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OPTIMISING MEASUREMENT PROCESSES USING

AUTOMATED PLANNING

S. Parkinson∗ and A. Crampton and A. P. Longstaff

Department of Informatics, University of Huddersfield,
HD1 3DH, UK

∗E-mail: s.parkinson@hud.ac.uk

Many commercial measurement processes are planned with little or no

regard to optimality in terms of measurement time and the estimated uncer-
tainty of measurement. This can be because the complexity of the planning

problem makes optimality in a dynamic environment difficult to achieve, even

with expert knowledge. This paper presents a novel approach to measurement
planning using automated planning. Detailed information regarding the mod-

elling and encoding of measurement processes are provided. The benefits of

this approach are demonstrated through the results of applying it to machine
tool calibration. A discussion is then formed around the development of future

tools to further validate the approach.

1. Introduction

Measurement processes often contain multiple measurements, which have

time and order dependencies when estimating and minimising the uncer-

tainty of measurement. The scheduling of interrelated measurements can

have significant impact on the estimated uncertainty of measurement, es-

pecially in dynamic environments such as those taken within non-stable

environmental temperature. Expert knowledge is required to produce both

valid and optimal measurement plans. This can present problems for in-

dustrialists who are wanting to implement or improve their measurement

processes.

The Guide to the expression of Uncertainty in Measurement (GUM)?

establishes general rules for evaluating and expressing the uncertainty of

measurement with the intention of being applicable to a broad range of

measurements. An expert will use the GUM to plan and optimise a se-

quence of measurements by making informed decisions. However, it is often

the case that planning a sequence of measurements against a continuously

changing environment (e.g. changing temperature) can be cumbersome and

little or no regard is taken to optimality, resulting in a higher uncertainty
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than that which is achievable.

The GUM, and other theoretical guides, contain detailed, advanced pro-

cedures for estimating the uncertainty of measurement. However, this can

often make it difficult to implement on an industrial level. The Procedure

for Uncertainty MAnagement (PUMA)? provides an iterative method for

reducing the estimated uncertainty per measurement. However, this ap-

proach does not consider scheduling a sequence of measurements to reduce

the overall estimated uncertainty of measurement.

This paper proposes an approach that utilises Automated Planning

(AP) to encode and deliberate over the measurements, optimising their

order by anticipating their expected outcome. The theory of automated

planning and the implementation of knowledge are discussed in the follow-

ing two sections. This leads to a demonstration of how expert knowledge

can be encoded and subsequently used to produce optimal measurement

plans. A discussion is then formed around the authors’ ambition to develop

and extend tools which will enable users to easily optimise their measure-

ment processes.

2. Automated Planning

Planning is an abstract, explicit deliberation process that chooses and or-

ganises actions by anticipating their expected outcome. Automated plan-

ning is a branch of Artificial Intelligence (AI) that studies this deliberation

process computationally and aims to provide tools that can be used to

solve real-world planning problems? . To explain the basic concepts of AP,

a conceptual model is provided based on the state-transition system. A

state-transition system is a triple
∑

= (S,A,→) where S = (s1, s2, . . . )

is a finite set of states, A = (a1, a2, . . . ) is a finite set of actions, and

→: S ×A→ 2s is a state-transition function. A classical planning problem

for a restricted state-transition system is defined as a triple P = (
∑
, s0, g),

where s0 is the initial state and g is the set of goal states. A solution P is

a sequence of actions (a1, a2, . . . , ak) corresponding to a sequence of state

transitions (s1, s2, . . . , sk) such that s1 =→ (s0, a1), . . . , sk =→ (sk−1, ak),

and sk is the goal state. The state s1 is achieved by applying action a1 in

state s0 and so on.

In AI planning, when planning for a complex problem, it can become

practically impossible to represent explicitly the entire state space; since the

number of states can potentially increase exponentially. In classical plan-

ning, the state of the world is represented by a set of first-order predicates
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which are set true or false by an action a. An action has three elements:

(1) a parameter list that is used for identifying the action, (2) a list of

preconditions precond(a) that must be satisfied before the action can be

executed, and (3) an effect effects(a) that contains a list of predicates that

represent the resulting state from the execution of this action.

