint(20) unsigned | YES NULL
fpl5 bigint(20) unsigned | YES NULL

Guestbook Table ( 5 Fields)

Field Type Null | Key Default Example
GUESTBOOK_ID int(11) PRI 0 100
USER_ID int(11) YES | MUL NULL 140
DATE datetime 0000-00- 2004-03-05 12:54:34
00
00:00:00
TEXT mediumtext We hope to get more feedback

from our users via this
guestbook. For example we

would like to know why quite a

few people register, but only
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some do submit spectra.

VALID enum('false’,'true’) false true
Hcount Table ( 3 Fields)
Field Type Null | Key | Default | Example
MOLECULE_ID int(11) 0
H_COUNT bigint(21) 0
COUNT bigint(21) 0
Hcountnew Table ( 3 Fields)
Field Type Null | Key | Default | Example
MOLECULE_ID int(11) 0
H_COUNT bigint(21) 0
COUNT bigint(21) 0
Hose_Codes Table ( 7 Fields)
Field Type Null | Ke | Defau | Example
y It
HOSE_CODE text YES NULL H-
;C(HHCY/,,
CCC/HCC,
H
H&,HH.),H
C
&7HHC7’7’7/
CC,,,HHC/
VALUE float 0.96
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SPECTRUM_ID

int(11) 0 62151
CONDITION_TY char(1) m
PE
SYMBOL char(3) H
REVIEW_FLAG | enum('false’,'true’,'rejected’,'change’,'edited’,'hi false True
dden")
WITH_RINGS int(1) 0 1
Id_Table (4 Fields)
Field Type Null | Key | Default Example
ID_TABLE_ID int(11) PRI | NULL 12
TABLE_NAME | varchar(255) UNI MOLECULE
NEXT_ID int(11) YES NULL 124282
QUANTITY int(11) YES NULL 187
Identifier Table ( 3 Fields)
Field Type Null | Key | Default | Example
ATOM_ID int(11) PRI 0 20707736
LITERATURE_ID int(11) PRI 0 20002226
IDENTIFIER varchar(255) C
Is_Author Table ( 3 Fields)
Field Type | Null | Key | Default | Example
AUTHOR_ID int(11) PRI 0 20001883
LITERATURE_ID | int(11) PRI 0 20002226
AUTHOR_ORDER | int(11) 0 3

Is_Editor Table ( 3 Fields)
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Field Type | Null | Key | Default | Example
AUTHOR_ID int(11) PRI 0
LITERATURE_ID | int(11) PRI 0
EDITOR_ORDER | int(11) 0
Isotope Table ( 4 Fields)
Field Type Null | Key | Default | Example
SPECTRUM_TYPE_ID int(11) PRI 0 1
AXIS int(11) PRI 0 1
ELEMENT_SYMBOL | varchar(255) MUL C
ATOMIC_MASS int(11) 0 13

Jetspeed_Anon_Profile Table ( 6 Fields)

Field Type Null | Key | Default Example
PSML_ID int(11) PRI 0 120
MEDIA_TYPE | varchar(99) | YES | MUL | NULL wml
LANGUAGE char(2) YES NULL en
COUNTRY char(2) YES NULL
PAGE varchar(99) | YES NULL default.psml
PROFILE longblob | YES NULL <?xml version="1.0"?><portlets
xmlns=http://www.apache.rg/2000/02/C>
Jetspeed_Group_Profile Table ( 7 Fields)
Field Type Null | Key | Default Example
PSML_ID int(11) PRI 0 120
GROUP_NAME | varchar(99) | YES | MUL | NULL Jetspeed
MEDIA_TYPE | varchar(99) | YES NULL
LANGUAGE char(2) YES NULL
COUNTRY char(2) YES NULL
PAGE varchar(99) | YES NULL news.psml
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PROFILE longblob YES NULL <?xml version="1.0"?><portlets
xmlns=http://www.apache.rg/2000/02/C>
Jetspeed_Role_Profile Table ( 7 Fields)
Field Type Null | Key | Default Example
PSML_ID int(11) PRI 0 120
ROLE_NAME | varchar(99) | YES | MUL | NULL admin
MEDIA_TYPE | varchar(99) | YES NULL
LANGUAGE char(2) YES NULL
COUNTRY char(2) YES NULL
PAGE varchar(99) | YES NULL default.psml
PROFILE longblob | YES NULL <?xml version="1.0"?><portlets
xmlns=http://www.apache.rg/2000/02/C>
Jetspeed_User_Profile Table ( 7 Fields)
Field Type Null | Key | Default Example
PSML_ID int(11) PRI 0 120
USER_NAME | varchar(32) | YES | MUL | NULL admin
MEDIA_TYPE | varchar(99) | YES NULL html
LANGUAGE char(2) YES NULL
COUNTRY char(2) YES NULL
PAGE varchar(99) | YES NULL default.psml
PROFILE longblob | YES NULL <?xml version="1.0"?><portlets
xmlns=http://www.apache.rg/2000/02/C>
Journal Table ( 4 Fields)
Field Type Null | Key | Default Example
JOURNAL_ID int(11) PRI 0 283
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TITLE varchar(255) Journal of Chemical Society
SUBTITLE varchar(255) | YES NULL Perkin Tansactions 2
ITA varchar(255) | YES NULL | J.Chem.Soc.,Perkin Trans.2

