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THESIS SUMMARY 

Obstacles to the successful eradication of H. pylori infections include the presence of 

antibiotic resistant bacteria and therapy requiring multiple drugs with complicated dosing 

schedules. Other obstacles include bacterial residence in an environment where high drug 

concentrations are difficult to achieve. Conventional oral formulations used in the treatment 

of H. pylori infections have a short gastric residence time, thus limiting the duration of 

exposure of drug to the bacteria. Gastro-retentive formulations such as floating and 

mucoadhesive systems can prolong the residence time of the formulation in the stomach and 

maintain a controlled release of drug. The purpose of this study was to prepare 

gastroretentive formulations such as alginate beads and ethylcellulose microspheres loaded 

with antibiotics such as clarithromycin (CMN) and metronidazole (MET). These 

formulations were characterized and evaluated for their gastro-retentive potential.  

Drug-loaded beads were prepared by ionotropic gelation using 3 %w/w sodium alginate 

solution and 0.07 M calcium chloride solution as the gelling medium. The beads produced 

exhibited limited buoyancy, mucoadhesion and fast drug release especially MET beads with 

drug release complete within 3 – 4 h and CMN release complete within 8 h.  These beads 

were modified in order to improve their floating / mucoadhesion characteristics and to control 

their release profile through addition of olive oil and/or coating with chitosan. Chitosan 

coating created an additional barrier on the surface of the beads, to sustain the release of drug 

from the beads and create a mucoadhesive surface on the beads. The addition of oil improved 

the buoyancy of the beads, which was useful for gastro-retentive applications. Beads that 

were modified both with oil and coated with chitosan, provided the best-combined buoyancy, 

mucoadhesive and drug release profiles, with the beads floating for at least 24 h, adhering to 

pig gastric mucosa for at least 12 h and drug release sustained beyond 12 h.  

 

Clarithromycin-loaded ethylcellulose microspheres were prepared using the solvent 

evaporation method and the mucin-binding lectin, Concanavalin A (Con A), was successfully 

attached to the microspheres up to a maximum of 15.3 µg Con A per mg microsphere. The 

inclusion of CMN did not significantly reduce the amount of Con A bound to the surface of 

the microspheres, however, conjugation led to a reduction in the drug entrapment efficiency 
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(DEE) of the microspheres with more drug loss being observed with the S-10 series 

(microspheres from 10 cps ethylcellulose) than the S-46 series (microspheres from 46 cps 

ethylcellulose). Increasing chitosan concentration decreased the conjuation efficiency of Con 

A. Ex vivo mucodhesion studies and in vitro interactions with mucin confirmed the 

enhancement of mucoahesion due to the presence of lectin with conjugation increasing with 

increasing amount of Con A conjugated on the surface of the microspheres. The drug content, 

DEE, buoyancy and in vitro drug release in both the dissolution media and mucin dispersion 

were not compromised by the conjugation process. These conjugated microspheres 

demonstrated high buoyancy, improved mucoadhesion and sustained drug release thereby 

improving the formulations‟ gastro-retentive potential.  
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Chapter 1 INTRODUCTION 

1.1  Oral drug delivery  

Drug delivery to the human body can be via various routes such as oral, parenteral, topical, 

vaginal, nasal, etc. However, the oral delivery route is the most common of all these routes 

and accounts for more than half of the annual drug delivery market (Evers, 2001). This is 

partly because the gastrointestinal (GI) tract offers a wider range of flexibility in dosage form 

design (e.g. tablets, capsules, suspensions, solutions) than other routes and the ease of use by 

patients. It is also a convenient route of administration for easy access to the systemic 

circulation and drug administration via the mouth is generally well accepted. Orally 

administered formulations are  convenient to use and can easily be used anywhere, which is 

not the case with the parenteral route which usually requires the assistance of trained health 

care personnel and the procedures can involve certain risks. Despite all these advantages, 

drug absorption via this route can be unsatisfactory and variable even following promising in 

vitro drug release profiles (Davis, 2005, Streubel et al., 2006). This makes it difficult to 

predict the in vivo performance of a drug delivery system (DDS), even though the in vitro 

data are reproducible. There are several physiological factors that could work against 

achieving effective absorption and successful drug delivery through the oral route and such 

factors include gastric emptying times, GI transit time of the dosage form, drug release from 

the dosage form and the absorption site of the particular drug. The unpredictability of gastric 

emptying times leads to non-uniform absorption profiles, partial drug release and shorter 

gastric residence of the dosage form. 
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1.2 Gastro-retentive drug delivery systems (GRDDS) 

GRDDS are systems designed to be retained in the stomach for an extended duration in order 

to improve the residence time of dosage forms in the stomach, thereby enhancing the 

bioavailability of the drug. However, not all drugs are good candidates for gastro-retention, 

but those that have been formulated in a range of gastro-retentive systems include:  

 Drugs that are primarily absorbed in the stomach, e.g. metronidazole (Adebisi and 

Conway, 2010, Adebisi and Conway, 2014) 

 Drugs that are poorly soluble in alkaline pH, typical of the lower part of the GI tract, 

e.g. diazepam (Sheth and Tossounian, 1984) and verapamil hydrochloride (Streubel et 

al., 2002),  thereby preventing drug solubility from being the rate-limiting step to the 

absorption of the drug by prolonging  the residence time in the stomach   

 Drugs that have a narrow absorption window in the stomach or in the upper small 

intestine, e.g. levodopa (Erni and Held, 1987), para-amino benzoic acids (Ichikawa et 

al., 1991)  and furosemide (Menon et al., 1994) 

 Drugs that are absorbed rapidly from the GI tract, e.g. amoxicillin  

 Drugs that degrade or are unstable in the colonic / intestinal environment, e.g. 

captopril  (Matharu and Sanghavi, 1992, Nur and Zhang, 2000) and metronidazole 

(Searle and Willson, 1976, Nayak et al., 2010b)  

 Drugs that act locally in the stomach and the proximal small intestine for the 

treatment of certain diseases e.g. misoprostol (Oth et al., 1992), antacids (Fabregas et 

al., 1994) and antibiotics (Yang et al., 1999, Whitehead et al., 2000) 

 Drugs used in the eradication of Helicobacter-pylori (H. pylori) in the treatment of 

peptic ulcer disease (Dave et al., 2004). 
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1.2.1 Requirements for gastro-retentive devices 

There are certain conditions that must be satisfied for a DDS to achieve gastro-retention. One 

major requirement is that the DDS must be strong enough to withstand the peristaltic waves 

and contractions of the stomach, the contractions and forces within the stomach (1.5 -1.9 N 

(Kamba et al., 2000)). Another important requirement is that it must be easily removed from 

the stomach, once the drug content is completely released  (Anilkumar, 2008). 

 

1.2.2   Stomach 

1.2.2.1 Physiology of the stomach 

The stomach is involved in the liquefaction of food and it releases the churned food in a 

controlled manner into the intestines (Hoichman et al., 2004). It is about 0.2 m in length, has 

a surface area of 0.2 m
2
 and is divided into two major functional parts (Minami and 

McCallum, 1984). The fundus and the body of the stomach (Figure 1-1) produce contractions 

in the muscle walls and cause compaction of the stomach contents (Hoichman et al, 2004), 

while the antrum causes peristaltic phase movement leading to the comminution of the food 

into small particles of about 2 mm. The particle size should be within the range of 1 - 2 mm 

(Deshpande et al., 1996) to be able to pass through the pyloric valve into the small intestine. 

In the fasted state, the stomach has a residual volume of about of 25 - 50 ml (Waugh et al., 

2001) with a small amount of fluid and a pH ranging from 1 to 3 (Bowman et al., 1968). 

However, in the fed state - the volume of the stomach varies according to the amount of 

distension up to 1500 ml (Bannister, 1995). The stomach pH in the fasted state is 1.1  0.15 

while in the fed state it is 3.6  0.4 (Mojaverian, 1996). Another study reported gastric pH in 

the human gastric lumen has a median 24 h intra-gastric pH of 1.4 (Bloom and Polak, 1980). 
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Figure 1-1: Structure of stomach 

 (Campbell, 2012) (Used with permission) 

 

1.2.2.2 Gastric motility  

The GI tract is in a state of continuous motility. The motility is in two modes: the inter-

digestive myoelectric motor complex (IMMC) and digestive motility pattern (Anilkumar, 

2008).  The IMMC presides in the fasted state, with its main function being the clearing of 

the stomach of the residual contents of the upper GI tract. It is organised in cycles of activity 

and quiescence (Deshpande et al., 1996). Each of the cycles lasts for a period of 90 to 120 

min, consisting of four phases and the duration of the phases depends on the concentration of 
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the hormone motilin. Motilin is produced from endocrine M cells of the duodenal mucosa to 

regulate the motility of the digestive tract. The full cycle begins in the lower oesophageal 

sphincter/gastric pacemaker, spreading over the whole stomach, the duodenum and jejunum 

and terminating at the ileum. Phase I (basal phase) lasts for 45 - 60 minutes with rare or 

relatively few contractions and a period of quiescence compared to Phase II and III. Phase II 

(pre-burst phase) lasts for approximately 40 - 60 min, exhibiting intermittent action potential, 

amplitude contractions (Minami and McCallum, 1984) and involves bile secretion (Gruber et 

al., 1987). Phase III, or the housekeeper wave, lasts for 4 - 6 min and consists of strong 

intense contractions, which help to remove undigested food contents from the stomach 

(Soppimath et al., 2001) with maximal pyloric opening (Ehrlein, 1988). Phase IV lasts for a 

maximum of 5 minutes and occurs between Phase III and Phase I of consecutive cycles. The 

ingestion of food interferes with the inter-digestive motility cycle and the digestive cycle 

takes over. The digestive cycle is induced 5-10 minutes after the ingestion of food and 

remains active for as long as there is food in the stomach. Therefore, the larger the meal, the 

longer the period of fed activity, with usual times being 2 - 6 h and more usually 3 - 4 h with 

contractions similar to Phase II of IMMC (Pawar et al., 2011). For a formulation to be gastro-

retentive, it must be able to resist the pressures and forces of the IMMC for a considerable 

period of time. The gastric retention time (GRT) of a particular formulation will depend on 

which stage of the IMMC is active at the time of drug administration. In the fed state, after 

the comminution of food to minute sizes, the residence time of the food depends on the type 

of food consumed. Liquids and small food particles will be easily transferred into the 

duodenum, while solids and larger food particles are released much more slowly (Conway, 

2005). 

. 
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1.2.2.3 Gastric mucus  

Gastric mucus plays a cyto - protective role by protecting the stomach surface mucosal cells 

(Glass, 1964) from a wide range of ingested substances, secreted acid, enzymes and refluxed 

contents of the duodenum. It is a viscoelastic, gel-like, stringy slime consisting mainly of 

glycoproteins. It serves as a lubricant for the passage of solids and as a barrier to antigens, 

bacteria and viruses (Chawla et al., 2003).  The gel like nature of mucus is due to the 

presence of the glycoprotein – mucin (Table 1-1). The surface of the stomach mucosa is 

covered by a single layer of mucus-secreting epithelial cells punctuated by gastric „pits‟ 

which occupy almost half of the stomach surface. The mucosal layer in the GI tract provides 

a barrier to acid in the stomach by presenting an unstirred layer into which bicarbonate ions 

are secreted by the surface epithelium. These bicarbonate ions neutralise hydrogen ions 

which are secreted by parietal or oxyntic cells as they diffuse towards the epithelium from the 

lumen (MacAdam, 1993). The mucus layer also prevents digestion of the GI tract by 

presenting a diffusional barrier to enzymes such as pepsin. Mucus is continually secreted 

from goblet cells and its rheological properties changes from a secretory low viscosity 

solution to a viscoelastic gel. This gel keeps the mucus layer intact due to its constant loss 

from enzymatic degradation and physical erosion (Allen, 1981). It is difficult to measure the 

exact turnover time accurately and it varies considerably. The turnover time of mucus gel 

layer in rats has been reported to be between 4 and 6 h (Allémann et al., 1998, Galindo-

Rodriguez et al., 2005, Lehr et al., 1991) and this has been reported to be similar to humans 

(Lai et al., 2009). The glycoprotein component of mucus (mucin) is responsible for the 

viscosity, adhesive and cohesive properties of the mucus. Mucins (Figure 1-2) are large 

molecules with molecular weights ranging from 0.5 MDa to over 50 MDa (Bansil and 

Turner, 2006, Berry et al., 1996, Dodd et al., 1998, Harding et al., 1999). They contain large 

amounts of carbohydrate (for GI mucins 70 – 80 % carbohydrate, 12 – 25 % protein and up to 

5 % ester sulphate). 
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Table 1-1: Composition of gastric mucus   

(Johnson et al., 1987) 

Component % content 

Water > 95 % 

Glycoproteins 0.5 – 5 % 

Lipids <0.5  % 

Mineral salts 1 % 

Free proteins 0.5 -1 % 

 

 

Figure 1-2: Polymeric structure of mucin molecules  

(Takafumi and Kazuhiko, 2011) 
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1.2.3 Factors affecting gastric residence time  

Several factors affect the GRT of dosage forms (Gruber et al., 1987) and they include:  

 Fed or fasted conditions - GRT is longer in the fed state than in the fasted state. In the 

fasted state, the GRT of dosage forms is mostly less than 1 h and it is common for 

dosage forms to move rapidly through the small intestine, with duration of not more 

than 3 h (Naisbett and Woodley, 1995, Khandai et al., 2010). This phenomenon 

occurs because the IMMC moves the undigested food material from the stomach and 

if the time of drug administration occurs around the time of IMMC, the formulation 

will be expelled out of the stomach, leading to a short GRT. However, in the fed state, 

the presence of food causes a delay in the housekeeper wave with only Phase II - like 

contractions predominating and thus the IMMC (related to fasted state) is delayed, 

thereby increasing GRT. Kaniwa et al. (1998) reported the prolongation of gastric 

emptying of dosage forms of various sizes or densities due to the presence by food. 

When 3 - 7 mm diameter tablets were taken with a meal, the emptying process was 

delayed in humans (Khosla et al., 1989). In humans, swelling tablets with dimensions 

of 4 x 4 mm or 6 x 6 mm (length x diameter) showed rapid emptying from the 

stomach in less than 1 h in the fasted state. However, after a heavy breakfast of 1500 

kcal, 80 % of the tablet contents were retained for 4 h and in 50 % of subjects (n=10), 

the tablets were retained for 6 h or more. In 8 of the subjects, the tablets were retained 

for 10 h or more (Shell et al., 2002). 

 Density of formulation - The density of a dosage form (DF) has an impact on its 

ability to stay in the stomach for a prolonged period (Figure 1-3). A high density 

formulation, e.g. coated pellets, which have a density greater than that of gastric 

contents (density = 1.004 g/cm
3
) will sink to the lower part of the stomach. This high 

density coating is achieved by the use of heavy inert material such as barium sulphate, 

zinc oxide, and titanium dioxide (Patel, 2007). Also, a low density formulation with a 
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density less than the density of the gastric contents is expected to remain buoyant in 

the gastric fluid (Singh and Kim, 2000). A study reported that the hypotensive action 

of diltiazem was heightened when administered to humans in a floating controlled 

release tablet compared to an equivalent non-floating tablet (Gu et al., 1992). 

However, some studies have given contrasting results with formulations of differing 

densities having similar GRTs, e.g. it has been reported that particles of different 

densities ranging from 0.5 to 2.9 g/cm
3
,
 
emptied from the stomach of dogs in a similar 

manner (Gruber et al., 1987). These results by Gruber and co-workers are similar to 

those of other researchers who observed no differences between the rate of gastric 

emptying of floating (density = 0.96 g/cm
3
) and non-floating (density = 1.96 g/cm

3
) 

single unit dosage forms in fasted human (Davis et al., 1986). The inconsistencies and 

variability in results is likely to be a consequence of fed versus fasted conditions in 

the stomach, thereby limiting the impact of density on gastro-retention. 

 

 

 

Figure 1-3: Schematic localisation of (A) intra-gastric floating system and (B) high density system in the 

stomach.  

Adapted from (Bardonnet et al., 2006) (Used with permission) 

 

 

A B 



 33 

 

 

   

 

 Size of formulation – A DF larger than the diameter of the pylorus is likely to be 

retained in the stomach, even during the housekeeper wave. The DF is initially of a  

smaller size to facilitate swallowing, then it increases in size when it gets to the 

stomach (Streubel et al., 2006). The size of the dosage form required may be greater 

than 5 cm in length and a diameter greater than 3 cm (Klausner et al., 2003c). A 

diameter of more than 7.5 mm has been reported to be more likely to be retained than 

DFs with diameters greater than 9.9 mm (Timmermans and Moes, 1994). 

 Shape of formulation - The shape of the DF has an effect on its gastro-retentive 

ability. Ring shaped and tetrahedral devices have been shown to be retained longer in 

the stomach than with DF of other shapes (Garg and Sharma, 2003).  In addition, ring-

shaped GRDDS with a flexural modulus of 22.5 kilo pounds per square inch and 

tetrahedral GRDFs with a flexural modulus of 48 kilo pounds per square inch (psi) 

were reported to have over 90 % retention at 24 h, compared to those with shapes 

defined as continuous stick, planar disc, planar multi-lobe and string (Pawar et al., 

2011). 

 Single or multiple unit formulations - Multiple unit formulations show more 

predictable and more reliable gastric emptying than single unit formulations. Single 

unit formulations exhibit the “all or none concept‟‟ and failure of the unit, while in 

the case of multiple unit systems, the particles are distributed more freely throughout 

the GI system and their distribution or movement is less affected by the transit time 

(Bechgaard and Ladefoged, 1978, Whitehead et al., 1998). In addition, as the drug 

release kinetics and gastric emptying profiles of multiple unit systems are more 

predictable, there is a reduced likelihood of localized mucosal damage and dose 

dumping (Rouge et al., 1997). Multiple unit systems also enable the co-administration 

of units with different release profiles or those containing substances that are 

incompatible (Ishak et al., 2007).  
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 Nature of meal and food intake - Several factors such as the nature of food, frequency 

of feeding and caloric content have important effects on GRT. Fatty acid salts and 

indigestible polymers such as cellulose, poly-dextrose and raffinose extend GRT. In 

addition, it has been reported that a high fat meal may delay gastric emptying for 

about 3 to 5 h (Gad, 2008). The retention of water was reported to follow an 

expediential pattern with a half-life (t1/2) of 10 minutes (Hunt and Knox, 1968). An 

increase in the volume of water increases the gastric emptying; however, gastric 

emptying of a liquid meal can be affected by the chemical and osmotic properties of 

the meal.  Foods high in proteins and fats can increase GRT by 4 - 10 h. Enteric-

coated or enteric matrix tablets may be retained longer, if administered with heavy 

meals or breakfast (Gad, 2008). 

 Gender - Females have been reported to exhibit a comparatively lower mean 

ambulatory GRT than males. The gastric emptying time of a Heidelberg capsule was 

observed to be slower in women than in men (Mojaverian et al., 1988). In addition, 

the mean GRT in females (4.6 ± 1.2 h) was higher than in males (3.4 ± 0.6 h) of the 

same age and race. 

 Posture - A study reported that posture does not have a significant effect on GRT 

(Mojaverian et al., 1988); however, another study showed that for both floating and 

non-floating systems, the GRTs of the DF vary depending on the subject‟s posture 

(Van Gansbeke et al., 1991). Floating systems taken by subjects in an upright position 

floated for a longer period, thereby extending GRT. However, non-floating systems 

settled to the bottom of the stomach and were easily evacuated by stomach 

contractions. However, in a supine position, the reverse was observed with the 

floating units being easily emptied from the stomach than the non-floating units 

(Timmermans and Moes, 1994). 

 Concomitant drug administration - Drugs such as anti-cholinergic drugs e.g. atropine; 

opiates, e.g. codeine and pro-kinetic drugs, e.g. metoclopramide prolong GRT. 

However, drugs like octreotide (a somatostatin analogue and an inhibitor of motilin 

secretion) and erythromycin (motilin receptor agonist) enhance gastric emptying. 
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 Biological factors - Crohn‟s disease and diabetes have been associated with delayed 

gastric emptying (Grill et al., 1985, Annese et al., 1995). 30 - 50 % of patients with 

long standing diabetes experience delayed gastric emptying (Horowitz et al., 1996). 

Duodenal ulcer leads to an increase in gastric emptying, while gastric ulceration 

reduces antral motility causing a normal emptying of liquids but results in delayed 

emptying of solids (Miller et al., 1980). 

 Age - The effect of age on the gastric residence of the Heidelberg capsule was 

assessed in 12 healthy elderly males over 65 years. It was observed that the mean 

GRT after a 500 kcal breakfast was significantly longer, compared to that observed in 

young male volunteers (Mojaverian et al., 1988). 

 

 

1.3  Gastro-retentive dosage forms (GRDF) 

Various approaches have been explored to achieve gastro-retention. Passage delaying agents, 

such as triethanolamine myristate (Gröning and Heun, 1984), have been used to influence 

GRT of DDS based on the fact that the lipid vehicles tend to reduce the motility of the 

stomach. However, this deliberate slowing down of gastric motility may have an effect on the 

emptying of the entire stomach contents, not just the DDS. Several categories of DDSs have 

been developed to achieve gastro-retention and these include bioadhesive systems (Ponchel 

and Irache, 1998); expandable systems (Urguhart and Theeuwes, 1994); high density systems 

(Rednick and Turner, 1970); floating systems (Deshpande et al., 1996) and modified shape 

systems (Fix et al., 1993) (Figure 1-4).  
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Figure 1-4: Gastro-retention techniques 
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1.3.1  Bioadhesive / mucoadhesive systems  

Bioadhesive DDS, was introduced in the 1980s and they adhere to epithelial surfaces, thus 

maintaining a more intimate contact with the biological barrier (Park and Robinson, 1984) 

thereby prolonging GRT. A subset of bioadhesive systems is mucoadhesive systems, which 

adhere to the thick mucus gel layer that covers mucosal surfaces in the stomach (Conway, 

2005) mouth, nostril etc. and provide a controlled release of drugs such as antibiotics.  

Polymers such as chitosan and Carbopol
®

 have been used to achieve mucoadhesion  (Lehr et 

al., 1992a) and adhesion to porcine stomach (Gåserød et al., 1998a) in some formulations. 

The process of mucoadhesion is complex and its mechanism has been explained through 

various theories including electrical, adsorption, wetting (Figure 1-5), fracture (Figure 1-6) 

and diffusion theories (Figure 1-7) (Peppas and Buri, 1985, Park and Robinson, 1987, Rillosi 

and Buckton, 1995). Mucoadhesion has been reported to occur in two stages, the contact 

stage also known as the wetting stage and then the consolidation stage where adhesive 

interactions are established (Figure 1-8) (Smart, 2005) The mucosal surface is negatively 

charged; therefore, a polymer that has a positive charge might assist the mucoadhesion 

process. An initial step of mucoadhesion could be electrostatic attraction, followed by 

mechanical interlocking of the polymer chains, van der Waals force, hydrogen bonding and 

other forces (Lehr et al., 1993). The different mechanisms of bioadhesion are summarized in 

Table 1-2. One drawback associated with such systems is that the mucus on the stomach 

walls is constantly being renewed, thereby making adherence of a formulation to this mucus 

unpredictable (Chun et al., 2005). In addition, the contents of the stomach are highly 

hydrated, thereby reducing the level of adhesiveness of the polymers. Other factors that can 

affect effective in vivo mucoadhesion include the composition of mucus, different behaviour 

of mucoadhesive devices over the pH range, and disease conditions (Vasir et al., 2003). Also, 

the prospect of oesophageal binding might be daunting, regarding the safety aspects of such 

formulations (Wang et al., 2000). The specificity of the formulation could also be a major 
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drawback, as it is difficult to specifically target mucoadhesive polymers to the gastric 

mucosa, for example,  Carbopol
®

 will adhere to various surfaces (Khosla and Davis, 1987). 

The advantages of such systems in the treatment of H. pylori infections may outweigh these 

concerns, because they have the potential to maintain contact with the mucus layer and 

provide controlled release of drugs in a localised environment. An additional consideration 

with this application is the avoidance of any local drug overdose, which could lead to 

irritation of the gastric mucosa (Ch'ng et al., 1985). 

 

 

Figure 1-5: Wetting theory of mucoadhesion 

 (Boddupalli et al., 2010) 
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Figure 1-6: Fracture theory of mucoadhesion 

 (Boddupalli et al., 2010) 

 

 

Figure 1-7: Diffusion theory of mucoadhesion 

 (Shaikh et al., 2011) 
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Figure 1-8: Stages of mucoadhesion 

 (Boddupalli et al., 2010) 
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Table 1-2: Theories of mucoadhesion.  

Adapted from Vasir et al, 2003. (Used with permission) 

Theory Mechanism of adhesion Comments 

Electronic  theory There are attractive electrostatic 
forces between the glycoprotein 
mucin network and the 

bioadhesive  material  

Electron transfer occurs 
between the mucin and the 
bioadhesive material forming a 

double layer of electric charge 
at the interface (Derjaguin et al., 
1977, Derjaguin et al., 1994) 

Adsorption theory  There are surface forces 
resulting in chemical bonding  
 

The surface forces include 
strong primary forces which are 
covalent bonds and weak 
secondary forces, which include 
ionic bonds, hydrogen bonds 
and van der Waal‟s forces 

(Kinloch, 1980, Chickering and 
Mathiowitz, 1999) 

Wetting theory  The ability of bioadhesive 
polymers to spread and develop 
intimate contact with the mucus 
membranes  

Spreading coefficients of 
polymers must be positive. 
Contact angle between polymer 
and cells must be near to zero 
(Lehr et al., 1993, Lehr et al., 
1992b) 

Diffusion theory  Physical entanglement of mucin 
strands and the flexible polymer 
chains 

For maximum diffusion and 
best bioadhesive strength; 
solubility parameters  (δ) of the 

bioadhesive polymer and the 
mucus glycoproteins must be 
similar interpenetration of 
mucin strands into the porous 
structure of the polymer 
substrate (Park and Robinson, 
1985, Leung and Robinson, 

1990) 

Fracture theory  Analyses the maximum tensile 

stress developed during 
detachment of the bioadhesive 
drug delivery system from 
mucosal surfaces  

Does not require physical 

entanglement of bioadhesive 
polymer chains and mucin 
strands, hence appropriate to 
study the bioadhesion of hard 
polymers which lack flexible 
chains (Kinloch, 1980) 



42 

 

 

 

 

1.3.2 Expandable systems  

Swelling systems exploit the restrictions on the removal of large particles from the stomach if 

they are larger than the opening of the pyloric sphincter (Nayak et al., 2010b).  For a 

formulation to be retained in the stomach, the size required may be greater than 5 cm with a 

diameter larger than 3 cm (Klausner et al., 2003c). Important features of these formulations 

are that the DF must be small enough to be easily swallowed; the onset of swelling must be 

fast, so as to prevent its evacuation from the stomach before getting a chance to swell 

(Conway, 2005). In addition, it must not cause any form of gastric obstruction, either singly 

or by accumulation (Nayak et al., 2010b) and must regain a size small enough to be 

evacuated easily after complete drug release (Gröning et al., 2007).  

The increase in size of the DF is normally achieved by swelling (through the process of 

osmosis) or by unfolding on contact with the contents of the stomach (Klausner et al., 2002). 

The process of unfolding can be achieved through mechanical shape memory, which involves 

the production of the formulation in a large size, which is then folded into a pharmaceutical 

drug carrier such as a gelatin capsule, to ensure convenience of intake. However, the 

mechanical shape memory is relatively fleeting.  When the formulation gets into the stomach, 

the carrier dissolves and the formulation opens up to achieve an extended size (Pawar et al., 

2011). Hydrogels, which are hydrophilic polymers, may be useful candidates for these 

formulations, as they absorb large amounts of fluids and swell in the process. Such DFs 

should not possess sharp edges or cause local damage to the stomach on extension and the 

system must be made from biodegradable polymers. There are several drawbacks to the use 

of this kind of system, as large single unit dosage forms may cause obstruction, intestinal 

adhesion, and gastropathy (Klausner et al., 2003c). The storage of such types of polymers 

may be difficult (Torrado et al., 2004) due to stability issues.   
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1.3.3  High density systems  

High density systems have a density greater than that of normal stomach contents (Figure 1-

3b).
 
The density of the formulation should be close to 2.5 g/cm

3 
for it to be retained in the 

stomach for any considerable length of time (Clarke et al., 1993). Rouge et al. (1998) also 

reported that densities greater than 2.4 - 2.8 g/cm
3
 ensures retention in the lower part of the 

stomach. Inert materials used to increase the density of DF are either used to coat the DF or 

by mixing the material with the drug (Vyas and Khar, 2006). On addition of such inert 

materials, the formulation density can increase by up to 1.5 - 2.4 g/cm
3
 (Clarke et al., 1993). 

However, one major drawback is that they are difficult to manufacture, requiring relatively 

large quantities of active drug as the dry material constituent of the formulation reacts with 

the gastric fluid to release its contents. There is no formulation utilising this strategy currently 

in the market (Nayak et al., 2010b, Garg and Sharma, 2003) and in vivo data in animals or 

clinical studies are also rather scarce. 

 

1.3.4  Floating systems 
 

Studies based on floating systems date as far back as 1968 (Davis, 1968). Floating DDS 

(Figure 1-3a) have a bulk density less than that of gastric contents and therefore remain 

buoyant in the stomach, without affecting the intrinsic gastric emptying rate for a prolonged 

period. A floating DDS could lead to high drug levels in the fundal area of the stomach and 

this may be a useful strategy for the delivery of narrow spectrum antibiotics for peptic ulcer 

disease (Umamaheswari et al., 2002) and for drugs that are primarily absorbed in the stomach 

or the upper small intestine (Sungthongjeen et al., 2006), e.g. metronidazole. The drug 

content of the DDS should be released slowly as the DDS remains floating on the gastric 

contents. At the end of the release period, the DDS should exit from the stomach. This type of 
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DDS has been demonstrated to increase gastro-retention and reduce fluctuations in drug 

plasma concentrations (Singh and Kim, 2000).  

 

1.3.4.1 Specific criteria for a floating drug delivery system 

Floating DDS include designs such as hydrodynamically balanced systems (HBS), gas- 

generating systems, raft-forming systems and hollow microspheres. Hollow microspheres are 

achieved by entrapping air into the formulation (Kawashima et al., 1991, Krogel and 

Bodmeier, 1999). Other methods of achieving buoyancy include the inclusion of oils or fatty 

materials with bulk density less than 1g/cm
3
 (Reddy and Murthy, 2002, Sriamornsak et al., 

2004, Adebisi and Conway, 2014) or formation of foam powder (Streubel et al., 2002). 

Floating DDS include granules (Yuasa et al., 1996), powders (Dennis and Timmins, 1992), 

capsules (Franz and Oth, 1992), tablets (Sheth and Tossounian, 1979) and laminated films 

(Machida et al., 1989). There are several advantages attributed to the use of floating DDS and 

this includes improvement in patient compliance; achievement of better therapeutic effect of 

drugs with a short half-life; enhancement of absorption of drugs, which are soluble primarily 

in the stomach and achievement of site-specific delivery of drug to the stomach (Pawar et al., 

2011). 

Specific criteria for floating dosage systems include:  

 It must have a structure to form a cohesive gel barrier 

 It must maintain a density lower than that of gastric contents (1g/cm
3
) 

 It should dissolve slowly enough to serve as a drug depot (Desai, 2007) 

 

The limitations to the use of these formulations, include the requirement for the presence of 

fluids in the stomach (Floating DDS is typically administered with fluid of about 200 - 250 
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ml (Soppimath et al., 2001)), in order to maintain the buoyancy effect of the formulation in 

the stomach. Drugs that cause gastric mucosa irritation and those that have solubility and/or 

stability issues in gastric fluids like biomolecules such as proteins and peptides (which are 

liable to proteolysis in gastric fluid) are not suitable for incorporation into this type of DDS. 

In addition, drugs that are well absorbed along the entire GI tract (e.g. isosorbide dinitrate) 

and undergo significant first pass metabolism are not suitable candidates, since the slow 

gastric emptying could lead to a reduction in systemic bioavailability (Pawar et al., 2011). 

 

1.3.4.2 Formulations for floating systems   

 Floating systems can be divided into two categories: gas-generating systems and non-

effervescent systems (Garg and Gupta, 2008).  

 

1.3.4.2.1  Gas-generating /effervescent systems  

These are systems designed so that on contact with gastric contents, gas bubbles are released 

causing the DF to float on gastric contents. This is achieved by the incorporation of vacuum, 

air or an inert gas into a floatation chamber (Iannuccelli et al., 1998). The gas can be included 

in the formulation by the volatilization of an organic solvent such as ether or cyclopentane, 

causing inflation on contact with gastric fluid. CO2 can also be produced in the DF due to the 

chemical reaction between organic acids and carbonate-bicarbonate salts (Sakr, 1999) on 

contact with gastric fluid. These formulations make use of swellable polymers such as 

methylcellulose (MC) and hydroxyl-propylmethylcellulose (HPMC); polysaccharides (e.g. 

chitosan) and effervescent materials, such as sodium bicarbonate (NaHCO3), citric acid 

(Rubinstein and Friend, 1994), tartaric acid or floating chambers that contain liquids that turn 
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into gas at body temperature (Pawar et al., 2011). The required stoichiometric ratio of citric 

acid and NaHCO3 for gas generation has been reported to be 0.76:1 (Garg and Sharma, 

2003).  

Floating mini-capsules with a diameter of 0.1- 0.2 mm were developed containing NaHCO3, 

coated with an inner HPMC layer and an outer pepstatin layer (Umezawa, 1978). On contact 

with gastric fluid, there was a release of CO2 leading to a GRT of about 3 - 5 h and prolonged 

drug release from these mini-capsules. Other floating formulations include those using a 

combination of sodium alginate and NaHCO3 (Stockwell et al., 1986); floating mini-capsules 

consisting a core of NaHCO3, lactose and polyvinyl-pyrrolidone (PVP), coated with HPMC 

and systems produced using ion exchange resin technology (Garg and Gupta, 2008). The 

main problem associated with these systems is that they do not float immediately after 

swallowing due to the lag time between swallowing and the release of gas. In order for the 

formulation to be effective, the lag time has to be as low as possible to avoid premature 

removal from the stomach (Streubel et al., 2003a). There are several commercially available  

floating formulations such as Gaviscon
®

, Madopar
®

 HBS capsule (Singh and Kim, 2000), 

Cifran O.D
®

,  Glumetza
®

, Cytotec
®

 and Baclofen GRS
®

. 

 

1.3.4.2.2  Non-effervescent systems  

In non-effervescent systems, the air entrapped in the swollen polymer lowers the density and 

confers buoyancy on the DDS. The systems absorb gastric fluid on contact, swell and form a 

colloidal gel barrier (Sheth and Tossounian, 1979), which limits the rate of fluid absorption 

into the DDS and subsequently drug release (Sheth and Tossounian, 1984). A common way 

of incorporating drug into this type of formulation is by mixing the drug with a gel that swells 

on contact with gastric fluid, while still maintaining its integrity of shape and a bulk density 

less than that of gastric contents. Commonly used polymers for this type of formulation 

include, cellulosic hydrocolloids such as HPMC and matrix-forming polymers such as poly-
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acrylate, polycarbonate, polystyrene and poly-methacrylate. Other excipients include 

polyvinyl acetate, Carbopol
®

, agar, sodium alginate, polyethylene oxide and polycarbonates 

(Garg and Gupta, 2008). Non-effervescent systems are sub-divided into HBS, alginate beads, 

microporous compartment systems and hollow microspheres. 

 

A)  Hydrodynamically balanced systems (HBS) 

HBS was introduced in 1975 by Sheth and Tossounian as single unit dosage forms, 

containing the active ingredient with one or more gel forming hydrocolloids, which remain 

floating on stomach contents. Excipients commonly used in this type of formulations include 

HPMC, hydroxyethylcellulose (HEC), sodium carboxy-methylcellulose (NaCMC), 

polycarbophil, polyacrylate, polystyrene, agar, carrageenans or alginic acid (Hwang et al., 

1998, Reddy and Murthy, 2002, Nayak et al., 2010b). Formulations can be prepared by 

mixing the drug with the polymer followed by administration in a HBS capsule (Figure 1-9). 

The capsule dissolves on contact with liquid gastric contents and then swells to form a 

gelatinous barrier which makes the dosage form float on the gastric contents for an extended 

period of time of about 3 – 4 h (Shah et al., 2009b, Nayak et al., 2010b). The continuous 

erosion of the surface facilitates water penetration into the inner layers of the dosage form, 

thereby maintaining surface hydration and buoyancy to the dosage form (Reddy and Murthy, 

2002). The addition of fatty excipients confers buoyancy to the formulation, thereby limiting 

erosion. Examples of suitable fatty excipients include: a purified grade of beeswax; fatty 

acids; long chain fatty alcohols, myristyl alcohol, stearyl alcohol, glycerides such as glyceryl 

esters of fatty acids or hydrogenated aliphatic acids such as, for example, glyceryl 

monostearate, glyceryl distearate, glyceryl esters of hydrogenated castor oil; and oils such as 

mineral oil etc.  (Sheth and Tossounian, 1979). 
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Figure 1-9: Hydrodynamically balanced systems (HBS) 

 

 

B)  Floating alginate beads 

Floating alginate dosage forms were introduced in the 1980s (Stockwell et al., 1986). 

Alginate is a favourable biodegradable polymer for drug delivery because gel beads are 

prepared easily in aqueous solutions without the use of organic solvents at room temperature  

and without the use of complicated equipment. In addition, alginate gels dissolve in alkaline 

conditions (pH ˃ 6) and are biocompatible; therefore, they are useful as a DDS for bioactive 

compounds. Alginates are linear anionic block copolymer hetero-polysaccharides made up of 

monomers of (β-D-mannuronic acid) (M) and its C-5 epimer (α-1-guluronic acid) (G) 

residues, linked to one another by 1, 4- glycosidic linkages (Figure 1-10). They are extracted 

from the cell walls of various species of brown algae (Sanford and Baird, 1983). Alginates 

from different seaweeds can have different ratios of G and M monomers. The ratio and the 

distribution of the monomers in the alginate chain have an effect on gel formation and 

strength. Hydrogel formation occurs by ionotropic gelation on reaction with bivalent alkaline 

earth metals such as Ca
2+

, Sr
2+

 and Ba
2+

 or trivalent Fe
3+

 and Al
3+

 ions, due to an ionic 

interaction and intra-molecular bonding (Figure 1-10) between the carboxylic acid groups 
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present on the polymer backbone and the cations (Patel et al., 2006). Beads produced from 

sodium alginate have been demonstrated to extend GRT to beyond 5.5 hours (Whitehead et 

al., 1998, Garg and Gupta, 2008). 

 

 

 

Figure 1-10: Calcium cross-linked alginate formation reaction 

 

 

C)  Microporous compartment systems 

In microporous compartment systems, the drug reservoir is inside a compartment containing 

pores within the surrounding membrane (Harrigan, 1977). The peripheral walls are 

completely sealed in order to avoid any direct contact of the undissolved drug with the gastric 

fluids. The entrapped air in the floatation chamber causes buoyancy over gastric fluids (Vyas 
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and Khar, 2006). The gastric fluid passes through the apertures, dissolving the drug, thereby 

providing a reservoir of dissolved drug for continuous drug transport and absorption. 

 

D)  Hollow microspheres  

Microspheres have been widely researched in the area of gastro-retention. Floating 

microspheres or hollow microspheres combine the advantages of floating systems along with 

those of multiple unit systems as described in section 1.2.3. At present, hollow microspheres 

are promising buoyant systems because they combine the advantages of multiple unit system 

with good floating properties.  

 

1.3.5 Advantages of gastro-retentive systems  

Gastro-retentive systems (Figure 1-11) can:  

 improve the bioavailability of drugs that are metabolised in the upper GIT (Garg and 

Gupta, 2008). The bioavailability of riboflavin from a GRDF was significantly 

enhanced in comparison to non-GRDF formulations. Different processes related to 

absorption and the movement of drug in the GI tract act to enhance the extent of drug 

absorption (Klausner et al., 2003c) 

 reduce the frequency of dosing and this is useful for drugs with a relatively  short 

biological half-life (t1/2). A reduction in the frequency of dosing may help to improve 

patient compliance and thereby improvement in drug therapy (Garg and Gupta, 2008) 

 target therapy for local delivery in the upper GI tract especially locally to the stomach 

and the small intestine. 

 reduce the amount of drug that reaches the colon thereby limiting the drug adverse 

activity of the drug on the colon. This gives a rationale for gastro-retentive systems 
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for -lactam antibiotics, that are usually absorbed in the small intestine but there is the 

possibility of development of antibiotic resistance in the colon. 

 reduce drug wastage as most, if not all, the drug content of the formulation is released 

where it is expected relative to conventional DFs. 

 maintain the therapeutic plasma levels of the drug over an extended period with less 

fluctuation in therapeutic levels thereby, minimizing the risk of resistance especially 

in case of antibiotics e.g. β-lactam antibiotics (penicillins and cephalosporins) 

(Anilkumar, 2008). It is also of special  importance for drugs with narrow therapeutic 

index (Hoffman, 1998).  

 improve solubility profile of drugs that are less soluble in a high pH environment. 

 provide better availability of new products with new therapeutic possibilities and 

substantial benefits for patients (Arora et al., 2005) 

 increase bioavailability of sustained release delivery systems intended for once-a-day 

administration  e.g. ofloxacin. 

 

1.3.6 Limitations of gastro-retentive systems  

There are several limitations to the use of GRDFs and they include: 

 Floating systems require fluid in stomach  

 Swelling systems require to be swollen before gastric emptying occurs  

 Drugs that irritate the stomach  are not suitable candidates for delivery using this 

approach 

 They do not offer an advantage for drugs that are unstable in acidic pH 
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 Mucus on stomach wall undergoes constant renewal and causes problems for 

muco-adhesive systems especially in the acidic environment of the stomach. 

 

 

                        

 

Figure 1-11: Rationale for GRDDS 

(Nayak et al., 2010b) 
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1.4 Gastro-retentive applications in drug delivery  

Oral drug delivery is limited by the short GRT of the formulations. Therefore, the use of 

gastro-retentive formulations tends to permit the localisation of the drug component in the GI 

mucosal membrane for an extended period. This improves the bioavailability, leading to a 

reduction in the dose and frequency of administration. The control of the location of a 

delivery system at a particular site in the GI tract, especially the upper GI tract, often 

improves the absorption of the drug and the therapeutic effect of the drug (Singh and 

Robinson, 1988). 

 

1.4.1 Mucoadhesive formulations  

Mucoadhesive microspheres are a useful and promising DDS, adhering to the mucosal layer, 

while releasing their drug contents in a sustained manner (Illum, 1998). These microspheres 

either can consist entirely of a mucoadhesive polymer or can be coated with a mucoadhesive 

polymer (Figure 1-12). Mucoadhesive microspheres can be modified to adhere to any form of 

mucosal tissue and have the added advantage of efficient absorption and improved 

bioavailability of drug content due to the high surface-to-volume ratio, an intimate contact 

with the mucosal layer and they could help target specific absorption sites (Lehr et al., 1992a, 

Henriksen et al., 1996, Bhaskara and Sharma, 1997, Chowdary and Rao, 2003). Several 

studies have shown improved bioavailability of drugs from mucoadhesive formulations. Such 

drugs include testosterone and its esters, vasopressin (Morimoto et al., 1991), dopamine 

(Ikeda et al., 1992), insulin (Nagai et al., 1984) and gentamicin (Illum et al., 1989). However, 

there are challenges in the development of particles with adequate drug loading for their 

intended application. Low drug contents associated with these microspheres raise concerns 

about both the efficiency of the process and the amount of material that would need to be 



54 

 

 

 

delivered to achieve therapeutic levels (Liu et al., 2005), e.g. drug loadings of 26 % observed 

with amoxicillin mucoadhesive microspheres. Acyclovir microspheres were prepared by an 

emulsion-chemical cross-linking technique using mucoadhesive polymers such as chitosan 

(CS), thiolated CS, Carbopol
®

 71G and Methocel
®

 K15M (Dhaliwal et al., 2008). The 

microspheres released 78.8 ± 3.9 % of their drug load in 12 h compared with dissolution of 

90.5 ± 3.6 % in 1 h using the drug as a powder. The thiolated CS, CS, Carbopol
®

 and 

Methocel
®

 formulations microspheres showed gastric retention at 8.0 ± 0.8 h, 3.1 ± 0.4 h, 1.1 

± 0.2 h and 0.2 ± 0.1 h respectively (Dhaliwal et al., 2008). Studies also showed that the 

administration of thiolated CS microspheres could maintain plasma levels for about 24 h 

compared to 5 h after administration in solution and showed a nearly four-fold higher AUC0–

24 value. Lacidipine loaded CS microspheres prepared using glutaraldehyde as the cross-

linking agent has been evaluated in vitro for the treatment of pylorospasm. The drug 

entrapment efficiency (DEE) was between 14 % and 40.8 % and the microspheres exhibited 

mucoadhesion of over 70 % in the in vitro wash-off test using rat stomach mucosa. The DEE 

and the mucoadhesion depended on the polymer concentration, volume of cross-linker and 

the stirrer speed. The optimal formulation showed controlled release for more than 6 h and 

release followed Higuchi kinetics (Sultana et al., 2009). Mucoadhesive tablets containing 

atenolol using Carbopol
®

 934P and sodium carboxymethylcellulose showed high bioadhesive 

strength measured as force of detachment from porcine gastric mucosa. This high 

bioadhesive strength is likely to increase the GRT and bioavailability. The formulation also 

exhibited zero order drug release and can be employed as a once-a-day oral controlled drug 

delivery system (Singh et al., 2006).  
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Figure 1-12: Interaction of mucoadhesive delivery system with the mucosal layer of the GI tract 

 (Ganga and Bafna, 2007) 

 

 

 

1.4.2  Floating formulations  

Floating bilayer tablets were prepared with one layer of the tablet made from polymers 

HPMC 4000, HPMC 100 and carboxymethylcellulose (CMC) and the drug – furosemide 

(Ozdemir et al., 2000). The second layer consisted of an effervescent mixture of sodium 

bicarbonate and citric acid Radiographic studies in volunteers showed that the floating tablets 

were retained in the stomach for 6 h. Corresponding blood analysis showed the 

bioavailability of furosemide was enhanced by about 1.8 times than that of conventional 

tablets and peak diuretic effect was prolonged with the floating tablets. Gas forming agents 

were incorporated into an expandable tablet containing a mixture of polyvinyl lactams and 
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polyacrylates that can swell rapidly in an aqueous environment. As soon as the gas formed, 

the density of the system was reduced with the system floating on the gastric environment 

(Penners et al., 1997). A once-daily formulation was developed for the oral administration of 

ciprofloxacin containing sodium alginate, xanthum gum, sodium bicarbonate and cross-

linked polyvinyl pyrrolodine (PVP). The PVP and the gel forming polymers formed a 

hydrated gel matrix that entrapped the gas, leading to the buoyancy and gastric retention of 

the tablets (Talwar et al., 2001). Streubel et al. (2003b) prepared floating tablets based on 

Accurel MP 1000
®

 (a polypropylene foam powder) and matrix forming polymer. The highly 

porous foam powder in the tablets provided a lower density than the release medium and 

remained floating for at least 8 h in the medium. The drug release profile of the tablets may 

be altered by varying the ratios of the matrix forming polymers and the foam powder. Wu et 

al. (1997) prepared floating nimodipine sustained release tablets using HPMC and PEG 6000. 