A full conceptual model for planning is shown in Figure 1 (Modified

from? ). The model has three parts: (1) a planner, (2) a controller, and

(3) the state-transition system. The planner generates a plan (sequence

of actions) for a specified problem model by using the domain model. A

domain model is an abstraction of the real-world domain which is sufficient

to be used in conjunction with a planner to automatically solve the planning

problem specified in the problem model. A planning problem consists of

an initial and goal state composed of a set of first-order predicates. A

controller observes the current state of the system from the state-transition

function and chooses an action that is generated by the planner based on

the domain model. The state-transition system progresses according to the

actions that it receives from the controller.

Planner

Controller

State transition System

Domain Model Planning Problem

Plans

Actions

Observations

Executing Status

Fig. 1. A conceptual model of AI planning.

3. Knowledge Engineering

Knowledge Engineering (KE), for automated planning, is the process that

deals with acquisition, formulation, validation and maintenance of planning

knowledge; where the key product is the domain model. To enable a wide

use of planning applications, the Planning Domain Definition Language

(PDDL)? is used to encode the domain. A PDDL problem is comprised

of two parts. Firstly, a domain that consists of predicates and actions, and



January 27, 2015 20:20 WSPC Proceedings - 9in x 6in manuscript page 4

4
secondly the problem definition, consisting of the initial and goal state.

Domain engineers will typically either develop domain models using (1)

a traditional text editor, or (2) a Graphical User Interface (GUI). Tradition-

ally, all domain models had to be developed in a text editor (e.g. Notepad),

but recent improvements in GUI knowledge engineering tools are helping

to make knowledge engineering a more efficient process. One of the more

prominent tools available for domain engineering is itSIMPLE? which pro-

vides an environment that enables knowledge engineers to model a planning

domain using the Unified Modelling Language (UML) Standards? . This is

significant as it opens up the potential use of the tool to most software engi-

neers with knowledge of UML, but not necessarily AP. itSIMPLE, just like

many other tools, focuses on the initial phase of a disciplined life-cycle, fa-

cilitating the transition of requirements to formal specification. The design

life-cycle goes from gathering requirements and modelling them in UML,

right through to the generation of a PDDL model which can be used with

state-of-the-art planning tools. The current state-of-the-art in knowledge

engineering for AP is sufficient for initial development of real-world appli-

cations. However, as the domain advances, features that are not supported

by knowledge engineering tools are required. Therefore, for the application

presented in this paper, a traditional text editor is used.

3.1. Implementation of Measurement Knowledge

In this section, the knowledge required to automatically construct mea-

surement plans, as well as the methods of encoding it, are presented and

discussed.

3.1.1. Temporal Information

Within metrology, especially industrial metrology, the financial cost of a

measurement process can be related to the time it takes to complete. The

direct labour cost and any lost revenue due to ‘opportunity cost’ if measur-

ing a production asset. For modelling purposes, each individual measure-

ment can be broken up into individual temporal components. For example,

when performing a measurement, equipment will need to be set-up, the

measurement will be performed, and then the equipment will be removed.

To enable planning with time, the durative action model of PDDL2.1? is

used.

In PDDL, a durative action encoding includes a numeric fluent which

represents a non-binary resource and can be used in the duration, pre-
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conditions and effects of an action. The effects use operators (scale up,

scale down, increase, decrease and assign) to modify the value of

the fluent by using the binary functions (+, -, /,*). Comparisons be-

tween fluents is performed by using comparators (≤,<,=,>,≥) between

functions or fluents and real numbers. Durations are expressed either as a

predetermined value, or dynamically using binary functions. For example,

the following PDDL syntax for the set-up action :duration(= ?duration

(setup-time ?in ?mv)) specifies that a chosen action will take a quantity

of time specified in the initial state for when the instrument ?in is chosen

to take measurement ?mv.

3.1.2. Uncertainty Contributors

Factors that contribute to the total uncertainty of measurement are also

encoded as numeric fluents which are specified in the initial state and ex-

pressed through action effects. For example, Equation 1 can be easily en-

coded in PDDL, as provided in Figure 2. Equation 1 shows how to esti-

mate the uncertainty contribution when using a laser interferometer, where

Ucalibration is provided on a device’s calibration certificate. Here L is the

length in metres and k is the coverage factor

udevice laser =
Ucalibration × L

k
(1)

(*(/(k value ?in)(*(u calib ?in)(length-to-measure ?ax ?er)))

(/(k value ?in)(*(u calib ?in)(length-to-measure ?ax ?er))))

Fig. 2. Example PDDL uncertainty effect.