Journal_Volume Table ( 4 Fields)

Field Type | Null | Key | Default | Example
JOURNAL_VOLUME_ID | int(11) PRI 0 466
VOLUME int(11) 0 0
YEAR int(11) 0 2001
JOURNAL_ID int(11) MUL 0 283
Labgroup Table ( 3 Fields)
Field Type Null | Key | Default | Example
LABGROUP_ID int(11) PRI 0
LABGROUP_NAME | varchar(20) UNI
LEADER int(11) 0
Machine Table ( 6 Fields)
Field Type Null | Key | Default | Example
MACHINE_ID int(11) PRI 0
NAME varchar(20)
FIELD_STRENGTH int(11) MUL 0
LABGROUP_ID int(11) 0
VALID enum('false’,'true’) false
DEFAULT_MACHINE | enum('false’,'true") false

265




Measurement_Condition Table ( 5 Fields)

Field Type Null | Key | Default | Example
MEASUREMENT_CONDITION_ID int(11) PRI | NULL 100
TEMPERATURE float 0 0
FIELD_STRENGTH int(11) 0 0
SOLVENT mediumtext
USER_ID int(11) 0 100
Publisher Table ( 3 Fields)
Field Type Null | Key | Default Example
PUBLISHER_ID int(11) PRI 0 30000100
NAME varchar(255) University of Florida
PLACE varchar(255) Florida
Raw_File Table ( 3 Fields)
Field Type Null | Key | Default | Example
RAW_FILE_ID int(11) PRI 0
SAMPLE_ID int(11) MUL 0
URL varchar(255)
Raw_File_Spectrum Table ( 2 Fields)
Field Type | Null | Key | Default | Example
RAW_FILE_ID | int(11) PRI 0
SPECTRUM_ID | int(11) PRI 0
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ReviewGroup Table ( 2 Fields)

Field Type Null | Key | Default | Example
REVIEWGROUP_ID int(11) PRI 0 100
REVIEWGROUP_NAME | varchar(20) UNI ice
Review_Group_User Table ( 2 Fields)
Field Type | Null | Key | Default | Example
REVIEWGROUP_ID | int(11) PRI 0 100
USER_ID int(11) PRI 0 163
Sample Table ( 16 Fields)
Field Type Null | Key Default | Example
SAMPLE_ID int(11) PRI 0
USERS_ID varchar(20)
USER_ID int(11) MUL 0
SOLVENT int(11) MUL 0
MACHINE int(11) MUL 0
PROBABLE_STRUCTURE int(11) YES | MUL NULL
DATE datetime 0000-00-
00
00:00:00
OTHER_NUCLEI varchar(50)
SPECIAL_CARE varchar(50)
WISHED_SPECTRUM varchar(50)
FINISHED varchar(8)
PROCESS enum('self’,'worker', robot") self
ATTACHMENT_NAME varchar(20)
ATTACHMENT longblob
USERS_ID_COMMENT varchar(40)
OTHER_WISHED_SPECTRUM varchar(50)
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Sessions Table ( 3 Fields)

Field Type Null | Key | Default Example
SESSIONS int(11) PRI 0 2
LOWEST_LOAD_SERVER | varchar(255) | YES NULL | nmrshiftdb.cubic.uni-koeln.de
SESSIONS_ALL int(11) 0 176126
Shift Table ( 3 Fields)
Field Type | Null | Key | Default | Example
SIGNAL_ID | int(11) PRI 0 1281322
AXIS int(11) PRI 0 1
VALUE float 0 124.9
Signal Table ( 4 Fields)
Field Type Null | Key | Default | Example
SIGNAL_ID int(11) PRI 0 1281322
INTENSITY float 0 0
SPECTRUM_ID int(11) MUL 0 50367
MULTIPLICITY | varchar(255) | YES NULL S
Signal_Atom Table ( 2 Fields)
Field Type | Null | Key | Default | Example
SIGNAL_ID | int(11) PRI 0 1281322
ATOM_ID | int(11) PRI 0 88
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Spectrum_Condition Table ( 2 Fields)

Field Type | Null | Key | Default | Example
SPECTRUM_ID | int(11) PRI 0 58353
CONDITION_ID | int(11) PRI 0 1

Spectrum_Fingerprints Table ( 4 Fields)

Field Type Null | Key | Default | Example
MOLECULE_ID int(11) 0
SIMPLE_SPECFILE | varchar(255)
FINGERPRINT bigint(20) 0
NAME varchar(255)

Spectrum_Hyperlink Table ( 4 Fields)