Nimodipine was initially incorporated into a Poloxamer-188 solid dispersion before it was 

directly compressed into floating tablets. The optimized tablets were buoyant for over 10 h in 

vitro, with GRT of the floating tablets in fed and fasted states being 5 h and 3 h respectively, 

in comparison with the GRT of conventional tablets in fed and fasted states being 3 h and 2 h 

respectively. Drug release followed zero order release kinetics and drug bioavailability was 

double that of non-floating tablets. Iannuccelli et al. (1998) prepared air compartment 

multiple unit systems. Each unit, with diameter of about 3.7 mm was composed of an alginate 

core separated from a calcium alginate / polyvinyl alcohol (PVA) membrane by an air 

compartment. In the presence of water, the PVA leaches out and increases membrane 

permeability thereby preventing shrinkage of the air compartment. The PVA-containing units 

floated immediately upon contact with artificial gastric juice, with 100 % buoyancy lasting 

more than 24 h. The units without PVA did not float due to shrinkage of the air compartment.  

Ma et al. (2008) produced floating alginate microsphere by ionotropic gelation method with 

calcium carbonate as the gas-forming agent. Chitosan was added to the gelation medium to 

modify drug release and increase drug entrapment and Eudragit was used as the coating 

material. It was observed that the formulations, either coated or uncoated, floated 

continuously in simulated gastric fluid (SGF) for 24 h in vitro. GRT of optimised coated 
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floating microspheres in healthy volunteers was over 5 h while the non-floating microspheres 

were emptied within 2.5 h.  An effervescent floating matrix system (EFMS) was designed to 

cause tablets to float in gastric fluid and was used to significantly improve the release of a 

new synthetic flavonoid (DA-6034). The EFMS was formulated using swelling polymers 

(HPMC, Carbopol
®

 934P and Kollidon
®

 CL), a gas generating agent (sodium bicarbonate 

(SB)), eroding polymers (Eudragit L100-55 or alginic acid), and solubilizers (Poloxamer F68 

and sodium lauryl sulphate (SLS)) and this mixture was compressed to form tablets following 

the addition of a lubricant. The therapeutic limitations of this flavonoid were due to its low 

solubility in acidic media but with the use of EFMS, drug was released continuously. This 

was attributed to the effect of the solubilizers and the alkalinising agent such as SB used as a 

gas generating agent. DA-6034 EFMS tablets showed enhanced gastro-protective effects in 

gastric ulcer-induced beagle dogs, indicating the therapeutic potential of EFMS tablets for the 

treatment of gastritis (Jang et al., 2008). Chen et al. (2013) developed gastro-retentive tablets 

combining both floating and swelling properties. These losartan tablets were formulated with 

hydroethylcellulose (HEC), CS and SB. Results showed that formulations at HEC:CS (5:5) 

showed optimal floating lag time, floating duration and swelling. Addition of SB improved 

the buoyancy and the optimized formulation, containing 20 mg SB, resulted in the tablets 

floating for < 16 h and an adjustable drug release profile.  

Floating tablets of ciprofloxacin hydrochloride were prepared by direct compression and 

evaluated for physical, swelling, floating and drug release properties. In vivo studies were 

also carried out on the optimized floating and non-floating tablets in healthy volunteers. The 

duration of floating were predominantly > 24 h and floating lag times < 20 s for the floating 

tablets. The drug release followed zero order kinetics. Cmax, Tmax, and AUC0–∞ of floating 

versus non-floating tablets were 0.945 ± 0.29 versus 2.1 ± 0.46 μg/ml; 6.0 ± 1.42 versus 1.42 

± 0.59 h and 8.54 ± 1.87 versus 9.45 ± 2.12 μg/ml/h, respectively. These parameters indicate 

that the developed gastro-retentive formulation extended the pharmacokinetic profile 

achieved with the conventional tablets (Mostafavi et al., 2011).  
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1.4.3 Expandable formulations  

Expandable formulations were initially designed for veterinary use (Laby, 1974) for the 

controlled release of bloat-preventing surfactants in bovines. A unique super-porous hydrogel 

(SPH) (Poly (acrylamide-co-3-sulfopropyl acrylate) (P(acrylamide-co-potassium salt of 3-

sulfopropyl acrylate containing NaHCO3)) composites was designed which combined a high 

swelling rate at a ratio of more than 100 times the original weight of the dried matrix with 

substantial mechanical strength (Chen et al., 2000, Chen and Park, 2000). Inside these SPHs, 

water flows through an open channel system with pores of a few hundred micrometres by 

capillary action with rapid swelling occurring within 20 minutes. This is in contrast to the 

conventional hydrogels, which have relatively small pore sizes, and equilibrium swelling is 

achieved after several hours through diffusion of the aqueous media. The rapid swelling of 

SPH prevents premature emptying from the stomach by IMMC. Whilst SPHs are 

characterised by low mechanical strength, the addition of a super-disintegrant, e.g. Ac-Di-

Sol
®

, increases the cross-linking density, yielding an SPH composite. An in vivo study in 

beagles showed that the SPH composite, previously shown to swell in SGF to a size of 3.5 x 

2.4 cm (length x diameter), was retained in the fed stomach for more than 24 h. However, 

administration to a fasting dog showed rapid evacuation.  

Gastro-retention was enhanced with the use of a rectangular-shaped unfolding GRDF, which 

used a combination of rigid components with large dimensions e.g. 5 x 2 cm (Klausner et al., 

2002, Klausner et al., 2003a). The formulations were compounded from thin polymeric 

membranes with a drug polymer matrix being surrounded by rigid polymeric strips, all 

covered from both sides in a sandwich form by identical membranes which connected and 

maintained the structure intact. Each component was designed for rapid removal from the 

stomach, while the whole combination in this formulation yielded a prolonged gastro-

retention. These GRDFs were retained in the stomach of humans and dogs for extended 

periods of at least 5 h. The use of both soluble and poorly soluble drugs in this formulation 

has shown in vitro controlled release. In dogs, formulations incorporating riboflavin and 
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levodopa had increased bioavailability in comparison with non-gastro-retentive DFs. Studies 

in healthy volunteers showed enhanced pharmacodynamic activity such as diuresis and 

natriuresis with furosemide (Klausner et al., 2003d) and with levodopa – an extended 

absorption phase by 2 h in comparison to a non-gastro-retentive DF Sinemet CR
®

 (Klausner 

et al., 2003b). Several researchers have exploited the physiological fact that the fed mode 

prolongs gastro-retention.  Therefore, these DFs are administered with food and swell to a 

certain size that enhances gastro-retention, while releasing the drug in a controlled manner. 

GRDFs designed with dimensions of 19 x 8 mm (length x diameter) were administered to 

fasting beagle dogs and these were retained for less than 90 min in the stomach with 

prolongation of GRT to 4 - 5 h.  Arza et al. (2009) developed a combined swellable and 

floating ciprofloxacin hydrochloride tablet. These tablets employed a combination of 

polymers such as HPMC, swelling agents (crosprovidone sodium, starch glycolate and 

croscarmellose sodium) and an effervescent substance (SB). The swelling ratio increased to 

about 400 % of the dried tablet weight. The mean residence time of the tablet in healthy 

volunteers was found to be 320 ± 48.99 min (n=6).  

 

1.4.4 High density formulations  

Compared to other gastro-retentive systems, research into high density formulations has been 

rather limited. High density microspheres with loose bulk density  between 0.42 - 0.74 g/cm
3
 

were prepared by a coacervation phase separation technique for the sustained release of 

famotidine with the addition of titanium dioxide (Ahad et al., 2011). However, there were no 

in vivo studies or in vitro studies to demonstrate the actual sinking of the microspheres in 

physiological fluids for a considerable length of time, since the bulk and tapped densities 

were all less than the density of gastric contents (Ahad et al., 2012). A high density 

propafenone HCl gastric-resident tablet was developed employing zinc oxide (ZnO) as the 
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density-increasing agent, increasing density up to 1.63 g/cm
3
. ZnO increases the system 

density making the system resident in the stomach to prolong the drug delivery time in 

absorption zone. The device released its drug content over 12 h and maintained its 

conformation over this period (Ashoka et al., 2013). 

1.5 Helicobacter-pylori (H. pylori) infections 

1.5.1  Aetiology of H. pylori infections  

H. pylori is a spiral gram-negative micro-aerophilic bacterium, with two to six unipolar, 

sheathed flagella (Figure 1-13).  The flagella provide motility and the ability to penetrate the 

gastric mucosa, resist gastric rhythmic contractions and remain in the gastric mucosa. It is 2.4 

- 4.0 µm long and 0.5 - 1.0 µm wide (Blaser, 1992, Brown, 2000). This bacterium was 

initially identified in autopsied dogs in 1893, described in humans in 1906 (Rothenbacher and 

Brenner, 2003) and successfully isolated in 1983 (Marshall and Warren, 1984). Infection is 

silent and H. pylori is implicated in the development of chronic active gastritis, peptic ulcer 

disease, gastric mucosal-associated lymphoid tissue lymphoma and gastric carcinoma 

(Peterson, 1991, Dunn et al., 1997, Ernst and Gold, 2000, Suerbaum and Michetti, 2002). 

This bacterium affects half the world‟s population (Dunn et al., 1997). H. pylori infection has 

also been associated with coronary artery and ischemic heart disease (Mendall et al., 1994, 

Cammarota et al., 1998). About half a million new cases per year of gastric cancer, about 55 

% of the total cases worldwide, have been linked to H. pylori and has been predicted to be 

one of the top ten leading causes of death worldwide by 2020 (Murray and Lopez, 1997, 

Kawahara et al., 2005). Due to the various conditions associated with H. pylori, the World 

Health Organisation (WHO) International Agency for Research on Cancer classified H. 

pylori as a class 1 carcinogen in humans (Sherman, 2004). 
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(Image adapted  from (Bouyssou, 2014) Used with permission) 

 

Even though only a small proportion of individuals carrying this bacterium ever develop 

clinical sequelae, the infection is asymptomatic (Petersen and Krogfelt, 2003) and if left 

untreated the infection is lifelong (Czinn, 2005). The prevalence of infection with H. pylori 

varied between 7 % in a study conducted among children in the Czech Republic (Sýkora et 

al., 2009)  and 87 % in  South Africa (Dube et al., 2009). In Europe, the prevalence varied 

between 7 and 33 % (Breckan et al., 2009, Sýkora et al., 2009) between 48 and 78 % in 

South American studies (Santos et al., 2009) and between 37.5 and 66 % in Asian studies 

(Hirai et al., 2009, Zhang et al., 2009, Ford and Axon, 2010). 

 

Figure 1-13: H. pylori strain 
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1.5.2  Mechanism of H. pylori infection 

H. pylori infections occur mainly from childhood (Imrie et al., 2001, Rowland et al., 2006), 

between the ages of 1 to 5 years. The primary route of infection has yet to be confirmed, but 

several routes have been proposed and they include gastric-oral, oral-oral (Megraud, 1995), 

faecal-oral, zoonotic (Fox, 1995) and water/food-borne (Hulten et al., 1996, Herrera, 2004). 

However, one of the major risk factors for infection with H. pylori is contamination of food 

by human faecal material (Hopkins et al., 1993). A major route of transmission in developing 

countries is through intra-familial transmission (Nahar et al., 2009, Salih, 2009). Acute 

infection most likely occurs as a result of ingestion of the organism which is most commonly 

asymptomatic, but may be associated with epigastric burning, abdominal distension or 

bloating, belching, nausea, flatulence, and halitosis. The principal reservoir for H. pylori 

infection appears to be the human stomach, especially the antrum.  H. pylori attaches to the 

gastric epithelial cells and one of the major features of its infection is that it causes 

progressive injury to the gastric mucosa and its function (Suzuki and Ishii, 2000, Lehmann et 

al., 2002). The injurious effect of the bacterium is further enhanced by the production of a 

vacuolating cytotoxin VacA (Farthing, 1998). H. pylori is a very diverse species and cancer 

risks may be increased with strains having virulence-associated genes (cytotoxin-associated 

gene, CagA), host genetics and environmental factors (Rothenbacher and Brenner, 2003). H. 

pylori produce several enzymes and have a high urease activity. In the acidic environment of 

the stomach, urea (CH4N2O) breaks down into bicarbonate (CHO3
-
) and ammonia (NH3) that 

shields the bacterium in the acidic environment of the stomach (Owen, 1998). The 

ammonium ions produced from the urea breakdown can be toxic to the gastric superficial 

epithelial cells, thereby causing further injury. Urease enhances inflammatory cytokine 

production and activates mononuclear phagocytes (Dunn et al., 1997). On colonisation, the 

host immune system is stimulated and there is an increase in secretory IgA (sIgA) detected in 

the gastric mucosa; raised specific IgG and the host is unable to rid itself of the bacterium 

(Shah et al., 2009a). This colonisation causes persistent gastric inflammation; however the 

clinical course of the bacterial infection varies from patient to patient (Atherton, 2006). 
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1.5.3  Treatment of H. pylori infections 

 

Table 1-3: Therapies used for treatment of H. pylori 

 

 

 

H. pylori is sensitive to many antibiotics in vitro; however no single agent is effective alone 

in vivo (Bazzoli et al., 2002), therefore, there is a need for a combination therapy to 

effectively eradicate the bacterium (Table 1-3). A minimum of two antibiotics in combination 
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with gastric acid inhibitors is therefore used in the treatment. The major problem relating to 

the antibiotic treatment is that after infection the bacterium resides below the gastric mucus 

adherent to the gastric epithelium; therefore, the access of drugs to this particular site is rather 

limited. In addition, due to bacterial resistance, the bacteria might have acquired resistance to 

the commonly used antimicrobial drugs (Iijima et al., 2004). Therefore, for a regimen to 

achieve a high eradication rate, it is necessary that the drug is delivered to the entire surface 

of the stomach and must reach high concentrations for a sufficient time to efficiently kill the 

bacteria (Midolo et al., 1996). If eradication is not achieved, the bacteria can re-colonize the 

gastric epithelium, resulting in treatment failure (Atherton et al., 1995). The first line therapy 

for the treatment of this infection is the use of a triple therapy consisting of an adjuvant and 

two antibiotics e.g. clarithromycin, amoxicillin and metronidazole (Laheij et al., 1999, 

Malfertheiner et al., 2007, Georgopoulos et al., 2012). The antibiotics have to be used in 

combination, as one antibiotic cannot achieve adequate eradication and there is a requirement 

for adjuvant therapy (Chang et al., 2003). The adjuvant therapy consists of drugs that 

increase alkalinity of the stomach in order to allow local action of antibiotics that are not 

stable in the acidic pH of the stomach. An example of the adjuvant drugs is the proton pump 

inhibitors (PPI) e.g. omeprazole which is used at a dose of 20 mg twice daily. Increasing 

intra-gastric pH by the co-administration of potent gastric acidity inhibitors has been reported 

to significantly improve eradication (Moayyedi et al., 1995). In patients for whom the PPI-

based triple therapy fails, different regimens (sequential, quadruple, concomitant and hybrid 

therapies) and various combinations of new and old antibiotics are becoming increasingly 

popular (Hsu et al., 2008, Basu et al., 2011). Quadruple therapies include colloidal bismuth 

subcitrate, tetracycline, metronidazole and omeprazole (De Boer, 2001). The recommended 

regimens are not very effective and have an eradication efficacy of 60 – 80 % (Georgopoulos 

et al., 2002, Chi et al., 2003). This is due to several factors such as the persistent rise in 

resistance of this bacterium to these antibiotics; the hostile environment of the stomach that 

leads to inactivation of drugs such as clarithromycin which is degraded in the lumen mainly 

through the action of acid and pepsin with a half-life of less than 1 h; reduction of antibiotic 

bioavailability at the site of action (Megraud, 2004, Batchelor et al., 2007). Other factors 
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include the formation of biofilms by H. pylori on the gastric mucosa epithelium, which can 

all lead to treatment failures (Cammarota et al., 2012).  In addition, other major problems 

with this regimen include patient compliance and side effects due to the number of drugs and 

frequency of dosing (Table 1-3). Patient compliance with this type of complicated regimen of 

four drugs may be improved by combining all the different drugs in a single dosage form. 

This idea resulted in the development of the formulation Pylera
®

. Pylera
®

 has been approved 

in the United States and it contains bismuth subcitrate potassium (140 mg), metronidazole 

(125 mg) and tetracycline (125 mg). 

One other major problem in the eradication of H. pylori in the stomach is the limited gastric 

residence of conventional controlled release formulations, which, even if designed to ensure 

release of drug over longer periods, may not be retained in the stomach for that long. The 

average residence time of formulations in the stomach depends on the type of dosage form 

with tablets, pellets, capsules and solutions having an average time of 2.7 ± 1.5  h , 1.2 ± 1.3 

h, 0.8 ± 1.2 h and 0.3 ± 0.07 h respectively (Chawla et al., 2003). Therefore, the duration of 

drug release from controlled drug delivery system such as oral matrix/osmotic systems is 

dependent on the GI transit time and so is unpredictable and limited to around 12 h 

maximum. For controlled release formulations, especially those containing drugs with a 

narrow absorption window in the upper GI tract i.e. stomach and small intestine, this can be a 

problem. This is due to the relatively short transit time of the DS in these parts of the GI. 

Therefore, after only a short period of less than 6 h, the controlled release DS would have left 

the upper GI tract and the drug is released in non-absorbing segments of the GI tract. This 

results in a short absorption phase and lower bioavailability (Klausner et al., 2003c). 
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1.5.4 Resistance of H. pylori to antimicrobials  

There is global concern regarding acquired resistance to the commonly used antibiotics in the 

eradication of H. pylori (Megraud, 2007, Chang et al., 2009, Graham and Fischbach, 2010, 

Kao et al., 2014) as this has been suggested to be a major cause of the treatment failure. The 

standard triple regimens showed eradication rates of 40 – 80 % in southern European 

countries (Graham and Fischbach, 2010). The prevalence rate of clarithromycin (CMN) (17.2 

%), metronidazole (MET) (26.7 %), amoxicillin (11.2 %) and levofloxacin (16.2 %) 

resistance increased from Europe to Asia, America and Africa, with tetracycline resistance 

low (<3 %) in all countries, but was 43.9 % in Africa (De Francesco et al., 2010). Just as H. 

pylori infection is associated with geographical areas, so also the prevalence of the resistance 

rates appear to be partly determined by geographical factors (Wu et al., 2012). An analysis of 

59 independent studies (56 in adults, 2 in children and 1 in both groups in Latin America) 

published from 1988 till October 2013, showed prevalence of antimicrobial primary 

resistance among adults varied by antibiotic. Resistance varied from 12 % for CMN (35 

studies), to 53 % for MET (34 studies), to 4 % for amoxicillin (28 studies), to 6 % for 

tetracycline (20 studies) to 3 % for furazolidone (6 studies), to 15 % for fluoroquinolones (5 

studies) and to 8 % for dual CMN and MET (10 studies). Resistance prevalence varied 

significantly by country, but not by year of sample collection (Camargo et al., 2014).  

Elevated primary resistance to CMN (20 to > 40 %) and quinolones (20 to > 33 %) has been 

observed in developed countries, while high primary resistance to MET (≥76 %), tetracycline 

(≥ 15 %), and amoxicillin (> 30 %) has been found in developing countries. In addition, 

secondary resistance is more common (Boyanova et al., 2011). The prevalence of CMN and 

MET resistance in China has both increased from 12.8 to 23.8 % and 12.8 to 56.6 % 

respectively between 2000 and 2009 (Gao et al., 2010). An increase in the duration of 

treatment (Streubel et al., 2003a) and combination of different antibiotics with different 

mechanisms of actions (Chaudhuri et al., 2003) has been used to reduce the prevalence of 

resistance. CMN is effective and is the key component of most combination therapies and 

resistance to CMN has become one of the main reasons for eradication failures (De Francesco 
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et al., 2009) Resistant strains to CMN are emerging, but the instances are comparatively 

lower than MET (Logan et al., 1994, Boyanova et al., 2011, Mansour et al., 2010). 

Resistance to CMN has been detected more in patients living in the south (up to 20 %) than in 

those living in the north of Europe (Koletzko et al., 2006, Janssen et al., 2006, Storskrubb et 

al., 2006). Spain has one of the highest levels of CMN resistance of about 35.6 % observed in 

Europe (Agudo et al., 2009). Administration of CMN with a PPI significantly increases its 

concentration in the antral mucosa and the mucus layer (Meurer and Bower, 2002). In cases 

where CMN therapies fail, this drug should not be used in second-line therapies and a 

regimen containing amoxicillin, MET and a PPI can be used or a levofloxacin - based triple 

therapy which has proven to be a superior therapy to quadruple therapy and fewer side effects 

(Liou et al., 2010). A high dose of amoxicillin is required in either dual therapy or in second-

line treatment regimens as a result of the low local concentrations of amoxicillin at its site of 

action. An example is seen in a case where levels above the minimum inhibitory 

concentration have been detected for CMN in gastric juice, mucosa and serum after 6 hours 

following oral dosing with a triple therapy regime of omeprazole, CMN and amoxicillin. 

However, following a 1g dose of amoxicillin, it was only detected for two hours in gastric 

mucosa (Conway, 2005). 
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1.6 Gastro-retentive applications in the treatment of peptic 

ulcer  

1.6.1 Mucoadhesive formulations  

Patel and Chavda (2008) developed amoxicillin microspheres using Carbopol
®

 934P as the 

mucoadhesive polymer and ethylcellulose (EC) as the carrier polymer. The microspheres 

produced were spherical, free flowing and with DEE ranging from 20 % to 56 %. The 

microspheres adhered to gastric mucus layer over an extended period and drug release from 

these microspheres was sustained for more than 12 h. In addition , in vivo tests showed that 

these microspheres exhibited better H. pylori clearance than amoxicillin powder. In another 

study by Yellanki et al. (2010), amoxicillin-trihydrate microspheres were prepared using 

Carbopol
®

 934P and EC with the DEE between 78 and 86 %. The particle size ranged from 

500 to 560 µm for all the batches produced. In vitro tests carried out using sheep gastric 

mucosa showed retention of more than 84 % of the microspheres on the tissue. Drug release 

was biphasic, with an initial burst release followed by a slow release with more than 80 % 

drug released after 6 h. Liu et al. (2005) prepared EC microspheres with Carbopol
®

 934P as 

the mucoadhesive polymer and amoxicillin as the active drug. The sizes of microspheres 

ranged from 400 to 1000 µm. The microspheres had a dense but porous inner core and the 

release was pH dependent. In acidic medium (HCl - pH 1.0), 90 % of the drug was released 

in 4 h, while in phosphate buffer (pH 7.8), the release was about 50 %. In vitro mucoadhesion 

studies showed that 93.5 % of the microspheres containing Carbopol
®

 were retained in the 

gastric mucosa of rats, compared with 85.8 ± 5.3 % of those without Carbopol
®

. In vivo 

studies in rats showed that the mucoadhesive microspheres containing Carbopol
®

 were 

retained for longer, gastric amoxicillin concentrations were higher and there was enhanced 

clearance of H. pylori. Another study reported that gastric retention of amoxicillin 

microspheres prepared by dispersing Carbopol
®

 in waxy hydrogenated castor oil in rats was 

about three times higher than that obtained using amoxicillin suspension containing 0.5 %w/v 
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methylcellulose. After 2 and 4 h, about 47 % and 20 % of the microspheres were retained 

respectively compared with only 17 % and 6 % respectively retained for the amoxicillin 

suspension. In addition, the mucoadhesive microspheres achieved a 10 times higher 

bactericidal activity than the amoxicillin suspension in rats (Nagahara et al., 1998).        

In a study by Patel and Patel (2007), the in vitro and in vivo characteristics of chitosan 

microspheres loaded with amoxicillin were evaluated. In vitro mucoadhesion tests showed 

that these microspheres were retained more strongly on the gastric mucous layer and could be 

retained in the GI tract for an extended period. The best formulation produced in this research 

exhibited a high DEE of 70 % and swelling index (which is a ratio of the change in weight of 

microspheres on exposure to SGF and the initial weight of the microspheres) of 1.39. The 

retained microspheres was ~ 80 % after 1 h and drug release was sustained for more than 12 

h. The in vivo clearance studies showed that mucoadhesive microspheres had a better 

clearance effect on H. pylori than amoxicillin powder. Following administration of a dose of 

4 mg/kg amoxicillin mucoadhesive microspheres, the colony counts (a measurement of the 

growth of H. pylori) were 23 ± 7.07, and as the doses increased to 7.5 and 15 mg/kg, the 

colony counts reduced to 5.5 ± 0.70 and 2 ± 0, respectively. However, following 

administration of amoxicillin powder (4 mg/kg), the colony counts were 78 ± 8.48, and as the 

doses increased to 7.5 and 15 mg/kg, they were 29 ± 5.65 and 17.5 ± 17.67, respectively. 

Wang et al. (2000) produced modified gelatin microspheres using aminated gelatin by 

surfactant-free emulsification in olive oil, followed by a cross-linking reaction with 

glutaraldehyde. These modified microspheres exhibited a greater gastric mucoadhesion than 

the unmodified gelatine microspheres; thereby, presenting a likely candidate DDS for the 

eradication of H. pylori. There are however safety concerns in using glutaraldehyde as a 

cross-linking agent and residual levels need to be controlled.  

Ramteke et al. (2006) prepared mucoadhesive nanoparticles of CMN for oral delivery. The 

maximum DEE was 73 %, while the nanoparticle recovery was reported to be 88 %. The drug 

formulation was shown to be retained in the stomachs of rats for a longer period than CMN 
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suspensions or conventional drug formulations, as some nanoparticles were still retained in 

the stomach of rats 6 h after administration. Cuna et al. (2001) prepared amoxicillin-loaded 

ion-exchange resins encapsulated in mucoadhesive polymers such as polycarbophil and 

Carbopol
®

 934. An oil-in-oil solvent evaporation technique was modified to produce these 

microparticles containing multiple amoxicillin - resin cores. Polycarbophil microparticles 

were spherical, while those containing Carbopol
® 

were irregularly shaped. In vitro release of 

amoxicillin was rapid despite the polymer coating. GI transit in rats was investigated by 

fluorescence microscopy, using particles loaded with fluorescein instead of amoxicillin; GRT 

was longer, and the particles were more evenly distributed over the stomach when uncoated. 

In addition, it was observed that Carbopol
®

 did not enhance the GRT of the microspheres. 

Such discrepancies may be due to the method of administration, the amount of polymer used 

and the swelling of the formulation. 

 

1.6.2  Improving targeting of mucoadhesive formulations 

Targeted drug delivery is a selective and effective localisation of drugs at specific targets in 

therapeutic concentrations, while restricting its access to other sites, thus minimising the toxic 

effects and maximising the therapeutic index and efficiency (Gregoriadis and Florence, 

1993). Mucoadhesive polymers generally exhibit the ability to stick to wet mucosal surfaces 

by non-specific physicochemical mechanisms, such as hydrogen bonding. With this non-

specific binding, the polymer is unable to differentiate between adherent or shed-off mucus 

and binds to both types of mucus, limiting their ability to target a specific mucosal tissue. The 

development of DDS coupled with cell-specific ligands has increased the therapeutic benefits 

and enhanced the possibility of effective site-specific drug delivery (Chowdary and Rao, 

2004). Any ligand that has a high binding affinity for mucin can be linked covalently to DDS 

such as microspheres. Examples of such ligands include lectins, adhesins, antibodies and 

certain amino acid sequences. 
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1.6.2.1  Lectins  

 

Lectins have the ability to bind specifically to membrane-bound sugar moieties located at the 

cell surface of epithelial cells, enhancing the adherence of DDS to the intestinal epithelium 

and improving the absorption of drugs (Lee et al., 2000b). Lectins are found in plants, 

vertebrates (Ashwell and Harford, 1982, Stockert and Morell, 1983), bacteria and 

invertebrates (Lis and Sharon, 1986) but the plant lectins are the largest known group. Based 

on their molecular structure, lectins are divided into three categories: 

 

  Monolectins – those having only one carbohydrate recognising domain 

 Hololectins – those with two or more carbohydrate recognising domains 

 Chimerolectins – those with additional unrelated domains 

 

Lectins have the potential to target drugs to different parts of the GI tract or even to different 

cells (e.g. complex-specific lectins for parietal cells or fuco-specific lectins for M cells). 

Binding of polystyrene microparticles to enterocytes have been demonstrated to be enhanced 

by coating the microparticles with tomato lectins (Gabor et al., 1997). They exhibit strong 

binding to nuclear pore membranes following cellular uptake (Haas and Lehr, 2002). Another 

important advantage of lectins in mucoadhesive drug delivery to the GI tract is their 

resistance to digestion within that environment. Montisci et al. (2001) investigated the 

behaviour of two lectin-particle conjugates after oral administration. The two different plant 

lectins - Lycopersicon. esculentum L. and Lotus. tetragonolobus, are specific for oligomers of 

N-acetyl-D-glucosamine and L-fucose, respectively, and they were conjugated to small 

poly(lactide) microspheres. The overall GI transit of the particles was delayed when the 

microspheres were conjugated to the lectins, mainly due to the gastric retention of the 

particles. A significant proportion of the conjugated particles adhered to the gastric and 
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intestinal mucosa. There were no significant differences after a preliminary incubation of 

lectin-microsphere conjugate with specific sugars showing that the activity of the lectins 

could be maintained. Jain and Jangdey (2009) prepared and characterised lectin conjugated 

CMN microparticles for the effective treatment of colonisation of H. pylori. DEE was about 

70 % and conjugation with Concanavalin A (Con A) was confirmed by infrared (IR) 

spectroscopy and differential scanning calorimetry (DSC). Con A is a lectin isolated from the 

jack bean, Canavalia ensiformis and binds specifically to mono, oligo- and polysaccharides 

with terminal non-reducing α-D-mannopyranosyl-, α-D-glucopyranosyl- or β-D-

fructofuranosyl residues. Maximum mucoadhesion of 85 % was observed for Con A 

conjugated EC microspheres on stomach mucosae of rats, compared with 12 % observed for 

a non-conjugated control formulation. A GRT of over 6 h was reported for Con A conjugated 

microspheres of CMN in rabbits, while it was 3 h for an optimised CMN tablet formulation 

In another study by Umamaheshwari and Jain (2003), lectin conjugated nanoparticles were 

prepared as a means of attaching an acetohydroxamic acid delivery system on the 

carbohydrate receptors of H. pylori. Ulex europaeus Agglutinin I (UEA I) and Con A lectins 

were bound to gliadin nanoparticles (GNP) by a two-stage carbodiimide coupling technique. 

The binding efficacy of the lectin to the carbohydrate receptors was evaluated and this 

showed strong agglutination patterns with mannose-specific Con A-GNP and (L)-fucose 

specific UEA–GNP formulations. The lectin conjugated nanoparticles completely inhibited 

H. pylori binding to human stomach cells. The antimicrobial activity of the conjugated 

nanoparticles was evaluated by % growth inhibition (% GI) studies by using isolated H. 

pylori strain. The inhibitory efficacy of UEA–GNP and Con A-GNP was approximately two-

fold higher compared to the unconjugated nanoparticles.  

 

1.6.2.2 Bacterial adhesins 

Bacterial fimbriae are long lectin-like proteins found on the surface of many bacterial strains, 

through which they attach to the epithelial surfaces of enterocytes. Their presence has been 
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associated with pathogenicity. Therefore, DDS based on this approach could be an efficient 

mechanism to enhance adhesion of bioadhesive DDS to epithelial surfaces (Lee et al., 

2000b). Bernkop-Schnurch et al. (1995) covalently attached a fimbrial protein-K99 to poly 

(acrylic acid) polymer in order to improve the adhesion of the DDS to the GI epithelium. K99 

was isolated from an Escherichia coli strain harbouring the fimbriae-encoding plasmid 

pR19906. In this research, the function of the fimbrial protein was tested using a 

haemagglutination assay, along with equine erythrocytes expressing the same K99-receptor 

structures as those of GI-epithelial cells. A 10-fold slower migration of the equine 

erythrocytes through the K99-poly(acrylic acid) gel compared to the control gel without the 

fimbriae was demonstrated, indicating the strong affinity of the K99-fimbriae to their 

receptor on the erythrocytes.  

 

1.6.2.3 Amino acid sequences 

 

Some amino acid sequences have complementary parts on the target cell and on the target 

mucosal surfaces and when they are attached to microparticles; this can enhance binding to 

specific cell surface glycoproteins (Vasir et al., 2003). In disease states, the cell surface 

glycoproteins are altered and these altered protein sequences can be targeted by 

complementary amino acid sequences attached to DDS. Dihydroxy-phenylalanine (DOPA), 

an amino acid, is found in mussel adhesive protein (MAP) and is believed to contribute to the 

adhesive process. DOPA has been combined with Pluronics
®

 to enhance its adhesion (Huang 

et al., 2002). MAP has a favourable safety profile and is a suitable compound for the 

development of mucoadhesive DDS, preferably if these can be manufactured and stored 

under non-oxidative conditions (Schnurrer and Lehr, 1996). Antibodies can be produced 

against some selected molecules present on mucosal surfaces and could be a rational choice 
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for designing site-specific mucoadhesive DDS, due to the high level of specificity of the 

antibodies. This could be especially useful in targeting drugs to tumour tissues. 

 

1.6.3 Floating formulations 

Floating acetohydroxamic acid microspheres were prepared by the emulsion solvent 

evaporation technique using polycarbonate as the polymer. In vitro analysis showed that the 

microspheres exhibited buoyancy with over 70 % of the microspheres floating over SGF (pH 

1.2) containing Tween 20 after 12 h (Umamaheshwari et al., 2003). An increase in the 

concentration of polymers led to a reduction in buoyancy of the microspheres due to an 

increase in bulk density. In addition, the microspheres required a reduced drug dose to 

achieve anti-H. pylori activity in rat models, when compared to the unencapsulated drug. 

These microspheres cleared H. pylori more effectively than the unencapsulated drug, due to 

buoyancy of the microspheres leading to prolonged GRT.  

There is little research reported on the use of floating microspheres in the eradication of H. 

pylori in the treatment of peptic ulcer and this is an area of research that is promising. 

However, floating beads have been extensively researched for eradication of H. pylori and 

these results may be used to inform subsequent studies involving microparticles. MET was 

incorporated into chitosan-treated alginate beads by the ionotropic gelation method (Ishak et 

al., 2007). A (3 x 2 x 2) factorially designed experiment was used, in which three viscosity-

imparting polymers (methylcellulose, Carbopol 934P and κ-carrageenan); two concentrations 

(0.2 and 0.4 %w/v) of chitosan as encapsulating polymer and two concentrations (2.5 and 5 

%w/w) of the low-density magnesium stearate as a floating aid were tested. The bead formula 

containing 0.5 % κ-carrageenan, 0.4 % chitosan and 5 % magnesium stearate showed 

immediate buoyancy, optimum DEE and extended MET release. The histopathological 

examination of mice stomachs and in vivo H. pylori clearance tests were carried out by orally 

administering MET alginate beads or MET suspension to H. pylori-infected mice under fed 

conditions as a single daily dose for three successive days in different doses (5, 10, 15 and 20 



 75 

 

 

   

 

mg/kg). Mice groups receiving MET in the form of floating alginate beads at doses (10, 15 

and 20 mg/kg) showed better H. pylori eradication than the corresponding suspension form. 

The in vivo H. pylori clearance tests showed that MET floating beads with a dose of 15 

mg/kg provided 100 % H. pylori clearance, whereas the MET suspension at a dose of 20 

mg/kg gave only 33.33 % clearance efficacy. Rajinikanth and Mishra (2009) prepared 

floating gellan gum CMN beads. Formulation variables such as concentrations of gellan, 

calcium carbonate and drug loading influenced the in vitro drug release. There was good 

antimicrobial activity against the isolated H. pylori strain, with complete growth inhibition 

after 12 h. About 80 %, 60 % and 50 % of the beads remained floating in rabbit stomachs 

after 1 h, 4 h and 6 h, respectively. The stability of beads was unaffected by storage at a 

temperature of 40 °C and 75 % relative humidity for 6 months. These preliminary results 

suggest that gellan beads can be used to incorporate antibiotics like CMN and may be 

effective when administered locally in the stomach for the eradication of H. pylori. MET-

loaded alginate beads containing calcium silicate as a porous carrier or NaHCO3 as a gas-

forming agent were prepared for local eradication of H. pylori (Javadzadeh et al., 2010). The 

silicate-based beads had a slower rate of MET release, compared to the gas-forming beads 

due to the strengthening effect of the calcium silicate on the network structure. In addition, 

the NaHCO3 based beads had a shorter buoyancy lag time, because the NaHCO3 produced 

larger pores than those of silicate-treated ones. DEE was over 60 % for all the formulations. 

In another study, two types of floating MET-loaded alginate beads were prepared. The first 

set of alginate beads contained vegetable oil (ALGO) with the oil enhancing its buoyancy. 

The second set of beads had chitosan dispersed within the bead matrix (ALCS). When ALCS 

containing MET was administered orally to guinea pigs, the beads floated over the gastric 

contents and released MET into the pig stomachs. In addition, the concentration of MET at 

the gastric mucosa after administration of ALCS was higher than that obtained from MET 

solution, though MET serum concentration was the same, regardless of which set of gel beads 
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were administered. These release characteristics of alginate gels are applicable not only for 

sustained release of drugs, but also for targeting the gastric mucosa (Murata et al., 2000).  

 

1.6.4 Dual gastro-retentive formulations 

Dual gastro-retentive formulation is achieved by exploring two gastro-retentive techniques. 

Floating bioadhesive microparticles dual functioning systems is achieved through a 

combination of both the floating and bioadhesive systems, which can be exploited to achieve 

synergy and help to overcome the drawbacks associated with each system. Chitnis et al. 

(1991) initially explored this theory and it was proposed that these dual functioning systems 

target H. pylori-induced infected sites more effectively and could serve to optimise antibiotic 

monotherapy of H. pylori-based infections. In the research by Umamaheswari et al. (2002), 

floating microspheres containing acetohydroxamic acid were prepared and were coated with 

polycarbophil. The microspheres floated for longer than 12 h, due to the low bulk densities of 

the formulation (0.61 – 0.85 g/cm
3
). Polycarbophil coating reduced the release rate of the 

acetohydroxamic acid and they exhibited a better in vitro and in vivo percentage H. pylori 

growth inhibition.  

Zheng et al. (2006) explored this dual strategy with chitosan-alginate-EC microparticles. The 

formulation was prepared through a combination of emulsification/evaporation and 

internal/ion gelation methods. In vitro tests showed that 74 % of the microspheres remained 

floating in acetate buffer solution for 8 h and 90 % of the drug content was released in a 

sustained manner over this period. In vivo mucoadhesion tests showed that 61 % of the 

microparticles were retained in the stomach of male Sprague–Dawley rats for 4 h. Pre-

treatment with omeprazole led to an increase in CMN concentration for the microparticles in 

the gastric mucosa compared to CMN solution. A floating-bioadhesive system was developed 

for the eradication of H. pylori with EC as matrix polymer and Carbopol 934P as the 

mucoadhesive polymer (Rajinikanth et al., 2008). These microspheres exhibited both strong 

mucoadhesive and good buoyancy profiles. They also demonstrated significant anti-H. pylori 
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effect in vivo in Mongolian gerbil. In addition, on comparison with conventional CMN 

suspension, this formulation required a lower dose of drug for eradication of the 

microorganism. The microspheres also improved the gastric stability of CMN and eradication 

of H. pylori from the GI tract more than conventional formulations, due to the prolonged 

GRT of the formulation (Rajinikanth et al., 2008). In a randomised clinical trial, floating 

bioadhesive microspheres were compared with conventional clarithromycin suspension. In 

876 patients, it was observed that at low doses of 60 and 90 mg/kg of CMN, H. pylori was 

mostly cleared with a 98 – 100 % clearance rate and 83 % inhibition at CMN dose of 30 

mg/kg. This formulation exhibited a better eradication profile than the suspension and the 

microbial clearance was further confirmed by polymerase chain reaction analysis (Vaiciunas 

et al., 2010). Gattani et al. (2010) developed alginate / HPMC-based floating-mucoadhesive 

beads containing CMN to extend the contact time of the antibiotic with H. pylori. The beads 

were prepared by the ionic-gelation technique with calcium chloride as the gelating agent and 

liquid paraffin (LP) was incorporated to aid the floating of the beads. DEE was more than 80 

% for all batches of the formulation with particle sizes within the range 0.7 – 1.1 mm. SEM 

images of the beads exhibited a rough surface with characteristic large wrinkles and 

micropores. Buoyancy of the beads depended upon the proportion of LP in the beads. The 

beads without LP were not buoyant and those containing more than 10 % LP showed 100 % 

buoyancy. As the concentration of LP increased, CMN release rate decreased. In vitro 

mucoadhesion studies showed that alginate beads exhibited up to 80 % mucoadhesion and LP 

had no effect on the mucoadhesive properties of the beads, while Alginate-HPMC beads 

showed 100 % mucoadhesion. Ex vivo mucoadhesion studies showed that floating-

mucoadhesive beads of Alginate-HPMC have a better mucoadhesive effect in the stomach 

and might be retained for longer in the stomach for more effective H. pylori clearance. In vivo 

X-ray imaging studies showed that the Alginate-HPMC beads of CMN remained buoyant for 

at least 6 h in rabbit stomach and that they had good floatability in vivo. Sahasathian et al. 

(2010) prepared amoxicillin-loaded alginate gel beads, coated with 0.5 %w/v chitosan and the 



78 

 

 

 

beads exhibited DEE and mucoadhesion, which was over 90 %. Excellent buoyancy (100 %) 

was achieved and the beads demonstrated sustained release of amoxicillin for over 6 h in 

simulated gastric fluid. 

1.7 Common polymers used in gastro-retentive formulations 

1.7.1 Alginates                                                                                                     

In the pharmaceutical industry, alginates (Figure 1-14) have been used in formulations as 

tablet binders, disintegrants, gastric emptying delaying substances, gelling agents, sustained 

release matrices, stabilizers and viscosifiers (Daigo et al., 1981, Bodmeier and Paeratakul, 

1989, Hwang et al., 1993). Advantages of alginate include the fact that it is cheap and 

abundant, since it is derived from natural sources; it is stable at low pH, thereby making it a 

good choice for gastro-retentive drug delivery; it is easy to produce; it forms a gel and re-

swells (Haug et al., 1963, Yotsuyanagi et al., 1987, Hwang et al., 1993, Tomida et al., 1993), 

has excellent biocompatibility and total degradation without any toxic by-products when 

taken orally. 
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Figure 1-14: Structure of alginates  

  

Due to the inert environment within the network of the alginate and the mild encapsulation 

conditions (encapsulation at room temperature in aqueous medium), sensitive drugs (Grassi et 

al., 2001) and other molecules have been incorporated into these delivery systems. Examples 

include gastro-irritant non-steroidal anti-inflammatory drugs, cells and enzymes (Tomida et 

al., 1993, Sugawara et al., 1994, Blandino et al., 2000), peptides/proteins (Hari et al., 1996, 

Wee and Gombotz, 1998, Kierstan and Bucke, 2000) ophthalmic drugs (Cohen et al., 1997), 

spermatozoa (Torre et al., 2000) and used with chitosan salts to adsorb bile acids (Murata et 

al., 1999). Calcium alginate is also used in wound dressings (Kneafsey et al., 1996) and 

scaffolds for tissue engineering (Leor et al., 2000). Calcium alginate beads can be formulated 

as single or multiple units and this can be with or without the inclusion of other hydrogels or 

polymers. The major limitation associated with the use of calcium alginate beads as a 

delivery system is that drug release from such systems is rapid (Whitehead et al., 1996). The 

control of the drug release from these porous beads can be achieved through modifications to 

the matrix. 



80 

 

 

 

1.7.2 Chitosan 

Chitosan is a polymer of ß- (1-4)-linked 2 –acetamido-2-deoxy-D-glucopyranose; however, 

some of the gluco-pyranose residues are de-acetylated and occur as 2-amino-2-deoxy-D-

glucopyranose (Figure 1-15). Chitosan is derived from the alkaline de-acetylation of chitin. 