3.1.3. Dynamics

Throughout the measurement process, dynamics such as the continuous

change in temperature, affect the estimated uncertainty. In order to op-

timise the measurement process effectively, it is important that such dy-

namics are encoded into the model. In PDDL, dynamics in the measure-

ment process are encoded either using PDDL2.1 or PDDL+. In PDDL2.1,

dynamics can be represented as effects of continuous change through-

out an action’s duration. For example, (increase (temperature ?t) (*
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#t (rate-of-change ?r))) describes how the environment temperature,

?t, increases continuously, as a function of the rate-of-change of ?r. In

PDDL+, numerics of continuous, non-linear change can be implemented

using the stop, start process model exhibited through processes and

effects? . However, there is currently no planning tool capable of sup-

porting the full PDDL+ syntax. The solution is to discretise the continuous

change into a set of durative actions with time-dependent continuous effects.

However, this requires pre-processing of non-linear resources to discretise

them based on a discretisation threshold. If the chosen value is too low,

then too many actions could be generated rendering the planner unable

to solve the problem. If the value it too high, the discretisation could no

longer be representative and lead to the generation of suboptimal plans.

3.1.4. Optimisation

Based on ISO recommendations, the root of the sum of squares is used to

calculate the combined uncertainty? . The square root function is not a

PDDL operator. However, Considering that the square root is a monotonic

function, minimising the sum of the squares is as optimal as minimising

the square root of the sum of the squares. In the PDDL model this can

be achieved by combining the individual, squared contributions for each

measurement, and then adding this to an accumulative uncertainty value,

U . This optimisation metric is encoded to minimise the global uncertainty

value. For applications where time to measure is cost sensitive, it is possible

to minimise the total measurement time, T . It is also possible to perform

multi-optimisation by calculating the arithmetic mean of both T and U .

However, this could be expanded to the weighted optimisation

αU + (1− α)T , 0 ≤ α ≤ 1.

4. Example: Machine Tool Calibration

In current work, AP has been successfully applied to the calibration of pre-

cision machine tools where multiple measurements are performed to deter-

mine the machine’s accuracy and repeatability? ? . This has been achieved

by encoding the planning problem in the PDDL2.1 planning language?

alongside a state-of-the-art planning tool (LPG-td? ).

Empirical analysis has shown that it is possible to achieve a reduction

in machine tool downtime greater than 10 % (12:30 to 11:18 (hh:mm))

over expert generated plans. In addition, the estimated uncertainty due

to the schedule of the plan can be reduced by 59 % (48 µm to 20 µm)? .
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Further experiments have investigated the trade-off when optimising cali-

bration plans for both time and the uncertainty of measurement. We have

demonstrated that it is possible to optimise functions of both metrics reach-

ing a compromise that is on average only 5 % worse than the best-known

solution for each individual metric? . Additional experiments, using a High

Performance Computing architecture, show that on average, optimality of

calibration plans can be further improved by 4 %. This gain was due to

the planner having access to more powerful hardware and so could explore

more plans in a reduced time. However, the 4 % improvement demonstrates

that in most cases it is sufficient to use a standard PC architecture.

5. Conclusion and Future Challenges

The successful application in the machine tool calibration domain has high-

lighted the possibility to extend and generalise the technology for a wide

variety of measurement problems. The diversity of the problems means

that there is no single planner that can be used for all. For example,

some planning problems are rich in constraints restricting the measure-

ments, whereas some are rich in temporal and numeric information. In

the Automated Planning (AP) community, planners often perform better

on domains of different complexities and tendencies. Therefore, as well as

having the facility to determine the best planning tool for each problem, it

is also important to study the development of AP tools that can be applied

to a wide range of different problems. This will significantly improve their

ability to solve complex, real-world problems.

A main aim of this paper is to increase interest in applying automated

planning to metrological processes. It is the authors’ intention to apply the

proposed technology to a broad range of applications, through which both

the theoretical approach of using automated planning as well as the pro-

duced measurement plans can be validated. However, for this to be possible

suitable tools and guidelines need to be made available for metrologists to

use. The future challenge will be in developing tools that are useful for

as broad a range of metrology planning problems as possible without the

requirement of specific AP knowledge.
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