Field Type Nul | Ke | Defau Example
| y It
SPECTRUM_ID int(11) PRI 0 6887
HYPERLINK mediumtex PRI http://www.mdpi.org/molbank/molbank
t 2002
/m0287hnmr.jdx
DESCRIPTION mediumtex jdx-File
t
DESCRIPTION_SOUND | mediumtex 23214
EX t

Spectrum_Keyword Table ( 2 Fields)
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Field Type | Null | Key | Default | Example
SPECTRUM_ID | int(11) PRI 0 17064
KEYWORD_ID | int(11) PRI 0 3506

Statistics Table ( 10 Fields)
Field Type | Null | Key | Default | Example
YEAR int(11) | YES NULL 2003
MONTH int(11) | YES NULL 8
PREDICTION int(11) | YES NULL 88
EXACT_SUBSTRUCTURE int(11) | YES NULL 45
LINE_SEARCH int(11) | YES NULL 50
SUBSTRUCTURE_FUZZY_SEARCH | int(11) | YES NULL 47
WEIGHT_SEARCH int(11) | YES NULL 0
NAME int(11) | YES NULL 138
CAS int(11) | YES NULL 894
OTHER_SEARCH int(11) | YES NULL 209

Turbine_Group Table ( 3 Fields)

Field Type Null | Key | Default | Example
GROUP_ID int(11) PRI 0 1
GROUP_NAME | varchar(99) UNI Jetspeed
OBJECTDATA | mediumblob | YES NULL

Turbine_Permission Table ( 3 Fields)

Field Type Null | Key | Default | Example
PERMISSION_ID int(11) PRI 0 1
PERMISSION_NAME | varchar(99) UNI view
OBJECTDATA mediumblob | YES NULL
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Turbine_Role Table ( 3 Fields)

Field Type Null | Key | Default | Example
ROLE_ID int(11) PRI 0 1
ROLE_NAME | varchar(99) UNI User
OBJECTDATA | mediumblob | YES NULL

Turbine_Role_Permission Table ( 2 Fields)

Field Type | Null | Key | Default | Example
ROLE_ID int(11) PRI 0 1
PERMISSION_ID | int(11) PRI 0 1

Turbine_Scheduled_Job Table ( 9 Fields)

Field Type Null | Key | Default | Example
JOB_ID int(11) PRI 0
SECOND int(11) -1
MINUTE int(11) -1
HOUR int(11) -1
WEEK_DAY int(11) -1
DAY_OF_MONTH int(11) -1
TASK varchar(99)
EMAIL varchar(99) | YES NULL
PROPERTY mediumblob | YES NULL
Turbine_User Table ( 14 Fields)
Field Type Null Key Default Example
USER_ID int(11) PRI 0 1
LOGIN_NAME varchar(32) UNI admin

271




PASSWORD_VALUE varchar(32)
FIRST_NAME varchar(99)
LAST_NAME varchar(99)
TITLE varchar(99) YES NULL
ADDRESS varchar(99)
CITY varchar(99)
STATE varchar(99) YES NULL
ZIP_CODE varchar(99)
COUNTRY varchar(99)
WEB_PAGE varchar(99) YES NULL
AFFILIATION_1 varchar(99) YES NULL
EMAIL varchar(99)

Turbine_User_Group_Role Table ( 3 Fields)

Field Type | Null | Key | Default | Example
USER_ID | int(11) PRI 0 1
GROUP_ID | int(11) PRI 0 1
ROLE_ID | int(11) PRI 0 1

User Table ( 3 Fields)
Field Type Null | Key | Default | Example

userid varchar(20) 0 admin

password | varchar(16) 0 admin

level varchar(5) | YES NULL admin
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User_Spectrum Table (5 Fields)

Field Type Null | Key | Default Example
USER_ID int(11) PRI 0 140
SPECTRUM_ID int(11) PRI 0 10040588
ASSIGNMENT_DATE | datetime | YES NULL
REVIEW_DATE datetime | YES NULL | 2003-08-15 10:31:22
USER_SPECTRUM_ID | int(11) PRI 0 0

User_Spectrum_Edit Table ( 3 Fields)

Field Type | Null | Key Default Example
USER_ID int(11) PRI 0 163
SPECTRUM_ID | int(11) PRI 0 3403
EDIT datetime PRI | 0000-00-00 00:00:00 | 2002-11-08 00:00:00
User_Spectrum_Mark Table ( S Fields)
Field Type Null | Key Default Example
USER_ID int(11) PRI 0 140
SPECTRUM_ID int(11) PRI 0 10014699
MARK int(11) 0 1
MARK_DATE datetime 0000-00-00 2004-06-23 10:45:34
00:00:00
COMMENT mediumtext Assignments obviously nonsense
(but correctly
read from dkfz files)
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Wishlist Table ( 4 Fields)

Field Type | Null | Key Default Example
USER_ID int(11) PRI 0 1
DATE datetime 0000-00-00 00:00:00 | 2005-04-07 15:33:32
SPECTRUM_TYPE_ID | int(11) PRI 0 2
MOLECULE_ID int(11) PRI 0 20053596
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