Chitin is found in plankton and in the exoskeleton of crustaceans such as shrimp, lobster or 

crab. Chitin is called chitosan if more than 50 % of its units are de-acetylated (Hudson and 

Jenkins, 2001) 

 

Figure 1-15: Structure of chitosan 

 (Image adapted from (Pandya, 2008) 

 

Chitosan is becoming a very important excipient in pharmaceutical formulations due to its 

relatively low toxicity and its abundance in nature and similar attributes to alginates. It has 

been used for delivery of drugs through the nasal, ocular, parenteral, transdermal and oral 

routes. Being a cationic polymer, it protonates at acidic pH and also adheres to mucus and 

porcine stomach (Gåserød et al., 1998a), making it quite useful in the delivery of drugs to 

such areas. Chitosan has also been useful for the sustained release of water-soluble drugs and 

for improving the bioavailability of poorly water-soluble substances. Large chitosan 
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microspheres and beads (with diameters up to a few millimetres) have been proposed for the 

controlled release of drugs (Sezer and Akbuga, 1999). The use of chitosan and alginate 

polyelectrolyte complexes has been studied (Lee and Min, 1995, Gåserød et al., 1998a). 

Chitosan can be used as a coating agent for alginate beads as it alters the rate of diffusion of 

the encapsulated drug (Anal and Stevens, 2005). In addition, it can be used as an additive for 

the modification of the alginate bead structure (Gotoh et al., 2004, Lin et al., 2005).  

1.7.3 Ethylcellulose  

Ethylcellulose (EC) is an inert non-biodegradable, biocompatible hydrophobic polymer that 

is essentially stable, non-toxic, odourless, tasteless, colourless and soluble in a wide range of 

organic solvents. It is an ethyl ether of cellulose and is a long chain polymer of β- anhydro-

glucose units joined together by acetal linkages (Rowe et al., 2003) (Figure 1-16). The 

specific properties of the polymer depend on the number of anhydro-glucose units in the 

polymer chain and the degree of ethoxyl-substitution. 

 

 

 

 Figure 1-16: Structure of ethylcellulose  
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EC is widely used in controlled release matrix and coating systems. Dissolution times of 

various dosage forms may be extended or modified by varying the amount of EC in the 

formulation. Its melting range is between 240 - 255 °C. Even though EC is water insoluble, it 

can take up water (Joshi and Wilson, 1993). This property is due to the hydrogen bonding 

potential with water attributable to the polarity difference between the oxygen atom and the 

ethyl group of the polymer (Agrawal et al., 2003, Emeje et al., 2006). Like most hydrophobic 

polymers, EC requires the use of release modifiers such as carrageenan (Siepmann et al., 

2007b), HPMC (Frohoff-Hülsmann et al., 1999), synthetic poly(vinylalcohol)-

poly(ethyleneglycol) graft copolymer (Siepmann et al., 2007a) and propylene alginate glycol 

(Siepmann et al., 2008) for drug delivery. These modifiers craft channels in the matrix which 

improves drug diffusion out of the matrix or enhance the wetness of the matrix (Emeje et al., 

2006). 

 

1.8 Research aims and objectives 

The aim of this study was to develop gastro-retentive controlled release formulations for the 

delivery of antibiotics such as clarithromycin and metronidazole over an extended period of 

12 - 24 h. Such formulations would have the advantage of supplying high concentrations of 

these drugs into the gastric mucosa, where the bacterium (H. pylori) is resident, leading to 

better eradication of this microorganism and reduction in drug dose (Ishak et al., 2007). The 

gastro-retentive properties of these formulations were assessed using both in vitro and ex vivo 

models.  The formulations were modified to improve their gastro-retentive and controlled 

release properties by addition of hydrophobic components or surface modification of the 

formulations. Surface modification was achieved by either coating of the formulation or by 

conjugation with lectins, exploring the potential synergy of combining targeting strategy e.g. 

mucoadhesive polymer with lectin.  
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These were achieved through the evaluation of the outlined objectives: 

 

  study the effect of different variables on formulation parameters such as drug 

entrapment efficiency, drug content,  in vitro buoyancy profile and mucoadhesion 

  characterisation of the structure of the prepared formulations through observation and 

determination of morphology, sizes, weights, density, flow properties and moisture 

content 

 determination of the in vitro buoyancy profile and lag times of the formulations   

 determination of the ex vivo mucoadhesion profile of the formulations   

 evaluation of the swelling properties of the formulations in different simulated 

physiological media 

 thermal studies involving the use of differential scanning calorimetry (DSC) and 

thermo-gravimetric analysis (TGA) to study the drug-polymer interactions and 

compatibility of the formulation components 

 in vitro release studies of the drugs from formulations  
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Chapter 2 MATERIALS AND METHODS 

2.1 Chapter overview  

This chapter gives a brief overview of the experimental methods and techniques commonly 

used in this research. Some other methods that are specific to each chapter are included in the 

appropriate chapter and section. All the results presented are expressed as the mean ± 

standard deviation of at least three separate readings. All materials were obtained from Sigma 

Aldrich UK and Discovery Fine Chemicals UK and were of analytical grade unless otherwise 

specified.  

2.2 Statistical analysis  

Statistical analysis were performed including the one way analysis of variance (ANOVA) 

Dunnetts test or Tukey test. The analysis was carried out using the Graph-pad Instat 3.10 

software. 

2.3 Techniques and methods  

2.3.1 Ionotropic gelation  

Ionotropic gelation occurs based on the ability of polyelectrolytes to cross link in the 

presence of counter ions (such as calcium, potassium, aluminium and zinc) to form three 
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dimensional hydrogel beads through the diffusion of the cations into the polymer droplets. 

These polyelectrolytes contain ions that form a meshwork structure by combining with the 

counter ions and induce gelation by cross-linking. The hydrogel beads are spherical, swell in 

simulated physiological fluids and are a known means of microencapsulation of drugs. Drug 

release from these gels can be controlled through polymer relaxation. Common polymers that 

undergo ionotropic gelation include sodium alginate, fibrin, chitosan, pectin etc. The beads 

are normally prepared by dropping a drug-loaded polymeric solution into an aqueous solution 

of polyvalent cations (Patil et al., 2012).  

 

2.3.2 Microencapsulation by solvent evaporation  

Microspheres can be prepared through a method of solvent evaporation. This method 

involves four major stages (Figure 2-1): stage 1 involves the dissolution or suspension of the 

drug in a solution of the encapsulating polymer in an organic solvent; stage 2 involves the 

emulsification of the organic phase in a continuous aqueous phase which is generally 

immiscible in the organic phase; stage 3 involves the extraction of the organic solvent from 

the dispersed phase which is optionally accompanied by solvent evaporation leading to 

formation of solid microspheres and stage 4 involves the collection and drying of the solid 

microspheres (Freitas et al., 2005). The properties of the microspheres can be modified by the 

concentration of polymers used, the stirring time and speed, volume of the organic and 

aqueous phases etc.  
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Figure 2-1: Solvent evaporation technique  

 (Freitas et al., 2005) 

 

2.3.3 Freeze drying  

Alginate beads produced using the ionotropic gelation method were freeze-dried in order to 

maintain the shape and size and enhance the porosity of the beads. Freeze drying is the 

process of removal of solvents often water, associated with a particular material through 

freezing by direct sublimation of the liquid under vacuum from the solid phase to the gaseous 

phase, without passing through the liquid phase. This is done without the application of any 

heat for the evaporation process. There are 3 stages involved in the freeze drying process 
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which are freezing, primary drying and secondary drying (Wang, 2000, Pikal, 2002). The 

freezing stage is a very important stage of this process (Willemer, 1992) as the sublimation 

and the qualities of the finished product depend on this stage. Once frozen the structure and 

shape of the sample cannot be changed during the drying stages (Pikal, 1990). Primary drying 

involves the removal of the free moisture that has been frozen (Cameron, 1997) at a low 

temperature under reduced pressure. The main driving force for sublimation of water is the 

temperature difference of about 20 °C between the product and the condenser (Franks, 1992). 

However, the products are not sufficiently dry for long term storage, having a residual 

moisture content of about 5 – 7 %  (Ward et al., 2008). The secondary drying stage involves 

desorption of bound moisture (Cameron, 1997, Arakawa et al., 2001). At the end of the 

drying process, the sample is porous and retains its initial form, volume and original structure 

as well as its physical, chemical and biological properties. The sample beads were freeze-

dried using an Edwards Mudolyo bench-top freeze dryer (West Sussex , UK) maintained at a 

temperature of – 40 º C and a pressure of 80 N m
-2

 for 24 h (Stops et al., 2008).  

 

2.3.4 High performance liquid chromatography (HPLC) techniques 

Chromatographic separation was performed on a Shimadzu System equipped with a SPD-20 

AV Prominence UV/VIS detector, an LC 20 AT pump, and SIL-20A Prominence 

autosampler. The data acquisition was carried out on a LC solution software integrator. The 

separation was performed using a SphereClone 5μm ODS (2) column (150 x 4.6 μm) 

(Phenomenex, UK). The HPLC software generated the data and this was analysed using 

Microsoft Excel 2007 to generate calibration curves and process the sample results.  
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2.3.4.1 HPLC methods 

All chemicals used were of analytical grade; solvents were HPLC grade and were used as 

received without further treatment. HPLC grade water was used in the preparation of the 

mobile phases, while deionised water was used in the preparation of sample solutions. All 

samples were analysed immediately unless otherwise stated. The mobile phase was filtered 

and degassed by sonication (Fisher Scientific Ultrasonic bath FB15050). Calibration 

standards were prepared and run with each assay and the area under the curve (AUC) was 

integrated for each concentration. Calibration curves were determined by direct linear 

regression. Separation of the peaks of interest was observed for all the compounds tested and 

the total run time was below 10 minutes for all compounds of interest. Precision and linearity 

over the concentration range were assessed. Precision was calculated from the relative 

standard deviation (RSD) of the standard curve and linearity was assessed from the linear 

regression. All compounds were identified by comparison of retention times obtained from 

sample and standard solutions 

 

2.3.4.2 Metronidazole assay  

The mobile phase for MET comprised methanol – 50mM KH2PO4, pH 2.5 (40:60, vol/vol) 

and the pH was adjusted with phosphoric acid (Wu and Fassihi, 2005). The HPLC conditions 

are presented in Table 2-1.   

Stock solutions of MET were prepared by dissolving 10 mg drug in 10 ml 0.1 M HCl and 

then made up to 50 ml with deionised water. Standards solutions were prepared in 

concentrations between 2 µg/ml and 100 µg/ml by diluting the stock solution with the mobile 

phase and were analysed in triplicate. Figure 2-2 shows a sample chromatogram, Figure 2-3 

shows a typical calibration curve constructed from peak area against concentration and Table 

2-2 shows the HPLC method validation for the assay.  
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Figure 2-3: Calibration curve for MET HPLC assay at 276 nm 
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Figure 2-2: Typical chromatogram of MET at 276 nm 
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Table 2-1: HPLC conditions for MET assay 

Injection volume  10 µl 

Wavelength  276 nm 

AUFS 0.01 

Flow rate  1 ml/min  

Run time  5 minutes  

 

 

 

Table 2-2: HPLC method validation for MET assay 

Theoretical plate  1421 

Tailing factor  0.93 

Retention time  2.1 minutes  

LOD 0.62 ± 0.005 µg/ml 

LOQ 1.90 ± 0.016 µg/ml 

Precision and accuracy  RSD ˂ 4 % 

 

2.3.4.3 Clarithromycin assay  

The mobile phase for CMN comprised 50 mM KH2PO4:ACN, pH 4.6 (50:50 v/v) containing 

5 mM 1-Octanesulphonic acid (1-OCTS) and the pH was adjusted with phosphoric acid (Erah 

et al., 1996). The HPLC conditions are presented in Table 2-3.   

Stock solutions of CMN were prepared by dissolving 10 mg drug in 10 ml 0.1 M HCl and 

then made up to 50 ml with deionised water. Standards solutions of CMN were prepared in 
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concentrations between 10 µg/ml and 250 µg/ml by diluting the stock solution with the 

mobile phase and were analysed in triplicate. Figure 2-4 shows a sample chromatogram of 

CMN, Figure 2-5 shows a typical calibration curve constructed from peak area against 

concentration and Table 2-3 shows the HPLC method validation for the assay.  
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Figure 2-4: Typical chromatogram of CMN at 210 nm 



92 

 

 

 

 

 

Figure 2-5: Typical calibration curve for CMN assay 

 

 

Table 2-3: HPLC conditions for CMN assay 

Temperature  50 ºC 

Injection volume  50 µl  

Wavelength  210 nm 

AUFS 0.01 

Flow rate  1.5  ml/min  

Run time  5 minutes  
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Table 2-4: HPLC method validation for CMN assay 

Theoretical plate  1818 

Tailing factor  0.91 

Retention time  2.52 minutes  

LOD 1.85 ± 0.01 μg/ml 

LOQ 5.63 ± 0.05 μg/ml 

Precision and accuracy  RSD ˂ 5 % 

   

    

  

2.3.5 Drug content and drug entrapment efficiency (DEE) 

The formulations (100 mg) were digested using PBS (phosphate buffered saline) (100 ml) 

under agitation at 37 °C over 24 h. The solution was filtered and assayed by HPLC and the 

parameters calculated using Equation 2-1 and Equation 2-2.  

 

             ( 
 

 
)   

                             

                  
      ......... Equation 2-1 

 

         
               

                          
      ..................................... Equation 2-2 
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DEE describes the ability of the method of preparation to incorporate drug into the carrier 

system. High drug content with a minimum nominal drug loading is the aim, since this 

enhances the DEE. In addition, the quantity of drug entrapped determines the performance 

and lifetime of the DDS, since this influences the rate and extent of drug release. The drug 

content and DEE depend on the physicochemical properties and the interactions between the 

drug, carrier and the surrounding medium. 

 

2.3.6 In vitro drug release studies 

Unless stated otherwise, drug release from formulations was carried out in 0.1 N HCl (pH 

1.2) or PBS (pH 7.4). Formulations equivalent to 100 mg drug were immersed in 900 ml 

media at 37 ± 1 °C under agitation at 100 rpm using the USP Type 1 (basket) dissolution 

apparatus (Pharmatest PTWS 610). Aliquots of 5 ml sample media were withdrawn at 

predetermined time intervals and replaced with fresh, warm dissolution media of equal 

volume. Samples were analysed by HPLC (see section 2.3). The times for 25 %, 50 %, 75 % 

drug release from the formulation were recorded and denoted as t25%, t50% and t75%  

respectively and were averages of 3 determinations. 

 

2.3.7 In vitro drug release kinetics  

In order to describe the drug release kinetics, various mathematical equations were used. Zero 

order kinetics (Equation 2-3) result from systems where the drug release rate is independent 

of its concentration (Najib and Suleiman, 1985). First order kinetics (Equation 2-4) describe 

release from systems where release rate is concentration dependent (Desai et al., 1966). 

Higuchi described the drug release from insoluble swellable matrices being dependent on the 

square root of time based on Fickian diffusion (Higuchi, 1963) (Equation 2-5). The Hixson – 

Crowell cube root law (Equation 2-6) represents release from systems where there is a change 
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in surface area and diameter of the particles or tablets characterised by polymer erosion and 

dissolution (Hixson and Crowell, 1931, Abdou, 1989).  

       ........................................................ Equation 2-3 

                   ................................... Equation 2-4 

        √       √   .................................. Equation 2-5 

√  
  √  

       ..................................... Equation 2-6 

where, Qt is the amount of drug released in time t, Q0 is the initial amount of the drug in 

tablet, S is the surface area of the tablet, and k0, k1, kH and kHC,  are release rate constants for 

zero order, first order, Higuchi and Hixson-Crowell respectively.  

 

2.3.8 In vitro drug release mechanisms 

The Korsmeyer – Peppas model (Equation 2-7) was derived to describe drug release from a 

polymeric system to distinguish between competing release mechanisms: Fickian release 

(diffusion-controlled release), non-Fickian release (anomalous transport), and case-II 

transport (relaxation-controlled release). For spheres, a value of n ≤ 0.43 indicates the Fickian 

release. Fickian diffusion indicates a gradient – dependent drug release. The n value between 

0.43 and 0.85 is an indication of non-Fickian release, which indicates a dual mode of drug 

release with diffusion controlled, and swelling controlled drug release. When, n ≥ 0.85, it is 

case-II transport and this involves polymer dissolution and polymeric chain enlargement or 

relaxation during gel swelling (Siepmann and Peppas, 2001, Ritger and Peppas, 1987). In 

order to investigate the release mechanism, drug release data up to 60 % were fitted to 

Equation 2-7: 
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        ........................ Equation 2-7 

 

where, F is the fraction of drug released in time t, with KP being  the release rate constant and 

and n is the release exponent indicative of the drug release mechanism.  

 

2.3.9 Dissolution profile comparison using similarity factor, f2   

A model independent mathematical approach was proposed in 1996 (Moore and Flanner, 

1996) to compare the dissolution profiles using the factor, f2 for modified release dosage 

forms. f2 can be defined as the logarithmic reciprocal square root transformation of one plus 

the mean squared (the average sum of squares) differences of drug percent dissolved between 

the test and the reference products (Murtaza et al., 2009) as expressed in Equation 2-8. 

 

𝑓2 = 50 log    1 + 
1

 
  (𝑅  𝑇 ) 2

 

  1

   0.5 ∗ 100  

   ................ Equation 2-8 

where, f2 is similarity factor, n is the number of sampling time , Rt is average percentage drug 

dissolved from reference formulation and Tt is average percentage drug dissolved from test 

formulation. Generally, an average of twelve observations is used for calculating f2 and it is 

inversely proportional to the average squared difference between the two profiles, with the 

emphasis on the larger difference among all the time points. f2 measures the closeness 

between the two dissolution profiles and to have a measure of which is more sensitive to 

large differences at any particular time point.  When the two profiles are identical, f2 = 100. 

An average difference of 10 % at all measured time points result in f2 value of 50.  A standard 

f2 value of 50 – 100 indicates a similarity between two dissolution profiles (Costa and Lobo, 

2001). 
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2.3.10  In vitro drug release in mucin suspension  

In order for release studies to better reflect the environment in the stomach, in vitro diffusion 

of formulations through a 3 % pig gastric mucin (PGM) solution at pH 2 and pH 5 was 

studied using vertical Franz diffusion cells (effective diffusion surface area = 2.77 cm
2
) 

(Figure 2-6). The receptor compartment was filled with previously degassed 30 ml buffer, 

maintained at 37 °C using a circulating water jacket and agitated by stirring with a magnetic 

stirrer. Dialysis membrane (cut off MW 14,000) was mounted between the donor and 

receiver cells with the mucin dispersion representing an unstirred layer of mucus gel layer 

and 1 ml of receptor fluid was sampled, replaced and analysed by HPLC. All experiments 

were performed in triplicate.  

 

 

 

Figure 2-6: Franz diffusion cell  
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2.3.11  Particle sizing / weight  

Unless stated otherwise, the particle sizes (n=50) of triplicate batches of beads were 

determined using an electronic digital calliper (Linear tools-49-923-150) (Murata et al., 

2000). The mean diameters and standard deviations were recorded. The weight of a sample of 

beads (n=100) was determined in triplicate.  The particle sizes of microspheres were 

determined using Mastersizer 2000 (Malvern Mastersizer, UK). Approximately, 10 – 20 mg 

microspheres were dispersed in water into the Hydro SM unit containing a surfactant and the 

volume mean diameter were determined by Malvern software.  

 

2.3.12  Density measurements and porosity  

To estimate the bulk density (Pb) (Bai and Li, 2006), the weight of the volumetric flask was 

initially measured (W1), the beads were dried and filled to the 10 ml mark of the volumetric 

flask and weighed (W2). The Pb of the beads was calculated using equation 2-9:  

 

    
     

  
......................... Equation 2-9 

 

where, W2 is the total weight of the porous beads and the flask, and W1 is the weight of the 

flask only. The true densities (Pt) of the beads were determined using a helium pycnometer 

(Quantachrome multipycnometer (Model MVP-D160-E)) with a 5 cm
3
 micro sample cup. 

The porosity P of the beads was determined using equation 2-10: 

 

     
  

  
....................... Equation 2-10 

(Gal and Nussinovitch, 2007, Smrdel et al., 2008b) 
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2.3.13  Determination of calcium content of alginate beads by atomic 

absorption spectroscopy (AAS) 

Atomic spectroscopy is one of the most common methods for quantitative elemental analysis 

to determine the presence of metals such as Fe, Cu, Al, Pb, Ca, in liquid samples.  An 

aqueous solution of sample is vaporised and decomposed into gaseous free atoms in a flame 

or furnace. The concentrations of atoms present in the sample are measured because metals, 

in their elemental form, will absorb UV light when they are excited by heat. The sample 

solution is aspirated into the flame. If that metal is present in the sample, it will absorb some 

of the light, thereby reducing its intensity. The instrument measures the change in intensity, 

which is then converted into absorbance. 

A stock solution of calcium was prepared by dissolving 2.5 g of dry calcium carbonate 

(CaCO3) in a small volume of deionised water. A small volume of concentrated HNO3 was 

added to dissolve the CaCO3 and deionised water used to make up 1000 ml volume. Standard 

solutions of calcium concentrations ranging from 1 to 5 ppm were prepared by diluting the 

stock with deionised water and were analysed in triplicate for Ca
2+

 ion at 422.7 nm. Figure 2-

7 shows a typical calibration curve constructed from the absorbance against concentration 

and Table 2-5 shows the assay validation parameters. 

The amount of calcium that cross-linked with the polymer during gelation was determined by 

dissolving 100 mg of the beads in 10 ml concentrated HNO3 by heating at 50 °C (El-Kamel et 

al., 2003).  Upon dissolution, the samples were diluted and analysed for Ca
2+

 ion at 422.7 nm 

AAS (Perkin Elmer AAnalyst 100).  
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Figure 2-7: Calibration curve of calcium measured at 422.7 nm 

 

 

Table 2-5: UV method validation for calcium ion assay  

Wavelength 422.7 nm  

Correlation coefficient (R
2
) 0.99 

LOD 0.39 ± 0.04 ppm 

LOQ 1.18 ± 0.13 ppm 

Precision and accuracy  RSD ˂ 4 % 
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2.3.14  Determination of loose surface crystals  

The determination of the loose surface crystals (LSC) was to estimate the actual drug amount 

present in the beads rather than on the surface of the beads. The drug present on the surface 

should show immediate release into the dissolution medium. 100 mg beads were suspended 

in 100 ml of phosphate buffer (pH 7.4) simulating the dissolution medium. The samples were 

shaken vigorously for 5 minutes in a mechanical shaker. The amount of drug that leached out 

was assayed and the percentage of drug released relative to the entrapped drug in each sample 

was recorded (Rastogi et al., 2007). 

 

2.3.15  X-ray microtomography (XµMT) 

Three-dimensional structures of formulations were obtained using X-ray microtomography 

(Nikon XTH225 X-Ray Microtomography) in order to obtain an insight into the surface and 

internal structure of the beads. This presents a non-destructive technique of assessing the 

structure of formulations, has high penetration ability and provides a reasonable level of 

resolution (5 - 20 µm). X-ray beams are directed from a high-power source toward a sample, 

and a detector on the opposite side of the sample measures the intensity of these transmitted 

X-rays. A two-dimensional “shadow” image is generated by accurately rastering the X-ray 

beam across the sample. The sample is carefully rotated relative to the X-ray beam and the 

process is repeated to produce additional two-dimensional images from different viewpoints. 

Using a sophisticated Fourier transform algorithm, these two-dimensional images are then 

combined to generate a complete three-dimensional image of the sample (Hancock and 

Mullarney, 2005). 
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2.3.16  Scanning electron microscopy (SEM) 

The surface morphology of the formulations were examined using SEM. Samples were 

mounted on aluminium stubs using double sided carbon tape attached to a stub and coated 

with  a gold film under vacuum in a sputter coater through the use of an Emscope SC 500 

(Emscope, UK ). The study was carried out under magnification with a Stereoscan 90 

Scanning Electron Microscope (Cambridge, UK). 

 

2.3.17  Determination of moisture content 

Thermogravimetric analysis (TGA) is a simple and easy method that can also be used to 

determine the moisture content of polymers and formulations. In addition, it can give  

information about the threshold decomposition temperature upon heating which is important 

to determine the highest processing and handling temperature that can be used (Mano et al., 

2003). The TGA was allowed to equilibrate for 10 minutes before analysis and samples (5 - 6 

mg) were heated from 25 °C to 200 °C at a heating rate of 10 °C/min using a Perkin Elmer 

Thermo-gravimetric Analyzer (Perkin Elmer, Germany). All TGA runs were performed in an 

open previously tarred crucible with purge and protective N2 gas flow of 20 ml/min. The 

moisture content was determined as the loss of mass resulting from loss of water between 50 

to 150 °C (Nassar et al., 2003, Mai et al., 2012). 

 

2.3.18  Differential scanning calorimetry (DSC) 

DSC measures the energy required to produce a near zero temperature difference, between 

two materials (sample and reference materials), when they are both exposed to similar 

temperatures. The difference in heat input between both the sample and the reference 

material, per unit time, is measured and this is plotted as a curve of heat flux, H/dt, versus 
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the average sample temperature (or time), to which the sample and reference were raised. 

This difference is compensated for by the system, which regulates the power output to the 

heaters and supplies different amounts of heat to each specimen in order to maintain both at 

the same temperature.  

Thermal analysis of the formulations was carried out using DSC-1 Mettler Toledo (Mettler-

Toledo, Switzerland) calibrated with an indium standard. Approximately 5-10 mg of the 

beads / microspheres were weighed and sealed in standard aluminium pans. The samples 

were held at 25 °C for 1 min and heated from 25 °C to 300 °C at a rate of 10 °C / min under 

N2 atmosphere equipped with an intra-cooler. A similar empty aluminium pan sealed in the 

same way was used as a reference sample. The characteristic endothermic peaks and the 

melting points of the samples were recorded. In order to characterise the physical status of the 

drug in the beads, thermograms of the drug, blank formulation, drug loaded formulations and 

the physical mixture of the components were obtained.  

 

2.3.19  Determination of in vitro buoyancy lag time and duration  

Lag times until the onset of floating were determined by placing a sample of the formulation 

(normally beads) in a beaker containing 100 ml of 0.1N HCl, pH 1.2 (unless stated 

otherwise), 0.02 %w/v Tween 20 maintained at 37 ± 1 °C. The time taken by the sample to 

float on the surface was determined and the sample was considered to have passed the test if 

the lag time was ≤ 2 min (Ishak et al., 2007). The buoyancy properties of the formulations 

were determined by placing a sample of the formulation in a container to which 100 ml of 

0.1N HCl containing 0.02 %w/v Tween 20 had been added. The container was stoppered and 

agitated at 100 rpm for 24 hours in a water bath shaker maintained at 37 ± 1 °C. The duration 

of floating of the beads and the percentage of floating sample were recorded. The sample was 

considered to be buoyant only when all formulation (e.g. beads) floated on the test solution 
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for the prescribed period (Tang et al., 2007). The experiment was conducted in triplicate for 

each batch. 

 

2.3.20  Swelling studies  

The extent of swelling was measured in terms of % weight gain of the beads. 100 mg beads 

from each batch of the formulation was weighed formulations and immersed in 300 ml of 

0.1N HCl or PBS and at fixed time intervals the formulations were removed from the media. 

Upon removal from the media, the sample were dried with filter paper to remove the excess 

liquid drops adhering to the surface and weighed. The dynamic weight change of the sample 

was calculated using Equation 2-11: 

 

                  
     

  
      .................... Equation 2-11 

where, Ws is the weight of sample in the swollen state and Wi is the initial weight of the 

beads (Pasparakis and Bouropoulos, 2006). 

 

 

2.3.21  Powder X-ray diffraction analysis (P-XRD) 

The effect of encapsulation on the crystallinity of the drug in the formulations was assessed 

by P-XRD. X-ray diffractograms of drug, polymers, blank formulations and drug loaded 

formulations were recorded with a Bruker diffractometer (Bruker D2 Phase, UK). Powdered 

samples were placed in a stainless steel holder and the surface of powder was levelled 

manually to create a flat surface for analysis. The sample was exposed to X-ray radiation (Cu 
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Kα) with a wavelength of 1.5406 Å. Samples were scanned between 5 and 40 of 2θ with a 

step size of 0.019° and a step time of 32.5 s. X-rays are generated when a focused electron 

beam accelerated across a high voltage field in a sealed vacuum bombards a solid anode 

target whether stationary or rotating. As the electrons collide with atoms in the target and 

slow down, a continuous stream of X-rays are emitted. Commonly used targets in X-ray tubes 

include Cu, Cr, Fe, Co and Mo, which emits 8 keV and 14 keV X-rays with wavelengths of 

1.54 Å and 0.8 Å, respectively. In diffraction applications, only short wavelength X-rays up 

to a maximum of 0.1 Å are used. The peaks in an X-ray diffraction pattern are directly related 

to the atomic distances. The X-ray diffractometer measures powders and thin films in the two 

theta (2θ) configuration.   

 

2.3.22  Fourier transform infrared (FT-IR) spectroscopy  

Infrared (IR) spectroscopy measures the infrared intensity against the wave number of light. 

Traditional IR spectroscopy analyses samples by means of transmitting the IR beam directly 

through the sample; however, Attenuated total reflectance (ATR) uses the reflectance of the 

sample instead. FTIR-ATR is FTIR spectroscopy that involves the use of a sampling 

technique that enables samples to be examined without any further preparation e.g. diluting 

with an IR transparent salt such as potassium bromide. The main benefit of ATR sampling is 

the very thin sampling path length and depth of penetration of the IR beam into the sample. 

The IR radiation passes through an IR transmitting crystal e.g. diamond, germanium or zinc 

selenide with a relatively high refractive index, allowing the radiation to reflect within the 

ATR element several times. The surface of the sample is in intimate optical contact with the 

top surface of the crystal and the IR radiation passes into and reflects through the crystal and 

penetrates the sample with each reflection along the top surface, through the top surface via 

“evanescent” wave that protrudes the sample (0.5 – 5 µm). Some of the energy of the 
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evanescent wave is absorbed by the sample and the reflected radiation is returned to the 

detector. Different crystals have different refractive indices depending on the material used 

and are applied to different transmission ranges (ZnSe for 20,000 - 650 cm
-1

, Ge for 5,500 - 

800 cm
-1

). The samples were scanned from 400 - 4000 cm
-1

 at ambient temperature using a 

Thermo Nicolet 380 FTIR with Diamond ATR. The characteristic peaks of IR transmission 

spectra were recorded in triplicate.  

 

2.3.23  Determination of surface charge  

Suspensions of the formulations (2 %w/v)  in 0.1N HCl (pH 2.0) and PBS (pH 7.4) were 

sonicated for 12 h and injected into the capillary cell to determine the zeta potential (Zp) using 

Zetasizer Nano Z (Malvern Instruments Ltd., UK). Each sample was analysed at least six 

times to obtain an average value and a SD. 

 

2.3.24  Mucoadhesion studies  

2.3.24.1 Preparation of pig gastric mucosa segments  

Pig stomachs were obtained fresh from a local abattoir in Huddersfield and emptied of its 

contents followed by washing with distilled water. The required porcine mucosa was 

separated from the underlying muscle. The gastric mucosa was cut into strips of 5 cm long by 

3 cm wide. These were washed with non-ionic isotonic solution of 0.25 M sucrose solution 

and flash-frozen in liquid nitrogen and stored at – 20 °C to maintain cell integrity. When 

required, the tissues were defrosted overnight in sucrose solution. Freezing the tissue 

minimises tissue damage and the effects of bacterial and enzymatic degradation (Young and 

Smart, 1998, Riley et al., 2002). Pig is considered to be a suitable animal model because it 
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resembles humans more than any other non-primate animal species with regard to the eating 

behaviour, anatomy, and physiology of the gastrointestinal tract (Davis et al., 2001). 

 

2.3.24.2 Ex vivo wash off mucoadhesion tests 

2.3.24.2.1 Humidity cabinet 

A 5 cm long and 3 cm wide piece of porcine gastric mucosa was mounted onto a Perspex 

mounting block using cyanoacrylate glue.  The samples were spread evenly onto the wet 

surface of the tissue specimen, and allowed to equilibrate for ~ 20 minutes in an adapted 

humidity cabinet at high humidity (> 90 % RH) to facilitate the interaction between the 

sample and the mucosa (Figure 2-8). The slide was positioned at an angle of 30 ° (mimicking 

the inclination angles in the antrum) and maintained at 37 ± 1°C. HCl (0.1 N, pH 2.0) and 

PBS (pH 7.4) as appropriate previously warmed to 37 °C were circulated over the tissue at a 

rate of 1 ml/min (mimicking the flow of gastric contents) supplied via a peristaltic pump 

(Watson Marlow model 202) for 12 h.  The flow was split into three channels to provide an 

even distribution of the media over the entire tissue section. The material washed from the 

surface of the tissue was collected at various time intervals. The beads remaining on the 

tissue surface after each hour were counted and the percentage of the remaining beads was 

calculated using Equation 2-12: 

 

                
     

  
.................Equation 2-12 

where,  N0= number of beads applied initially and Ni = number of beads rinsed from the 

tissue. 
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Adapted from (Batchelor et al., 2002) (Used with permission) 

 

 

2.3.24.2.2 Disintegration apparatus 

The mucoadhesivity of the drug-loaded beads was also assessed by another wash-off method. 

Freshly excised pieces of pig gastric mucosa were mounted on a glass slide with 

cyanoacrylate glue. 20 beads were spread out on each piece of mucosa and brought into direct 

contact with the mucus layer of the stomach tissues using a weight of 25 g on the glass-slide 

for 2 minutes and allowed to equilibrate for ~ 20 minutes. The slide was then hung onto the 

arm of a tablet disintegration apparatus. The tissue specimen was given agitated vertically in 

a 1L vessel containing either HCl (0.1 N, pH 2.0) or PBS (pH 7.4) medium maintained at 37 

°C. The beads remaining adhered to underlying mucosa were counted up to 6 hours. The 

percentage mucoadhesion was calculated using the equation 2-12. 

 

Figure 2-8: Schematic representation of the ex vivo mucoadhesion tests   

http://www.sciencedirect.com/science/article/pii/S0378517302000625
http://www.sciencedirect.com/science/article/pii/S0378517302000625
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2.3.24.3 In vitro interactions with pig gastric mucin (Type III) 

The binding capacity of formulations with PGM was determined by mixing 10 ml (1 mg/ml) 

of PGM suspension in PBS (pH 7.4) with equal volumes of the sample suspension. After 

incubation at different time intervals at room temperature and at 37 °C, the samples were 

centrifuged at 10,000 rpm for 10 min. The amount of bound mucin was determined by UV 

spectroscopy at 251 nm (Agilent Cary 60 UV-Vis Spectrophotometer). The PGM binding 

efficiency of the samples was calculated using Equation 2-13: 

 

              
     

  
       ............................ Equation 2-13 

where, Co is the initial concentration of the PGM used for incubation and Cs is the 

concentration of free PGM in the supernatant. The reference consisted of the same amount of 

PGM present in the samples (Yin et al., 2006). 

 

2.3.25  Concanavalin A assay  

2.3.25.1 Folin- ciocalteu  method 

This assay is based on two reactions; the first reaction involves the formation of a copper ion 

complex ("Biuret" chromophore) with the Con A amide bonds in alkaline solutions due to the 

reduction of Cu
2+

 to Cu
+
. The second reaction involves the reduction of Folin-Ciocalteu 

reagent (phosphomolybdate and phosphotungstate) by tyrosine and tryptophan residues of 

Con A. This reduced Folin-Ciocalteu reagent is blue in colour and thus detectable at a UV of 

750 nm (Lowry et al., 1951). The reagents used include „Reagent A‟ (2 g Na2CO3 in 100 ml 

of 0.1N NaOH); „Reagent B‟ (0.5 g of CuSO4. 5H2O in 100 ml, 1 % sodium/potassium 
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tartrate); „Reagent C‟ (50 ml of Reagent A with 1 ml of Reagent B) and „Reagent D‟ (1:1 

dilution of Folin – Ciocalteu phenol reagent with water). 10 ml of Reagent C was added to 

standard solutions of Con A, mixed thoroughly and allowed to stand for 30 minutes. 1 ml of 

Reagent D was added and mixed rapidly. After 30 minutes, the solution was filtered and 

absorbance was measured against a blank (without lectin) using a UV-Vis spectrophotometer 

at 750 nm (Jain and Jangdey, 2009). Figure 2-9 shows a typical calibration curve constructed 

from absorbance intensity against concentration and Table 2-6 shows the method validation 

parameters.  

 

 

 

 

Figure 2-9: Calibration curve of Con A 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50

A
b

so
rb

a
n

ce
 i
n

te
n

si
ty

 (
A

u
) 

Concentration (µg/ml) 



 111 

 

 

   

 

Table 2-6: Spectrophotometric method validation for Con A assay 

Wavelength 750 nm  

Slope 0.0085 

Intercept 0.0069 

Correlation coefficient (R
2
) 0.99 

LOD 0.59 ± 0.02 

LOQ 1.77 ± 0.09 

Precision and accuracy  RSD  ˂ 3 % 

 

2.3.25.2 Fluorescence spectroscopy 

Fluorescence spectroscopy measures the intensity of photons emitted from a sample at a 

wavelength after it has absorbed photons at another wavelength. It involves the use of a light 

beam, which excites the electrons in molecules of some compounds and causes them to emit 

light but not necessarily, visible light. The emission occurs from the ground vibrational level 

of the excited electronic state and transits to an excited vibrational state of the ground 

electronic state. Therefore, fluorescence signals are observed at longer wavelengths than 

absorbance. Information about the structure and the environment of the fluorophores can be 

obtained from the energies and the relative intensities of the fluorescence signals. 

Fluorophores exhibit specific excitation (absorption) and emission (fluorescence) 

wavelengths. Both wavelengths are determined via the collection of two spectra, an excitation 

spectrum and an emission spectrum. The fluorescence emission spectrum is normally 

recorded when the excitation wavelength is held constant and the emission beam is scanned 

as a function of wavelength (λex). However, the excitation spectrum is recorded as a function 
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of wavelength, when the emission is held at a constant wavelength (λem). Although the 

approximate excitation and emission wavelengths for many molecules are solutions known, 

these wavelengths should be optimized for the specific experimental conditions. Once these 

wavelengths have been determined, the fluorescence intensity of standard solutions as a 

function of concentration is determined and constructed into a calibration curve. FITC Con A 

has an excitation and emission spectrum peak wavelengths of approximately 493 nm and 516 

nm, respectively. All determinations were subsequently carried out at these wavelengths.  A 

stock solution of FITC Con A was prepared in phosphate buffer (pH 5.8) and this was used to 

prepare standard solutions of concentrations ranging from 1 to 50 µg/ml FITC Con A. Figure 

2-10 shows a typical calibration curve constructed from fluorescence intensity against 

concentration and Table 2-7 shows the method validation parameters.  

 

 

Figure 2-10: Calibration curve of FITC Con- A in phosphate buffer (pH 5.8) 
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Table 2-7: Spectrophotometric method validation for FITC Con A assay 

Wavelength Excitation λ = 493 nm 

Emission λ   = 516 nm  

Slope 15.01 

Intercept 0.07 

Correlation coefficient (R
2
) 0.99 

LOD 0.37 ± 0.003 µg/ml 

LOQ 1.15 ± 0.01 µg/ml 

Precision and accuracy  RSD ˂ 3 % 

 

2.3.26  Nanoparticle tracking analysis (NTA)  

The interaction between PGM and a mucoadhesive polymer was assessed using Nanosight 

LM 10 (Figure 2-11) and NTA 2.2 analytical software (Nanosight, UK). This equipment uses 

the principles of nanoparticle tracking analysis (NTA). NTA uses the properties of both light 

scattering and brownian motion to obtain particle size distributions of samples in a liquid 

suspension (Carr and Wright, 2013). It offers the ability to directly visualize size and count 

nanoparticles (Figure 2-12); and is ideally suited for the real time analysis of polydisperse 

systems ranging from 10 - 20 nm up to 1 - 2 µm in size. A laser beam is passed through a 

prism edged flat glass within the sample chamber into the sample suspension. The angle of 

incidence and refractive index of the glass is designed so that the laser beam emerges from 

the interface between the glass and the sample above it. This beam refracts to an intense low 

profile resulting in a compressed beam with a reduced profile and a high power density. The 

nanoparticles in suspension in the path of this beam then scatters the light in such a way that 

they can easily be visualized through a long working distance with a x 20 magnification 
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microscope objective fitted to a conventional microscope and a highly sensitive camera 

which operates at 30 frames/second. The camera captures a video file (typically 30 - 60 

seconds duration) of particles moving under brownian motion within a field of view of 

approximately 100 µm x 80 µm x 10 µm. The NTA software simultaneously identifies and 

tracks the centre of each particle on a frame-by-frame basis. The software then determines the 

average distance moved by each particle in the x and y directions. This value allows the 

particle diffusion coefficient (Dt) to be determined and from which if the sample temperature 

T and solvent viscosity are known, the sphere – equivalent hydrodynamic diameter, d, of the 

particle can be identified using the Stokes-Einstein equation (Equation 2-14): 

   
   

    
...........................Equation 2-14 

 

 

 Figure 2-11:  Nanosight LM -10  
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Figure 2-12: A) The sample nanoparticles illuminated by the laser beam; B) Tracks of Individual particles and 

C) The particle size distribution of the sample  

(Philippidis, 2013). 
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Chapter 3 ALGINATE BEADS: PREPARATION, 

OPTIMISATION AND CHARACTERISATION 

3.1 Chapter overview  

Drug encapsulation in alginate beads is an easy, cheap, safe and non-destructive method of 

drug encapsulation therefore does not require any specialist equipment or solvents.  The 

complexation of the polyguluronic sequences (G block) of alginate by Ca
2+

 ions results in the 

formation of a three-dimensional network usually described by the „egg box‟ junction (Grant 

et al., 1973, Park and Sharaby, 1993), giving rise to formation of calcium alginate hydrogels.  

The buckled chain of the guluronic acid units is a two-dimensional analogue of a corrugated 

egg-box (Figure 1-10), with interstices in which the calcium ions may pack and be 

coordinated (McHugh, 1987). "The analogy is that the strength and selectivity of co-operative 

binding is determined by the comfort with which 'eggs' of a particular size may pack in the 

'box', and with which the layers of the box pack with each other around the eggs". The 

divalent cations bind to the α-guluronic acid blocks in a highly cooperative manner and the 

size of the cooperative unit is < 20 monomers (Smidsrod and Skjak-Braek, 1990). It has been 

suggested that the MG blocks also contributes to the junction zone in addition to the G block 

(Donati et al., 2005) in the presence of excess cations.  
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Figure 3-1: Structure of metronidazole  

 

Metronidazole (MET) (Figure 3-1) is a synthetic nitro-imidazole antimicrobial drug, also 

known as 2-methyl-5-nitroimidazole-1-ethanol. Nitro-imidazoles are a group of antibiotics 

initially introduced in 1957 and they are imidazole heterocycles with a nitro group that is 

used to fight anaerobic bacterial and parasitic infections. Other drugs in this class of drugs 

include secnidazole, tinidazole and nimorazole. MET occurs as white to pale-yellow crystals 

or a crystalline powder with an average melting point of 160 °C (Reynolds, 1993) and is 

slightly soluble in water (Bempong et al., 2005). It has been widely used to prevent the 

recurrence of peptic ulcer disease, a phenomenon that is typical of H. pylori infection 

(Sorberg et al., 1998). The mechanism of action of MET is mediated by its reduced 

metabolites, where the nitro moiety of MET (RNO2) is reduced to a radical anion (RNO2
-
) 

and possibly nitroso (RNO) and hydroxylamine derivatives (RNHOH) (Lindmark and 

Muller, 1976, Moreno et al., 1983, El-Gibaly, 2002). 



118 

 

 

 

 

These reduction products have been demonstrated to cause DNA damage resulting in cell 

death (Lindmark and Muller, 1976, El-Kamel et al., 2001). MET diffuses into cells (Eltom et 

al., 1984), but due to its low redox potential (486 mV) (Alvarez-Elcoro and Enzler, 1999), 

formation of reduced metabolites is limited to cells with electron donors (anaerobic cells) 

with a good low redox potential and a suitable intracellular redox potential (Eltom et al., 

1984). The on-going reduction of MET maintains a favourable concentration gradient  of 

drug facilitating further diffusion into the cell (El-Gibaly, 2002). MET is rapidly and 

completely absorbed from the GI tract with 100 % oral bioavailability (Ralph, 1983, Dupuy 

et al., 1994). Following administration, tmax is 1 to 2 h, and Cmax is 25 mg/ml. Oral 

bioavailability is not affected by food, but peak serum levels will be delayed to 2 h. MET has 

limited plasma protein binding (< 20 %), but is well distributed in most tissues and body 

fluids (Schwartz et al., 1979, Sattar et al., 1982, Nagar et al., 1989). It diffuses across the 

blood-brain barrier, crosses the placenta and appears in the saliva and breast milk of nursing 

mothers in concentrations equivalent to those found in the plasma. It is extensively 

metabolised by the liver to form two primary oxidative metabolites - the hydroxyl and acetic 

acid metabolites. It is eliminated via urine (60 – 80 %) and faeces (6 -15 %). The half-life is 8 

h in healthy adults and the hydroxyl-metabolites half-life is 15 h. The kidney eliminates a 

small fraction of the parent drug and the removal of the metabolites from the body depends 

on kidney function (Davey, 1991). 

In this chapter, alginate beads were prepared using the ionotropic gelation method with 

calcium chloride (CaCl2) as the gelation agent. Various concentrations of both sodium 

alginate (SAL) and CaCl2 were used in order to determine the ideal concentrations to be used 

in formulations. MET was entrapped in the beads and the efficiency of the formulation as a 

gastro-retentive DDS was assessed. 

 

 

      RNO2                     RNO2  
-

 
                        RNO               RNHOH 
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3.2  Materials and methods 

Sodium alginate (SAL) (Molecular weight 120,000 - 190,000 g/mol), calcium chloride 

dihydrate (CaCl2.2H20), MET, phosphate buffered saline (PBS) HCl, methanol, potassium 

dihydrogen phosphate (KH2PO4), phosphoric acid were obtained from Sigma Aldrich (UK). 

Liquid nitrogen (N2) was obtained from BOC (UK). 

 

3.2.1 Preformulation studies  

3.2.1.1 Hydrolysis of sodium alginate  

10 g SAL (M:G ratio - 1.56) was suspended in 500 ml HCl (0.3 M) and maintained at a 

temperature of 100 °C in a water bath for 5 h to ensure cleavage of the SAL. The suspension 

was filtered and the undissolved fraction was reconstituted with water. The pH of the 

suspension was adjusted to pH 3.3 to generate monomers of high purity and yield. This was 

left overnight, after which it was centrifuged at 4000 rpm for 10 minutes to ensure complete 

separation. The precipitate was collected and freeze dried. The pH of the filtrate was re-

adjusted to pH 1.3 and the precipitate collected and freeze dried (Simensen et al., 1998).  

 

3.2.1.2 Chemical composition analysis of sodium alginate by nuclear 

magnetic resonance (NMR)  

The polymer sample and its monomer components (10 mg) were dissolved in 1 ml of 

deuterium oxide (D2O). The spectra were recorded using a Bruker Avance 500 MHz NMR 

spectrophotometer (Bruker, UK) with a 5 mm PABBO probe at 297 K, with an acquisition 
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time of 3.17 seconds and 1.09 seconds for 
1
H and 

13
C, respectively and a 2-second cycle 

delay.  

 

3.2.1.3 Viscosity and pH measurements  

The pH of various concentrations of SAL in deionised water was measured using a pH meter 

(Mettler Toledo). The viscosities of solutions of increasing concentrations of SAL from 0.1 to 

2 %w/w were measured using a CS-50 rheometer (Bohlin Instruments, USA) at 25 ˚C with a 

gap of 150 µm at a single shear rate of 10 s
-1

. Small volumes of samples were added to the 

lower plate (4 cm diameter) and the upper cone (4 ° cone angle) re-adjusted to lie above the 

sample.  

 

3.2.1.4 Solubility of metronidazole in buffers and gelling medium 

The saturation solubility profile of MET was assessed in different media from pH 1.2 to 8, 

maintained at 37 ± 1 °C. Excess MET was added to 100 ml medium and agitated 

continuously for 8 hours in a shaking water bath. Small volumes of these MET solutions were 

diluted, filtered and analysed by HPLC. The solubility of MET in CaCl2 solutions was also 

determined by adding excess amounts of MET to 100 ml solution of 1 to 0.34 M CaCl2 and 

allowed to dissolve in the solution by shaking constantly for 12 hours, while being 

maintained at 37 ± 1 °C. These samples were filtered, diluted and analysed. 

 

3.2.2 Preparation of gel beads 

Quantities of SAL were dissolved in deionized water to give the desired final concentration 

of SAL solution. The solution was allowed to hydrate for 4 h. 10 g of this solution was 
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extruded drop-wise through a needle into calcium chloride (CaCl2) solution using a peristaltic 

pump (Minipuls 3-Gilson (Anachem Ltd) Model M312) (Figure 3-2) (Takka et al., 1998) at a 

flow rate of 0.5 ml/min. The needle was kept at a distance of approximately 6 cm from CaCl2 

solution (Smrdel et al., 2008b). The beads formed were cured in the gelling medium, filtered, 

washed, snap-frozen in liquid nitrogen and freeze dried (Edwards Modulyo, England) at - 40 

°C for 24 hours. Drug loaded beads were prepared by dispersing the drug evenly in the SAL 

solution before extrusion into the CaCl2 solution. The suspension of the drug in SAL was to 

obtain higher drug loadings (Whitehead et al., 2000). 

 

 

 

Figure 3-2: Schematic representation of the preparation of calcium alginate beads.  

Adapted from Li et al (Li et al., 2011) 
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3.2.3 Optimization of the MET- loaded beads 

3.2.3.1 Effect of concentration of SAL and CaCl2 

 Various concentrations of SAL (1 %, 2 %, 3 %, 5 % w/w) were extruded into different 

concentrations of CaCl2 solutions (0.03 M, 0.07 M, 0.34 M), in order to determine the 

optimum levels required for the formation of discreet and spherical beads. The beads 

produced were assessed based on their structure, buoyancy, drug content and DEE. 

 

3.2.3.2 Effect of curing time on drug content of MET beads 

The effect of curing time on the drug content of the beads was assessed with the curing time 

being varied over 5, 15 and 30 minutes. The drug content, DEE and the drug release of these 

beads were compared to determine the impact of curing times on these parameters. 

 

3.2.3.3 Effect of drug loading on DEE of MET beads 

The effect of the amount of drug added to SAL solution on the bead drug content, DEE and 

the release studies was assessed. Various MET loadings between 0.5 – 15 %w/w (with 

respect to the SAL concentration) were added to the SAL solution.   

 

3.2.3.4 Determination of MET loss in gelling medium  

The amount and percentage of drug loss in the gelling medium were determined by 

measuring the MET concentration in the CaCl2 solution after curing of the beads. 
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3.2.4 Bead formulations of MET beads 

After optimisation, alginate beads were prepared using a 3 %w/w SAL solution cross-linked 

with a 0.07 M CaCl2 solution and the beads were cured for 15 minutes unless stated 

otherwise. Bead formulations were prepared based on Table 3-1. 

 

 

 Table 3-1:  MET loadings and corresponding codes of bead samples 

Code MET (% w/w) 

M0 - 

M0.5 0.5 

M1 1 

M2 2 

M3 3 

M5 5 

M10 10 

M15 15 

 



124 

 

 

 

3.3 Results and discussion 

3.3.1 Pre-formulation studies  

3.3.1.1 Hydrolysis of sodium alginate  

The hydrolytic process breaks the alginate into its three different fractions which include 

guluronic acid (G block), mannuronic acid (M block) and alternating blocks (MG block) 

(Figure 3-3). The MG block is the first product of the hydrolysis (Haug, 1974) and is filtered 

out after boiling in HCl, leaving the residual undissolved M and G blocks. pH adjustment to 

pH 3.3 dissolves the M block with the G block undissolved, further pH adjustment of filtrate 

to pH 1.3 precipitates out the M block fractions. The determination of the presence of the 

guluronic acid component of SAL is important since the gel forming capacity of SAL 

depends on the presence of homopolyguluronic acid chains (Grant et al., 1973). 

 

 

Figure 3-3: Structural characteristics of alginates: (a) alginate monomers, (b) chain conformation, (c) block 

distribution 

 (Draget and Taylor, 2011) 
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3.3.1.2 1
H AND 

13
C NMR analysis of hydrolytic products of SAL  

In the 
1
H NMR spectrum of SAL, there were many peaks in the region between 3 and 5 ppm 

(Figure 3-4), this is typical of polysaccharide spectra and could make interpretation of the 

spectra difficult especially with polysaccharides containing many similar sugar residues (Cui, 

2005). The signals between 3.5 to 4.3 ppm can be assigned to non-anomeric photons (H2 –

H6). Also, the signals between 4.3 to 4.9 ppm and 4.9 to 5.2 ppm come from β-anomeric and 

α-anomeric protons respectively (Cui, 2005). Similar peaks were observed in Figure 3-5 and 

3-8a. The 
13

C spectrum showed signals between 60 and 90 ppm which are from the bulk of 

the ring C-OH carbons (C2 - C5) (Figure 3-5). The C1 anomeric carbons gave signals 

between 90 and 110 ppm. Similar peaks were observed in the monomer units and they 

corresponded to data from previous studies with 
13

C chemical shifts for mannuronate and 

guluronate in each block as follows (in ppm): MM-1 (98.47), MM-2 (68.78), MM-3 (70.06), 

MM-4 (76.05), MM-5 (74.40), MM-6 (173.99) (Figure 3-8b); GG-1 (99.71), GG-2 (63.55), 

GG-3 (67.71), GG-4 (78.99), GG-5 (68.58) and GG-6 (174.21) (Figure 3-7) (Penman, 1972, 

Grasdalen, 1979, Grasdalen, 1981, Grasdalen, 1983, Heyraud et al., 1996, Sakugawa et al., 

2004).  
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Figure 3-4: 
1
H NMR spectrum of sodium alginate  

 

 

Figure 3-5: 
13

C NMR spectrum of sodium alginate- G-i and M-i are the different carbons of the guluronic and 

mannuronic units, respectively 
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Figure 3-6:
 1
H NMR spectrum of G block monomer 

 

Figure 3-7: 
13

C NMR spectrum of G block monomer 
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Figure 3-8: A) 
1
H and B) 

13
C NMR spectrum of M block monomer 
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3.3.1.3 Viscosity and pH measurements  

 

Table 3-2: Viscosity and pH of SAL solutions 

Concentration (%w/v) pH Viscosity (mPa.s) 

0.2 7.13 ± 0.01 18 ± 7 

0.4 7.15 ± 0.04 49 ± 12 

0.5 7.21 ± 0.07 60 ± 9 

1.0 7.07 ± 0.01 102 ± 15 

2.0 7.17 ± 0.01 211 ± 23 

 

The viscosity of the SAL solution increased with an increase in SAL concentration as 

expected with polymers (Table 3-2) (Venugopal, 2011). The pHs of the SAL solutions are 

generally neutral and similar to the reported pH of a 1 %w/v SAL solution at pH 7.2 

(Tafaghodi et al., 2006, Thompson and Davidow, 2009, Rasel and Hasan, 2012). At this pH 

the carboxylic acid group of SAL (pKa = 3.4 - 4.4) are slightly dissociated.  In aqueous 

alginate solutions, two kinds of interactions play important roles; the first interaction is 

charge repulsion between broken carboxylic groups and the second interaction is the 

formation of hydrogen bonds between acid carboxylic and ionized carboxylic groups (Bu et 

al., 2005). It was important to determine the pH of the SAL solutions as this will influence 

both solubility and stability of the drugs suspended in the polymer solutions. 
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3.3.1.4 pH solubility profile of metronidazole 

MET is a weak base (pKa = 2.62), therefore it is ionised in acidic medium leading to an 

increase in solubility of the drug at low pH, as seen in Figure 3-9. As the pH increased, the 

solubility of the drug reduced due to a reduction in the ionization of the drug, however, there 

was no significant difference in solubility of MET across a pH range of 3-8 (~ 10 mg/ml). 

Therefore, MET has its highest solubility at the lowest pH studied (pH 1.2). Solubility of 

MET has been reported to be maximal at pH ≤ 2, with the solubility of MET at pH 1.2 

reported to be 64.80 mg/ml and ~ 20 mg/ml at pH 2 (Wu and Fassihi, 2005). Another study 

reported the solubility of MET in 0.1N HCl to be 64.6 mg/ml (Koteshwara et al., 2011). 

These results are similar to the result obtained in this study. 

 

 

Figure 3-9: Solubility of MET over the pH range 1.2 – 8 
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3.3.2 Bead optimisation  

The beads produced are required to be able to fit some criteria and these include that the: 

 beads maintain a level of sphericity and structure both when wet and dry with no 

fragmentation of the beads on drying 

 incorporation of drug into these beads should have minimal effect on the bead shape 

and structure 

 desired bead formulation should be able to encapsulate sufficient amount of drug 

within the bead structure with high drug content and DEE.  

 desired bead formulation must be able to float on the SGF 

 desired bead formulation must be able to completely release its entrapped drug 

content  

 

 

3.3.2.1 Effect of sodium alginate concentration on bead formation 

Beads produced with 1 %w/w SAL across the different CaCl2 concentrations were irregularly 

shaped and formed clumps when wet and dry. The beads produced using a 2 %w/w solution 

across the different CaCl2 concentrations gave relatively stronger beads with a spherical 

shape but there was fragmentation of the beads after drying. The flattening and fragmentation 

of the beads on drying is likely to be a consequence of their fragility and low mechanical 

strength. This is due to inadequate cross-linking as a result of low concentration of SAL 

(Table 3-3). The most structurally stable of this range after drying were those obtained using 

the 3 %w/w solution and the sphericity of beads improved due to the increase in SAL 

concentration. 
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Table 3-3: Optimisation of MET beads 

SAL (w/w) CaCl2 

 0.03 M 0.07 M 0.34 M 

1 % No beads No beads No beads 

2 % Flattened beads Flattened beads  Flattened beads 

3 % Brittle Beads Beads Beads 

5 % Beads with tails  Beads with tails Beads with tails 

 

 

The presence of drug reduced the gel formation for the 1 % and 2 %w/w alginate beads with 

these beads collapsing in the gelling medium. However, this was not observed with beads 

produced using the 3 %w/w solution. This may be due to the fact that beads were adequately 

cross-linked therefore, were able to entrap drug within their matrix, whereas this was not 

achieved for lower SAL concentrations. Smrdel et al (2008b) reported that calcium alginate 

beads could be regularly shaped and spherical when wet, but on drying the shape of the beads 

could flatten out, become less regularly shaped, like ellipsoid spheres or remain spherical 

depending on the concentration of the SAL solution and the drying process. Increasing the 

SAL concentration increases the viscosity of the solution as observed in Table 3-2; therefore 

5 %w/w SAL solution had an increased viscosity and was difficult to pump, thereby 

hindering droplet formation (Ishak et al., 2007). In addition, the beads formed using this 

concentration had tails which occurs due to the hardening of the bridge that forms during 

droplet formation at the needle tip as observed in Figure 3-10. This was observed by other 



 133 

 

 

   

 

researchers (Haeberle et al., 2008, Chan et al., 2011a) at high SAL concentrations. Therefore, 

the use of this concentration and other higher concentrations was abandoned. 

 

 

 

 

Figure 3-10: XµMT image of bead prepared with 5 %w/v SAL showing tails  
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3.3.2.2 Effect of CaCl2 concentration on bead formation and calcium 

content 

The CaCl2 concentration affects the amount of Ca
2+

 in the gel beads (Soni et al., 2010) 

(Figure 3-11), the structure and mechanical strength of the beads (Wan et al., 2008). Beads 

produced with 0.03 M CaCl2 did not form well-structured beads and this may be due to low 

calcium ion concentration, which would likely cause loose gel formation. Those formed using 

0.07 M CaCl2 solution resulted in a more consistent bead structure with little or no 

fragmentation (even on loading with drug), while those made from a higher concentration 

(0.34 M), were less spherical with irregular surfaces and relatively smaller beads than those 

obtained from 0.07 M solution. This observed reduction in bead size (1.91 mm (0.07 M 

CaCl2) versus 1.67 mm (0.34 M CaCl2) was also reported by other researchers (Sankalia et 

al., 2005, Giri et al., 2013, El-Kamel et al., 2003, Mandal et al., 2010); with the observed size 

reduction being a result of syneresis (water loss) (Martinsen et al., 1989) and shrinkage of the 

gel due to a higher level of cross-linking. Bead gelation process starts radially from the 

surface of the beads to its centre. As the gelation process continues, water is continuously 

expelled due to cross-links being formed leading to contraction of the gel volume. Increasing 

SAL concentrations at constant CaCl2 concentration causes an increase in calcium content of 

the bead, as a result of the presence and availability of more calcium binding sites (Figure 3-

11). Soni et al (2010) also reported an increase in Ca
2+

 ions of alginate microspheres on 

increasing the polymer concentration.  
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Figure 3-11: Calcium content of beads produced using 0.07 M and 0.34 M CaCl2.  

 

3.3.2.3 Effect of SAL and CaCl2 concentration on metronidazole 

entrapment   

Formation of the calcium alginate gels occurs due to cross-linking between SAL and Ca
2+

 

ions in the CaCl2 solution, therefore, these two parameters are important for drug entrapment. 

It is assumed that higher concentrations of both components may improve DEE. Increasing 

SAL concentration from 1 % to 2 %w/w and 3 %w/w, whilst maintaining CaCl2 

concentration and drug loading at 0.07 M and 1 %w/w respectively, with respect to the SAL 

concentration, led to a 55.7 ± 9.8 % and 238.7 ± 21.2 % increase in DEE respectively (p < 

0.05) (Figure 3-12). There have been several reports of increasing DEE on increasing SAL 

concentrations (Ishak et al., 2007, Peeush et al., 2010, Halder et al., 2005). This may be due 
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to an increase in polymer viscosity and the greater availability of active calcium – binding 

sites in the polymeric chains and consequently, the greater degree of cross-linking as the 

quantity of SAL increased (El-Kamel et al., 2003), creating an increased space for the drug 

molecules to be retained throughout a larger cross-linked network of bead (Bera et al., 2009).  

Increasing SAL concentration led to a significant reduction in the LSC (Figure 3-13) of the 

beads due to a higher entrapment of the drug as a result of the denser matrix. On increasing 

the alginate concentration from 1 %w/w to 2 %w/w and 3 %w/w, the LSC decreased by 28 ± 

4.3 % and 66.9 ± 2.9 % respectively (p < 0.05).   

Increasing CaCl2 concentration with varying MET loading - 0.5 %w/w and 2 %w/w - at a 

constant SAL concentration (3 %w/v) led to no significant change in DEE (p > 0.05) (Figure 

3-14). At higher drug loadings (5 %w/v), increasing CaCl2 concentration led to a slight 

decrease in DEE (Figure 3-15). There was about 14 % and 7 % decrease in DEE on 

increasing the CaCl2 concentration from 0.07 M to 0.34 M for beads loaded with 5 and 10 

w/w % MET, respectively (p > 0.05). This is in contrast to an increase in DEE observed by 

some researchers (Sorberg et al., 1998, Mandal et al., 2010, Manjanna et al., 2013). 

Manjanna et al (2013) reported ~ 20 % increase in DEE of aceclofenac sodium on increasing 

the CaCl2 from 1 to 5 %w/v; however, increasing CaCl2 concentration beyond 5 %w/v, did 

not enhance drug entrapment. The increase in DEE may be as a result of the increased level 

of cross-linking and compactness in the bead matrix thereby making the beads able to entrap 

the drug better than beads cross-linked with a lower CaCl2 concentration. Some studies 

however documented a reduction in DEE on increasing CaCl2 concentration (Østberg et al., 

1994, Halder et al., 2005, Ishak et al., 2007, Peeush et al., 2010, Chowdhury et al., 2011). 

Ishak et al (2007) reported ~ 9 % reduction in MET content of beads on increasing CaCl2 

from 1 to 5 %w/v. The reported decrease could be due to competition between calcium ions 

and the drug for the same binding sites on SAL. A high concentration of CaCl2 causes 

significant number of pores on the surface of beads (Sankalia et al., 2005) and increased loss 

of dissolved drug (Aslani and Kennedy, 1996) leading to a reduction in DEE. The solubility, 

molecular size and the ionic nature of the drug determines the DEE and the drug release 
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(Pawar et al., 2008) of the encapsulated drug from the polymer matrix.  Drugs with a high 

water solubility and low molecular mass generally have poor entrapment compared to 

insoluble and higher molecular mass drugs (Liu et al., 2003, Shilpa et al., 2003, Patil et al., 

2006, Aslani and Kennedy, 1996, Lee et al., 1999). CaCl2 (0.07 M (~ 1 %w/v)) was used as 

the gelling medium for further studies to determine the impact of other variables.  This 

concentration was chosen in several other studies as an ideal concentration for cross-linking 

alginate (Ishak et al., 2007, Narra et al., 2012, Malviya et al., 2013). 
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Figure 3-12: Effect of SAL concentrations on DEE using 1 %w/w MET and 0.07 M CaCl2 

 

Figure 3-13: Effect of SAL concentrations on DEE using 5 %w/w MET and 0.07 M CaCl2 
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Figure 3-14: Effect of  CaCl2 concentration on drug content and DEE with 3 % SAL containing 0.5 % MET 

cross-linked with (a) 0.03 M CaCl2, (b) 0.07 M CaCl2, (c) 0.34 M CaCl2; 3 % SAL containing 2 % MET cross-

linked with (d) 0.03 M CaCl2, (e) 0.07 M CaCl2, (f) 0.34 M CaCl2. 

 

Figure 3-15: Effect of CaCl2 concentration on drug content and DEE  with 3 % SAL containing 5 % MET cross-

linked with (a) 0.07 M CaCl2, (b) 0.34 M  CaCl2; 3 % SAL containing 10 % MET cross-linked with (c) 0.07 M 

CaCl2, (d) 0.34 M  CaCl2. 

0

20

40

60

80

100

A B C D E F

%
 

Drug content

DEE

0

20

40

60

80

100

A B C D

%
  

Drug content

DEE



140 

 

 

 

3.3.2.4 Effect of drug-polymer ratio and CaCl2 concentration on 

calcium content of MET loaded beads  

An increase in drug-polymer ratio decreased the calcium ion content of the beads. The blank 

beads had the highest amount of Ca
2+

 of 5.2 ± 0.4 %w/w, while the beads loaded with 10 

%w/w MET had a calcium content of 2.1 %w/w ± 0.1 %w/w for beads cross-linked with 0.07 

M CaCl2. The reduced Ca
2+

 content did not correspond to reduced cross-linking in the drug 

loaded beads relative to blank beads, but this is due to the fact that the calculations were 

carried out based on weight of the bead which includes the drug content (Figure 3-16). This is 

similar to the increased Ca
2+

 content of beads observed at low drug/polymer ratio by other 

researchers (Basu and Rajendran, 2008, Rajendran and Basu, 2009, Takka et al., 1998). 

Increasing CaCl2 concentration from 0.07 M to 0.34 M led to an increase in the calcium 

content of the beads with an increase of 77.4 % in blank beads. There were also 

corresponding increases with the drug-loaded beads with an increase of 74 % and 47.1 % in 

beads loaded with the 1 %w/w and 5 %w/w MET, but at 10 % MET, there was only 13 % 

increase in calcium content on increasing CaCl2 concentration from 0.07 M to 0.34 M (Figure 

3-16). This was expected, as more calcium was available for cross-linking when SAL is 

reacted with a higher concentration of CaCl2. Takka et al. (1998) reported an increase in 

calcium content from 0.522 ± 0.006 to 0.661 ± 0.032 mg Ca
2+

/10 mg beads on increasing the 

CaCl2 concentration from 0.1 M to 0.5 M. This may be attributed to the availability of more 

binding sites in the beads at low drug/polymer ratios (Anal et al., 2003). 
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Figure 3-16: Calcium content of blank and drug loaded beads.  

 

 

3.3.2.5 Effect of curing time on calcium content of alginate beads  

The curing time is the period required for gelation and cross-linking of the alginate matrix 

with calcium ions. Ionic gelation occurs during this period and increasing the curing time 

from 5 to 15 minutes led to an increase of about 9 % and 17 % for 0.07 M and 0.34 M CaCl2 

respectively. Extending the curing time to 30 minutes had a negligible effect on calcium 

content with an increase of only 1.8 % and 0.4 % for 0.07 M and 0.34 M CaCl2 respectively 

(Figure 3-17). This result is similar to results obtained from previous studies (Kim and Lee, 

1992, Lim and Wan, 1997, Pillay and Fassihi, 1999), where increasing curing times led to 

negligible increases in calcium content of calcium alginate gels.  
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Figure 3-17: Effect of curing time on calcium content 
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always been assumed that the incorporation of water-soluble drug in beads would be 

problematic due to the surrounding aqueous environment in which they are produced. This 

aqueous environment leads to poor encapsulation and fast drug release governed by the pore 

size of the beads and the inherent solubility of drug in a matrix system. These issues make the 

determination of the ideal curing time a crucial factor in ensuring a high drug content and 

DEE (Kulkarni et al., 1999, Murata et al., 2000). The solubility of MET in the gelling 

medium has been identified as the main cause of drug loss into the CaCl2 solution over time. 

Some researchers have attempted to minimise or prevent drug loss into the gelation media 

and improve DEE by pre-saturating the CaCl2 solution with the drug (Javadzadeh et al., 

2010, Giri et al., 2013). Drug loss starts during the gel formation and continues as more fluid 

is exuded from the beads, e.g. during gelation and drying. In order to achieve adequate cross-

linking of the matrix and high DEE, a curing time of 15 minutes was chosen for all 

subsequent bead formulations, unless otherwise stated. This was because there was no 

significant increase in the calcium content at times > 15 minutes (Figure 3-17) and the drug 

content and DEE at this time were still sufficiently high especially at high drug-polymer 

ratios (Figure 3-18). This time has been chosen as an ideal curing time for alginate beads in 

several other studies (Bone et al., 1997, Pasparakis and Bouropoulos, 2006, Giri et al., 2013, 

Malakar et al., 2013, Rajalakshmi et al., 2013), while some have chosen a considerably 

longer time (El-Kamel et al., 2003, Caballero et al., 2014, Al-Kassas et al., 2007, Tang et al., 

2007). This ideal time depends mostly on the solubility of the encapsulated material in the 

cross-linking medium.  
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Figure 3-18: Effect of curing time on DEE of formulation of 1 % MET cured for a) 5 min (b) 15 min (c) 30 min; 

5 % MET cured for (d) 5 min (e) 15 min (f) 30 min and 10 % MET cured for (g) 5 min (h) 15 min (i) 30 min 
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gives an indication of the amount of drug on the surface of the beads that has not been 

properly encapsulated in the beads and is an indication of the loss of drug during processing. 

The DEE increased with an increase in drug-polymer ratio (p < 0.05) (Figure 3-19a) and this 

result correlates with earlier findings (Ishak et al., 2007), where DEE of MET increased from 

22.76 to 79.08 % by increasing the MET/SAL ratio from 1:1 to 4:1, respectively. The drug 

content in M10 beads (drug-polymer ratio = 3.3:1) was ~ 62 % and ~ 68 % in M15 beads 

(drug-polymer ratio = 5:1). Both of these are lower than the drug content of MET beads 

(drug-polymer ratio = 3:1) developed by Ishak et al (2007) using similar SAL and CaCl2 

concentrations, which was reported to be ~ 78 %. Another study by Patel et al (2006), 

reported a higher DEE of MET (> 87 %) for beads prepared using 2 % SAL and 4 % CaCl2. 

This variation can occur due to differences in the M/G ratio, source and molecular weight of 

SAL, concentration of CaCl2 used and the bead preparation and recovery techniques. 
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Figure 3-19: Effect of drug-polymer ratio on A) drug content and DEE and B) drug loss 
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3.3.3 Characterisation of MET beads  

3.3.3.1 Morphology and structure of metronidazole beads 

Calcium alginate beads were spherical in nature as shown in Figures 3-20 to 3-21. The 

surface of the M0 (unloaded) bead appeared slightly wrinkled relative to the surface of the 

drug - loaded beads; see M5 as an example in Figure 3-20. A cross section of an M0 bead 

showed a collapsed inner core with sheath-like layers in the inner structure (Figure 3-20b and 

d). This supports the theory of the radial formation of gels during curing. These cavities, 

noticeable in the core, are areas of former ice crystals (Fennema, 1975) and are a result of 

freeze-drying. These are unique to alginate beads and aid buoyancy of the beads (Stops et al., 

2008). M5 beads had a spongy texture and denser core (Figure 3-21b and d), relative to M0 

with a crude and rough outer surface, as verified with the XµMT images (Figure 3-20a and 

c). When there are differences in the density of a sample, variations in the X-ray‟s attenuation 

(i.e., absorption and scattering) produce a contrast in the sample image with the white areas 

corresponding to the alginate and the black areas representing the voids (Chan et al., 2011b). 

This is similar to previous studies (Rastello De Boisseson et al., 2004, Nussinovitch and 

Zvitov-Marabi, 2008, Chan et al., 2011b). XµMT analysis showed distribution of the drug 

particles within the core. XµMT images of M5 show that MET particles were concentrated in 

a portion of the bead (Figure 3-21d), rather than homogenously dispersed throughout the 

bead. MET particles can also be observed on the surface of the beads (Figure 3-21c), which 

may be as a result of the drug leaching out of the beads. MET particles are assumed to have 

accumulated at the bottom of the alginate droplet during droplet formation at the needle tip 

before dropping into the gelling medium. Whitehead and co-workers (2000) also, reported 

this unexpected distribution of drug in alginate beads, where amoxicillin was concentrated in 

the centre of the beads and not evenly distributed within the bead as expected.  
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Figure 3-20: SEM images of A) external surface and B) cross-section of M0 beads and XµMT images of C) 

external surface and D) Internal surface of M0 beads ( M0 beads contains no drug) 

 

Figure 3-21: SEM images of A) external surface and B) cross-section of M5 beads and XµMT images of C) 

external surface and D) internal surface of M5 beads. (M5 beads loaded with 5 %w/w MET) 
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3.3.3.2 Physical properties of metronidazole beads  

The beads had a white colour with slight yellowish tinge present in the MET loaded ones, 

with the diameter increasing with an increase in drug-polymer ratio. The size of the beads 

increased by about 20 % for M3 beads compared with M0 beads or by 51 % for M15 beads (p 

< 0.05) (Table 3-4). These beads were cured for 15 min, but those cured for 5 min were 

observed to have a slightly larger diameter than those cured for 15 min. Smrdel et al (2008a) 

observed a reduction in diameter with increasing curing time with a reduction in diameter 

from 1.91 mm to 1.33 mm on increasing the curing time from 1 to 30 minutes. The weight of 

the beads also increased with increasing drug content (p < 0.05) (Table 3-4). This could be 

due to lower drug content since there was a significant decline in MET content with 

increasing curing time. The bulk density of the beads ranged between 0.11 - 0.26 g/cm
3
, with 

all the beads exhibiting a bulk density less than 1.004 g/cm
3
. The true density ranged from 

0.45 - 1.55 g/cm
3
, with the true density increasing with increasing drug-polymer ratio and 

porosity was above 70 % for all beads. The relatively high porosity is due to the freeze drying 

process. Freeze drying leads to the least shrinkage and structural changes within the beads 

and creates pores in areas of former ice crystals (Fennema, 1975). Various authors have 

observed a relationship between the processing parameters in production of alginate beads 

and their influence on the size on the beads (Whitehead et al., 1998, Klokk and Melvik, 

2002). Since the process parameters were kept constant during the production of the beads, it 

can be deduced that the changes observed in the beads are due to the addition of the drug in 

the formulation (Stops et al., 2008). 
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3.3.3.3 Moisture content of metronidazole beads 

The residual moisture content (%) of the beads ranged from 2.1 ± 0.2 to 3.1 ± 0.8 %w/w. 

This was measured as the % weight loss when the sample was heated up to 150 °C, which is 

an indication that the weight loss was due to bound water. A high moisture content will affect 

the physico-chemical characteristics and storage stability of the beads (Nimase and 

Vidyasagar, 2010). Several studies have reported similar moisture content of alginate beads 

to be ≤   4 %w/v (Nimase and Vidyasagar, 2010, Mallick et al, 2013, Asha et al, 2011). 

 

Table 3-4: Physical properties of MET-loaded beads 

Code  Diameter (mm) True density (g/cm
3
) Weight (g) 

(n=100) 

Bulk density 

(g/cm
3
) 

Porosity  

(%) 

 

Ca
2+

content 

(mg/10mg bead) 

M0 1.91 ± 0.3 0.49 ± 0.02 0.05 0.11 ± 0.02 77.55 0.52 ± 0.04 

M0.5 1.88 ± 0.5 0.45 ± 0.02 0.05 0.09 ± 0.04 80.01 0.54 ± 0.03 

M1 2.05 ± 0.2 0.59 ± 0.01 0.06 0.12 ± 0.02 79.66 0.49 ± 0.02 

M2 2.12 ± 0.4 0.54 ± 0.03 0.08 0.12 ± 0.01 77.78 0.44 ± 0.03 

M3 2.29 ± 0.2 0.64 ± 0.02 0.11 0.14 ± 0.02 78.12 0.41 ± 0.01 

M5 2.45 ± 0.2 0.92 ± 0.01 0.14 0.18 ± 0.05 80.43 0.39 ± 0.01 

M10 2.71 ± 0.1 1.43 ± 0.01 0.24 0.23 ± 0.01 83.99 0.21 ± 0.01 

M15 2.89 ±  0.3 1.55 ± 0.02 0.31 0.26 ± 0.02 83.22 0.17 ± 0.03 

 

 



 151 

 

 

   

 

3.3.3.4 Differential scanning  calorimetry  of metronidazole beads  

DSC analysis was to assess the thermal behaviour of MET, SAL and MET-loaded beads. 

Pure MET showed a single, sharp endothermic peak with an average onset at  160.41 ± 

0.59 °C (n=3), which corresponds to its melting point which is reported as 160 °C (Reynolds, 

1993). The temperature at peak height was 162.75 ± 0.72 °C. An exothermic peak was also 

observed at 284.63 ± 0.64 °C (n=3) which corresponds to the complete degradation / 

crystallisation of MET (Kiss et al., 2006) (Figure 3-22). The MET scan did not show any 

additional peaks indicating the purity of the MET sample. The physical mixture of MET and 

SAL showed an endothermic peak at 161.45 ± 0.23 °C (n=3) similar to that of the pure MET 

sample. SAL and M0 did not show any peaks within the range of analysis, while the MET 

loaded beads showed melting endotherms at 165.32 ± 0.91°C (n=3), representing the 

presence of MET in the samples analysed. These findings confirm the dispersion of the drug 

in the polymer matrix with the drug maintaining its crystalline nature in the formulation as 

observed in the XµMT images (Section 3.3.3.1). The absence of any additional peaks or 

significant shift in melting endotherms of MET in the samples suggested there was no 

obvious interaction between drug and excipients or instability of drug during the process of 

bead formation. The complete degradation of MET observed at ~ 285 ºC was also similarly 

observed in the physical mixture and the formulations with the onset of degradation of MET 

in bead formulations not significantly different from that of the pure drug. Similar findings of 

the presence of drug peak and the absence of drug-polymer interaction in alginate beads were 

reported by other researchers (Rajendran and Basu, 2009, Patel et al., 2010, Satishbabu et al., 

2010, Hadi et al., 2013). Other studies show the absence of drug peaks on analysis of the 

drug loaded beads as a result of the amorphous dispersion of the drug with the drug 

molecularly dispersed in the polymer matrix (Giri et al., 2013, Smrdel et al., 2006, Olukman 

et al., 2012, Khames et al., 2014). These differences might be due to the method of 

preparation of the beads. If the drug is completely dissolved in the SAL mixture, then there 
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will most likely be the absence of drug peak on the scan, however, if the drug is not soluble 

in the SAL  and was just dispersed in the polymer solution as in this study, the drug peak 

should be detected.  

 

 

 

Figure 3-22: DSC thermograms of SAL, MET, physical mixture of SAL and MET, unloaded and MET- loaded 

beads  
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3.3.3.5 Powder X-ray diffraction analysis of metronidazole beads  

The diffractograms of SAL and M0 did not show any sharp peaks reflecting their amorphous 

nature. MET exhibited a P-XRD pattern of a highly crystalline material with no amorphous 

component with peaks at 12°, 14°, 17°,18°, 24°, 27°, 29°, 33° 2θ which may be attributed to 

the highly ordered molecular structure (Gates, 1999, Ramukutty and Ramachandran, 2012, 

Giri et al., 2013, Singh et al., 2014). The P-XRD pattern of the physical mixture of SAL and 

MET (Figure 3-23) showed similar characteristic peaks observed in MET, though the 

intensity of the peaks was markedly reduced. This reduction in intensity was also observed 

for MET-loaded beads with MET retaining its crystalline nature in the beads.  The reduction 

in intensity was because the proportion of polymer was higher relative to the proportion of 

drug in the formulation. This reduction in intensity of drug peaks on incorporation into 

polymer matrices have been reported by several authors (Singh et al., 2014, Fontes et al., 

2013, Tabbakhian et al., 2014, Chatap et al., 2013, Rajendran and Basu, 2009, Moreira et al., 

2014). The absence of any significant changes in the position of the peaks indicates that the 

drug maintained its crystallinity in the polymer (further confirming results from the DSC 

studies) and the absence of polymer-drug interaction and the physical stability of the drug in 

the matrix. Some researchers also reported the absence of drug characteristic peaks in drug-

loaded formulations due to the molecular dispersion of the drug in the polymer matrix, which 

were in good agreement with the DSC (Giri et al., 2013, Mandal et al., 2010, Mladenovska et 

al., 2007). 
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Figure 3-23: P-XRD of SAL, MET, physical mixture of SAL and MET, unloaded and MET- loaded beads  
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3.3.3.6 Fourier transform infrared (FT-IR) analysis of metronidazole 

beads  

Characteristic bands of M0 in Figure 3-24, were at 3418.2 cm
-1 

representing the O - H band, 

1607.1 cm
-1

 and 1428.6 cm
-1 

representing the asymmetric band of the carboxylate ion (Lawrie 

et al., 2007), the band at 1034.9 cm
-1

 is given by the guluronic units (Pereira et al., 2003), and 

823.5 cm
-1

, identified in the literature as the combination of three possible vibrational modes 

(tCO+dCCO+dCCH) (Dupuy et al., 1994). The FTIR spectra of MET shows characteristic 

vibrational peaks such as O − H stretch (3201.3 cm
−1

), C = CH (alkene) stretch (3098.7cm
-1

), 

NO2, N − O (nitro) stretch (1534.1 cm
−1

; 1367.2 cm
-1

), CH2/CH3 (alkane) (2844.8 cm
-1

; 

2940.3cm
-1

), C – N (imines) (1158.2 cm
-1

, 1264.5 cm
-1

) C − OH, C − O bend (1072.3cm
−1

; 

1426.9 cm
-1

), C − NO2, C − N stretch (824.6cm
−1

) (Silverstein and Webster, 1996, Sravani et 

al., 2011, Al-Abdulla et al., 2012, Choudhury et al., 2012, Ramukutty and Ramachandran, 

2012). M10 beads showed similar bands to that of the pure drug and SAL with no significant 

change in the wavenumber of the peak bands. The O - H stretch (3217.5 cm
−1

), C = CH, C − 

H stretch (3100.6 cm
-1

), NO2, N − O stretch (1538.2 cm
−1

; 1372.8 cm
-1

), CH2/CH3 (2857.5 

cm
-1

; 2932.1 cm
-1

), C - N (1160.4 cm
-1

, 1267.0 cm
-1

) C − OH, C − O bend (1075.7 cm
-1

; 

1431.4 cm
-1

), C − NO2, C − N stretch (826.4 cm
−1

) characteristic of MET were present in the 

drug loaded beads (M10). Previous studies observed the presence of similar peak bands of 

encapsulated drug in formulations (Mandal et al., 2010, Verma et al., 2013, Olukman et al., 

2012, Fontes et al., 2013, Halder et al., 2005, Kulkarni et al., 2001) confirming the stability 

of the drug in the formulations and the absence of any chemical interactions between the drug 

and the polymer. This further confirms results observed from the DSC and P-XRD analysis.  
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Figure 3-24: FTIR scans of MET, unloaded and loaded bead samples  
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On contact with the medium, the beads floated almost immediately with the floating lag time 

ranging between 2 and 3 minutes. Several of the beads began to sink with agitation as a result 

of water absorption into the beads. All samples both blank and drug loaded, failed the test 
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because on visual inspection after the first hour, between 10 – 55 % of the beads sank and at 

subsequent time intervals with increased water absorption into the beads, the proportion of 

beads sinking continued to increase. After a 12 hour period, more than 40 - 80 % of all the 

bead formulations sank and after 24 hours, the percentage of beads floating was just between 

5 – 40 % (Table 3-5). Due to the low bulk density of the beads (0.11 - 0.26 g/cm
3
), they were 

expected to float on the medium for a longer period. This indicated that, even though bulk 

density is a major criterion for floating formulations, it is not a good predictor of the lasting 

buoyancy of a formulation because the magnitude of floating strength may vary as a function 

of time and gradually decrease on contact with fluid as a result of development of a 

hydrodynamic equilibrium (Bhardwaj and Harikumar, 2013). This result is consistent with 

the findings of Murata et al (2000), where the blank beads steeped in water, physiological 

saline (0.9 % NaCl) or HCl sank in these media. Other studies also corroborated this 

observation (Choi et al., 2002, Ishak et al., 2007, Bera et al., 2009) with only beads modified 

with oil, magnesium stearate, CO2 gas forming agents (CaCO3 or NaHCO3) respectively 

floating for the duration of the studies. However, some other studies reported buoyancy for 

alginate beads (Whitehead et al., 1996, Whitehead et al., 1998, Stops et al., 2008). Stops et al 

(2008) reported that the alginate beads floated for more than 13 hours, with the buoyancy 

determined using the resultant weight apparatus, which measures a change in the weight of 

objects when in an immersed condition as a function of time (Timmermans and Moës, 1990). 

This method is different from the visual method used in this study and the other studies 

quoted above, so this may account for the difference in results. The presence of drug 

impaired the buoyancy of the beads (p < 0.05) with less drug-loaded beads floating compared 

with the blank beads especially at high drug – polymer ratios over time. It should be noted, 

however, that blank beads also sank in the medium. These beads have a short lag time to 

onset of floating, but a shorter lag time is desirable so that the beads are not emptied from the 

stomach before the onset of floating. It can be inferred that the voids in the beads were 

insufficient to maintain the buoyancy of the beads, which may be as a result of water 
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penetrating into the beads and filling the inert pores, thereby increasing the density of the 

beads beyond that of the media in which the beads were dispersed. Based on the results 

obtained, it is assumed that on oral administration, the bead formulation will sink to the 

bottom of the stomach within a short time interval and will be evacuated from the stomach 

before completely releasing their drug content at the target site.  

  

 

 

Table 3-5:  Floating profile of unloaded and MET-loaded beads 

Sample Lag time (min) %Floating (1h) % Floating (12h) % Floating (24h) 

M0 < 3 80 ± 10 50 ± 10 30 ± 10 

M0.5 < 3 85 ± 15 60 ± 15  30 ± 5 

M1 < 3 70 ± 5 40 ± 10 30 ± 5 

M2 < 3 85 ± 10 40 ± 5 20 ± 5 

M3 < 3 65 ± 10 45 ± 10 10 ± 5 

M5 < 3 65 ± 5 25 ± 5 10 ± 5 

M10 < 3 55 ± 10 30 ± 5 15±5 

M15 < 3 50 ± 15 30 ± 10 15 ± 10 
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3.3.3.8 Swelling profile of metronidazole beads  

Swelling of the beads is mainly attributed to the hydration of the hydrophilic groups of 

alginate (Hoffman, 2002). Free water penetrates into the beads filling the inert pores, thereby 

contributing to a greater swelling degree. In PBS (pH 7.4), M0 showed peak swelling of about 

2500 % weight change at ~ 120 minutes, after which time, the beads started to disintegrate, 

leading to a reduction in weight beyond 120 minutes (Figure 3-25a). Increasing the drug-

polymer ratio slightly reduced the swelling of the beads (p > 0.05) with M5 and M10 

exhibiting maximum swelling of ~ 2200 % and 2100 % respectively. The swelling and 

degradation in alkaline pH occurs due to several mechanisms: 

 the displacement of Ca
2+

 ion binding (mainly in the poly-mannuronate sequences at 

the initial stage) by Na
+
 ions in PBS through an ion –exchange process. This leads to 

an increase in the electrostatic repulsion between the ionized –COO
-
 (Bajpai and 

Sharma, 2004). At the latter stages, the ion exchange occurs in the polyguluronate 

sequences; this is because the polyguluronate sequences have a strong auto-

cooperative binding of Ca
2+

 ions (Smidsrød, 1974) and serve as a stable cross-linking 

structure within the gel, while the polymannuronate sequences show no specificity for 

ion binding (Kikuchi et al., 1999) The hydrogen bonds between -COO
−
 and H2O are 

formed, causing the beads to absorb water and swell. 

 the sequestering effect of phosphate on Ca
2+

, which makes the calcium alginate gel 

structure loose and soluble. This solubility is due to the formation of calcium 

phosphate and causes turbidity in the medium (Bajpai and Tankhiwale, 2006). 

In PBS, the water uptake and swelling seem to be due to the presence of sodium and 

phosphate in the buffer and not the pH of the media. Bajpai and Sharma (2004), reported 

almost no swelling of beads in a Tris-HCl buffer (pH 7.4), thus supporting the hypothesis that 
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water uptake of beads is due to ion exchange between Ca
2+

 ions and Na
+
 ions from the 

sodium phosphate buffer.  

In HCl, it was observed that there was limited swelling of the hydrogels and water uptake 

was low and independent of time, relative to the observed uptake in PBS. Swelling did not 

exceed ~ 330 % of the original size and they remained at this size, without disintegrating, 

throughout the study period (Figure 3-25b). When these beads are steeped in media with a pH 

< 4.0, the Ca
2+

 ions
 
are displaced from the alginate network and the carboxyl residues of 

alginate are protonised to alginic acid (Østberg et al., 1994, Pasparakis and Bouropoulos, 

2006). The presence of MET also reduced the degree of swelling in acidic media with M0 

beads exhibiting maximum swelling of ~ 350 % weight change, while M5 and M10 exhibited 

maximum swelling of ~ 250 % and 150 % weight change respectively.  

This conversion to alginic acid may cause disruption to ionic linkages with the electrostatic 

repulsion, resulting in the shrinkage of the bead matrix. The swelling profiles in both media 

suggest that the beads will swell slightly in the acidic stomach and as they move down the GI 

tract into the more alkaline small intestine, the beads will begin to swell more and ultimately 

disintegrate in the large intestine. Since this polymer does not degrade in acidic media, it 

reduces the risk of dose dumping or excessive swelling of polymer in the stomach.  
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Figure 3-25: Swelling profile of unloaded and MET- loaded beads in a) PBS and b) 0.1N HCl  
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3.3.3.9 Determination of calcium ion release in PBS 

The release of Ca
2+

 from the beads was determined in order to correlate the Na
+
/Ca

2+
 ion-

exchange process with the swelling profile of the beads through AAS (Kikuchi et al., 1999). 

Another method which has been used to assess Ca
2+

 release from calcium alginate complexes 

is the EDTA method (Chen and Wang, 2001, Bajpai and Sharma, 2004). The Ca
2+

 ion 

content of the beads was released over a period of 150 minutes for beads analysed in PBS 

(Figure 3-26).  In M0, there was ~ 50 % Ca
2+

 release within 30 min with the remaining Ca
2+

 

ions being released over the next 120 min. A slightly slower release was observed between 20 

and 60 min after which time, the release rate increased. These times correlate with the 

swelling profiles of the beads in PBS. Time for complete release of Ca
2+

 ions coincides with 

the time for complete disintegration of the beads. The presence of drug retarded the Ca
2+

 

release (p < 0.05), which may be as a result of the drug limiting the exposed surface area of 

the bead matrix to the buffer. It has been reported that Ca
2+

 ions are present in two different 

environments within the calcium alginate gel. The first set of Ca
2+

 ions is found within the 

buckled egg box junction reacting with the polyguluronate sequences. The phenomenon of 

the egg-box junction is detailed in section 3.1. The second set of Ca
2+

 ions are those 

interacting with other carboxylate anions within the polymer, i.e. the polymannuronate 

sequences. The amount of Ca
2+

 released over time depends on the guluronic /mannuronic 

composition of the alginate (Bajpai and Sharma, 2004). The ratio of mannuronic acid to 

guluronic acid residues of the alginate used in this study is 1.56, therefore indicating that the 

alginate contains ~ 60 % mannuronic acid and 40 % guluronic acid. As the Na
+
 ions from the 

PBS penetrate the gel bead, the Ca
2+

 ions bound to the mannuronic acid content, estimated to 

be ~ 60 % of the Ca
2+

 ion load of the bead is released during the first stage. This is the slow 

release observed within the first 60 minutes of the release study and is mainly diffusion 

controlled being proportional to the square root of time (Figure 3-26). There was negligible 

alginate disintegration probably due to the relatively stable association of Ca
2+

 ions with 

polyguluronate sequences, which serve as cross-linking points within the gels. There is also 

the possibility of the released Ca
2+

 ions re-binding to polyguluronate sequences (Kikuchi et 
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al., 1999). In the latter stage, the remaining ~ 40 %  Ca
2+

 ion load involved in the formation 

of the egg-box junction starts to exchange with Na
+
 and diffuse outward into the release 

medium. There is a slow dissociation of  Ca
2+ 

ions from the polyguluronate sequence 

accounting for the initial slow release of Ca
2+

 ions in the first 60 min before the rapid release 

apparent after 60 min. It is at this stage of final calcium release that the disintegration of the 

gel bead starts to occur due to excessive swelling of the gels as a result of the electrostatic 

repulsion between the carboxylate anions (Yotsuyanagi et al., 1991, Sugawara et al., 1994, 

Kikuchi et al., 1999). This electrostatic repulsion causes the dissociation of the gel into 

soluble alginate molecules (Kikuchi et al., 1999). 

 

 

Figure 3-26: Calcium ion release from MET-loaded beads in PBS 
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3.3.3.10  In vitro drug release of metronidazole from beads  

The release of drug from the beads was assessed across a range of pHs to represent the pH 

range of the stomach in the fed (pH 1.2) and fasted state (pH 4.0). In addition, drug release 

was assessed in intestinal pH (pH 7.4).  

 

3.3.3.10.1 Release of metronidazole from beads in acidic medium – (0.1N 

HCl (pH 1.2 ) and acetate buffer (pH 4) 

The dissolution of the unencapsulated drug was rapid at pH 1.2, with complete dissolution 

achieved within 5 minutes (Figure 3-27a). Drug release from the beads at this pH was fast 

and most of the drug content was released over a period of 3 h, with a larger proportion of the 

release occuring in 2 h. There was no difference in the dissolution profiles of the 

unencapsulated drug and beads with low drug-polymer ratios (M0.5 – M1). There was more 

than 90 %  release within 10 minutes with M0.5 – M1 beads, and there was complete release of 

MET from these beads after 30 minutes. There was no significant difference between the 

release from these beads at low drug-polymer ratio. This is probably due to the low drug 

content of the beads which limits the lifetime of the DDS and easy diffusion of water into the 

beads through the less occupied spaces within the bead leading to a faster drug dissolution 

and diffusion out of the beads.  At higher drug-polymer ratios (M5 - M15), drug release 

decreased (p < 0.05), with ~ 60 % , 55 % and 50 % drug released after 10 min with M5, M10 

and M15 beads, respectively. Also, after 30 minutes, drug release was ~ 80 %, 69 % and 65 % 

with M5, M10 and M15 beads, respectively. In comparison, the release profile of M5 and  M10 

(f2 = 54.6) ; M10 and M15 (f2 = 64.9) were similar, however there was a significant difference 

in the release profiles of M5 and M15 (f2 = 44.7). The difference in the release profiles of M5 

versus M15 highlights the effect of drug content on the rate of  drug release from calcium 

alginate beads, with beads containing more drug releasing drug at a slower rate compared to 

faster rate of drug release from beads containing less drug. This reduction in release rate with 
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an increase in drug-polymer ratio was also reported by Basu and Rajendran (2008). Drug 

release profiles from the beads at pH 4.0 (Figure 3-27b) was similar to that observed at pH 

1.2, but was at a slightly slower rate (p > 0.05) (Table 3-6), with an initial burst release and a 

subsequent slow release. In comparison, the release profiles of M10 at pH 1.2 and pH 4.0  (f2 = 

59.1) and M15 at pH 1.2 and pH 4.0 (f2 = 59.9) were similar , however the release profiles of 

M5 at both pHs were different (f2 = 47.1). This difference observed in release from M5 can 

only be due to the difference in solubility of MET in the different media and the effect of the 

high drug content of M10 and M15 was more dominant than the effect of pH. Overall, drug 

release from the beads was biphasic, with an initial burst release, followed by a slower 

release (Figure 3-26; Table 3-6). The initial part of drug release is driven by two concurrent 

mechanisms, i.e. swelling (Figure 3-25b) and diffusion (Pasparakis and Bouropoulos, 2006). 

An initial high burst release reduces the effective lifetime of a drug delivery device (Huang 

and Brazel, 2001). Drug released at this stage may not be utilised effectively leading to drug 

wastage. The major causes of burst release in formulations include, surface adsorption of 

drug molecules on the matrix, uneven distribution of drug within the matrix (observed in 

these beads in section 3.3.3.1), and porous matrix morphologies (Kim and Park, 2004). In this 

case, due to the hydrophilic nature of MET, it rapidly diffuses out to the outermost layers and 

the surface of the bead structure during the curing period; therefore burst release is the release 

of the adsorbed particles of drug left on or near the surface of the beads during the curing and 

freeze-drying period. The second phase of drug release was a more moderated release as a 

result of slow diffusion of the entrapped drug from the core of the alginate matrix with the 

swelling of the beads at this stage being relatively constant (Figure 3-25b) (Pasparakis and 

Bouropoulos, 2006). This biphasic pattern of drug release is typical of matrix diffusion 

kinetics (Rajinikanth and Mishra, 2008). Drug release from alginate beads has been said to be 

governed mainly by the solubility of the drug in the dissolution medium and not dependent 

on the gel properties of the beads (Patel et al., 2006). This means that the more soluble the 

drug is in the acidic media, the faster the drug release rate as observed with the MET beads. 
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MET solubility at pH 1.2 was determined to be 59.7 ± 0.9 mg/ml (section 3.3.1.4) and a 

combination of this high solubility in acidic media, the existence of sink conditions and the 

porous nature of the alginate beads (Fennema, 1975), all contributed to fast MET release. 

Another reason for this is the physical state of the drug in the beads. It has been reported that 

drug suspended in SAL is rapidly released from the beads than when the drug is dissolved in 

SAL (Whitehead et al., 2000). Rapid drug release observed from these beads is similar to that 

observed by other researchers (Østberg et al., 1994, Murata et al., 2000, Whitehead et al., 

2000, Pasparakis and Bouropoulos, 2006, Patel et al., 2006). Murata et al (2000) reported 

complete MET release from the beads within 30 minutes while Whitehead et al (2000) 

observed ~ 80 % amoxycillin release within 80 minutes.  

 

 

Table 3-6: Release parameters of MET-loaded beads 

 

 

  

t25% 

(min) 

           

t50% 

(min) 

                 

t75%  

(min) 

  

t25% 

(min) 

           

t50% 

(min) 

                 

t75%  

(min) 

Formulation pH 1.2 pH 4.0 

M0.5 < 5 < 5 < 5 < 5 < 5 < 5 

M1 < 5 < 5 < 5 < 5 < 5 < 5 

M2 < 5 < 5 < 5 < 5 < 5 5 - 10 

M3 < 5 < 5 5 - 10  < 5 < 5 15 - 20 

M5 < 5 5 - 10 15 - 20 < 5 10 - 15 30 - 40 

M10 < 5 5 - 10  30 - 40  < 5 10 - 15 40  

M15 < 5 10 - 15 50 - 60  < 5 15 - 20 50  
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3.3.3.10.2 Release kinetics of metronidazole from beads in acidic medium 

(pH 1.2) 

It is important to study drug release kinetics as this has a strong influence on drug 

bioavailability, dosage intervals and the development of toxic side effects (Shah et al., 1998). 

On examination of the coefficient of determination (R
2
) of the various plots of the drug 

release models,
 
it was observed that the release kinetics followed a diffusion-controlled 

mechanism. The in vitro release data was in favour of Higuchi-diffusion kinetics (R
2 

= 0.96 – 

0.99) (Table 3-7). The Higuchi square root equation describes drug release from systems 

where the solid drug is dispersed in an insoluble matrix, and the rate of drug release is related 

to the rate of drug diffusion. This model is consistent with the release of drug from a granular 

or porous matrix (Whitehead et al., 2000). The Higuchi model has previously been used to 

describe drug release from alginate beads (Murata et al., 2000, Rajinikanth and Mishra, 2008, 

Bera et al., 2009, Jahan et al., 2012). The „n‟ value, which is indicative of drug release 

mechanism, was < 0.43, indicating Fickian diffusion.  
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Figure 3-27: Release of MET from beads in A) 0.1N HCl (pH 1.2) and B) acetate buffer (pH 4.0) 
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Table 3-7: Release kinetics of beads in 0.1N HCl (pH 1.2) 

Code Zero order 1st order Higuchi  Hixson-

Crowell 

      Peppas 

 K0(min
-1

) R
2
 K1(min

-1
) R

2
 K(min

1/2
) R

2
 k R

2
 n R

2
 

M2 0.603 0.913 0.025 0.974 4.827 0.988 0.041 0.959 0.101 0.986 

M3 0.711 0.958 0.018 0.981 5.620 0.989 0.035 0.985 0.125 0.989 

M5 1.198 0.885 0.016 0.952 9.684 0.985 0.039 0.932 0.279 0.982 

M10 0.921 0.845 0.009 0.893 7.507 0.968 0.026 0.878 0.247 0.966 

M15 0.997 0.878 0.009 0.925 8.075 0.981 0.026 0.910 0.289 0.978 

 

 

3.3.3.10.3 Release of metronidazole from beads in alkaline medium – 

phosphate buffered saline (pH 7.4 ) 

Drug release in PBS was also biphasic, similar to drug release in acidic media (pH 1.2), 

however, the order was reversed with an initial slow release followed by a subsequent fast 

release. The initial slow release was probably due to reduced solubility of MET in this media, 

which was determined to be 8.4 ± 0.4 mg/ml, which is significantly lower than the solubility 

at pH 1.2. Overall, there was a significant difference in the MET release profiles in both 

media (pH 1.2 and 7.4), and comparison of release profiles of M5, M10 and  M15 beads in both 

media yielded f2 values of 34.4, 45.1 and 45.0, respectively. Drug release was mostly 

complete within 150 minutes for all beads (Figure 3-28) (Table 3-8). This correlates with the 

swelling studies, where disintegration of the beads which enhances drug release starts to 

occur at ~ 120 minutes, but prior to this time, the beads are swollen allowing easy access of 
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water into the bead through the pores, allowing easy diffusion of the drug out of the beads 

through these pores. Drug release from alginate beads in alkaline media has already been 

reported to be controlled by the swollen gel (Patel et al., 2006), rather than by diffusion as 

observed in acidic medium with the swelling increasing the pore size/volume thereby 

ensuring fast drug release (Al-Kassas et al., 2007). Beads agglomerate on contact with the 

alkaline medium and after about ~ 120 minutes, they started to dissolve completely and were 

completely dissolved within 180 minutes. This is unlike the observation in acidic medium 

where the beads remained intact for the entire period of the dissolution test. 

 

 

 

Figure 3-28: Release profile of metronidazole from beads in PBS 
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Table 3-8: Release parameters of MET-loaded beads 

 

Formulation 

 

 

 t25%(min) 

        

   t50%(min) 

         

 t75% (min) 

M0.5 < 5 < 5 < 5 

M1 < 5 < 5 5-10 

M2 < 5 < 5 10 - 15 

M3 < 5 5 - 10 30 - 40  

M5 5 - 10 20 - 30 40 - 50 

M10 5 - 10 15 - 20  40 - 50  

M15 10 - 15 30 - 40 60 - 80  

 

 

3.3.3.10.4 Release kinetics of metronidazole beads in PBS 

The release kinetics of MET from beads in PBS followed Higuchi kinetics with the release 

exponent „n‟ being less than 0.43, indicating Fickian diffusion for beads with a low drug-

polymer ratio (M2 and M3). At high drug-polymer ratios (M5, M10 and M15), n < 0.85 

indicating non-Fickian diffusion (Table 3-9), thus, both diffusion and swelling controlled 

drug release. Therefore, increasing the drug-polymer ratio changed the drug release kinetics 

of the formulation in PBS, unlike release kinetics in acidic media, which was constant for all 

drug-polymer ratios. Once the beads leave the acidic environment of the stomach into the  

less acidic enviroment of the small intestine and colon, the beads dissolve in the fluid of the 

intestines, through which it is readily eliminated from the body. 



172 

 

 

 

Table 3-9: Release kinetics of beads in PBS (pH 7.4) 

Code Zero order 1st order Higuchi Hixson-

Crowell 

Peppas 

 K0(min
-1

) R
2
 K1(min

-1
) R

2
 K(min

1/2
) R

2
 k R

2
 n R

2
 

M2 1.217 0.974 0.019 0.994 8.249 0.998 0.044 0.989 0.188 0.995 

M3 1.637 0.949 0.017 0.914 10.819 0.992 0.045 0.928 0.309 0.922 

M5 1.563 0.995 0.012 0.993 12.116 0.995 0.036 0.996 0.569 0.991 

M10 1.795 0.983 0.015 0.996 14.072 0.998 0.043 0.996 0.631 0.993 

M15 1.343 0.954 0.011 0.988 11.901 0.991 0.032 0.981 0.634 0.989 

 

 

3.3.3.10.5 Effect of calcium concentration and curing time on 

metronidazole release  

Increasing CaCl2 concentration did not have a major effect on MET release from the beads (p 

˃ 0.05) with the beads cross-linked with 0.07 M and 0.34 M CaCl2 showing similar fast MET 

release profiles (f2 = 55 - 66) (Figure 3-29a). This further confirms the similarity in DEE of 

beads cured at both concentrations (Figure 3-16). During bead formation, a high 

concentration of CaCl2 may cause the development of a densely cross-linked polymeric layer 

on the surface of droplets thereby preventing Ca
2+ 

ions diffusion into the bead core, which 

subsequently may lead to the formation of beads with partially reacted cores. These might be 

the reason for the similarity in the release profiles of beads cured with both concentrations of 

CaCl2. Even though the beads cured with 0.34 M CaCl2 contained ~ 30 % more Ca
2+ 

ions 

than those of 0.07 M CaCl2, these did not have an impact on drug release. These results are 

similar to the observation of Basu and Rajendran (2008), where increasing CaCl2 from 2 to 5 

% led to an even faster nateglinide release from the beads which may be as a result of the 
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increase in porosity and swelling properties of beads prepared with a higher concentration of 

CaCl2. This is contrary to results obtained by Badwan and co-workers (1985) where the 

higher the concentration of CaCl2, the slower the release of sulphamethoxazole from beads. 

Other studies also reported a decrease in drug release on increasing CaCl2 concentration 

(Tavakol et al., 2013, Rajalakshmi et al., 2013).  

Similarly, the curing time had little effect on MET release with the results obtained from the 

release profiles of beads cured for 30 minutes being similar to those cured for 5 and 15 

minutes (Figure 3-29b). The f2 values were between 64 - 94 for the M5 and M10 beads. This 

result is similar to a study by Kim and Lee (1992), where there was little variation in blue 

dextran release from alginate gel beads cured for more than 6 minutes. However, it was 

contrary to results obtained by another study, where it was observed that beads cured for 5 

minutes and 25 minutes gave a more rapid release rate, when compared with release rate of 

beads cured for 15 minutes (Patel et al., 2006). This release profile was attributed to the 

porosity of the beads and surface deposition of leached drug. Overall, these results 

demonstrate that for a water-soluble drug like MET, its solubility in the dissolution media 

had more impact on its release from the beads than the calcium content of these beads and the 

extent of cross-linking in these formulations. 
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Figure 3-29: Comparison of release profiles of beads cured a) with 0.07 M and 0.34 M CaCl2 and b) at times 5, 

15 and 30 min 
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3.3.3.10.6 In vitro release of metronidazole beads in mucin suspension 

Mucus contains mostly mucin, secretory IgA, lysozyme, lectoferrin, lipids, polysaccharides 

and ions. Pig gastric mucin was used because it is available commercially, well characterised 

and because pigs have a physiology similar to man. The bacteriostatic action of mucus is due 

to its non-mucin components (Allen and Snary, 1972). Non-mucin components are also 

reported to contribute to the “weakening” of mucus, as they interrupt fibre associations and 

also play a role in impeding solute transport (Bell et al., 1985, Sellers et al., 1987, Larhed et 

al., 1998). Mucins are negatively charged poly-electrolytes with heavily O-glycosylated 

serine/threonine-rich (Evans and Koo, 2009) glycoproteins that are responsible for the 

viscous and gel-forming nature of mucus (Allen and Snary, 1972, Meyer and Silberber, 

1978). Mucins can be divided into two classes: the membrane bound mucins and the secreted 

mucins which differ based on the fact that membrane bound mucin contain a hydrophobic 

domain anchoring the molecules in the plasma membrane (Sigurdsson et al., 2013) and also 

lack intermolecular associations through disulphide bridges (Hicks et al., 1998). Mucins 

contribute to a barrier layer through which foreign molecules e.g. drug molecules must 

diffuse to gain access to intracellular drug targets. The barrier function of mucus is dependent 

on the physicochemical properties of the drug and the tertiary conformation of the mucin, the 

latter also being dependent on environmental factors such as pH, ionic strength and the 

presence of other agents (Khanvilkar et al., 2001). Mucus presents a particular barrier to 

diffusion for drugs and nutrients with a capacity for binding. The mucus layer of the stomach 

is reported to be 50 - 600 µm (Lee and Nicholls, 1987, Norris et al., 1998, Khanvilkar et al., 

2001) with the thickness of antral mucus being 200 µm (Gu et al., 1988) and the target 

microorganism H. pylori reside in the mucus gel and at the mucus-epithelial cell surface 

(Hessey et al., 1990). For many solutes, there is a reduction in effective diffusion coefficient 

and passive diffusion fluxes when they cross the mucus layer (Desai et al., 1991, Korjamo et 

al., 2009). An administered antimicrobial drug would need to permeate through the gastric 
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mucus layer to reach the target microorganism in bactericidal concentrations. Therefore, the 

rate and extent of drug transport through gastric mucus can be an important determinant of 

the efficacy of a formulation and better represents and mimics in vivo dissolution of drug in 

the gastric lumen and its subsequent penetration into the gastric mucus layer than dissolution 

tests in SGF. In these experiments, a 3 % mucin solution was used due to this concentration 

being equivalent to mucin concentration in gastric mucus (Bansil et al., 2013). The saturated 

solution of MET (60 mgml
-1

) at pH 1.2, had a 6-fold higher diffusion rate through mucus than 

drug encapsulated in the beads (Table 3-11). The concentration gradient between the donor 

and receiver solutions was the driving force for the diffusion of molecules between both 

solutions. The presence of mucin restricted the movement of drug as the flux was ~ 26 % 

lower than the flux observed with the 0.1N HCl. This is similar to an earlier study which 

reported ~ 25 % reduction in permeability of MET loaded chitosan microspheres in gastric 

mucin versus gastric fluid (Shah et al., 1999).  Also, diffusion into PBS was slower compared 

with that of 0.1N HCl (reduced by ~ 40 %) (Figure 3-30). The diffusion of drug through 

mucin is dependent on several factors which include the relative size of the drug molecule, 

the effective mesh spacing of the gel, and any interaction (binding, partitioning, reaction etc.) 

between the drug and the mucin (Khanvilkar et al., 2001). MET is a small sized molecule 

(Nau et al., 2010), so its transport through the mucin suspension was fast and complete, 

further confirming the absence of significant MET binding with mucin in all the samples. 

Drug binding to mucus gives an indication of the proportion of antibiotic available for 

diffusion into the surrounding mucus environment thereby rendering the bound antibiotic 

bacteriologically inactive. As observed in the dissolution studies, the beads remained intact in 

studies at acidic pH with minimal swelling, while at alkaline pH, the beads swelled and 

almost completely dissolved by the end of the study.  There were lag times in the onset of 

diffusion through mucin into both the acidic (~ 15 min) and alkaline (~ 40 min) medium, and 

the difference was probably due to the low solubility of MET in alkaline media.  
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Figure 3-30: Franz cell diffusion studies with a) saturated MET solution / 0.1N HCl receiver cell b) M10  in 0.1N 

HCl / 0.1N HCl (c) M10 in 3 % mucin (pH 1.2) / 0.1N HCl (d) M10 in 3 % mucin/PBS (pH 7.4) 

 

 

 

Table 3-10: Franz cell diffusion studies of beads in mucin dispersion 

Donor cell Receiver cell Sample Flux (mgcm
-2

h
-1

) Lag time (h) 

Saturated solution 0.1N HCl (pH 1.2) - 8.46 0 

0.1N HCl (pH 1.2) 0.1N HCl (pH 1.2) M10 1.26 0 

3 % Mucin (pH 1.2) 0.1N HCl (pH 1.2) M10 0.94 0.25 

3 % Mucin (PBS) PBS M10 0.58 0.67 
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3.4 Conclusion  

It was demonstrated that calcium alginate beads can efficiently encapsulate a highly soluble 

drug, MET, which has been a main concern due to leaching of MET into the cross-linking 

solution. These beads had a high drug content up to 67 %w/w and high DEE up to 81 % with 

both parameters increasing with increases in drug-polymer ratio. Solid state chracterisation 

showed no polymer-drug interaction and stability of MET in the beads with the drug 

maintaining its crystallinity in the beads. The entrapped drug can subsequently be released in 

both acidic and alkaline media, with drug release being rapid and complete in both media 

within an average of 4 hours. The fast drug release and limited buoyancy (< 24 h ) of these 

formulations have been well documented and these properties do not fit the controlled release 

profile expected of a gastro-retentive formulation for the eradication of H. pylori. Therefore, 

in order to improve the buoyancy of these beads and control MET release from the beads, 

there is a need for modification of the formulation.  
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Chapter 4 CLARITHROMYCIN BEADS - 

PREPARATION AND CHARACTERISATION 

4.1 Chapter overview  

 

Figure 4-1:  Structure of clarithromycin 

(MW = 747.95 g/mol) 
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Clarithromycin (CMN) is a semi synthetic antibiotic also known as 6-O-methyl erythromycin 

and was first developed in the 1970s, through the substitution of the C6 hydroxy group of 

erythromycin with a methoxy group (Figure 4-1). It belongs to a group of antibiotics called 

the macrolides. Other members of this group include erythromycin and azithromycin. CMN 

is more chemically stable than erythromycin (Davey, 1991, Tsang et al, 1994); better 

tolerated with few GI side effects (Neu, 1991) and has a broader spectrum of activity than 

erythromycin (Sturgill and Rapp, 1992, Alvarez-Elcoro and Enzler, 1999). CMN occurs as a 

white to off-white crystalline powder. CMN is a drug of choice in treating peptic ulcer as H. 

pylori resistance is much lower compared to antibiotics such as amoxicillin and tetracycline 

(Gattani et al., 2010). CMN exerts its antimicrobial activity by reversibly binding to the 50S 

subunit of the bacterial ribosome. This inhibits RNA-dependent protein synthesis by 

preventing transpeptidation and translocation reactions (Sturgill and Rapp, 1992). CMN is 

well absorbed in the GI tract and has an oral bioavailability of 55 % (Neu, 1991) due to the 

first pass metabolism. Due to the short half-life of CMN (4 - 5 h), immediate release 

formulations require twice daily dosing (Piscitelli et al., 1992). It has a high plasma protein 

binding (60 - 70 %) and is metabolized in the liver to an active metabolite, 14 - hydroxyl 

CMN and six other products. 30 – 40 % of an oral dose of CMN is excreted in the urine 

either unchanged or as the active 14-hydroxy metabolite (Hardy et al., 1992). The remainder 

is excreted into the bile. 

In the previous chapter, MET, a BCS class I drug (high solubility and high permeability) was 

successfully incorporated into calcium alginate beads. In this chapter, CMN, a BCS class II 

drug (low solubility, high permeability) was incorporated in these gel beads and 

characterised. This was to compare the structure, drug distribution, physical properties, DEE, 

buoyancy and drug release profiles of beads prepared with  poorly soluble and highly soluble 

drugs. 
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4.2 Materials and methods 

Sodium alginate (SAL), calcium chloride dihydrate (CaCl2.2H20), phosphate buffered saline 

(PBS), HCl, acetonitrile, potassium dihydrogen phosphate (KH2PO4), 1-octane-sulphonic 

acid (1-OCTS), phosphoric acid, sodium acetate, acetic acid were obtained from Sigma 

Aldrich (UK). Liquid nitrogen (N2) was obtained from BOC (UK). CMN was obtained from 

Discovery Fine Chemicals (UK).  

 

4.2.1 Pre-formulation studies  

4.2.1.1 Stability of CMN and determination of degradation rate 

constant (k)  

 CMN (50 mg) was dispersed in 100 ml buffers at pH 1.2 - 7.0 maintained at 37 ± 1 °C and 

stirred at 100 rpm. Samples were taken at different time intervals and the pH was adjusted to 

pH 5.0 to minimise degradation of the drug during HPLC analysis. Samples were analysed by 

HPLC as described in section 2.3.4.3. The degradation of CMN in acidic media is assumed to 

follow pseudo-first order kinetics and the half-life (t1/2) of CMN was determined from the 

pseudo-first order degradation rate constant (k) using Equation 4-1(Venkateswaramurthy et 

al., 2012).  

      
   …………………………. Equation 4-1 

in which C, is the concentration of drug remaining at time t, C0 is the initial concentration of 

drug of drug and k is the degradation constant. The half-life (t1/2) was determined from the 

degradation constant. 
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Equation 4-2 was used to estimate the amount of CMN released by the CMN-loaded beads in 

acidic media: 

 

  

  
  

  

    
    .................................... Equation 4-2 

 

where, C is the concentration of the drug at time t, Q the total amount of the drug released at 

time t, V the volume of the release medium, and k the first order degradation rate constant. 

  

4.2.1.2 Solubility of clarithromycin 

Solubility of CMN was determined in buffers with pH ranging from 1.2 to 8 maintained at 37 

± 1 °C. Excess CMN was added to 100 ml buffer and agitated continuously for 1 h in a water 

bath. Samples were filtered, diluted and analysed by HPLC. Solubility of CMN in CaCl2 

solutions was determined by adding excess amounts of CMN to 100 ml solution of 0.07 M to 

0.34 M CaCl2 and allowed to dissolve in the solution by shaking constantly for 12 hours, 

while being maintained at 37 ± 1 °C. These samples were filtered, diluted and analysed by 

HPLC. 

 

4.2.2 Bead preparation  

Beads were prepared as outlined in Sections 3.2.2 and 3.2.4 based on the formulation table 

(Table 4-1). 
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Table 4-1: CMN loading and corresponding codes of bead samples  

 

 

 

4.3 Results and discussion 

4.3.1 Solubility and stability profile of clarithromycin 

CMN is a weak base containing one ionisable group with a pKa of 8.99; therefore, it exists in 

an ionized state in an acidic and neutral pH environment.  Solubility of CMN is pH 

dependent with a decrease in solubility with increasing pH and the highest solubility 

observed at the lowest pH measured – pH 1.2 (Figure 4-2). CMN is slightly water soluble and 

resists wetting with fluids with only a fraction of the potentially available surface area of 

CMN powder being in contact with fluids (Grubel and Cave, 1998). Stability of CMN at 

different pHs was assessed because of its known instability in acidic pH (Nakagawa et al., 

1992, Erah et al., 1997, Venkateswaramurthy et al., 2012) and non-distinguishing techniques 

may underestimate release (Rajinikanth and Mishra, 2008) (Table 4-2) (Figure 4-3). It has 

been reported that decomposition of the CMN molecule occurs via cleavage of the neutral 

cladinose sugar at low pH (Morimoto et al., 1990). The highest stability of CMN was 

 Code CMN (w/w) % 

C0  - 

C0.5 0.5 

C1 1 

C2  2 

C3 3 

C5 5 

C10 10 

C15 15 
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observed at pH 5 – 7, while it was least stable at the lowest pH studied which is pH 1.2. In 

buffer pH 1.2, there was ~ 94 % CMN degradation within 1 h while at pH 7, there was less 

than 0.5 % degradation within this same time interval. Therefore, at pH values ˂ 2, which 

easily occurs in the stomach, CMN will undergo rapid degradation, which may significantly 

affect the antimicrobial activity of the drug. These results correspond to results obtained by 

other researchers (Nakagawa et al., 1992, Erah et al., 1997, Chun et al., 2005). 

 

 

Table 4-2: Degradation constants of CMN at different pHs 

pH Degradation rate constant (k) (h
-1

) Half life (t1/2) (h) 

1.2 1.45 ± 0.13 0.47 ± 0.04 

2.0 0.45 ± 0.01 1.53 ± 0.01 

3.0 0.055 ± 0.007 12.65 ± 1.72 

4.0 0.0030 ± 0.0006 > 100 

5.0 0.0028 ± 0.0003 > 100 
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Figure 4-2: pH solubility profile of CMN at 37 °C 

    

Figure 4-3: pH stability profile of CMN at 37 °C 
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4.3.2 Characterisation of clarithromycin beads  

4.3.2.1 Morphology and structure of clarithromycin beads 

Similarly, to MET-loaded beads, the CMN beads were spherical and porous as seen in Figure 

4-4. The major difference between the internal structures of both MET and CMN – loaded 

beads is obvious from the XµMT images. XµMT images of MET beads (Figure 3-20d) 

showed MET particles concentrated in a portion of the bead, however this phenomenon was 

not observed with the CMN beads because the CMN beads showed a more even distribution 

of the drug particles throughout the beads (Figure 4-4b). This is probably due to the finer 

particle sizes of the CMN particles, which were better dispersed in the SAL solution and did 

not have a tendency to sediment when left to stand like MET in SAL solution. The very 

distinct, thick, layered internal structure of the beads also gave an indication of the viscosity 

of the CMN-SAL solution, which appeared more viscous than the corresponding MET-SAL 

solution, hence the thin layers observed in the internal structure of MET beads (Figure 3-

20d). 

 



 187 

 

 

   

 

 

Figure 4-4: A) cross section of CMN loaded bead; XµMT images of B) internal surface and C) external surface 

of C10  (C10 beads loaded with 10 %w/w CMN). 
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4.3.2.2  Physical properties of clarithromycin beads  

The beads had a whitish colour with the size, weight and density of the beads increasing with 

an increase in drug-polymer ratio (p < 0.05) as expected, however there was no significant 

difference in these properties when loaded either with MET or CMN (p > 0.05) (Table 4-3). 

The porosity, moisture content and calcium content were also similar to those observed in 

MET beads (p > 0.05).  

 

 

Table 4-3: Physical properties of CMN - loaded beads 

Code Diameter 

(mm) 

True density 

(g/cm
3
) 

Weight 

(g) 

(n=100) 

Bulk 

density 

(g/cm
3
) 

Porosity 

(%) 

 

Ca
2+

content 

(mg/10mg 

bead) 

C0.5 1.94 ± 0.3 0.49 ± 0.04 0.06 ± 0.01 0.11 ± 0.02 79.59 0.50 ± 0.07 

C1 2.09 ± 0.5 0.61 ± 0.03 0.07 ± 0.01 0.12 ± 0.03 80.33 0.51 ± 0.05 

C2 2.21 ± 0.4 0.63  ± 0.06 0.11 ± 0.01 0.13 ± 0.03 79.36 0.41 ± 0.06 

C3 2.32 ± 0.3 0.68 ± 0.08 0.13 ± 0.01 0.15 ± 0.02 77.94 0.38 ± 0.08 

C5 2.49 ± 0.5 0.95 ± 0.06 0.16 ± 0.01 0.18 ± 0.02 81.05 0.36 ± 0.04 

C10 2.75  ± 0.4 1.39 ± 0.04 0.27 ± 0.01 0.24 ± 0.04 82.73 0.23 ± 0.05 

C15 2.93 ±  0.5 1.57 ± 0.05 0.33 ± 0.01 0.24 ± 0.01 82.80 0.21 ± 0.04 
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4.3.2.3 Drug content and DEE of clarithromycin beads 

The drug content and DEE were high for all the beads (Figure 4-5) with the DEE being > 

85 % in all cases, probably due to the limited solubility (the solubility of CMN in CaCl2 was 

determined to be ~ 2.1 ± 0.82 mg/ml), which minimises drug loss/ leaching during drug 

encapsulation (Wagner, 1977, Nimase and Vidyasagar, 2010). The drug-polymer ratio had no 

significant effect on DEE (p > 0.05), but did on drug content (p < 0.05). This was different 

from the observation in MET loaded beads with increasing DEE on increasing drug-polymer 

ratio. LSC was minimal < 5 % at all drug-polymer ratios, indicating there was a low amount 

of drug present at or near the bead surface after encapsulation and that the drug was well 

encapsulated in the bead matrix. LSC values were lower than the MET beads (the lowest 

being ~ 22 %) at the higher drug-polymer ratio, as more MET was lost due to its higher 

solubility in CaCl2 solution (9.2 ± 0.1 mgml
-1 

at 37 °C). The drug contents of both MET and 

CMN beads were significantly different (p < 0.05) at low drug-polymer ratios as observed in 

C0.5 – C3 and high drug loading in C15 versus M0.5 – M3 and M15. There was no difference 

observed in DEE of C5 and C10 when compared with equivalent MET beads (p > 0.05). This 

was because at low drug-polymer ratios (C0.5 – C3 / M0.5 - M3), the difference in solubilities 

had a high impact on drug entrapment/ drug content, but at intermediate drug-polymer ratios 

(C5 - C10/ M5 - M10) due to saturation of the gelation medium with MET leading to lower drug 

loss into the gelation medium, the difference in solubility had very little impact on drug 

entrrapment/content. At high drug-polymer ratio (C15 and M15), the difference in drug 

entrapment/content might then be due to solubility differences and drug particle packing in 

the beads. The high DEE observed have been previously reported by other researchers 

(Gattani et al., 2010, Nimase and Vidyasagar, 2010, Raj and Pillai, 2013, Rajinikanth and 

Mishra, 2009). Gattani et al (2010) reported DEE of ~ 82 – 89 % of CMN loaded beads, 

which is similar to the DEE achieved in this study. This high DEE is common in BCS Class 

II drugs entrappped in alginate beads with over 70 % DEE observed for diclofenac beads 
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(Goudanavar et al., 2010) and over 80 % DEE reported for diclofenac alginate microspheres 

(Maiti et al., 2012). 

 

Figure 4-5: Drug content and DEE of CMN beads. 

 

4.3.2.4 Differential scanning calorimetry of clarithromycin beads  

CMN showed a single, sharp endothermic peak with an average onset at  227.5 ± 0.32 °C  

(n=3), which corresponds to the documented melting point of the CMN polymorph form II 

(Gómez-Burgaz et al., 2009, Tozuka et al., 2002), this was followed by the onset of 

degradation of the drug at ~ 280 °C (Sohn et al., 2000). The polymorphic form II of CMN 

has been reported to be the most stable form of the drug (Sohn et al., 2000). The physical 

mixture of CMN and SAL had a similar endothermic peak at 226.74 ± 0.78 °C (n=3) . The 

drug-loaded beads C5 and C10  exhibited a melting endotherm at 226.56 ± 0.89 °C (n=3)  and 

225.98 ± 0.93 °C (n=3), respectively (Figure 4-6) though the peaks were broader and had a 

lower intensity. This reduction in intensity and broader peak indicate that there was a little 
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molecular dispersion of the drug in the polymer with the drug still maintaining its 

crystallinity in the formulation. Similar results were obtained by other researchers (Novoa et 

al., 2005, Javadzadeh et al., 2008, Gattani et al., 2010). The absence of any significant shifts 

of the melting endothermic peaks of CMN showed the absence of solid-state interaction 

between drug and polymers after the cross-linking process over the whole drug/polymer ratio 

range.  

  

 

Figure 4-6: DSC thermograms of SAL, CMN, physical mixture of SAL and CMN, unloaded and CMN- loaded 

beads  
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4.3.2.5 Powder X-ray diffraction analysis of clarithromycin beads  

The diffractograms of the polymer and blank samples showed indistinct, clustered peaks 

reflecting the amorphous nature of the samples, which is common with polymers. CMN 

exhibited a pattern characteristic of a highly crystalline material with no amorphous 

component with peaks appearing at 2θ values of 8.52 ° / 9.57 °/ 10.94 ° / 11.55 °/ 12.35 °/ 

13.27 °/13.81 °/ 15.27 °/ 16.70 °/ 17.39 °/ 18.33 ° which are peaks attributed to the stable 

CMN form II (Liu and Riley, 1998, Inoue et al., 2007). The P-XRD pattern of the CMN 

loaded beads (Figure 4-7) showed the characteristic peaks (especially the peak at ~ 8.6 2θ 

(Tozuka et al., 2002)) observed in CMN, though there was a significant reduction in the 

intensities of the peaks as the proportion of polymer was high relative to the drug in the 

formulation. The presence of these peaks and the absence of any major peak position shift 

indicated that CMN maintained its crystallinity in the beads. This is similar to results for the 

MET-loaded beads.  
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Figure 4-7: P-XRD of SAL, CMN, unloaded and CMN - loaded beads. 

 

4.3.2.6 Fourier transform infrared (FT-IR) analysis of clarithromycin 

beads  

The IR spectrum of CMN showed the characteristic band of hydrogen bonds between –OH 

groups vibration at 3479.5 cm
-1

. Bands such as hydroxyl (OH) stretch at 2941.2 cm
-1

, C=O 

vibration of the lactone group at 1732.9 cm
-1

, strong absorption band at 1692 cm
-1

 belonging 

to the carbonyl ketone peak for N-CH3 stretching of aromatic ring at 1457.7 cm
-1

 and the 

aliphatic –CH stretching were also detected in CMN (Figure 4-8) (Akre et al., 2012, 

Venkateswaramurthy et al., 2012). Similar peaks at 1732.3 cm
-1

 (lactone carbonyl), 1692.6 
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cm
-1

 (ketone carbonyl), 3422.1 cm
-1

 (hydrogen bonding between OH Groups), and 1379.9 

cm
-1

 (CH2), were observed in CMN loaded beads indicating that the encapsulation process 

did not cause any alteration of the drug. There was however slight broadening and reduction 

in intensity of these peaks as a result of the relative proportion of CMN to the polymer in the 

beads. This result confirms the results obtained from both DSC and P-XRD analysis 

indicating the stability of the drug in the bead matrix, with no drug – polymer interactions 

and the drug maintaining its crystalline nature in the beads as observed in MET beads. Other 

researchers also observed this (Gattani et al., 2010, Raj and Pillai, 2013), where it was 

reported that encapsulation of CMN did not alter the crystallinity of the encapsulated drug. 

 

 

4.3.2.7  In vitro buoyancy of clarithromycin beads  

The beads floated immediately on contact with the medium with a lag time of ˂ 3 minutes for 

all the formulations. The beads failed the buoyancy test because, after the first hour, between 

20 – 65 % of the beads sank and at subsequent time intervals, the proportion of beads sinking 

continued to increase. After a 12 hour period, more than 35 - 70 % of all the bead 

formulations sank and after 24 hours, the percentage of beads floating was just between 10 

and  25 %  (Table 4-4). The floating behaviour of CMN beads was similar to those observed 

with the MET loaded beads (p ˃ 0.05) and was also similar to reports by other researchers 

(Rajinikanth and Mishra, 2009, Gattani et al., 2010, Patel et al., 2014).  Gattani et al (2010) 

reported 0 % buoyancy with CMN loaded beads exposed to 0.1M HCl at 37 ºC for 10 h.   
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Table 4-4:  Floating profile of unloaded and CMN - loaded beads 

Sample  Lag time (min)  %Floating (1h) % Floating (12h) % Floating (24h)  

M0 < 3 70 ± 10 40 ± 5 20 ± 5 

M0.5 < 3 75 ± 5 50 ± 15 15 ± 5 

M1 < 3 70 ± 5 40 ± 0 15 ± 5 

M2 < 3 60 ± 10 40 ± 5 20 ± 5 

M3 < 3 55 ± 10 55 ± 10 15 ± 5 

M5 < 3 65 ± 5 40 ± 5 15 ± 5 

M10 < 3 65 ± 10 35 ± 5 20 ± 5 

M15 < 3 50 ± 15 40 ± 10 20 ± 5 
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Figure 4-8: FTIR scans of a) C0 beads; b) pure CMN and c) C5 beads 
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4.3.2.8 Swelling profile of clarithromycin beads 

Water uptake into the beads was similar to that observed with MET-loaded beads, with 

minimal swelling observed in the beads in acidic media with about 150 - 200 % weight 

change (Figure 4-9). However, in PBS maximal swelling was observed with an average of 

2000 % weight change at the maximum and the beads started to disintegrate at times beyond 

150 minutes and complete dissolution was observed at ~ 240 minutes. The reasons for the 

major differences in swelling in both media has been fully discussed in section 3.3.3.8. 

 

 

Figure 4-9: Swelling profile of CMN - loaded beads in acidic and alkaline media. 
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4.3.2.9 In vitro drug release of clarithromycin beads  

Drug release was determined in acidic media (pH 2.0 and 4.0) and in PBS (pH 7.4).  

 

4.3.2.9.1 Release of clarithromycin beads in acidic medium - 0.1N HCl 

(pH 2.0) 

CMN release from beads increased initially with time but then gradually appeared to fall 

(Figure 4-10). This apparent decrease was due to the degradation of CMN at this pH. At the 

start of the drug release studies, the release rate dominated over the degradation rate of CMN, 

however after about an average of 60 - 90 minutes (C2 - C15), and about 30 minutes (C0.5 – 

C1), the degradation rate dominated (Table 4-5). CMN release was corrected with Equation 4-

2 to determine the actual amount released and the uncorrected and corrected data at pH 2.0 

are both presented in Figure 4-10 and Figure 4-11a respectively. Overall, there was an initial 

burst release with these beads as a result of surface – associated drug followed by a slower 

release. The burst release observed was more pronounced at low drug-polymer ratios than at 

high drug - polymer ratios. As observed from Figure 4-11a, drug – polymer ratio had an 

effect on drug release across the range of formulations. Formulations with a high drug – 

polymer ratio (C5, C10, C15) exhibited a more controlled drug release than formulations with a 

relatively lower drug – polymer ratio (C0.5, C1, C2). This difference in release profiles was 

also obvious in the f2 values of C1 and C5 (f2 = 36.7); C2 and C10 (f2 = 36.1) and  C3 and C15 (f2 

= 38.2). Therefore, the higher the drug content of the beads, the slower its release rate from 

the bead. This is similar to the observation in the MET beads. CMN release at pH 2.0 (Table 

4-5) occurred over a period of 6 - 8 h with a larger proportion of the release within the first 3 

h.  Gattani et al (2010) reported a slightly lower duration of CMN release from alginate beads 

at 5 h. CMN release from beads was relatively slower than that observed with MET beads, 

this was probably mainly due to the lower solubility of the CMN and, to a limited extent, the 

difference in pH of the dissolution media. The lower solubility of the drug reduces the 
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diffusion rate of the drug out of the beads therefore, CMN release may be due more to the 

porosity of the beads than the solubility of CMN at this pH. At pH 4.0, CMN release was 

slower due to the low solubility of CMN at this pH (f2 = 41- 53). There was no significant 

burst release from the beads at this pH and release of drug was complete between 6 - 10 h. 

The effect of drug – polymer ratio on drug release was also obvious at this pH with the beads 

containing most drug (C15), having the slowest release profile. 

 

 

 

Figure 4-10: Release profile of CMN from beads at pH 2.0 without correction for degradation 
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Figure 4-11: Release profile of CMN beads at A) pH 2.0 corrected for degradation and B) pH 4.0 corrected for 

degradation   
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Table 4-5: Release parameters of CMN loaded beads in acidic media 

 

Beads 

  

t25%(min) 

           

t50%(min) 

                 

t75% (min) 

  

t25%(min) 

           

t50%(min) 

                 

t75% (min) 

 pH 2.0 pH 4.0 

C0.5 5 - 10 10 - 20 30 - 60 < 5 20 - 30 60 - 90 

C1 5 - 10 10 - 20 30 - 60 10 - 20 20 - 30 60 - 90 

C2 5 - 10 20 - 30 60  10 - 20 30 120 -180 

C3 5 - 10 30 - 60 60 - 90 20 30 - 60 180 - 240 

C5 5 - 10 30 - 60 90 - 120 20 - 30 90 240 - 300 

C10 5 - 10 60 - 90 120 - 180 30 120 - 180 300 - 360 

C15 10 - 20 60 - 90 120 - 180 30-60 300 - 360 360 

 

 

4.3.2.9.2 Release kinetics of claritromycin from beads in acidic medium 

(pH 2.0) 

The in vitro release data were in favour of Higuchi-diffusion kinetics (R
2 

= 0.98 – 0.99), 

demonstating that rate of drug release is dependent on the rate of drug diffusion. Overall, n < 

0.43, indicating Fickian diffusion (Table 4-6) for all the samples except C2, (n = 0.69). These 

release kinetic results are similar to those observed with the MET beads, which further 

confirms that drug release from alginate beads is mainly diffusion controlled as already 

reported by other researchers (Murata et al., 2000, Rajinikanth and Mishra, 2008, Bera et al., 

2009, Jahan et al., 2012). 
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Table 4-6: Release kinetics of CMN beads in 0.1N HCl (pH 2.0) 

Beads Zero order 1st order Higuchi  Hixson-Crowell       Peppas 

 K0(min
-1

) R
2
 K1(min

-1
) R

2
 K(min

1/2
) R

2
 k R

2
 n R

2
 

C2 2.072 0.993 0.016 0.992 16.123 0.997 0.048 0.996 0.693 0.939 

C3 1.691 0.928 0.013 0.952 13.295 0.993 0.037 0.949 0.389 0.912 

C5 0.399 0.965 0.004 0.927 5.196 0.994 0.012 0.903 0.328 0.988 

C10 0.361 0.963 0.003 0.931 4.696 0.995 0.009 0.912 0.340 0.989 

C15 0.358 0.981 0.003 0.979 5.101 0.995 0.008 0.971 0.395 0.971 

 

 

 

4.3.2.9.3  Release of clarithromycin from beads in alkaline medium (pH 

7.4) 

CMN release was slow at the initial stages when compared with release in acidic medium, 

and this was probably due to the lower solubility of CMN. Subsequently at later stages as 

observed in Figure 4-12 and Table 4-7, drug release was faster because of the degradation of 

the polymer matrix. After ~ 2 h, the beads started to disintegrate and complete release was 

achieved at ~ 3h. This further supports the results obtained from the swelling studies (Figure 

4-8), where degradation of the beads was observed at ~ 200 min. The release kinetics of 

CMN from the beads in PBS followed Higuchi kinetics (R
2
 = 0.98 – 0.99) indicating drug 

release was diffusion controlled, however most of the other models also showed a high 

corelation coefficient ranging from 0.97 - 0.99 (Table 4-8).  The „n‟ value for most of the 

beads was > 0.85 indicating case-II transport, which involves polymer dissolution and 
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polymeric chain enlargement or relaxation, which is in agreement with the bead dissolution. 

For the other beads, n < 0.85, which is an indication of non-Fickian release, which involves 

both diffusion and swelling controlled drug release. In comparison, CMN release in PBS was 

more dependent on swelling and subsequent dissolution than MET release where release was 

more dependent on diffusion and swollen beads due to the initial slow release of CMN 

followed by a subsequent fast release due to beads swelling and dissolution. 

 

 

 

 

Figure 4-12: Release of CMN in PBS (pH 7.4) 
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Table 4-7: Release parameters of CMN-loaded beads in PBS 

 

Beads 

 

 t25%(min) 

        

   t50%(min) 

          

 t75% (min) 

C0.5       10 40 -50  60 - 80 

C1 10 -15 40 - 50 60 - 80 

C2 10 -15 40 - 50 60 - 80 

C3 15 -20 40 - 50 60 - 80 

C5 20 - 30 50 - 60 80 -100 

C10 20 - 30 50 - 60 80 -100 

C15 30 60 100 

 

 

 

Table 4-8: Release kinetics of beads in PBS  

Beads Zero order 1st order Higuchi  Hixson-Crowell       Peppas 

 K0(min
-1

) R
2
 K1(min

-1
) R

2
 K(min

1/2
) R

2
 k R

2
 n R

2
 

C2 0.859 0.985 0.006 0.986 8.156 0.987 0.018 0.981 0.881 0.995 

C3 0.898 0.981 0.006 0.984 9.137 0.985 0.019 0.977 0.751 0.993 

C5 0.889 0.993 0.006 0.983 9.001 0.995 0.018 0.990 0.836 0.995 

C10 0.886 0.989 0.005 0.988 8.225 0.994 0.018 0.985 0.961 0.989 

C15 0.797 0.993 0.006 0.969 8.846 0.997 0.017 0.981 0.933 0.992 
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4.3.2.9.4 In vitro release of clarithromycin from beads in mucin 

suspension 

The saturated CMN solution had a concentration of 12.8 mgml
-1

 at pH 2.0, and this was 

expected due to the low solubility of CMN. This concentration provides the necessary 

concentration gradient required for drug diffusion into the receiver cell (Table 4-9). Hence, a 

combination of this low concentration gradient and low solubility was responsible for the 

relatively lower flux of the saturated solution of CMN compared to that of MET under the 

same conditions. Encapsulation of CMN in the beads reduced its flux by ~ 43 % when 

compared with that of the saturated drug solution. The presence of mucin restricted the 

movement of drug as the CMN flux was ~ 40 % lower than the flux observed when CMN 

beads were immersed in 0.1N HCl. In addition, drug flux into PBS was ~ 9 % lower than 

what was observed in 0.1N HCl. The retardation of CMN permeation by mucin was also 

reported Grubel and Cave (1998). Lag times were evident for diffusion through mucin into 

the acidic media (~ 20 min) but were more pronounced at higher pH (~ 50 min), a likely 

consequence of the reduced solubility of CMN, but not significantly higher than the lag times 

observed for MET beads (Figure 4-13). These results did not show any form of drug binding 

to the mucin, with almost complete release observed from C10, and these results are similar to 

the release profiles observed from the dissolution studies. The penetration of an antibiotic 

through the mucus network is reported to be dependent on factors such as the drug charge, 

hydration radius of the molecule and its ability to form hydrogen bonds with antibiotics of 

small molecular size and those with high mucus binding showing the poorest mucus 

penetration.  
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Figure 4-13: Franz cell diffusion studies with a) saturated CMN solution / 0.1N HCl receiver cell b) C10 in 0.1N 

HCl / 0.1N HCl (c) C10 in 3 % mucin (pH 2.0) / 0.1N HCl (d) C10 in 3 % mucin / PBS (pH 7.4) 

 

 

Table 4-9: Franz cell diffusion studies of beads in mucin dispersion 

Donor cell Receiver cell Sample Flux (mgcm
-2

h
-1

) Lag time (h) 

Saturated solution 0.1N HCl (pH 2.0) - 1.02 0 

0.1N HCl (pH 2.0) 0.1N HCl (pH 2.0) C10 0.59 0.08 

3 % Mucin (pH 2.0) 0.1N HCl (pH 2.0) C10 0.35 0.33 

3 % Mucin (PBS) PBS C10 0.32 0.83 
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4.4  Conclusion  

The poorly water-soluble drug, CMN, was adequately loaded onto calcium alginate beads. 

Adequate drug loadings were achieved with CMN, even at low drug-polymer ratios, which 

was a major problem when loading a water-soluble drug such as MET in the beads. High 

DEE ˃ 85 % was achieved in the beads across all drug-polymer ratios and this was enhanced 

due to the low solubility of CMN, which minimises the loss of CMN into the cross-linking 

solution. Solid state chracterisation showed no polymer-drug interaction and stability of 

CMN in the beads with the drug maintaining its crystallinity in the beads Drug release was 

complete within 6 – 8 h in acidic pH and in PBS; drug release was complete within 3h. Since 

complete drug, release was achieved in less than 12 h in acidic pH and there was limited 

buoyancy of the beads (˂ 24 h); these properties need to be modified to fit the controlled 

release profile expected of a gastro-retentive formulation. Therefore, in order to improve the 

buoyancy of these beads and control CMN release from the beads, there is a need for 

modification of the formulation.  
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Chapter 5 MODIFICATION OF ALGINATE 

BEADS TO IMPROVE BUOYANCY AND DRUG 

RELEASE  

5.1 Chapter overview 

In the previous chapters, two antibiotics used in the treatment of H. pylori infection were 

encapsulated into calcium alginate beads including both a water-soluble drug (MET) and a 

poorly soluble drug (CMN). The beads prepared especially MET beads exhibited fast release 

in the acidic pH of the stomach with drug release from both MET and CMN complete 

generally in less than 10 h. In addition, all the beads exhibited limited buoyancy with a small 

proportion of the beads floating for significantly less than 24 h. The aim of this study was to 

produce alginate beads that would exhibit high DEE, high drug content, and adequate floating 

characteristics with 100 % of the beads floating for ~ 24 h and with a controlled drug release 

to extend the lifetime of the drug delivery device to about ~ 12 h. This was attempted by 

including oil in the bead formulations. Olive oil (OO) was chosen as the preferred oil due to 

its inherent anti-H. pylori activity (Romero et al., 2007, Castro et al., 2012).  Romero et al 

(2007) examined the effect of OO on eight different H. pylori isolates, including three 

different antibiotic-resistant strains, and observed the potent anti-H. pylori activity of OO 

against all the strains tested. In addition to the reported antibacterial activity, the active 
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phenolic compounds in OO can remain stable for several hours under harsh acidic 

environments of the stomach (Murali et al., 2014). 

 

5.2 Materials and methods  

Olive oil (density = 0.91 g/cm
3
) was obtained from Sigma UK and all other materials were 

sourced as previously stated. 

 

5.2.1 Method for preparation of oil-modified beads  

The required amount of SAL was dissolved in deionised water. Upon dissolution, 10 g of 

sodium alginate solution was weighed and then homogenised for 10 minutes with varying 

concentrations of olive oil (OO) (1 – 15 %w/w) and drug relative to the SAL concentration 

(Murata et al., 2000). A range of formulation variables was explored as detailed in Table 5-1 

using the method described in Section 3.2.2. 
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Table 5-1: Formulation table for oil-modified beads 

 

Code MET/CMN (w/w) % Olive oil (w/w) (%)  

S1 (MET/CMN) 3 1 

S2 (MET/CMN) 3 3 

S3 (MET/CMN) 3 5 

S4 (MET/CMN) 3 10 

S5 (MET/CMN) 3 15 

S6 (MET/CMN) 5 1 

S7 (MET/CMN) 5 3 

S8 (MET/CMN) 5 5 

S9 (MET/CMN) 5 10 

S10 (MET/CMN) 5 15 

S11 (MET/CMN) 10 1 

S12 (MET/CMN) 10 3 

S13 (MET/CMN) 10 5 

S14 (MET/CMN) 10 10 

S15 (MET/CMN) 10 15 

 

 

 

5.3 Results and discussion  

During the homogenization process, a fine dispersion of the oil and water phase was 

obtained. The homogenisation time was varied and an optimised homogenisation speed and 

duration (8,000 rpm for 10 minutes) was determined to obtain a stable oil in water emulsion. 

The homogenisation stage is very important, as without this, the oil and alginate phases will 

separate. Homogenisation ensures the disruption of the interface between the two phases, 

allowing them to blend. The emulsifying properties of  SAL, through its surface-active ability 
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to reduce the interfacial tension between an oil and water phase, also contribute to the 

stability of the emulsion (Choudhury and Kar, 2005). There is generally no limitation on the 

type of oil that can be used in this type of formulation; however, the only requirement is that 

the oil should have a lower density than that of water. OO and corn oil have been reported to 

not leak during the preparation of alginate gels (Kawashima and Murata, 2001). The shape of 

the beads produced with the inclusion of OO was well rounded. With increasing 

concentrations of OO in the formulation, the viscosity of the emulsion increased and at 

concentrations greater than 15 %w/w OO, the emulsion formed became very viscous and 

quite difficult to pump through the needle into the gelling medium. In addition, the beads 

formed using high oil content were less spherical, with a tail at one end, Figure 3-9. 

Therefore, the working range of OO used in this study was between 1 - 15 %w/w. The beads 

have a yellowish colour, acquiring the colour of the oil while the unmodified beads were 

whiter.  

 

5.3.1 Morphology and structure of oil - modified beads  

Prominent features of these beads are the large pores visible within the core of the beads and 

the layered structure unique to these beads.  These pores appear larger than those observed 

for the unmodified beads (Figure 5-1) with sizes ˃ 100 µm. The uneven size of the pores 

could be due to the coalescence of the oil droplets during the gelling process.  

 

5.3.2 Physical properties of the of oil - modified beads 

The size, weight and true densities of the beads  increased with an increase in concentration 

of oil in the formulations  (p< 0.05). There was an increase of ~ 12 % in size with S9 MET  
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beads and ~ 10 %  with S9CMN compared with the non oil-modified beads. The weights of the 

beads increased by ~  44 % , 83 % in S13MET and S14MET beads respectively relative to the 

non oil-modified beads. These increases in size and weight of the beads due to the presence 

of OO have been reported by other researchers (Choudhury and Kar, 2005, Jaiswal et al., 

2009, Singhal et al., 2010). The bulk densities of the beads was not affected significantly by 

the addition of oil as detailed in Table 5-2.  

 

 

Table 5-2: Physical properties of CMN - loaded beads 

Code  Diameter (mm) True density (g/cm
3
) Weight (g) 

(n=100 ) 

Bulk density 

(g/cm
3
) 

Porosity (%) 

 

S8MET 2.65 ± 0.3 1.12 ± 0.01 0.24 ±0.01 0.19 ± 0.02 89.5 

S9MET 2.75 ± 0.2 1.23 ± 0.01 0.33 ± 0.01 0.19 ± 0.01 84.5 

S10MET 2.89 ± 0.3 1.27 ± 0.01 0.35 ± 0.01 0.21 ± 0.03 83.5 

S13MET 2.74 ± 0.1 1.43 ± 0.01 0.33 ± 0.01 0.27 ± 0.02 81.1 

S14MET 2.89 ± 0.1 1.51 ± 0.01 0.42 ± 0.01 0.28 ± 0.02 81.5 

S15MET 2.97  ± 0.2 1.53 ± 0.01 0.45 ± 0.01 0.29 ± 0.04 81.1 

S8CMN 2.68 ±  0.3 1.16 ± 0.01 0.27 ± 0.01 0.21 ± 0.01 81.9 

S9CMN 2.73 ± 0.4 1.25 ± 0.01 0.36 ± 0.01 0.22 ± 0.01 82.4 

S10CMN 2.88 ± 0.3 1.28 ± 0.01 0.39 ± 0.01 0.22 ± 0.02 82.8 

S13CMN 2.78 ± 0.4 1.46 ± 0.01 0.37 ± 0.01 0.28 ± 0.01 80.8 

S14CMN 2.91 ± 0.2 1.50 ± 0.01 0.47 ± 0.01 0.29 ± 0.02 80.6 

S15CMN 2.95  ± 0.4 1.56 ± 0.01 0.49 ± 0.01 0.29 ± 0.01 81.4 
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Figure 5-1: SEM images of cross-sectional surface of A) S14MET; B) S14CMN and C) XµMT image of S14MET 

(S14MET- beads  loaded with 10 % MET and 10 % OO) 
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5.3.3  Drug content and DEE of oil - modified beads 

The inclusion of OO enhanced the DEE of MET (p ˂ 0.05) but did not have any effect on the 

DEE of CMN in the beads. The DEE of the MET beads increased by 15.32 ± 1.29 % on 

addition of 15 %w/w OO (Figure 5-2a) for all the different drug-polymer ratios, while the 

inclusion of the same amount of oil only enhanced the DEE of CMN in the beads by 5.92 ± 

1.42 % (Figure 5-2b). The addition of oil produced an emulsion, which was slightly more 

viscous than SAL, thereby entrapping more drug in the bead. In addition, the entrapped oil 

droplets restricted drug diffusion back into the cross-linking solution and prevented loss 

during washing of the beads after curing. This result corresponds with the higher DEE 

observed on inclusion of oil in bead formulations (Murata et al., 2000, Bera et al., 2009). 

Some researchers have reported that inclusion of oil led to a reduction in the DEE of the 

beads because of the oil displacing the drug from the beads, thereby occupying most of the 

volume of the beads (Jaiswal et al, 2009). This suggests that there is an optimal volume of oil 

to be used in the beads and an ideal oil concentration has to be determined. 

 

5.3.4 Differential scanning calorimetry of oil-modified beads  

The S14MET and the S14CMN beads showed a single melting endotherm at  156.23 ± 0.57 °C 

(n=3) (Figure 5-3) and 225.17 ± 0.94 °C (n=3) (Figure 5-4) respectively with the absence of 

any extra peaks on the thermograms. The melting endotherms in the oil-modified beads was 

slightly lower than that observed in unmodified beads especially MET beads (MET (164.13 ± 

0.81°C) and CMN (226.56 ± 0.89 °C). Also, they were lower than those observed in the pure 

samples of MET (163.15 ± 0.52°C) and (CMN) 227.5 ± 0.32 °C. This was probably due to 

the proportion of oil present in the formulation. These findings indicate that there was no 

interaction between the drug and oil during the process of bead formation and both drugs 

were stable in the formulation. Other researchers have reported similar results (Satishbabu et 

al., 2010, Ahmed et al., 2013). 
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Figure 5-2: Drug content and DEE of A) MET and B) CMN oil-modified beads 
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Figure 5-3: DSC thermograms of physical mixture of MET and SAL; pure MET; non oil modified and oil 

modified beads.   

 

Figure 5-4: DSC thermograms of DSC thermograms of physical mixture of CMN and SAL; pure CMN; non oil 

modified and oil modified  
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5.3.5 Fourier transform infrared (FT-IR) analysis of oil-modified beads  

The oil-modified beads showed characteristic peaks similar to those of the unmodified beads 

for both MET and CMN as shown in Figures 5-5 and 5-6, even though the peaks showed 

lower intensities compared to the pure drug, indicating there was no chemical interaction 

between the oil and/or the drugs or the polymer.  

 

5.3.6 In vitro buoyancy and buoyancy profile of oil-modified beads  

The addition of OO improved the buoyancy of the beads with an increasing concentration of 

the oil leading to an increase in the in vitro buoyancy (p < 0.05) over the period of analysis as 

shown in Figure 5-7 and Figure 5-8. The beads prepared at a concentration < 10 %w/w OO 

failed the test as a proportion of the beads sank during the analysis. However, there was an 

increase in the proportion of floating beads with an increase in concentration of oil added. 

The beads loaded with ≥ 10 %w/w OO provided the best buoyancy profiles as they remained 

buoyant at all drug-polymer ratios over all the different time intervals. The oil entrapped in 

the bead acts as a floating aid (Murata et al., 2000) due to its hydrophobicity thereby 

prolonging the duration of floating. The oil acts as a dispersed phase to prepare a stable 

emulsion and creates multiple tiny pockets in the alginate matrix (as shown in the SEM and 

XµMT images (Figure 5-1)) for better buoyancy. For formulations containing ≥ 10 %w/w 

olive oil, the onset of floating was within 1 minute, compared to 3 minutes for equivalent 

formulations without oil. The lag time remained unchanged for the beads containing < 

5 %w/w oil, but as the concentration of oil increased, the lag time reduced. A short lag time is 

important as this minimises the occurrence of premature evacuation of the beads from the 

stomach (Streubel et al., 2003a). 
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Figure 5-5: FTIR scans of unmodified and oil-modified MET beads 
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Figure 5-6: Comparison FTIR scans of unmodified and oil-modified CMN beads 
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A few studies have been able to achieve adequate buoyancy of alginate beads by 

incorporating concentrations of oil as low as 0.5 % in the formulation (Malviya et al., 2013), 

however, in this study these concentrations had no impact. However, several studies have 

used concentrations as high as 15 – 30 %w/w to achieve buoyancy (Wu et al., 1997, Morgner 

et al., 2000, Ma et al., 2008, Strubing et al., 2008, Khan and Bajpai, 2011). Optimal 

concentrations of oil in this study were 10 - 15 % with higher levels potentially negatively 

affecting the DEE and the mechanical strength of the beads. In addition, oil leakage could 

occur from the beads at high concentrations after drying. The fact that the beads used in this 

study were freeze-dried rather than air-dried or oven-dried as in other studies gave the beads 

additional buoyancy, hence the requirement of a lower concentration of oil.  
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Figure 5-7: Buoyancy profile of oil modified metronidazole loaded beads  

 

0

10

20

30

40

50

60

70

80

90

100

M
3

S
1
M

E
T

S
2
M

E
T

S
3
M

E
T

S
4
M

E
T

S
5
M

E
T

M
5

S
6
M

E
T

S
7
M

E
T

S
8
M

E
T

S
9
M

E
T

S
1
0

M
E

T

M
1

0

S
1
1

M
E

T

S
1
2

M
E

T

S
1
3

M
E

T

S
1
4

M
E

T

S
1
5

M
E

T

%
 f

lo
a
ti

n
g
 b

ea
d

s 
 

1h

6h

12h

24h



222 

 

 

 

 

Figure 5-8: Buoyancy profile of oil modified clarithromycin loaded beads  

 

 

5.3.7  Swelling profile of oil-modified beads  

The oil-modified beads reached their maximum sizes after 100 - 150 minutes in both acidic 
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content.  Increasing oil content did not significantly affect the swelling ratio (p > 0.05) but 

the presence of oil had a significant effect on the swelling ratio when compared with 

unmodified beads (p < 0.05) (Figure 5-9). In PBS, there was a significant reduction in 

swelling ratio on addition of oil to the formulations with a reduction from about 2000 % 

(average swelling ratio of unmodified beads) to about 750 % (Figure 5-10). The oil serves as 

a barrier to the absorption of water and pores normally filled with water in the unmodified 

beads is assumed to be occupied by the oil, therefore limiting the volume of the beads 

available for water absorption and swelling in water. The observed reduction in swelling of 

oil modified beads has been reported by other researchers (Jaiswal et al., 2009, Patel et al., 

2011). The disintegration of the oil-modified beads started at approximately 180 - 210 

minutes, while for the unmodified beads the disintegration started at about 150 minutes and 

complete dissolution was between 300 - 360 minutes for oil-modified beads while the 

unmodified beads were completely dissolved at ~ 240 minutes. The oil probably delayed the 

uptake of water into the beads due to its hydrophobic nature and delayed the ionic exchange 

required for bead disintegration as previously discussed in section 3.3.3.8.  
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Figure 5-9: Swelling profile of oil-modified A) MET and B ) CMN beads in acidic media  
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Figure 5-10: Swelling profile of oil-modified A) MET and B ) CMN beads in PBS 

 

0

500

1000

1500

2000

2500

0 100 200 300 400

%
 w

e
ig

h
t 

ch
an

ge
  

Time (min) 

M5

S8MET

S9MET

S10MET

M10

S13MET

S14MET

S15MET

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400

%
 w

ei
gh

t 
ch

an
ge

  

Time (min) 

C5

S8CMN

S9CMN

S10CMN

C10

S13CMN

S14CMN

S15CMN

B 

A 



226 

 

 

 

5.3.8 In vitro drug release from oil-modified beads  

5.3.8.1 Release in acidic media  

Similarly, to unmodified beads, for both batches of oil-modified beads, there was a biphasic 

release pattern with an initial burst release followed by a slower release.   

 

5.3.8.1.1 Modified MET beads  

In acidic pH (pH 1.2), the inclusion of oil at low concentrations (< 10 %) in MET beads did 

not reduce the release rate of drug and at some time points drug release was even higher than 

the unmodified beads (60 >f2 >53) . However, at concentrations ˃ 10 % , there was a 

significant difference with the oil retarding drug release. In comparison, S10MET beads versus 

M5 beads had a f2 value of 30.3 and S15MET versus M10 had a f2 value of 38.1. Similar effects 

were observed at low drug / high oil loading, e.g. S4MET, release of MET was reduced 

significantly compared to the unmodified beads (40 >f2 >30). Complete drug release was 

achieved within 6 h which is an extension of lifetime of the formulation by 3 h compared 

with the unmodified beads (Figure 5-11a).   

 

5.3.8.1.2 Modified CMN beads  

Addition of oil at concentrations ≥ 10 % significantly reduced CMN release from the 

modified beads (Figure 5-11b) (42 >f2 >32). This is in contrast to results for MET beads, 

where more oil was required to modify MET release. This difference in effects might be due 

to the combined effect of a hydrophobic drug and oil, which led to the retardation of aqueous 

permeation and reduced swelling of the bead matrix. The limiting factors on drug release are 

dissolution and diffusion of drug passing through the oil pockets and the bead matrix. The oil 
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adds an additional diffusion barrier layer to the release of the drug from the beads. This 

barrier formed by the oil phase was more substantial for the CMN beads than the MET beads. 

The respective t50% and t75% (Table 5-3) all increasing with increasing concentrations of the 

olive oil (p < 0.05) (with the exception of modified beads loaded with 10 % CMN); the 

differences were more pronounced for CMN beads than MET beads.  

The presence of oil in the formulation at ˂ 10 % concentration did not significantly retard 

MET release but sustained release was achieved at concentrations > 10 %. However, due to 

the inherent low solubility of CMN, the presence of oil even at low concentrations retarded 

drug release (≥ 10 %). These release profiles concurred with the results obtained from Murata 

et al. (2010), where the oil-modified beads released their drug contents at a slower rate with 

only about 80 % of the drug released within 60 min when compared with the unmodified 

beads with complete release within 30 min.  
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Table 5-3: Release profiles of oil-modified beads in acidic and alkaline media 

Formulation  t25% t50% t75%  t25% t50% t75% 

Acidic media (0.1N HCl pH 1.2 (MET) and pH 2.0 (CMN)) PBS (pH 7.4) 

S8MET ˂ 5 5 -10 40  - 50 ˂ 5 10 -15 20  - 30 

S9MET ˂ 5 15 - 20 50 -60 ˂ 5 10 -15 20 -30 

S10MET 5-10 30 80 -100 5 10 -15 30 -40 

S13MET ˂ 5 5-10 40-50 5 15-20 40-50 

S14MET ˂ 5 15-20 50-60 5-10 20-30 40-50 

S15MET 5-10 20-30 80-100 5-10 20-30 40-50 

S8CMN 10 60-90 120-180 20-30 50-60 80-100 

S9CMN 10-20 90-120 180-240 30 50-60 80-100 

S10CMN 30-60 120 360 30-40 60 80-100 

S13CMN 10-20 60-90 240-300 20-30 50-60 80-100 

S14CMN 20-30 90 300-360 30 60 80-100 

S15CMN 30 90-120 360 30-40 60-80 100 
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Figure 5-11: Drug release of oil-modified A) MET beads at pH 1.2  and B) CMN beads at pH 2.0 
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5.3.8.2 Release kinetics of oil-modified beads in acidic media  

The release profiles of oil-modified beads were both in favour of Higuchi-diffusion kinetics 

(R
2 

= 0.94 – 0.99 (MET) and R
2 

= 0.95 – 0.98 (CMN) (Table 5-4). This is similar to the 

release kinetics observed with the unmodified beads, therefore it can be deduced that the oil 

did not change the drug release kinetics. For the modified MET beads,  the release exponent 

„n‟ was ≤ 0.43, indicating Fickian diffusion for the formulations containing up to 10 % OO, 

but at 15 % olive oil n > 0.43 indicating non-Fickian anomalous diffusion with drug release 

controlled by a combination of diffusion and polymer relaxation. For the modified CMN 

beads, the release exponent was 0.59 - 0.80, indicating non-Fickian anomalous diffusion 

(Table 5-5). There was a change in the release kinetics as the unmodified CMN beads 

exhibited Fickian diffusion while the oil-modified beads exhibited non-Fickian anomalous 

diffusion related to diffusion and swelling. Some oil-modified alginate formulations have 

been reported to exhibit a non-Fickian diffusion mechanism (Ahmed et al., 2013, Malakar et 

al., 2012).  
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            Table 5-4: Release kinetics of MET beads in both acidic and alkaline media 

 

 

pH 1.2 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(min-1) R2 K(%/min1/2) R2 k R2 n R2 

S8MET 2.84 0.74 0.02 0.84 14.51 0.94 0.06 0.81 0.23 0.99 

S9MET 1.79 0.79 0.01 0.89 11.21 0.98 0.04 0.87 0.37 0.99 

S10MET 1.02 0.83 0.01 0.92 8.48 0.98 0.02 0.89 0.43 0.98 

S13MET 3.85 0.85 0.03 0.92 15.84 0.98 0.08 0.90 0.36 0.99 

S14MET 1.81 0.80 0.01 0.90 11.26 0.98 0.04 0.87 0.36 0.99 

S15MET 1.10 0.87 0.01 0.95 8.99 0.99 0.02 0.93 0.45 0.99 

pH 7.4 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(min-1) R2 K(%/min1/2) R2 k R2 n R2 

S8MET 3.80 0.89 0.03 0.95 15.42 0.99 0.08 0.93 0.41 0.99 

S9MET 3.12 0.90 0.02 0.97 14.82 0.99 0.07 0.95 0.50 0.99 

S10MET 3.11 0.95 0.02 0.98 14.41 0.99 0.06 0.98 0.65 0.98 

S13MET 1.97 0.88 0.01 0.96 11.79 0.99 0.04 0.94 0.51 0.99 

S14MET 1.86 0.91 0.03 0.98 10.94 0.99 0.02 0.99 0.52 0.99 

S15MET 2.06 0.96 0.01 0.99 11.77 0.99 0.02 0.99 0.65 0.99 
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Figure 5-12: Drug release of oil-modified A) MET beads and B) CMN beads in PBS 
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5.3.8.3 Release of oil-modified beads in alkaline media  

In PBS, calcium alginate was converted to a soluble salt of sodium alginate and the matrix 

disintegrated, completely releasing the drug encapsulated in the beads similar to the 

unmodified beads. Drug release was due more to the swelling and erosion of the beads than 

diffusion of the drug especially at the initial stages with the CMN beads due to the low 

solubility of CMN. The beads started to disintegrate /dissolve in PBS at ~ 180 - 210 minutes 

leading to fast drug release and complete dissolution was between 300 - 360 minutes, a time 

at which drug release was already complete for MET ( ~ 180 minutes (Figure 5-12a)) and 

CMN (~ 240 minutes (Figure 5-12b)). At some time points, drug release from oil-modified 

beads was faster than unmodified beads and this may be because the oil slightly reduced the 

extent of cross-linking of the beads or the cross-linked calcium was displaced faster from the 

cross-linked beads. From these results, it can be deduced that the addition of olive oil in this 

formulation did not significantly affect the drug release in PBS, though the disintegration and 

complete dissolution of the beads in PBS were delayed compared with unmodified beads. 

Therefore, the presence of oil will not have any significant effect on its route of elimination 

from the body.  

 

5.3.8.4 Release kinetics of oil-modified beads in alkaline media   

Drug release from oil modified MET beads followed Higuchi-diffusion kinetics (R
2 

= 0.99). 

The release exponent „n‟ was mostly between 0.49 – 0.65 (Table 5-4), with an exception of 

S8MET beads with a value of 0.41. Therefore, the beads exhibited anomalous drug diffusion 

related to swelling and diffusion. The CMN beads followed mostly zero-order drug release, 

which is due to low solubility of drug in the media and the presence of oil thereby presenting 

a hydrophobic drug within a hydrophobic polymer matrix in a hydrophilic media. The „n‟ 

value was 1.01 - 1.30 (Table 5-5) indicating supercase II transport which means that the drug 



234 

 

 

 

release rate did not change over time and involves polymer relaxation and chain 

disentanglement (Harland et al., 1988). 

 

 

Table 5-5: Release kinetics of CMN beads in both acidic and alkaline media  

 

 

 

 

pH 2.0 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(min-1) R2 K(%/min1/2) R2 k R2 n R2 

S8CMN 0.571 0.817 0.004 0.903 6.238 0.949 0.012 0.877 0.632 0.829 

S9CMN 0.443 0.877 0.003 0.935 5.446 0.963 0.009 0.921 0.658 0.859 

S10CMN 0.344 0.960 0.002 0.984 4.864 0.987 0.007 0.981 0.678 0.983 

S13CMN 0.458 0.886 0.003 0.95 5.565 0.979 0.009 0.937 0.593 0.898 

S14CMN 0.4776 0.913 0.003 0.912 5.708 0.979 0.009 0.973 0.809 0.876 

S15CMN 0.355 0.919 0.002 0.966 5.157 0.985 0.007 0.954 0.674 0.968 

pH 7.4 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(min-1) R2 K(%/min1/2) R2 k R2 n R2 

S8CMN 0.891 0.993 0.002 0.981 7.418 0.931 0.006 0.969 1.012 0.984 

S9CMN 0.876 0.996 0.006 0.971 8.032 0.914 0.018 0.986 1.209 0.971 

S10C,MN 0.847 0.996 0.006 0.967 7.689 0.893 0.017 0.982 1.280 0.981 

S13CMN 0.903 0.992 0.005 0.987 7.299 0.915 0.017 0.992 1.261 0.965 

S14CMN 0.877 0.995 0.006 0.961 7.971 0.895 0.023 0.977 1.294 0.977 

S15CMN 0.847 0.994 0.006 0.957 7.629 0.877 0.023 0.978 1.301 0.984 
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5.4 Conclusion  

Beads loaded with either MET or CMN were modified with OO, which has been documented 

to possess some anti-H. pylori activity and used to impart buoyancy to the beads. Beads 

loaded with ≥ 10 %w/w oil, showed excellent buoyancy with 100 % buoyancy over a 24 h 

period. In addition to these favourable buoyancy properties, the beads had a high DEE with 

the DEE of MET increasing, though this had no effect on DEE of CMN. Drug release from 

the oil-modified MET beads containing ≤ 10 % OO was not as controlled as CMN and was 

similar to unmodified beads. The inclusion of OO at a concentration ˃ 10 %w/w and ≥ 10 

%w/w were required to retard MET and CMN release, respectively. However, too much oil 

(˃ 15 %w/w) in the formulation may negatively influence the mechanical strength of the 

beads and cause oil leakage from the beads on drying, even though the oil may retard drug 

release.  Therefore, formulations containing the right amount of oil (usually 10 - 15 %w/w 

oil) are likely to be buoyant for > 24 h, release drug in a controlled manner than the 

unmodified beads and may be retained long enough in the stomach for them to be able to 

release their drug contents before being removed from the stomach. Drug release from oil-

modified MET beads containing 15 %w/w OO was extended to ~ 6 h and CMN release was 

extended to ˃ 8 h.  
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Chapter 6 MODIFICATION OF ALGINATE 

BEADS TO CONTROL RELEASE AND 

MUCOADHESION PROFILE OF BEADS BY 

ADDITION OF CHITOSAN 

6.1 Chapter overview 

Despite the documented advantages of calcium alginate beads as drug delivery devices, there 

are a number of challenges to their application, which were observed in previous chapters. 

Such limitations include rapid drug release, low buoyancy in SGF and high solubility and 

instability in alkaline media (pH ˃ 6). Therefore, in this chapter, further modifications were 

carried out to improve the gastro-retentive and drug release properties of the drug loaded 

alginate beads. The beads produced have been previously optimised based on their buoyancy 

properties in Chapter 5; however, it is proposed that an additional layer of a mucoadhesive 

polymer on the bead surface may improve the beads’ gastro-retentive properties by 

converting the beads from a floating DDS into a floating-mucoadhesive DDS. This dual-

functioning formulation is expected to bind to stomach mucosal layers, in addition to having 

the ability to float on gastric contents. This helps to further improve the opportunities for 

retention of the beads in the stomach. A mucoadhesive polymer, chitosan, was used in this 

study to extend the mucoadhesiveness of the beads beyond the adhesiveness imparted by 
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SAL (Chen and Cyr, 1970, Smart, 1984, Richardson et al, 2004, Esposito et al, 1994). This 

additional mucoadhesive layer is also expected to help further control drug release from the 

bead surface by extending the path length for drug to pass through before drug release from 

the beads, reduce the porosity at the bead surface and reducing the proportion of loosely 

associated surface drug. These effects might help to reduce the burst release and increase the 

lifetime of the DDS. Dual functioning systems can be exploited to achieve synergy and help 

to overcome the drawbacks associated with each of the floating and mucoadhesive systems. 

The theory of combining two or more gastro-retentive techniques has been explored by 

various researchers to improve gastro-retention of formulations (Chitnis et al, 1991, 

Umamaheswari et al, 2002, Zheng et al, 2006, Rajinikanth et al, 2008, Gattani et al, 2010, 

Sahasathian et al, 2010, Vaiciunas et al, 2010, Singh et al, 2012). 

 

6.2 Materials and method 

Chitosan (low molecular weight (LMW), 75 - 85 % deacetylated); medium molecular weight 

(MMW), 75 - 85 % deacetylated) and high molecular weight (HMW), 75 - 85 % 

deacetylated), glacial acetic acid, Cibacron Brilliant Red 3B-A, Glycine HCl buffer, Periodic 

acid solution, 1 % basic Fuschin and Sodium metabisulphite were obtained from Sigma 

(UK).  

 

6.2.1 Preparation of coated beads  

Following preparation of drug-loaded beads as described in section 3.2.2 and 5.2.1, the beads 

were cured for 15 minutes in a CaCl2 solution. After curing and washing with deionized 
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water, the beads were blotted on absorbent paper to remove any residual water.  The beads 

were immersed in chitosan solutions (pH 5) for 30 minutes with gentle stirring to allow 

formation of a polyelectrolyte complex membrane on the surface of the beads. The 

concentrations used are detailed in Table 6-1. This method was used to produce two 

categories of beads; a) coated non oil-modified (CNOM) and b) coated oil-modified (COM) 

beads. The beads were recovered, washed, snap frozen in liquid nitrogen and freeze-dried. 

The beads produced were then characterised as described in Section 2.3 as well as other 

evaluation methods described in this chapter. 
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Table 6-1: Formulation variables for coated beads. The G series contained MET and the D series contained 

CMN. 

 

Code Drug (%w/w) Oil (%w/w) Chitosan (%w/v) Drug 

G1/D1 5 - 0.5 (LMW) MET/CMN 

G2/D2 5 - 1 (LMW) MET/CMN 

G3/D3 5 - 0.5 (MMW) MET/CMN 

G4/D4 5 - 1 (MMW) MET/CMN 

G5/D5 5 - 0.5 (HMW) MET/CMN 

G6/D6 5 - 1 (HMW) MET/CMN 

G7/D7 10 - 0.5 (LMW) MET/CMN 

G8/D8 10 - 1 (LMW) MET/CMN 

G9/D9 10 - 0.5 (MMW) MET/CMN 

G10/D10 10 - 1 (MMW) MET/CMN 

G11/D11 10 - 0.5 (HMW) MET/CMN 

G12/D12 10 - 1 (HMW) MET/CMN 

G13/D13 5 10 0.5 (LMW) MET/CMN 

G14/D14 5 10 1 (LMW) MET/CMN 

G15/D15 5 10 0.5 (MMW) MET/CMN 

G16/D16 5 10 1 (MMW) MET/CMN 

G17/D17 5 10 0.5 (HMW) MET/CMN 

G18/D18 5 10 1 (HMW) MET/CMN 

G19/D19 5 15 0.5 (LMW) MET/CMN 

G20/D20 5 15 1 (LMW) MET/CMN 

G21/D21 5 15 0.5 (MMW) MET/CMN 

G22/D22 5 15 1 (MMW) MET/CMN 

G23/D23 5 15 0.5 (HMW) MET/CMN 

G24/D24 5 15 1 (HMW) MET/CMN 

G25/D25 10 10 0.5 (LMW) MET/CMN 

G26/D26 10 10 1 (LMW) MET/CMN 

G27/D27 10 10 0.5 (MMW) MET/CMN 

G28/D28 10 10 1 (MMW) MET/CMN 

G29/D29 10 10 0.5 (HMW) MET/CMN 

G30/D30 10 10 1 (HMW) MET/CMN 

G31/D31 10 15 0.5 (LMW) MET/CMN 

G32/D32 10 15 1 (LMW) MET/CMN 

G33/D33 10 15 0.5 (MMW) MET/CMN 

G34/D34 10 15 1 (MMW) MET/CMN 

G35/D35 10 15 0.5 (HMW) MET/CMN 

G36/D36 10 15 1 (HMW) MET/CMN 
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6.2.2 Determination of amount of chitosan bound to alginate bead surface 

6.2.2.1  Chitosan assay  

Cibacron Brilliant Red 3B-A dye stock solution was prepared by dissolving 150 mg of the 

powder in 100 ml deionized water. 5 ml of this solution was diluted to 100 ml with 0.1 M 

Glycine HCl buffer to prepare a final dye concentration of 0.075 mg/ml (pH 2.8). Stock 

solutions of 0.5 %w/v chitosan in acetic acid were prepared and different volumes of these 

polymer solutions (30, 45, 60, 80, 100, 150, 200 and 250 µl) were filled into test tubes and 

made up to 300 μl with 0.1M Glycine HCl buffer. Aliquots of dye solution (3 ml) were added 

to each tube and the absorbance values were measured spectrophotometrically at 575 nm 

(Muzzarelli, 1998, Miralles et al., 2011). 

 

6.2.2.2 Bound chitosan per bead surface area 

After washing, 50 beads were transferred directly into the chitosan solutions used for coating. 

The difference between the amount of chitosan in solution before and after coating was 

calculated as the amount of chitosan bound to the alginate beads.  

The total surface area of all the beads was calculated using Equation 6-1:  

Surface area of individual beads x total number of beads = 4πr
2
 x number of 

beads……………………………………………………………………..….Equation 6-1 

 

The amount of bound chitosan was calculated using Equation 6-2:  

 

               (
  

   )  
                    

                                     
  ………. Equation 6-2  
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6.2.3  Mucoadhesion tests 

6.2.3.1 Mucin-particle method  

6.2.3.1.1 Mucin sample preparation  

Mucin suspensions (1 mg/ml) were prepared and the pH was adjusted to pH 3.0 with HCl and 

agitated overnight. The average hydrodynamic diameter of mucin in this suspension was 

determined (see section 6.2.3.1.2). The suspension was sonicated for 15 min and centrifuged 

at 4,000 rpm for 10 min to isolate mucin particles between ~ 200 – 300 nm. The supernatant 

was recovered and used in the experiment. Mucin suspension (1 ml) was mixed with chitosan 

solution at the same pH in different chitosan/mucin ratios (0.0125 - 10) by vortexing for 1 

minute. All suspensions were incubated at 37 °C for 1 h before analysis (Sogias et al., 2008, 

Takeuchi et al., 2005)  

 

6.2.3.1.2 Particle sizing of chitosan-mucin mixtures  

The hydrodynamic diameter of the mucin before and after size reduction and the diameter of 

the polymer-mucin mixtures were measured using NTA (Nanosight LM 10). The samples 

were injected into the sample chamber using a disposable syringe. Suspended particles were 

irradiated by a laser source and as these particles scatter the light, the particle dynamics were 

visualized at 30 frames per second by the Coupled Charge Device (CCD) camera.  The paths 

the particles take under Brownian motion over time were analysed using the NTA software. 

Each particle visible in the image was individually but simultaneously tracked. The samples 

were measured in triplicate and the results represent the mean hydrodynamic diameter.  
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6.2.3.1.3 Turbidity of chitosan-mucin mixtures  

Turbidity of the polymer suspensions, mucin suspensions and the polymer-mucin mixtures 

was measured at 400 nm using a UV spectrophotometer (Jenway 6305 UV/VIS).  

 

6.2.3.1.4   Zeta potential of chitosan-mucin mixtures 

The Zp and pH of the polymer suspension, mucin suspension and polymer-mucin mixtures 

were measured with a Zetasizer Z (Malvern UK) using the capillary cell. All samples were 

controlled at 25 ± 0.1°C during the test. The measurements were repeated at least 5 times and 

the mean values and standard deviations were calculated.  

 

6.2.3.2  Mucin adsorption assay 

Mucin adsorption was studied using a periodic acid /Schiff colorimetric method described by 

Mantle and Allen (Mantle and Allen, 1978) to determine the free mucin concentration 

following incubation with beads. 

 

6.2.3.2.1 Calibration curve of mucin using PAS/Schiff colorimetric assay 

Standard calibration curves for mucin were prepared from 2 ml of mucin standard solutions 

of concentrations (0.125 mg/ml – 0.5 mg/ml). Periodic acid reagent (0.2 ml) was added to the 

mucin standard solutions and these mixtures were incubated at 37 °C for 2 h in a water bath. 

Periodic acid reagent was freshly prepared by adding 10 µl of 50 % of periodic acid solution 

to 7 ml of 7 % acetic acid solution (He et al., 1998). Schiff reagent (0.2 ml) was added at 

room temperature and after 30 minutes, the absorbance of the solution was recorded at 555 
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nm using a UV Spectrophotometer (Gujarathi et al., 2012).  The Schiff reagent contains 100 

ml of 1 % basic Fuschin aqueous solution and 20 ml 1 M HCl.  Sodium metabisulphite (0.1 

g) was added to every 6 ml of Schiff reagent before use and the resultant solution was 

incubated at 37 °C until it became colourless or pale yellow.  

 

6.2.3.2.2 Adsorption of mucin on chitosan-coated beads 

Mucin solutions (0.5, 1.0, 2.0 and 2.5 mg/ml) were prepared at pH 3. An average of 10 beads 

were dispersed in mucin solutions (10 ml) of each concentration and subjected to shaking at 

room temperature for  1 h (He et al., 1998). The free mucin content was determined using the 

standard calibration curve.  

 

6.2.3.2.3 Storage stability of coated beads  

Beads were sealed in vials and stored at 4° C and room temperature (~ 20 ºC) over a period of 

three months. The drug loading, buoyancy, mucoadhesion and in vitro release were 

determined at the end of days 30, 60 and 90. 

 

6.3  Results and discussion  

Chitosan-coated alginate beads usually have a heterogenous structure with a chitosan surface, 

a chitosan-alginate inner layer and a calcium alginate core (Figure 6-1). The chitosan-alginate 

surface provides a thin membranous layer and with further coating, this chitosan alginate 

surface is itself surrounded by a layer of chitosan. The coating of alginate beads by chitosan 
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is achieved by electrostatic interaction (Murata et al., 2003). The negatively charged 

carboxylic acid groups of the alginate bind with the positively charged amino groups on the 

chitosan leading to the formation of a polyelectrolyte complex on the basis of their opposite 

charges (Takahashi et al., 1990, Coppi et al., 2001, Douglas and Tabrizian, 2005). As a result 

of its mucoadhesive properties, chitosan also enhances the absorption of compounds across 

the mucosal barrier (Artursson et al, 1999). 

 

 

 

 

 

 

 

 

It is expected that the chitosan membrane will be strong enough to resist osmotic swelling 

pressure in the beads and also reduce and control the permeability of the beads. pH has been 

reported to have a strong influence on the polyelectrolyte functional groups, yield and 

permeability of the formed membrane (Simsek-Ege et al., 2003). Coating with chitosan was 

carried out at ~ pH 5, because this has been determined to be the optimum pH for the 

polyelectrolyte membrane formation (Simsek-Ege et al., 2003). Increasing the pH of chitosan 

solutions from 4 to 6 has been reported to lead to an increase in the rate of chitosan 

complexation (Gåserød et al., 1998b). This could be due to the fact that when pH approaches 

the pKa of chitosan (i.e. 6.3 - 6.5), the charge density of the chitosan molecule will be 

significantly reduced leading to a less extended molecule with a high diffusion coefficient 

(Anthonsen et al., 1993) enhancing the complexation. The complex is believed to be formed 

primarily by a coulombic force (King et al., 1987, Huguet et al., 1994). Other secondary 

forces believed to be responsible for the complex formation include hydrogen or covalent 

 

 

 

 

Alginate – chitosan polyelectrolyte complex film 

 

Chitosan membrane  

Alginate core  

Figure 6-1: Schematic representation of chitosan-coated beads 
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bonding. Polyelectrolyte complexes have been proposed for the design of DDS (Ribeiro et 

al., 1999, Mi et al., 2002, Anal et al., 2003, Tapia et al., 2004, Anal and Stevens, 2005, 

Ribeiro et al., 2005). 

 

6.3.1 Morphology and structure of coated beads  

The beads were spherical with the outer surface of the beads appearing rough with a wrinkled 

structure (Figure 6 - 1a and c). The cross-sectional structure appeared sponge-like, similar to 

the unmodified beads with no distinct layer of coating evident on the beads due to the 

thinness of the layer of chitosan coating (Figure 6 – 1b and d). The rough surface of the 

coated beads may be due to dehydration of the chitosan during drying (Narkar et al., 2010, 

Dai et al., 2008, Pasparakis and Bouropoulos, 2006). Some studies have shown a smoother 

surface with chitosan coating (Shi et al., 2008, Suknuntha et al., 2011), however, this 

difference may be due to the method of bead preparation and the drying method employed. 

 

6.3.2 Physical properties of coated beads  

The size, weight and densities of the beads did not increase significantly (<  2 % change) 

after chitosan coating and an increase in chitosan molecular weight had no effect on these 

properties (p > 0.05) as observed in the coated MET beads in Table 6-2. This indicates the 

thin nature of the layer of chitosan on the surface of the beads. Bead diameters for this series 

of formulations was between 2.47 ± 0.21 mm and  3.05 ± 0.05 mm and the bulk densities 

were all less than 1 g/cm
3
. The controlled method of production of the beads helped to 

achieve this size uniformity. A wide range of bead size would lead to non-uniformity in 
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surface area exposed for drug release and  mucoadhesion testing leading to inconsistent and 

irreproducible data.  

 

Table 6-2: Physical properties of coated MET beads 

Code Diameter (mm) True density (g/cm
3
) Weight (g) 

(n=100) 

Bulk density 

(g/cm
3
) 

G7 2.69 ± 0.3 1.44 ± 0.01 0.24 ±0.01 0.23 ± 0.02 

G8 2.71 ± 0.2 1.43 ± 0.01 0.23 ± 0.01 0.22 ± 0.01 

G9 2.70 ± 0.2 1.45 ± 0.01 0.25 ± 0.01 0.21 ± 0.03 

G10 2.72 ± 0.3 1.43 ± 0.01 0.23 ± 0.01 0.23 ± 0.02 

G11 2.70 ± 0.1 1.41 ± 0.01 0.22 ± 0.01 0.22 ± 0.02 

G12 2.73  ± 0.2 1.43 ± 0.01 0.25 ± 0.01 0.21 ± 0.04 

G25 2.92 ±  0.2 1.51 ± 0.01 0.46 ± 0.01 0.28 ± 0.01 

G26 2.93 ± 0.3 1.53 ± 0.01 0.46 ± 0.01 0.27 ± 0.01 

G27 2.91 ± 0.3 1.52 ± 0.01 0.47 ± 0.01 0.29 ± 0.02 

G28 2.92 ± 0.4 1.53 ± 0.01 0.47 ± 0.01 0.28 ± 0.01 

G29 2.93 ± 0.2 1.52 ± 0.01 0.47 ± 0.01 0.29 ± 0.02 

G30  2.93 ± 0.1 1.51 ± 0.01 0.46 ± 0.01 0.29 ± 0.01 

G31 2.94 ± 0.3 1.57 ± 0.01 0.51 ± 0.01 0.27 ± 0.01 

G32 2.95 ± 0.2 1.56 ± 0.01 0.50 ± 0.01 0.27 ± 0.01 

G33 2.95 ± 0.4 1.54 ± 0.01 0.51 ± 0.01 0.28 ± 0.02 

G34 2.94 ± 0.2 1.54 ± 0.01 0.52 ± 0.01 0.28 ± 0.01 

G35  2.95 ± 0.1 1.56 ± 0.01 0.53 ± 0.01 0.28 ± 0.02 

G36 2.95 ± 0.2 1.55 ± 0.01 0.46 ± 0.01 0.29 ± 0.01 
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Figure 6-2: SEM images of A) G30; B) cross section of G30 bead; C) and D) XµMT image of G30. 

 (G30 beads loaded with 10 %w/w MET and 10 % olive oil coated with 1 % HMW Chitosan) 
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6.3.3  Drug content and DEE of coated beads  

DEE of the coated beads for both drugs was high (> 55 %). The COM beads exhibited a 

higher DEE than the CNOM beads with the DEE range of COM beads being 87 - 96 % and 

the DEE range of CNOM being 54 – 85 %.  The higher DEE of the COM beads corresponds 

with the observed high DEE of oil-modified beads in Chapter 5.  

 

6.3.3.1 Metronidazole beads  

The drug content and DEE of the CNOM (G1 – G12) beads were lower than what was 

observed in the uncoated beads (Figure 6-3a) with about 12 - 29 % reduction in DEE of the 

beads. This reduction was due to the extra time the beads are in contact with the aqueous 

medium during coating with associated drug loss due the high solubility of MET in aqueous 

medium. This was different from results obtained from previous studies where there was a 

higher DEE with chitosan coating (Ishak et al., 2007, Tamilvanan and Karmegam, 2012). The 

COM beads had a slightly higher DEE than the unmodified beads and the uncoated oil 

modified beads, with increases between 2.5 - 8.3 % (G13 – G24), 0.3 - 1.6 % (G25 - G36) (p 

> 0.05) (Figure 6-3b and 3c). The presence of oil in the bead formulation prevented the 

leaching of drug into the coating medium and drug loss during washing after bead 

preparation. 
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6.3.3.2 Clarithromycin beads  

There was a reduction in DEE of CNOM beads containing CMN, with about 3 - 15 % 

reduction observed for the D1 - D12 beads compared with the DEE of the uncoated beads 

(Figure 6-4a).  This reduction in DEE was less than that observed with the MET coated beads 

based on the difference in the solubility and molecular weight of both drugs. There was no 

significant difference in the DEE of the COM beads (p> 0.05) (Figure 6-4b and 4c) with 

differences less than 3 %.  

 

6.3.3.3 Effect of chitosan concentration and molecular weight on DEE 

of coated beads  

Increasing the concentration of chitosan slightly increased the DEE of the beads with an 

average increase of 5.17 ± 2.37 % for G1 - G6 beads and 4.07 ± 1.88 % for G7 - G12 (p > 

0.05) (MET beads) while there was an increase in DEE of 7.46 ± 3.73 % (D1 - D6 beads) and   

5.06 ± 0.91 % (D7 - D12 beads) (p> 0.05) (CMN beads).  For all the COM beads, there was 

less than 2 % difference in DEE. There was no significant difference in drug content and 

DEE on increasing the concentration of chitosan and molecular weight of the chitosan. This 

could be due to the high concentrations of chitosan used, if concentrations such as 0.1 or 0.2 

%w/v were used, concentration and molecular weight may have had a larger impact on drug 

release. 
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Figure 6-3: Effect of coating on DEE of A) coated non-oil modified MET beads and B, C) coated oil-modified 

MET loaded beads 
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Figure 6-4: Effect of coating on DEE of A) coated non-oil modified CMN beads and B, C) coated oil-modified 

CMN loaded beads 
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6.3.4 Differential scanning calorimetry of coated beads  

 

Figure 6-5: Comparison of DSC thermograms of pure MET and coated MET beads  
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Figure 6-6: Comparison of DSC thermograms of pure CMN and coated CMN beads  

 



 253 

 

 

   

 

CNOM MET (Figure 6-5) and CNOM CMN (Figure 6-6) beads had a single melting 

endotherms at an average temperature of 164.53 ± 0.79 °C and 225.45 ± 0.82 (n=3) 

respectively, confirming the presence of MET and CMN in the bead sample. The COM MET 

and COM CMN beads also showed melting endotherms at respectively similar temperatures 

(p > 0.05). These findings indicate the stability of the drug in the formulations and the 

absence of major interactions between the drug, oil, polymer and the coating material. These 

results were similar to those observed with the oil-modified beads and the unmodified beads.   

 

6.3.5  Powder X-ray diffraction analysis of coated beads  

The P-XRD patterns of the CNOM and COM CMN and MET beads showed displayed the 

characteristic drugs albeit at lower intensity as shown in Figure 6-7a and b. The coating 

process did not eliminate the presence of some crystalline material within the bead and this 

was supported by tomography images (Figure 6-2). 
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Figure 6-7: P-XRD patterns of coated A) MET beads and B) CMN beads  
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6.3.6  Fourier transform infra-red analysis of coated beads  

 

 

Figure 6-8: FTIR of coated MET beads 
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The CNOM and COM beads showed characteristic peaks similar to those observed for 

unmodified beads for both MET and CMN as shown in Figures 6-8 and 6-9 respectively, with 

the peaks exhibiting lower intensities, as expected, due to the presence of other components 

in the formulation. A peak at ~ 1603 cm
-1 

was observed for the coated beads as a result of the 

interaction between the negatively charged – COO
-
 groups of alginate and the positively 

charged -NH3
+
 groups of chitosan (Shi et al., 2008). The absence of any major changes in the 

scans of unmodified and modified beads indicates the stability of the drugs in the formulation 

and the absence of chemical interaction between the oil and/or the drugs or the polymer.  

 

 

Figure 6-9: FTIR of coated CMN beads 
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6.3.7 Determination of bound chitosan on alginate bead surface 

6.3.7.1 Chitosan assay and calibration curve  

The protonated amino group on the chitosan structure can act as a cationic site which binds to 

anionic dyes such as Cibracron Brilliant Red dye, forming an uncharged dye-chitosan 

colloidal complex. This reaction causes a bathochromic shift, and when the absorbance of 

this dye-chitosan mixture is measured against a pure dye solution, a sharp peak is detected at 

~575 nm (Wischke and Borchert, 2006, Mendelovits et al., 2012) as a result of the 

complexation.  The degree of protonation of both the chitosan and the dye is pH dependent; 

therefore pH was kept constant at ~ pH 2.8 by the addition of glycine buffer to prevent 

changes in protonation and ensure accurate evaluations (Mendelovits et al., 2012). There was 

no major difference between the calibration curves of the different molecular weights of 

chitosan used (Figure 6-10a), therefore, they reacted similarly with the dye, irrespective of 

the molecular weight of the chitosan. This was similar to the results obtained by a previous 

research by Muzarelli (1998). The assay showed a high sensitivity with LOD and LOQ being 

1.79 ± 0.07 µg/ml and 5.43 ± 0.21µg/ml, respectively with a high linearity (R
2 

> 0.99) and 

reproducibility with RSD < 3 % (Figure 6-10a). Some studies have modified the method by 

Muzarelli (1998), due to its lack of sensitivity at low chitosan concentrations ˂ 100 ppm 

(Wischke and Borchert, 2006, Mendelovits et al., 2012). However, this issue was not 

encountered in this study and the only modification was the use of acetic acid instead of lactic 

acid and reducing the calibration points based on the detection limit observed for the assay 

method and equipment. It has been described in a previous study that there was no major 

difference in results obtained from the use of lactic acid or acetic acid in the dissolution of 

chitosan for analysis (Miralles et al., 2011). Acetic acid was more preferred in this study 

because the coating of the beads was carried out in a chitosan-acetic acid solution, is less 

expensive and more common in laboratories.  
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Figure 6-10: A) Calibration curve of chitosans of different molecular weights and B) Amount of bound chitosan 

on alginate bead surface 
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6.3.7.2  Bound chitosan on alginate bead surface 

During coating, the chitosan molecules attach to the negative charge of alginate at the bead 

surface, forming a thick well-packed chitosan membrane layer around the alginate bead over 

a layer of polyelectrolyte complex between the alginate and the chitosan. There was no major 

difference between the amounts of bound chitosan across all molecular weights used (p > 

0.05), but an increase in concentration of chitosan had an effect on the amount of chitosan 

bound onto the surface of the alginate beads (p < 0.05) (Figure 6-10 b). There was an increase 

of ~63 % in bound chitosan (LMW) on increasing concentration from 0.25 to 0.5 %w/v. A 

previous study observed that chitosan binding on alginate beads is favoured by high bead 

porosity (related to low concentrations of SAL) and  low molecular size of chitosan (Gåserød 

et al., 1998b), with low molecular weight chitosan providing a denser membrane than high 

molecular weight chitosan (McKnight et al., 1988). The bead porosity and molecular size of 

the chitosan enhances the penetration of chitosan into the bead structure. The increase in 

variability at 1 %w/v chitosan may be due to loss of chitosan during the recovery of the 

coated beads from the chitosan solution as a result of the high viscosity of the polymer 

solution. Suspending beads in chitosan solution allows more chitosan to bind both onto the 

surface of the bead and the interior gel network and allows binding of more chitosan than the 

one stage coating process, because the two stage coating process, as used in this study, allows 

chitosan to diffuse into gel beads more rapidly (Gåserød et al., 1998b). The one stage coating 

process involves dropping the alginate solution into a gelling/coating medium containing 

chitosan and CaCl2. 

 

 



260 

 

 

 

6.3.8 Swelling profile and disintegration of coated beads 

In order to study possible in vivo behaviour, formulations need to be exposed to a range of 

pHs mimicking those it will encounter on its journey through the GI tract. On exposure to 

acidic pH (Figure 6-11a and b), the coated beads absorbed water and underwent more 

swelling than uncoated beads. This is because chitosan, due to its hydrophilic nature, swells 

in acidic media and absorbs water. In addition to the hydration of hydrophilic groups of 

chitosan-coated beads, another important factor that contributes to the swelling profile in 

acidic pH is that protonization of the amino groups of chitosan creates a repulsive force, 

which leads to the swelling of the chitosan membrane  (Mukhopadhyay et al., 2013, Kim et 

al., 2000). In CNOM beads, for both drugs, there was an average 13.12 ± 3.76 % increase in 

swelling of the beads, while for COM, there was an average of 6.17 ± 2.05 % increases in 

swelling (p > 0.05). This reduced swelling capacity of COM might be due to the presence of 

oil in the formulation, which makes it more hydrophobic and a slightly reduced tendency to 

swell.  Increasing the concentration of chitosan led to an increase in swelling by 5.72 ± 1.48 

% (CNOM beads) and 2.72 ± 1.13 % (COM beads) (p > 0.05). The swelling profile was 

similar to that of the uncoated beads with maximum swelling observed for both CNOM and 

COM beads between 120 - 150 minutes in acidic media (Figure 6-11a and b). 

In alkaline media, maximal swelling was observed at ~150 minutes and, unlike the uncoated 

beads, coated beads were stable in PBS for longer than the uncoated beads. The CNOM 

beads also exhibited slightly more swelling than the uncoated beads with a maximum of ~ 

2700 % weight change (Figure 6-12a and b). The COM beads did not swell as much in PBS, 

due to the oil but similar to results in acidic media, they swelled slightly more than the 

uncoated oil modified beads but the difference in swelling was not considered significant. 

Chitosan has been reported to swell considerably with up to 140 % swelling at neutral pH 

(Silva et al., 2004). The COM swelled to an average maximum of about 500 % weight 

change and maintained this weight increase for the entire period of the study.  Further 

degradation studies in PBS, which were carried for 12 h, showed the beads exhibited better  



 261 

 

 

   

 

stability than unmodified beads. Bead disintegration occurred at an average of 9.5 ± 1.2 h, 

which is probably due to the combination of the oil and the coating. Disintegration of CNOM 

beads was observed after 5.4 ± 0.8 h and dissolution of the unmodified beads was complete in 

3.8 ± 0.6 h. This enhanced stability in alkaline media extends the lifetime of the DDS and 

faciliates delivery of drugs to areas of higher pH, e.g. lower GI tract and in cases where the 

contents of the stomach becomes less acidic, e.g. use of antacids and alkali- forming foods. 

The unmodified beads are destabilised in the presence of chelators such as phosphate or non-

gelling cations like sodium and magnesium. However, binding of chitosan to alginate beads 

has been described as almost irreversible because once the polyelectrolyte complex has been 

formed, exposure to solutions with higher concentrations of competing ions have limited 

influence on the complex (Gåserød et al., 1999). Therefore, the coating not only enhances 

water uptake of the beads but also enhances the stability of the beads. 
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Figure 6-11: Swelling profiles of A) coated CMN beads; B) coated MET beads in acidic pH 
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Figure 6-12: Swelling profiles of A) coated CMN beads; B) coated MET beads in alkaline pH 
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6.3.9 In vitro buoyancy of coated beads  

The coating of the beads with chitosan did not have any effect on the buoyancy of the beads 

with similar lag times and duration, as uncoated beads (Figure 6 - 13) (p > 0.05). Studies by 

Ishak et al (2007) have shown that chitosan has no direct effect on the buoyancy of beads, but 

a combination of chitosan with other excipents such as magnesium stearate and κ-

carrageenan can help achieve 100 % floatation. Chitosan microspheres prepared in another 

study exhibited non-floating properties in SGF (Kas, 1997). However, conflicting results 

have reported an increase in buoyancy of alginate beads on chitosan coating (Sahasathian et 

al., 2010). 
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Figure 6-13: Buoyancy profile of coated beads  

 

 

6.3.10   Mucoadhesion tests 

6.3.10.1 Mucin-particle method  

The interaction between mucin and chitosan was studied at pH 3 because at this pH, both 

mucin (mucin is ionized at pH > 2.6 (Peppas and Sahlin, 1996, Bansil and Turner, 2006)) and 

chitosan (pKa = 6.3 - 6.5) are both ionized. This pH is also close to the average pH of the 
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extracted mucins resulting in improved reproducibility in early screening processes (Rossi et 

al., 2000, Rossi et al., 2001). Chitosan is a cationic polymer with a primary amino and 

hydroxyl group in each repeating polymer (see section 1.7.2) unit except for the acetylated 

units, which are without primary amines. Upon protonation, the primary amino groups have a 

positive charge, which helps facilitate electrostatic interactions with the negatively charged 

mucin but also other contributions such as hydrogen bonding, hydrophobic effects and chain 

entanglement might have an effect. When the amino groups are de-protonated at high pH 

levels, they can only react with mucin through hydrogen bonding. 

 

6.3.10.1.1 Particle sizing of chitosan-mucin mixtures 

The initial size of mucin upon dispersion and pH change was within a range of 143 to 635 nm 

as a result of a combination on small and large aggregates (Figure 6-14, Figure 6-16b). In 

order to reduce the extent of aggregation, the suspensions were sonicated and filtered and the 

particle size was reduced to a range of 161 to 197 nm. (Figure 6-14, Figure 6-16b). Chitosan 

was also mixed thoroughly to ensure complete dissolution, however chitosan tends to form 

intermolecular hydrophobic aggregates in aqueous solutions (Philippova et al., 2001, 

Anthonsen et al., 1994, Wu et al., 1995) at concentrations ~ 1 mg/ml, which is the 

concentration used in this study. The average range of chitosan aggregate size observed was 

between 184 and 218 nm. On reaction of mucin with chitosan, particle size increased 

indicating chitosan binding to the mucin particle surface (Figure 6-15, Figure 6-16b). The 

increase in standard deviation (SD) indicates a broader size distribution in polymer-mucin 

mixtures relative to the mucin suspension. The modification of the particle size was as a 

result of the electrostatic interactions between the positively charged chitosan and the net 

negative charge of the mucin particles. 
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Figure 6-14: Particle size distribution of mucin before and after size reduction 
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Figure 6-15: Particle size distribution of chitosan-mucin mixtures 

 
 Chitosan / mucin ratio 0.1  
 

 
 
Chitosan / mucin ratio 1.5  
 

 
 
 
Chitosan/ mucin ratio 3 
 

 



 269 

 

 

   

 

 

 

Figure 6-16: A) Turbidity and Zp of chitosan - mucin mixtures and B) Particle sizes of mucin in the chitosan-

mucin mixtures 
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6.3.10.1.2  Zeta potential of chitosan-mucin mixtures 

The estimation of the Zp of mucin in the presence of chitosan has been reported to be a good 

means of studying the mucoadhesive interactions of the chitosan – mucin mixtures (Fefelova 

et al., 2007, Takeuchi et al., 2005). Chitosan recharges the mucin particles, thereby 

confirming the adsorption of cationic chitosan onto the negative mucin surfaces (Figure 6-

16a). The initial Zp of mucin particles, which was negative, changed to positive at a chitosan-

mucin ratio of 0.05 and the positive Zp was further increased with increasing chitosan. This 

increase in Zp is as a result of the increasing aggregation tendency and the adsorption of 

chitosan on the mucin particles is responsible for the aggregation. 

 

6.3.10.1.3 Turbidimetry measurements of chitosan-mucin mixtures 

Turbidimetry provides another means of assessing mucin aggregation (He et al., 1998, 

Fefelova et al., 2007) and there was a marked increase in solution turbidity as the polymer 

ratio increased, up to a maximum polymer-mucin ratio 0.05, after which the turbidity started 

to decrease (Figure 6-16a). Aggregation of the mucin in the presence of small quantities of 

chitosan causes an increase in the turbidity of the mixture. Disaggregation occurs in the 

presence of excess chitosan, which was observed with the reduced turbidity due to dilution. 

The ratio at which the mixture exhibits maximum turbidity was similar to the ratio at which 

there was a Zp charge reversal of the polymer-mucin mixture from negative to positive.  

In summary, the hydrodynamic diameter, Zp and turbidity mucin changed in the presence of 

chitosan (Figure 6-16). An inversion of Zp from the initial negative to a positive Zp was 

observed with increasing chitosan concentration. Also, there was a 190 % increase in particle 

size on increasing the chitosan/mucin ratios from 0 to 10. All these results indicate an 

interaction between mucin and chitosan.  
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6.3.10.2 Mucoadhesive beads  

6.3.10.2.1 Adsorption of mucin on chitosan-coated beads 

 Mucin colorimetric assay and calibration curve 

 

 

Figure 6-17: Calibration curve of mucin (n=3; mean ± SD) 

 

Proteins are generally detected at UV 280 nm (Layne, 1957, Stoscheck, 1990), however 

mucins absorb UV light poorly, since they generally have no or negligible aromatic amino 

acid content (Wang and Granados, 1997, Thanka and Veluraja, 2001) but colorimetric assays 

provide a reliable  method of detection and analysis of complex mucin glycoproteins. The 
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mg/ml, respectively with a high linearity (R
2 

> 0.99) and reproducibility with RSD < 4.5 % 

(Figure 6-17). 

 

 Amount of bound mucin on bead surface  

  

Due to the interaction between mucin and chitosan, mucin is expected to spontaneously 

adsorb onto the surface of the chitosan-coated beads. The amount and proportion of mucin 

adsorbed onto the coated bead surface increased with an increase in mucin concentration; 

from 2.5 mg/ml to 12.5 mg/ml, the average increase was 45.63 ± 7.64 % (Figure 6-18). 

Mucin adsorption was lower for the uncoated bead with an average of up to 18 % of mucin 

adsorbed unto these beads. There was no significant difference between the adsorption of 

mucin on blank, drug-loaded and oil-modified beads (p > 0.05). The average amount of 

mucin bound on the surface of uncoated beads was 18.13 ± 7.32 µg mucin/mm
2
 and for 

coated beads was 88.21 ± 21.85 µg mucin/mm
2
. These results show that the coated beads are 

able to adsorb mucin, thus would be expected to exhibit a degree of mucoadhesion. SAL 

beads also demonstrated a certain level of mucoadhesion, albeit substantially less than with 

chitosan. The adsorption of mucin to the chitosan surface is expected to be due to 

electrostatic attraction between the positively charged chitosan and the negatively charged 

mucin. The negative charge of mucin is as a result of the ionization of sialic acid. 
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Figure 6-18: Adsorption of mucin on chitosan-coated beads  
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Almost 50 % of the uncoated beads detached from the mucosa after 1 h compared with a 

maximum of 30 % for coated beads (Figure 6-19a). After 6 h, only ~ 35 % uncoated beads 

remained on the mucosal surface compared with a minimum of 60 % observed with coated 

beads. The uncoated beads exhibited some mucoadhesive properties as 10 – 15 % uncoated 

beads were retained after 12 h indicating a lower level of mucoadhesion compared with the 

coated beads (Figure 6-19). It has been documented that SAL demonstrates some 

mucoadhesive properties (Shaikh et al., 2012, Allamneni et al., 2012) although it is not as 

highly mucoadhesive as chitosan. Increasing the concentration or the molecular weight of the 

coating material did not have a significant effect on the mucoadhesion of the beads as the 

coated beads D2 and D6 had similar mucoadhesive profiles in the acidic environment (p > 

0.05). This is due to the high variability between the results. It has, however, been reported 

that a higher concentration of chitosan can lead to a reduction in the flexibility of the 

polymeric chains, thus causing a reduction in adhesive strength compared to lower chitosan 

concentrations  which have more space to extend within the mucin (Govender et al., 2005). 

Mucoadhesion was generally lower in alkaline media (Figure 6-20) than in acidic media and 

this may be due to the reduced interaction between the mucoadhesive polymer and the 

mucosal layer.  It could also be as a result of the gradual loss of the calcium ions from the 

beads and the ionization of carboxyl and other functional groups in the polymers at this pH 

(Ikeda et al., 1992, Nayak et al., 2010a), even though this loss was quite reduced for the 

coated beads. Mucoadhesion occurs with an initial wetting process causing intimate contact 

between the mucus and the swelling mucoadhesive polymer. The polymer strands relax, 

followed by penetration of the polymer chains into the mucus network and finally the 

formation of secondary chemical bonds. Huang et al (2000) reported that the adhesive 

properties of hydrogels could be improved by tethering of long flexible chains to a particle 

surface. The hydrogels in this study also exhibited increased mucoadhesive properties due to 

enhanced anchoring of the flexible chains within the mucosa (Figure 6-21). 
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Figure 6-19: Mucoadhesion tests on coated MET and CMN beads in acidic media  
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Figure 6-20: Mucoadhesion tests on coated MET and CMN beads in alkaline media 
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Figure 6-21 : A proposed mechanism of action of mucoadhesion of coated hydrogels (Huang et al., 2000) 

 

 

For this mucoadhesion test, several other factors apart from the chitosan and mucin molecular 

interactions may help retention of the beads on the tissue surface or even detachment from 

the tissue surface. Factors such as ridges on the tissue, surface tension, gravitational forces 

etc., all play a role in the outcome of these tests. However, as the coated and the uncoated 

beads showed significant differences in mucoadhesion with other conditions kept constant, it 

can be concluded that the observed increase in mucoadhesion was due to the presence of the 

chitosan coating. This study was also performed using a disintegration apparatus and it gave a 

similar trend with the uncoated beads being detached from the pig gastric mucosa faster than 

the coated beads. 
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6.3.10.2.3 Zeta potential of coated beads 

It has been demonstrated that the positive charge on the bead surface due to the presence of 

chitosan could lead to a strong electrostatic interaction with a negatively charged mucosal 

surface (He et al., 1999a, He et al., 1999b). 

 

 

 

Figure 6-22: Zeta potential of uncoated and coated beads 
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drug-loaded beads (Huang et al, 2003, Martinac et al, 2005). These negatively charged beads 

could interact with the positively charged chitosan. On coating with chitosan, the beads 

became positively charged (Figure 6-22) as a result of neutralization of the charge by 

chitosan and the excessive amino groups present on the surface of the beads. The presence of 

oil also had a negative impact on the Zp, which was reversed by the coating. The Zp inversion 

strongly suggests successful chitosan coating on the bead surface with Zp becoming 

increasingly positive as chitosan concentration increased from 0.5 % to 1 % (p ˂ 0.05). 

 

 

6.3.11       In vitro drug release from coated beads  

6.3.11.1 Drug release from coated beads in acidic media (pH 1.2 / 4.0) 

6.3.11.1.1 Effect of coating on the release profile of beads  

MET beads  

Coating of alginate beads with chitosan is expected to reduce the porosity at the surface of the 

beads and increase the stability of the beads especially in alkaline media. This reduction in 

porosity reduced the rate of drug release from the bead surface. At early time points, there 

was a reduced burst effect in coated beads, compared with uncoated beads (Figure 6-23). This 

was due to the combination of reduced LSC, due to the coating process and the presence of 

an additional barrier layer, which reduces the rate of drug diffusion from the bead surface. It 

takes longer for the dissolution media to penetrate the surface environs before drug 

dissolution and diffusion can occur into the dissolution media. Drug release from the coated 

beads was more controlled than in both the unmodified beads and the oil-modified beads. For 

example, t50% of M10, S15MET, G34 and G36 were 5-10 minutes; 20-30 minutes; 120-150 
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minutes and 120-150 minutes respectively (Table 6-3).  There was a significant difference in 

the release profiles from the CNOM beads versus the unmodified beads with the f2 values 

within the range of 27 - 33 (M10 beads versus G8/G10/G12 beads). With the COM beads, 

there was a similar pattern, with a significant difference in release profiles from coated versus 

uncoated oil modified beads with f2 values within the range of 26 - 29 (S15MET beads versus 

G32/G34/G36 beads). In comparison with the unmodified beads, there was a significant 

difference in the release profiles of COM with f2 values < 20. At pH 4.0, the f2 values were > 

60, therefore they presented almost identical release profiles, and therefore this pH difference 

was not enough to make a significant difference in the release pattern. Drug release from 

CNOM beads was extended to ~ 8 - 10 h as a result of the extra layer of coating on the bead 

surface. Similar results were observed for COM beads where duration of drug release was ≥ 

12 h. This is an improvement on the duration of release observed from unmodified beads, 

which exhibited complete drug release at ~ 4 h.   

 

CMN beads  

CMN release from the coated beads was more controlled than both the unmodified beads and 

the oil-modified beads. For example, t50% of C10, S15CMN, D34 and D36 were 60 - 90 minutes; 

60 - 90 minutes; 300 minutes and 360 - 480 minutes respectively (Table 6-4).  There was a 

significant difference between the release profiles from the CNOM beads versus the 

unmodified beads, with f2 values within the range of 27 - 31 (C10 beads versus D8/D10/D12 

beads). With the COM beads, there was a similar pattern, with a significant differences 

between release from coated versus uncoated oil modified beads (f2 values ranged from 35 - 

45 (S15CMN beads versus D32/D34/D36 beads)) (Figure 6-24). In comparison with the 

unmodified beads, there was a significant difference in the release profiles from COM (f2 

ranged from 23 to 28) but pH has less of an impact (f2 values were > 55 for pH 2.0 and pH 

4.0). The duration of drug release from CNOM beads was ~ 12 h as a result of the extra layer 
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of coating on the bead surface and findings were similar for COM beads where duration of 

drug release was > 12 h. Thus, the coating extended drug release from around 6 to 12 h. 

 

6.3.11.1.2 Effect of chitosan concentration and molecular weight on drug 

release 

Increasing concentration of chitosan from 0.5 % to 0.07 M led to a slight reduction in the 

release rate; however, based on f2 analysis, drug release from all beads coated with chitosan 

with varying concentrations exhibited similar profiles with the f2 values being all > 55. 

Therefore, increasing chitosan concentration across this concentration range did not cause 

dissimilarity in the release profiles of the coated beads. In contrast, however, release from 

beads coated with chitosan of low molecular weights was dissimilar to those coated with high 

molecular weight chitosan (f2 values being 46 ˃ f2 ˂ 48). However, comparing low and 

medium molecular weight, the profiles were similar with f2 > 50. This was also observed 

when comparing dissolution profiles of beads coated with medium and high molecular weight 

chitosan. This might be due to the high concentrations of chitosan used in coating the beads, 

because at these concentrations, highly viscous solutions were produced and a more 

significant difference between the different molecular weight chitosans may have been more 

obvious if lower concentrations such as 0.1 % were used for coating. A study has reported the 

complicated nature of the effect of chitosan coating on release of encapsulated drug (Shu and 

Zhu, 2002). It was observed that chitosan coating accelerated brilliant blue (BB) released in 

some cases with 64, 70, 76 and 79 % BB release in 3 h following coating of 1.5 % alginate 

beads with 0, 0.1, 0.3 and 0.5 %w/v chitosan. Chitosan coating only prolonged BB release 

slightly in 3 % alginate beads and chitosan coating had no effect on BB release, when 5 % 

alginate beads were coated with chitosan. Ishak et al. (2007), reported that increasing 
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chitosan concentration over 0.4 %w/v had little effect on the MET release from chitosan-

coated alginate beads.  

 

6.3.11.2 Drug release from coated beads in alkaline media (pH 7. 4) 

6.3.11.2.1 MET beads  

Drug release from the coated beads was more controlled than both the unmodified beads and 

the oil modified beads in alkaline media, similar to results in the acidic media. For example, 

t50% of M10, S15MET, G34 and G36 were 15-20 minutes; 20-30 minutes; 60 minutes and 80 

minutes respectively (Table 6-5).  There was a significant difference in the release from 

CNOM beads versus uncoated unmodified beads with the f2 values ranging from 38 - 46 (M10 

beads versus G8/G10/G12 beads) (Figure 6-25a). There was a similar pattern from COM 

beads, with f2 values within the range of 39 - 42 (S15MET beads versus G32/G34/G36 beads) 

(Figure 6-25b).  There was a significant difference in the release profiles between COM and 

unmodified beads, with f2 values < 28. The duration of drug release from CNOM beads was 

not extended in PBS; however, for the COM beads, the duration of drug release was extended 

to ~ 8 h, which also confirmed by the stability of the beads up to this time. This was an 

improvement on the release profile observed from unmodified beads, which exhibited 

complete drug release at 3 - 4 h. 
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Figure 6-23: Release profile of MET loaded a) coated non oil-modified beads and b) coated oil-modified beads 

in acidic media (pH 1.2)  
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Figure 6-24:  Release profile of CMN loaded a) coated non oil-modified beads and b) coated oil-modified beads 

in acidic media (pH 2.0) 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e 

%
 r

el
ea

se
 

Time (h)

C10

D8

D10

D12

A

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e 

%
 r

el
ea

se

Time (h)

C10

S15CMN

D32

D34

D36

B



 285 

 

 

   

 

Table 6-3: Release parameters of coated MET beads at pH 1.2  

(Highlighted formulations exhibited significant changes in their drug release profiles compared to the 

unmodified formulations) 

 

   Formulation 

 

t25%(min) 

 

t50% (min) 

 

t75% (min) 

G2 < 5 15 - 20 120 

G4 < 5 30 150 

G6 < 5 30 150 – 180 

G8 < 5 40-50 150 – 180 

G10 5-10 40-50 180-210 

G12 5-10 50-60 210-240 

G14 10-15 60 240-300 

G16 30 80 180-210 

G18 20-30 60-80 150 – 180 

G20 30 80-100 360-480 

G22 50-60 100-120 360 

G24 40-50 100 300-360 

G26 20-30 60-80 360-480 

G28 30-40 60-80 210-240 

G30 30 80-100 210-240 

G32 40-50 120 480 

G34 50-60 120-150 360-480 

G36 50-60 120-150 360-480 
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Table 6-4: Release parameters of coated CMN beads at pH 2.0 

(Highlighted formulations exhibited significant changes in their drug release profiles compared to the 

unmodified formulations) 

 

   Formulation 

 

t25%(min) 

 

t50% (min) 

 

t75% (min) 

D2 30 - 60 120 360 - 480 

D4 30 - 60 120 360 

D6 30 - 60 120 - 180 480 

D8 60 - 90 120 - 180 360 - 480 

D10 60 180 - 240 480 - 600 

D12 60 240 - 300 480 - 600 

D14 20 - 30 120 -180 240 - 300 

D16 20 - 30 120 -180 300 

D18 60 120 -180 360 - 480 

D20 60 - 90 120 -180 360 - 480 

D22 60 - 90 180 - 240 480 - 600 

D24 120 -180 240 - 300 600 - 720 

D26 30 - 60 120 -180 600 - 720 

D28 30 - 60 180 - 240 600 - 720 

D30 30 - 60 240 - 300 720 

D32 60 240 - 300 600 - 720 

D34 60 - 90 300 720 - 840 

D36 60 - 90 360 - 480 720 - 840 
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Figure 6-25: Release profile of MET-loaded A) coated non oil-modified beads and B) coated oil-modified beads 

in PBS  
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6.3.11.2.2 CMN beads  

There was an initial lag time of about 5 to 10 minutes prior to CMN release, which was 

slightly more controlled than in alkaline media than observed in the acidic media. For 

example, t50% of C10, S15CMN, D34 and D36 were 50 - 60 minutes, 60 - 80 minutes, 80 – 100 

minutes and 80 minutes respectively (Table 6-6).  There was a significant difference between 

release from CNOM beads and the uncoated unmodified beads, with f2 values ranging from 

30 - 40 (C10 beads versus D8/D10/D12 beads) (Figure 6-26a). The pattern was similar for 

coated versus uncoated oil modified beads, with f2 values between 41 and 47 (S15CMN beads 

versus D32/D34/D36 beads) (Figure 6-26b). There was a difference in release compared to 

uncoated beads (f2 values < 38) and the duration of CMN release from CNOM beads was 

extended in PBS with complete drug release being at ~ 6 h and ~ 8 h for COM beads. 
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Figure 6-26: Release profile of CMN-loaded A) coated non oil-modified beads and B) coated oil-modified beads 

in PBS media 
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Table 6-5: Release parameters of coated MET beads in PBS  

(Highlighted formulations exhibited significant changes in their drug release profiles compared to the 

unmodified formulations) 

 

Formulation 

 

t25%(min) 

 

t50% (min) 

 

t75% (min) 

G2 5 - 10 20 - 30 40 - 50 

G4 5 - 10 20 - 30 40 - 50 

G6 10 20 - 30 50 - 60 

G8 10 - 15 20 - 30 60 - 80 

G10 10 - 15 30 - 40 50 - 60 

G12 15 - 20 30 - 40 60 - 80 

G14 30 - 40 80 - 100 180 - 210  

G16 20 - 30 60 - 80 150 - 180 

G18 20 - 30 80 150 - 180 

G20 40 - 50 100-120 210 - 240 

G22 20 - 30 80 - 100 150 - 180 

G24 30 80 - 100 180 

G26 15 - 20 50 - 60 150 - 180 

G28 15 50 150 

G30 20 60 - 80 180 - 210 

G32 20 - 30 60 - 80 180 - 210 

G34 15 - 20 50 - 60 180 

G36 20 - 30 80 - 100 210 - 240 
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Table 6-6: Release parameters of coated CMN beads in PBS  

(Highlighted formulations exhibited significant changes in their drug release profiles compared to the 

unmodified formulations) 

 

Formulation 

 

t25%(min) 

 

t50% (min) 

 

t75% (min) 

D2 30 50 - 60 80 - 100 

D4 30 – 40 60 - 80 100 - 120 

D6 40 – 50 60 - 80 120 - 150 

D8 50 80 - 100 120 - 150 

D10 50 - 60 100 150 

D12 60 - 80 100 - 120 150 -180 

D14 30 - 40 60 - 80 100 - 120 

D16 40 - 50 60 - 80 120 - 150 

D18 50 60 - 80 150 -180 

D20 40 - 50 60 - 80 100 - 120 

D22 40 - 50 60 - 80 120 - 150 

D24 50 - 60 80 - 100 120 - 150 

D26 30 - 40 60 - 80 100 - 120 

D28 40 - 50 60 - 80 120 

D30 50 - 60 80 150 -180 

D32 40 - 50 100 180 -240 

D34 50 80 - 100 150 -180 

D36 50 - 60 80 - 100 180 -240 
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6.3.11.3 Drug release kinetics and release mechanism of coated beads 

6.3.11.3.1 MET and CMN release in acidic media  

Release from coated beads fitted best to Higuchi kinetics (R
2 

= 0.98 – 0.99 (MET) and R
2 

= 

0.97 – 0.99 (CMN)) as did release from unmodified beads; therefore the modifications did 

not cause a change in the drug release kinetics (Table 6-7). For the CNOM MET beads,  the 

release exponent „n‟ was ≤ 0.43, indicating Fickian diffusion, however for the COM MET 

beads, n > 0.43 indicating non-Fickian anomalous diffusion with drug release controlled by a 

combination of diffusion and polymer relaxation. There was a change in the release kinetics 

as the unmodified CMN beads exhibited Fickian diffusion while the COM CMN beads (n = 

0.72 - 0.81) exhibited non- Fickian anomalous diffusion related to diffusion and swelling. 

The release exponent of the CNOM CMN beads was  0.88 - 0.89 except for D12 which was 

0.61, indicating most of the CNOM CMN beads exhibited case II transport, which involves 

polymer dissolution and polymeric chain enlargement or relaxation. The formation of a 

polyelectrolyte complex membrane altered the drug release mechanism towards anomalous 

diffusion indicating that drug was diffusing out through the beads with simultaneous polymer 

relaxation. Coated beads have been demonstrated to exhibit similar non-Fickian (anomalous) 

and case II diffusion kinetics (Basu and Rajendran, 2008, Sun et al., 2013). 
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Table 6-7:  Release kinetics of coated a) MET beads and b) CMN beads in acidic media 

 

A 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(/min1) R2 K(%/min1/2) R2 k R2 n R2 

G2 0.277 0.884 0.003 0.881 4.136 0.991 0.008 0.962 0.254 0.949 

G8 0.208 0.948 0.002 0.776 4.274 0.990 0.007 0.958 0.309 0.988 

G12 0.185 0.895 0.002 0.972 3.775 0.989 0.005 0.956 0.327 0.975 

G14 0.134 0.739 0.001 0.876 3.515 0.990 0.004 0.777 0.436 0.979 

G20 0.145 0.791 0.001 0.818 3.713 0.988 0.004 0.879 0.589 0.975 

G26 0.108 0.703 0.001 0.848 3.181 0.994 0.003 0.801 0.509 0.991 

G30 0.137 0.879 0.001 0.829 3.792 0.993 0.003 0.886 0.733 0.981 

G32 0.122 0.782 0.001 0.828 3.492 0.997 0.003 0.886 0.701 0.931 

B 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(/min1) R2 K(%/min1/2) R2 k R2 n R2 

D2 0.156 0.826 0.001 0.841 3.997 0.981 0.003 0.933 0.888 0.967 

D8 0.197 0.922 0.001 0.787 4.204 0.992 0.004 0.967 0.899 0.981 

D12 0.133 0.954 0.001 0.877 3.573 0.994 0.003 0.988 0.614 0.991 

D14 0.208 0.889 0.002 0.737 4.655 0.978 0.005 0.942 0.799 0.845 

D20 0.138 0.837 0.001 0.952 3.899 0.973 0.003 0.918 0.729 0.934 

D26 0.096 0.829 0.001 0.854 2.971 0.997 0.003 0.921 0.799 0.802 

D30 0.084 0.877 0.001 0.867 2.744 0.995 0.002 0.95 0.727 0.843 

D32 0.095 0.841 0.001 0.748 2.921 0.995 0.002 0.919 0.721 0.926 
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6.3.11.3.2 MET and CMN release in alkaline media  

Both MET and CMN were released from CNOM following zero order drug release kinetics 

(R
2
 = 0.99) (Table 6-8). The change in mechanism compared to unmodified beads is due to 

decreased solubility of drug at this pH and the extra layer of chitosan on the surface, which 

also has a low solubility in PBS, leading to an initial slow release of the drug from the beads. 

However, the COM MET and CMN beads followed Higuchi kinetics (R
2
= 0.97- 0.99), 

similar to the unmodified beads and the oil-modified beads. For the CNOM MET beads, the 

release exponent „n‟ was 0.68 - 0.72, indicating anomalous diffusion, however for the COM 

MET beads, „n‟  was 0.86 - 0.95 indicating case II transport or zero order kinetics; one 

formulation, G20, had a value  > 1, indicating  Supercase II transport. CNOM and COM CMN 

beads had a release exponent, n value > 1 also indicating Supercase II transport with the 

exception of one formulation D30 with, n value < 1 indicating case II transport approaching a 

zero order behaviour arising from a reduction in the attractive forces between polymer chains. 

Supercase II transport is controlled by swelling and relaxation of polymer chains and is 

characterized by accelerated solvent penetration. The rate of solvent diffusion in the matrix is 

much greater than the swelling, with this being the determining factor in the drug release. 
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Table 6-8: Release kinetics of coated A) MET beads and B) CMN beads in alkaline media  

 

A 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(/min1) R2 K(%/min1/2) R2 k R2 n R2 

G2 1.273 0.995 0.013 0.985 12.015 0.986 0.037 0.994 0.682 0.972 

G8 0.898 0.994 0.009 0.932 10.421 0.988 0.024 0.979 0.688 0.999 

G12 1.076 0.995 0.009 0.996 12.346 0.975 0.028 0.998 0.725 0.995 

G14 0.355 0.934 0.003 0.990 6.209 0.993 0.008 0.979 0.904 0.955 

G20 0.348 0.945 0.003 0.991 6.051 0.994 0.008 0.981 1.011 0.961 

G26 0.370 0.871 0.003 0.969 6.188 0.971 0.009 0.943 0.950 0.949 

G30 0.292 0.867 0.003 0.968 5.529 0.974 0.007 0.947 0.857 0.902 

G32 0.335 0.875 0.003 0.973 5.991 0.976 0.008 0.949 0.903 0.885 

 

B 

Sample Zero order 1st order Higuchi Hixson-Crowell Peppas 

 K0(%/min) R2 K1(/min1) R2 K(%/min1/2) R2 k R2 n R2 

D2 0.755 0.993 0.007 0.983 10.129 0.984 0.0192 0.994 1.12 0.989 

D8 0.558 0.994 0.005 0.958 8.043 0.964 0.013 0.981 1.068 0.981 

D12 0.514 0.991 0.004 0.922 7.871 0.928 0.012 0.961 1.695 0.992 

D14 0.741 0.986 0.006 0.985 9.861 0.993 0.017 0.977 1.489 0.982 

D20 0.727 0.987 0.006 0.984 9.675 0.992 0.017 0.971 1.469 0.993 

D26 0.746 0.988 0.006 0.981 9.918 0.991 0.018 0.971 1.471 0.982 

D30 0.392 0.898 0.004 0.964 7.102 0.978 0.009 0.945 0.966 0.965 

D32 0.377 0.941 0.003 0.912 6.796 0.993 0.009 0.982 1.316 0.979 
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6.3.11.4 Drug release in mucin suspension 

6.3.11.4.1 MET beads 

 

 

Figure 6-27:  Franz cell diffusion studies of coated MET beads  

 

Drug diffusion through mucin from coated beads of both drugs was sustained over the 12 h 

period studied (Figure 6-27). The CNOM MET beads exhibited no burst release and no 

significant lag times (10.34 ± 5.37 min). However, for COM MET beads, there was a lag of 

41.45 ± 5.07 min. Drug flux decreased slightly following coating but this reduction was more 

pronounced for COM beads than CNOM beads (62.8 % decrease compared with 54.3 %) 

(Figure 6-28). Dissolution profiles from CNOM beads were dissimilar to those of M10 beads; 
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with f2 being 38 – 43 and dissolution profiles of COM beads were also significantly different 

to M10 beads with f2 values being < 30.  

 

 

 

 

Figure 6-28: Fluxes of coated MET and CMN beads   

 

6.3.11.4.2 CMN beads 

The CNOM CMN beads exhibited no burst release, similar to the observation with MET 

beads, however, there were significant lag times (43.52 ± 2.01 min), most likely due to 

reduced aqueous solubility of CMN (Figure 6-29). Also, like the equivalent MET 

formulation, there was a lag of 50.47 ± 6.75 min before the start of drug release for COM 

CMN, which is only slightly different from the lag time observed for CNOM and 

significantly different from the unmodified CMN beads (~ 20 min). Drug flux decreased 
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slightly following coating but more so for COM beads than CNOM (55 % decrease versus 45 

% decrease). 

 

 

 

Figure 6-29:  Franz cell diffusion studies of coated CMN beads  

 

Dissolution from CNOM beads was dissimilar to that of M10 beads (f2 being 38 – 43) and 

dissolution profiles from COM beads were also significantly different to M10 beads with f2 

values being < 30.  Mucus is a primary barrier with which drugs must interact and diffuse 

through to be absorbed. Drug transport rate through mucus can be an important determinant 

of the efficacy of a formulation. Interspecies variations in mucus thickness limit the 

suitability of common laboratory animals for in vivo studies (Varum et al., 2012). Drug 

release through mucin suspension demonstrated there was a sustained and adequate release of 

drug from the beads and the presence of chitosan on the surface of the beads did not hinder 
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drug release in the presence of mucin. This method may present a more realistic in vitro drug 

release model for mucoadhesive formulations as it better represents the in vivo environment 

especially in cases where in vivo models are absent.  

 

 

 

6.3.12    Storage stability of coated beads 

After 3 months storage at both 4 °C and 20 °C, there was no significant difference in the 

DEE, buoyancy, mucoadhesion ( p ˃ 0.05) and drug release (f2 ˃ 50 ) as shown in Table 6-9 

and Figure 6-30 to Figure 6-32 (4 °C). On storage, the beads did not show any significant 

change in color and texture. There was no significant difference in all the other parameters 

therefore, the formulations were stable and could be stored at these temperatures without any 

need for special storage conditions. 
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Table 6-9: Stability of beads stored at 4 °C over a period of 3 months 

 

 

      G30     G36     D30     D36 

% DEE 

Day 0 88.67 (6.5) 92.13 (5.1) 94.09 (4.1) 94.82 (4.9) 

Day 30 87.92 (7.4) 90.32 (6.8) 93.41 (5.2) 94.94 (5.1) 

Day 60 88.13 (4.9) 91.17 (5.3) 89.98 (5.9) 94.93 (4.2) 

Day 90 86.57 (5.1) 90.74 (5.4) 89.24 (6.2) 93.21 (5.9) 

%Buoyancy     

Day 0 100 100 100 100 

Day 30 100 100 100 100 

Day 60 100 100 100 100 

Day 90 100 100 100 100 
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Figure 6-30: In vitro release of coated CMN beads in 0.1N HCl stored at 4 °C 

 

Figure 6-31: In vitro release of coated MET beads in 0.1N HCl stored at 4 °C 
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Figure 6-32: Mucoadhesion studies of coated MET and CMN beads stored at 4 °C 

 

 

6.4 Conclusion 

The release of MET and CMN from alginate beads was modified by the addition of oil in the 

previous chapter (Chapter 5) and by coating of these oil-modified beads with chitosan- a 

mucoadhesive polymer. The coating of the beads with chitosan creates an additional barrier 

on the surface of the beads, to sustain the release of drug from the beads and create a 

mucoadhesive surface on the beads. The addition of oil improved the buoyancy of the beads, 

which is useful for gastro-retentive applications. Beads that were modified both with oil and 

coated with chitosan, provided the best-combined buoyancy, mucoadhesive and drug release 
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profiles, with the beads floating for at least 24 h and drug release sustained beyond 12 h. This 

shows a huge improvement especially for MET beads, where drug release from unmodified 

beads was ~ 3 h and 5 - 40 % beads floating after 12 h. In addition, a similar improvement in 

sustained drug release was observed for CMN beads where drug release from unmodified 

beads was initially ~ 8 h. Therefore, the modification of calcium alginate beads with oil and 

further chitosan coating can ensure the development of good sustained release devices and 

floating-mucoadhesive gastro-retentive drug delivery devices. 
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Chapter 7 LECTIN-CONJUGATED 

MICROSPHERES AND INTERACTION WITH 

MUCUS 

7.1 Chapter overview 

 

The common polymers used to achieve mucoadhesion have been classified into three main 

categories: a) polymers that are bioadhesive due to their stickiness; b) polymers that adhere 

through non-specific, non-covalent, primarily electrostatic interactions and c) polymers that 

bind to a specific receptor on the cell surface (Park and Robinson, 1984). Unlike the first-

generation non-specific mucoadhesive polymers, where adhesion may occur at different sites 

in the GI tract, some second-generation mucoadhesive polymers are less susceptible to mucus 

turnover rates, with the potential to bind directly to mucosal surfaces through cyto-adhesion. 

This type of drug delivery, with attached mucus or cell-specific ligands, could offer the 

advantage of creating more targeted drug delivery systems. Site-specific targeting of drugs to 

a biological surface can be achieved through conjugate-receptor interactions. Labelling the 

surface of polymeric drug carriers, such as microspheres and nanoparticles, with appropriate 

conjugates enables targeting of surface receptors on selected target cell types. When such 

systems contact the relevant surface receptor, they can interact and potentially be retained at 
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the cell surface. Drug delivery directly to the site of interest can result in a lower required 

dose, leading to both cost savings and reduction of potential unwanted side effects. Lectins 

may provide a site-specific targeted drug delivery to mucosal cells due to the fact that they 

bind to carbohydrate residues specifically and non-covalently (Naisbett and Woodley, 1995, 

Chowdary and Rao, 2004) and are resistant to protease degradation (Kilpatrick et al, 1985, 

Gabor et al, 1997). In comparison with the non-specific interactions between polymer chains 

and mucin, lectin interactions with mucin are very specific. Lectins have been described as 

„second generation mucoadhesives‟ (Kompella and Lee, 1992) and are found in organisms 

ranging from viruses and plants to animals (Barondes et al, 1994, Ezpeleta et al, 1999). 

Concanavalin A (Con A) is a lectin extracted from the jack bean, Canavalia ensiformis. It 

binds specifically to certain structures found in various sugars, glycoproteins, and glycolipids, 

mainly internal and non-reducing terminal α-D-mannosyl and α-D-glucosyl groups (Sumner 

et al, 1938, Goldstein and Poretz, 1986). This helps in their role in biological-recognition 

events (Rini, 1995).  

In this chapter, floating-mucoadhesive microparticles containing ethylcellulose (EC) and 

chitosan were loaded with clarithromycin (CMN) and characterized. The microspheres were 

conjugated with Con A to form a lectin-drug carrier complex to ensure both controlled and 

targeted delivery of drug to improve the eradication of H. pylori. This research studies the 

effect of formulation variables such as grades of EC and ratios of Con A on conjugation 

efficiency (CE). In addition, the impact of conjugation on drug loading, drug entrapment, 

drug release and mucoadhesion was assessed. The impact of gastric environment should be 

considered when developing such systems (Noqieira et al, 2013) so in addition, robust in- 

vitro mucoadhesion tests were performed which can be useful in cases where in vivo models 

are not readily available. The use of second-generation mucoadhesives may enhance the 

targeting of antibiotics for eradication of H. pylori from the stomach for the treatment of 

peptic ulcer. 
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7.2 Materials and methods 

EC-10 (low viscosity EC), EC-46 (high viscosity EC), chitosan (high molecular weight), 

polyvinyl alcohol (PVA), CMN, Con A (Type IV) and FITC-Con A, N-hydroxysuccinimide 

(NHS) and 1-ethyl-3, 3-(dimethylaminopropyl) carbodiimide (EDAC) were obtained from 

Sigma Aldrich (UK). All other chemicals used were of analytical grade and were used as 

received. 

 

7.2.1 Preparation of floating microspheres 

Microspheres were prepared using an emulsification/solvent evaporation method (Zheng et 

al., 2006, Jain and Jangdey, 2009). CMN, the polymers (EC-10 or EC-46) and chitosan were 

initially dissolved in the organic solvent, dichloromethane, which is immiscible with water 

and more volatile than water. An aqueous solution of 1 %w/v PVA was prepared and the 

polymer-drug solution was added to the aqueous solution as defined in Table 7-1. The 

emulsion formed was stirred continuously at 2,000 rpm for 1 h using a mechanical stirrer 

equipped with a three-blade propeller. The microsphere suspension was heated to 40 °C 

under reduced pressure, recovered by filtration, washed and dried at 40 °C for 24 h. 

 

7.2.1.1 Characterisation of floating microspheres  

These microspheres were characterised similarly to the beads (see section 3.3.3) unless 

otherwise stated.  
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Table 7-1: Formulation variables (S-10 and S-46 series were made with EC-10 and EC-46 polymers respectively 

 

 

 

Code EC (%w/w) Chitosan 

(%w/w) 

CMN 

(%w/w) 

Con A 

(%w/v) 

S0-10 4 - - - 

S1-10 4 0.6 - - 

S2-10 2 0.6 4 - 

S3-10 4 0.6 4 - 

S4-10 8 0.6 4 - 

S5-10 12 0.6 4 - 

S0-46 4 - - - 

S1-46 4 0.6 - - 

S2-46 2 0.6 4 - 

S3-46 4 0.6 4 - 

S4-46 8 0.6 4 - 

S5-46 12 0.6 4 - 

Con S1-10 4 0.6 - 0.1 

Con S3-10a 4 0.6 4 0.025 

Con S3-10b 4 0.6 4 0.05 

Con S3-10c 4 0.6 4 0.1 

Con S1-46 4 0.6 - 0.1 

Con S3-46a 4 0.6 4 0.025 

Con S3-46b 4 0.6 4 0.05 

Con S3-46c 4 0.6 4 0.1 

Con S4-46 8 0.6 4 0.1 
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7.2.1.2 Morphology and micromeritics of microspheres  

The morphology and surface structure of the microspheres were examined by SEM using a 

Cambridge Instruments Stereoscan 90 microscope. Particle size was determined using a 

Malvern Mastersizer 2000 (Malvern Instruments Ltd, Worcestershire, UK) laser diffraction 

particle size analyser using a Hydro SM. 

 

 

7.2.1.2.1 Bulk and tapped density of microspheres  

The microspheres were poured through a glass funnel into a graduated measuring cylinder cut 

exactly to the 10 ml mark (Vo). Excess sample was removed using a spatula and the weight of 

the cylinder containing the microspheres was measured and recorded (M) without disturbing 

the sample bed. The cylinder was then tapped approximately 100 times manually from a 

height of approximately 2 cm and the final volume (Vt) was also recorded. The bulk density 

(ƅ) and tapped density (t) were calculated using the equations 7-1 and 7-2 respectively: 

 

    
 

  
......................................... Equation 7-1 

 

    
 

  
 …………….………………..…….…… Equation 7-2 
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7.2.1.2.2 Hausner ratio (Hr) and Carr index (IC) 

 

Hausner ratio (Hr) (equation 7-3) and Carr index (IC) (equation 7-4) were calculated 

according to the following equations:  

   
  

  
…………………………………..……..Equation 7-3  

 

   
     

  
       …………..……..Equation 7-4  

 

 

7.2.1.2.3 Angle of repose (θ) 

The angle of repose was determined using the fixed funnel method (Rahman et al., 2006). A 

funnel with the end of the stem cut perpendicular to the axis of symmetry was secured with 

its tip approximately 2 cm height (H) above the graph paper placed on a flat horizontal 

surface. The microspheres were carefully poured through this funnel (cone diameter 5.5 cm, 

orifice diameter 1 cm) until the apex of the conical pile formed almost reaches the tip of the 

funnel. The mean diameter, 2R, of H, base of the powder cone was determined and the 

tangent of the angle of repose was calculated using Equation 7-5: 

 

𝑇     
 

 
………..………Equation 7-5 
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7.2.1.3 CMN assay in methanol  

Stock solutions of CMN were prepared by dissolving 5 mg drug in 10 ml methanol. 

Standards solutions of CMN were prepared in concentrations between 10 µg/ml and 100 

µg/ml by diluting the stock solution and were analysed in triplicate by UV spectroscopy at a  

wavelength of 211 nm. 

 

 

7.2.1.4 Yield, drug content and DEE of floating microspheres  

Microspheres (20 mg) were agitated for 12 h in methanol to allow extraction of the drug from 

the polymer. The drug solution was filtered, diluted and analysed by UV spectroscopy at 211 

nm and the quantity of drug content was determined from the equation of the regression line 

of the standard calibration curve of CMN in methanol. No interferences were found due to 

the presence of dissolved microsphere components was observed at this wavelength.  This 

was performed in triplicate. The DEE and yield were calculated using equations 7-6 and 7-7 

respectively: 

                

                        
                   

                        
          …………..…. Equation 7-6  

    

              
                      

                                                    
      ……..….Equation 7-7 
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7.2.1.5 In vitro buoyancy lag time and duration of floating 

microspheres  

Microspheres (500 mg) were placed in 900 ml of simulated gastric fluid (SGF) pH 2.0 and 

pH 5.0 buffer containing 0.02 %w/v Tween 80 in a USP dissolution apparatus II (paddle).  

This dispersion was stirred continuously at 100 rpm for 12 hours after which time buoyant 

microspheres and the settled microspheres were collected, dried at 40 ºC and weighed. The 

buoyancy was determined by the weight ratio of buoyant microspheres to the sum of both the 

buoyant and settled particles (equation 7-8): 

                                               
  

       
      ………………… .Equation 7-8 

where, Wf and Ws are the weights of the floating and settled microspheres, respectively. All 

the tests were carried out in triplicate. 

 

 

7.2.1.6 In vitro release studies of floating microspheres  

Drug release from the microspheres was carried out using a USP II (paddle) dissolution 

apparatus. Microspheres, equivalent to 100 mg of CMN, were packed in hard gelatin capsules 

and immersed in 900 ml SGF  (pH 2.0)  and acetate buffer (pH 5.0) containing 0.02 %w/v 

Tween 80. The solution was maintained at 37 ± 1°C and at a rotation speed of 100 rpm. 

Samples were analysed by HPLC with a correction applied for degradation using the 

degradation rate constant k (Chun et al., 2005) of CMN as detailed in Chapter 4.  
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7.2.2 Floating-mucoadhesive microspheres 

7.2.2.1 Conjugation of Concanavalin A to microsphere surfaces  

Activation of the carboxyl group of EC microspheres was carried out by the addition of 10 ml 

0.1M EDAC and 10 ml of 0.11 M NHS in phosphate buffer (pH 5.8) (Irache et al., 1994, 

Damink et al., 1996). After incubation for ~ 3 hours, excess activating agents were removed 

by washing with phosphate buffer. The microspheres were re-suspended in Con A solution in 

phosphate buffer.  This suspension was left overnight (~ 12 h) and microspheres collected by 

centrifugation at 4,000 rpm for 5 min,  to remove any free unbound lectin, washed with 

distilled water, dried at room temperature and stored at 4 °C until required for use.  

 

7.2.2.2 Determination of CE of conjugated blank microspheres  

The amount of bound Con A and CE was calculated as the difference between the Con A 

added initially and the Con A recovered after incubation with the microspheres, using a 

Folin- Ciocalteu phenol assay as described in section 2.3.26.1.  

10 ml of Reagent C was added to a suspension containing 100 mg of conjugated 

microspheres, mixed thoroughly and allowed to stand for 30 minutes. 1 ml of Reagent D was 

added and mixed rapidly. After 30 minutes, the solution was filtered and absorbance was 

measured against a blank (microspheres without lectin) using a UV-Vis spectrophotometer at 

750 nm. The amount of bound lectin was determined using the standard calibration curve of 

Con A in phosphate buffer using the method above (presented in Section 2.3.26.1). 
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7.2.2.3 Determination of CE of conjugated drug loaded microspheres  

For drug - loaded microspheres, FITC-labelled Con A was used to determine the CE and 

amount of bound lectin. The fluorescence of the FITC-Con A solution before and after 

conjugation were measured at excitation and emission wavelengths of 493 nm and 526 nm 

respectively and the concentration of the solutions determined from the standard calibration 

curve of FITC-Con A solution in phosphate buffer (presented in Section 2.3.26.2). The CE 

determined from the concentration of free lectin in the supernatant (Ezpeleta et al., 1999) and 

was determined using equation 7-9: 

 

      
                                                

                       
          …….…..Equation 7-9 

 

 

7.2.2.4 Effect of amount of lectin loaded on CE  

Varying concentrations of Con A (0.25 – 1 mg/ml) were incubated with the microspheres to 

determine its effect on CE.  

 

7.2.2.5 Storage stability studies of microspheres   

The microspheres were sealed in capsules and stored at room temperature (approximately 20° 

C) and 4° C over a period of three months. The average diameters, Zp, DEE, mucoadhesion 

and in vitro drug release were determined by methods described previously.  
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7.3 Results and discussion  

EC-based microparticles have been used for the encapsulation of different drugs, such as 

amoxicillin (Das and Rao, 2006) and theophylline (Zinutti et al., 1994) prepared by solvent 

evaporation. In this study, CMN microspheres were prepared using an oil-in-water emulsion 

solvent evaporation method. The drug was encapsulated in a gastric-resistant polymer film of 

EC, which can act as a physical barrier and prevent the degradation of CMN in the acidic pH 

of the stomach. EC, being a water insoluble polymer, helps to modify encapsulated drug 

release and prolong the action of CMN in the acidic environment of the stomach. Chitosan in 

this formulation acts as a mucoadhesive polymer. When the polymeric solution was poured 

into the aqueous continuous phase, emulsion droplets were formed. The dichloromethane was 

then removed from the system causing the droplets to solidify to form polymeric 

microspheres. 

 

7.3.1 Characterisation of ethylcellulose microspheres  

7.3.1.1 Micromeritics and morphology of ethylcellulose microspheres  

The prepared microspheres were smooth and spherical in shape as seen in Figure 7-1. The 

shape of the microspheres became more spherical and the surface became smoother and less 

porous with an increase in EC concentration. Distinct pores were present on the surface of 

microspheres and these may be subsequently responsible for drug release (Tanwar et al., 

2007). The surface porosity was found to be crucial for drug release from EC microspheres 

by dissolution and diffusion allowing water to permeate the microsphere surface without 

dissolving in it (Lee et al., 2000a). The pores at the surface are suspected to be the result of 

rapid evaporation of the solvent, dichloromethane, relative to the evaporation of water. 

During the solvent evaporation process, a crust initially formed on the surface of the droplets 

prevents the evaporation of the solvent causing the building up of vapour pressure, leading to 
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the formation of small eruption openings (Wang and Wang, 2002). There was evidence of 

collapsed particles at low EC concentrations (see Figure 7-1b) but this diminished with an 

increase in polymer concentration, with little aggregation of particles and absence of un-

encapsulated drug crystals (Figure 7-1c and d). The microspheres ranged in size from 50 -183 

µm (S-10 series) and 59 - 211 µm (S-46 series) with the particle sizes being significantly 

different (p < 0.05) due to the difference in molecular weight of EC polymers and thus 

viscosity of the droplets. The mean particle sizes of the floating microspheres significantly 

increased (p < 0.05) with increasing polymer concentration as shown in Table 7-2. The low 

concentrations of polymer resulted in a low viscosity of the polymer solution which in turn 

resulted in smaller emulsion droplets in the aqueous phase (Chaisri et al., 2009, Parashar et 

al., 2010) leading to smaller microsphere sizes. As the concentrations increase, there is an 

associated increase in viscosity and microsphere size. All the microspheres showed good 

flow properties represented in terms of angle of repose, which were all less than 40° and the 

Carr Index were all less than 20 (Shan-Yang and Yuh-Horng, 1989).  The Hausner‟s ratio 

decreased with increasing EC concentration, which suggested good flow. Bulk and tapped 

density determinations also demonstrated good compaction and packing properties of the 

floating microspheres suggesting the microparticles would be amenable to pharmaceutical 

processing (Table 7-3). 

 

7.3.1.2  Yield of ethylcellulose microspheres  

The yield of the microspheres increased with an increase in polymer concentration and 

ranged from 54 to 83 % (Table 7-2). The low yield at low polymer /drug ratio and higher 

yield at high polymer/drug ratio may be due to the loss of smallest and lightest particles 

during microsphere preparation with the particles sticking to the blades and container. In 

addition, microsphere loss may occur during the filtration and the washing processes, even 
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though this was carefully controlled in this study.  Several studies have reported lower yields 

at low polymer concentrations (Abdallah et al., 2012, Trivedi et al., 2008).  
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Figure 7-1: SEM images of A) S1-10, B)  S1-46,  C & D) S5-46 , E& F)  S3-46, G) Con S1-10 and H) Con S1-

46 
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C D 

E 
F 

G 
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Table 7-2: Properties of microspheres, results presented as mean ± SD (n=3) 

 

 

 

 

Code % Yield Particle size 

(µm) 

% Drug 

loading 

% DEE % Buoyancy 

S0-10 54.21±6.3 50.21±3.28 - - 93.1±4.31 

S1-10 56.7±4.8 51.67±2.56 - - 95.9±5.9 

S2-10 62.9±2.8 60.65±3.65 35.5±2.3 58.58±3.83 80.8±2.9 

S3-10 68.8±6.9 95.47±5.62 30.7±2.6 66.1±3.94 81.7±5.4 

S4-10 76.9±2.7 131.73±4.74 22.9±1.7 72.15±2.35 87.9±3.9 

S5-10 79.7±3.9 183.17±8.12 20.1±1.6 83.51±1.91 86.8± 4.8 

S0-46 57.8±5.7 59.21±5.23 - - 94.5±3.4 

S1-46 69.9±3.7 66.75±6.32 - - 92.8±3.6 

S2-46 78.2±2.6 75.54±8.76 39.3±3.2 64.85±4.93 75.8±3.8 

S3-46 75.8±4.6 104.18±7.96 35.9±2.2 77.18±3.24 78.9±5.8 

S4-46 81.3±5.6 148.45±10.51 25.6±1.2 80.65±5.32 84.8±4.9 

S5-46 82.6±6.5 211.44±8.28 22.1±2.3 91.86±4.68 93.2±4.9 

ConS1-10 ND 82.82± 5.9 - - 92.7±2.7 

Con S3-10a ND - 21.11±3.1 45.38±6.8 80.3±5.6 

Con S3-10b ND - 21.95±2.6 47.16±5.51 82.4±6.7 

ConS3-10c ND 113.93±6.3 21.7±3.9 46.65±7.9 79.8±4.9 

ConS1-46 ND 107.45± 3.6 - - 90.5±4.5 

Con S3-46a ND - 30.45±3.6 65.49±5.49 82.5±6.2 

Con S3-46b ND - 29.67±4.6 63.79±7.2 78.8±5.2 

ConS3-46c ND 129.38±8.3 30.9±1.3 66.43±5.5 79.9±5.8 

Con S4-46 ND 162.24±10.32 23.9±2.5 75.29±7.87 83.92±6.3 
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Table 7-3: Flow properties of microspheres 

Formulation 
Bulk density 

(g/cm3) 

True density 

(g/cm3) 

Hausner’s 

ratio 

Compressibility 

index 

Angle of 

repose (°) 

S3-10 0.13 ± 0.02 0.15 ± 0.02 1.17 ± 0.03 14.64 ± 1.76 23.32 ± 0.15 

S4-10 0.16 ± 0.04 0.19 ± 0.02 1.15 ± 0.01 15.79 ± 2.11 25.52 ± 2.69 

S5-10 0.18 ± 0.02 0.22 ± 0.03 1.12 ± 0.02 18.18 ± 1.73 21.62 ± 1.32 

S3-46 0.15 ± 0.01 0.18 ± 0.03 1.26 ± 0.02 16.67 ± 0.57 22.18 ± 1.62 

S4-46 0.18 ± 0.02 0.21 ± 0.03 1.20 ± 0.03 14.28 ± 2.12 23.87 ± 1.03 

S5-46 0.23 ± 0.01 0.28 ± 0.04 1.14 ± 0.01 17.86 ± 1.15 22.82 ± 0.64 
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7.3.1.3 Drug content and DEE of ethylcellulose microspheres  

7.3.1.3.1 CMN calibration in methanol 

The assay showed a high sensitivity with LOD and LOQ being 4.34 ± 0.21 and 13.02 ± 0.63 

µg/ml, respectively with a high linearity (R
2
 > 0.99) across the concentration range used. The 

inter-day and intra-day RSD were less than 4 % (Figure 7-2). 

 

 

Figure 7-2: Calibration curve of CMN in methanol  

 

7.3.1.3.2 DEE and drug content of ethylcellulose microspheres  

Similar to the yield, DEE also increased with an increase in polymer/drug ratio with the DEE 

of unconjugated microspheres being between 58 – 92 % (p < 0.05). Low polymer/drug ratios 
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typically result in lower DEE due to higher concentration gradients causing the drug to 

diffuse out of the polymer/solvent droplets into the external processing medium. With an 

increase in polymer/drug ratio, the increase in viscosity enables more efficient drug 

entrapment. Similarly, increased viscosity associated with higher molecular weight also 

increased DEE (p < 0.05).  The drug content in the microspheres was between 20 - 40 %w/w 

depending on the polymer/drug ratio. This result is similar to previous studies with reported 

increases in DEE with increases in polymer-drug ratio (Mehta et al., 1996, Rafati et al., 1997, 

Jelvehgari et al., 2011). 

 

 

7.3.1.4 Differential scanning calorimetry and thermogravimetric 

analysis of ethylcellulose microspheres  

DSC for pure CMN showed a sharp symmetrical melting endotherm at 227.5 ± 0.2 °C which 

corresponds to the recorded melting temperature of CMN (Gómez-Burgaz et al., 2009, 

Tozuka et al., 2002). There was no shift in the melting endotherm of the physical mixture 

indicating that there was no chemical interaction between the CMN and EC in the physical 

mixture. There was a slight reduction in the melting endotherm and broadening of CMN peak 

in the drug-loaded microspheres (Figure 7-4a and b), suggesting a less ordered drug crystal 

structure and reduced crystallinity existing in the microspheres. This demonstrates that the 

drug was compatible with the polymer and neither drug decomposition nor drug-polymer 

interactions occurred in the microspheres.  The TGA curves for pure CMN, EC, physical 

mixture and the microspheres are shown in Figure 7-3. Pure EC showed a significant weight 

loss around 310 °C with about 89 % decrease between 300 -350 °C. CMN also showed 97 % 

weight loss between 250 - 400 °C. This was similar to earlier reports that  CMN exhibits 

about 91 % loss at temperature values above 300 ºC (Salem, 1996). The blank microspheres 
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appeared to be slightly more thermally stable than pure EC probably due to the formulation 

and this was further observed as the drug-loaded microspheres were more stable than the 

physical mixture, polymer and drug itself, with the onset of decomposition of microspheres 

being higher than that of the physical mixtures alone The decomposition onset temperature of 

the physical mixture was similar to that of the pure drug indicating that the decomposition of 

the drug was not influenced by the presence of ethyl cellulose. The drug-loaded EC 

microspheres decomposed at approximately the same temperature as pure drug and since the 

melting point of drug was not altered, it indicates the absence of any chemical interaction of 

drug with the polymer. Thus, the thermal stability of the drug was maintained in the 

microspheres. The moisture content of the microspheres was determined to be less than 2 

%w/w from the TGA curve 

 

 

 

 



 323 

 

 

   

 

 

Figure 7-3: TGA curves of S-46 microspheres 
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Figure 7-4: DSC scans of floating A) S-10 and B) S-46 EC microspheres  
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7.3.1.5 Fourier transform infra-red analysis of ethylcellulose 

microspheres  

The IR spectra of CMN (Figure 7-5) showed the characteristic band of hydrogen bonds 

between –OH groups vibration at 3479.1 cm
-1

.  The characteristic C=O vibration of the 

lactone group was at 1732.6 cm
-1

 and a strong absorption band at 1692.8 cm
-1

 belonged to the 

carbonyl ketone peak and for N-CH3 stretching of aromatic ring was evident at 1423.0 cm
-1

. 

The IR spectra for EC shows a distinct peak at 3479.0 cm
-1 

which is due to the –OH groups 

present on the closed ring structure of the  repeating units and the intra- and intermolecular 

hydrogen bonds (Ravindra et al., 1999). The asymmetric peak observed between 2974.2-

2870.6 cm
-1 

may be due to–CH stretching. The peak present at 1375.2 cm
-1 

is due to –CH3 

bending and the smaller peak at 1444 cm
-1

 is due to the –CH2 bending. The broad peak at 

1103.8 cm
-1 

may be due to the C-O-C stretch in the cyclic ether (Desai et al., 2006). The 

formulations showed characteristic peaks, which were close to the principal IR peaks of the 

drug, confirming the presence of CMN in the microspheres indicating no strong interactions 

between the drug and the polymers used, and the stability of the drug during the 

microencapsulation process. 

 

 



326 

 

 

 

 

Figure 7-5: FTIR scans of CMN, EC polymer, unconjugated and conjugated microspheres 
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7.3.1.6 Powder X-ray diffraction analysis of ethylcellulose 

microspheres  

EC and chitosan showed their amorphous nature while CMN was highly crystalline (Figure 

7-6). CMN exhibited a pattern characteristic of a highly crystalline material with peaks 

appearing at 2θ values of 8.52 ° / 9.57 ° / 10.94 ° / 11.55 °/ 12.35 °/ 13.27 ° /13.81 °/ 15.27 °/ 

16.70 °/ 17.39 °/ 18.33 ° / 19.12 °/ 20.58 °/ 21.54 °/ 22.31 °/ 24.84 °. The diffraction patterns 

of the physical mixture and the drug-loaded microspheres showed similar peaks of the CMN, 

however they were broader and had reduced intensities relative to that of the pure drug. This 

could be ascribed to the crystalline nature of the drug in the microspheres. These results 

further confirm the results obtained in DSC and FTIR analysis indicating the stability of 

CMN in the formulations.  
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Figure 7-6: P-XRD of CMN, EC polymer, unconjugated and conjugated microspheres 

 

 

 

7.3.1.7 In vitro buoyancy profile of ethylcellulose microspheres  

Good in vitro percentage buoyancy was observed for all the microsphere formulations, 

between 75 to 96 % microspheres remained floating after 12 h, and increasing slightly with 

an increase in polymer concentration (p > 0.05). Floating occurred immediately on contact 

with the dispersion media with negligible lag time (Table 7-2).  EC microspheres being 

insoluble and unswellable do not take up water significantly therefore, remained floating on 

the media. The absence of any lag time indicates the low density of the microspheres in 
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simulated media. The buoyancy of EC microspheres have been reported by other researchers 

(Mastiholimath et al., 2008, Pande et al., 2010, Vaghani et al., 2010). 

 

 

7.3.1.8 In vitro release studies of ethylcellulose microspheres  

Drug release from microspheres was determined in SGF pH= 2.0 (Figure 7-7a) and acetate 

buffer at pH = 5.0 (Figure 7-7b) to cover the pH range for when CMN is used alone or in 

combination with omeprazole (Gustavson et al., 1995). In addition, this covers potential 

variations in stomach pH in the absence and presence of food, respectively. Tween 80 was 

added to the dissolution medium to increase the wetting and hydration of the polymers (El-

Kamel et al., 2001). At pH 2.0, the dissolution of the unencapsulated drug was rapid and 

complete within 3 hours (Figure 7-7a). Drug release was biphasic with an initial burst release 

followed by a second moderate rate of release, a characteristic feature of matrix diffusion 

kinetics. The burst release and CMN release rates were reduced with increasing EC 

concentration and viscosity (p < 0.05), probably due to a change in distribution of drug in the 

particles, with less being located at the surface and better entrapment (Figure 7-7a and 7-7b). 

Also, an increase in polymer/drug ratio led to an increase in the particle size, decrease in 

surface/volume ratio, increase in polymer density and an increase in diffusional path length, 

all of which can contribute to prolonging drug release (Muramatsu and Kondo, 1995). The 

effect of polymer-drug ratio on drug release was observed on comparison of f2 values of S3-

10 versus S5-10 ( 41.5 ) and S3-46 versus S5-46 (42.3). EC has a low water permeability, 

while both chitosan and CMN are relatively soluble at low pH, therefore formulations 

containing more drug will most likely have a higher initial burst release (S2-10 / S2-46) than 

those with less drug (S5-10 / S5-46) as observed in these results. Also, dissolution of chitosan 

may lead to increased permeability of the microspheres, especially at later times. At pH 5.0, 
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solubility of CMN and chitosan was reduced and drug release was much slower from the 

microspheres with an average f2 of 51. Drug release rate was also slower with an increase in 

polymer viscosity and polymer concentration (Figure 7-7b).  

 

 

7.3.1.9 Drug release kinetics and mechanisms of floating microspheres 

Drug release at pH 2.0 from all formulations fitted well to Higuchi kinetics (R
2
= 0.97 to 

0.99), indicating a diffusion controlled release dominated. The release mechanism denoted by 

the release exponent „n‟ of all the formulations was between 0.23 – 0.44, indicating Fickian 

diffusion-controlled release (Table 7-4). This supports the formation of monolithic 

microspheres that release their drug content by Fickian diffusion. This release mechanism has 

been used to describe drug release from EC microspheres by other researchers (Maiti et al., 

2009, Nath et al., 2010) 
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Figure 7-7: In- vitro release profiles of microspheres in  SGF pH =2.0 (A ) and  pH 5.0 (B). 
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Table 7-4: Release kinetics of the microspheres (pH 2.0) 

 

 

7.3.2 Characterisation of conjugated microspheres  

 

Figure 7-8: Schematic representation of the unconjugated and conjugated CMN microspheres 

                                 Release kinetics models 

Code  Zero order First order  Higuchi model Korsmeyer-Peppas 

R
2
  Ko (h-

1
) 

 

 

R
2
 

 

K1(h
-1

) 

 

R
2
 

 

Kh (h
-1/2

) R
2
 

 

n 

S2-10 0.9025 13.09 0.9082 0.112 0.9824 43.76 0.9132 0.24 

S3-10 0.9204 11.06 0.9759 0.109 0.9787 38.66 0.9877 0.27 

S4-10 0.9456 10.39 0.9672 0.089 0.9815 31.99 0.9764 0.31 

S5-10 0.9683 7.05 0.9913 0.057 0.9903 22.67 0.9907 0.37 

S2-46 0.9513 9.35 0.9849 0.110 0.9746 28.62 0.9848 0.23 

S3-46 0.9987 8.30 0.9662 0.097 0.9942 24.85 0.9873 0.29 

S4-46 0.9635 6.83 0.9715 0.074 0.968 23.25 0.9707 0.44 

S5-46 0.9544 4.99 0.9883 0.042 0.9942 19.84 0.9921 0.39 

 

Con S3-46c 0.9667 6.17 0.9873 0.069 0.9936 21.71 0.9844 0.56 

 

Con S4-46 0.9611 6.04 0.9823 0.051 0.9913 20.56 0.9882 0.64 
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The conjugation (Figure 7-8) reaction involves the use of water-soluble carbodiimide, which 

reacts with the carboxyl group on EC, leading to the formation of an amine reactive O-

acylisourea intermediate. The intermediate may react with an amine on the lectin forming a 

stable amide bond. This intermediate is susceptible to some side reactions such as hydrolysis 

or can form a stable compound through re-arrangement; therefore, the solutions are stabilized 

with the addition of NHS by converting it to an amine reactive NHS ester, thus increasing the 

efficiency of the coupling reaction. The optimum pH for this EDAC and NHS reaction is 

between pH 4 - 6. The use of the carbodiimide method is preferable to cross-linking agents 

such as glutaraldehyde because it minimises the risk of structural modification of the 

conjugated ligands at locations, which may be critical to their binding activity. 

 

 

7.3.2.1 Morphology and micromeritics of conjugated microspheres  

The conjugation process did not affect the microsphere morphology or the structural integrity 

with the surface appearing similar to that of the unconjugated microspheres (Figure 7-1g and 

h). The particle size of the microspheres increased on conjugation with S1-10 and S1-46 

increasing from about 50µm and 65 µm to about 83 µm and 108 µm, respectively (Table 7-

2).  This was similarly observed with drug-loaded microspheres (p< 0.05). This may be due 

to the presence of a layer of Con A on the surface of the microspheres and also probably due 

to swelling of the microspheres on exposure to fluids during the conjugation process. All 

results presented are of microspheres conjugated with 0.1 %w/v Con A unless otherwise 

stated. 
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7.3.2.2 Conjugation efficiency and amount of bound lectin 

The initial method used to determine the CE of blank microspheres was not feasible with 

drug loaded microspheres because CMN reacts with Folin-Ciocalteu reagent in an alkaline 

medium and has been used as a reagent in the determination of its concentration in various 

formulations (Nama et al., 2008). Folin Ciocalteu reagent measures the total reducing 

capacity of a sample as well as the concentration of the phenolic content of a sample not just 

the level of phenolic compounds.  Therefore, the use of this method for quantifying CE could 

overestimate conjugation of Con A to the microspheres as it would detect any surface bound 

or released CMN during the test.  This justified the need of another method to estimate CE of 

drug loaded microspheres. It has been reported that the CE of Con A binding can be 

determined using UV analysis at 280 nm (Chern et al., 2001) but due to interference from the 

various reagents and drug this was also not an ideal analytical method to use for this analysis. 

Therefore, FITC conjugated lectin was used and the binding analysed by fluorescence 

spectroscopy (see section 2.3.26.2). 

The amount of Con–A bound onto the surface of the microspheres was between 1.8 ± 0.2  and 

15.3 ± 1.4 µg Con A / mg microspheres with a CE of 36 - 77 % of the initial amount of lectin 

added. Residual PVA present on the microsphere surface (and associated –OH groups) can 

act as a steric barrier to a higher conjugation (Scholes et al., 1999). There was a reduction in 

CE following incorporation of drug and this may be due to the presence of drug on the 

surface of microspheres rendering some of the –COOH unavailable for conjugation. The CE 

of Con A to the microsphere increased significantly (p < 0.05) with increasing lectin added 

(Figure 7-9). This contrasts with WGA conjugation efficiency to PLGA nanospheres 

(Weissenbock et al., 2004) which was found to be independent of lectin concentration.  
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Figure 7-9: Effect of Con A loading on CE and amount of bound Con A 

 

 

7.3.2.3 Effect of EC molecular weight on CE of lectin  

Using different grades of EC did not have a significant effect on the CE of blank 

microspheres, as the CE of both Con S1-46 and Con S1-10 were similar, however for drug-

loaded microspheres there was an average increase of 20.7 ± 5.1 % in CE with Con S3-46c 

than observed with Con S3-10c (Figure 7-9). This might be because the presence of drug 

reduced the available sites for conjugation and this effect was more obvious in EC of lower 

viscosity grade than at relatively high viscosity grade probably with more available 

conjugation sites. 
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7.3.2.4 DEE of conjugated microspheres  

The coupling process and washing led to the loss of loosely encapsulated surface-associated 

drug with a reduction in drug content of Con S3-46 by about 14 % compared to S3-46 and a 

loss of about 7 % in Con S4-46 relative to S4-46 (Table 7-2). There was more drug loss 

observed with S3-10 with a loss of about 30 % in Con S3-10, which was more than double the 

loss observed in Con S3-46 and quadruple that observed in ConS4-46.  The DEE of these 

conjugated microspheres was above 45 % in all cases. This shows that high viscosity EC 

microspheres were able to retain more drug within the microsphere matrix than the 

corresponding lower viscosity EC microspheres. 

 

 

7.3.2.5  DSC of conjugated microspheres 

The absence of any extra peaks on the thermograms (such as peaks of EDAC or NHS) and no 

major differences between the scans of the conjugated and the unconjugated microspheres 

confirms that there were no excess conjugation chemicals left in the microspheres and that  

conjugation did not cause any significant changes in the microspheres (Figure 7-10). 
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Figure 7-10: DSC scans of the unconjugated and conjugated blank microspheres  

 

7.3.2.6 FTIR of conjugated microspheres 

Conjugation of Con-A was through the formation of amide bonds between the -NH2 groups 

of Con A and –COOH on EC. This was confirmed with the presence of two amide bonds (I 

and II) with peaks at 1716.1, 1651.1 and 1538.6 cm
-1 

which are characteristics of amides 

mainly in proteins (Anande et al., 2008, Jain and Jangdey, 2009). These peaks were 

noticeably absent in the unconjugated microspheres (Figure 7-5).
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7.3.2.7  In vitro buoyancy of conjugated microspheres 

Conjugation and pH of dispersion media had no significant effect on the buoyancy of the 

microspheres (p > 0.05). The conjugated microspheres all exhibited good buoyancy with the 

buoyancy of conjugated microspheres being ˃ 70 % after 12 h (Table 7 -2). 

  

7.3.2.8  Zeta potential of conjugated microspheres  

Zp for S0-46, S1-46 and Con S1-46 were -14.6 ± 2.4 mV, -10.8 ± 0.6 mV and +29.4 ± 1.07 

mV respectively, while S3-46 had values of -13.4 ± 1.5 mV and Con S3-46 was +18.3 ± 1.5 

mV.  The negative Zp of the unconjugated microspheres was due to the presence of uncapped 

end carboxyl groups present at the surface of EC due to EC deprotonation at pH 7.0. The 

presence of chitosan in the formulation reduced the negative Zp of the microspheres. The 

conjugation of Con A on the microsphere surface normally causes a positive increase in the  

Zp of microspheres (Anande et al., 2008). The presence of drug had a negative effect on the 

Zp of the microspheres and the negative influence of drug on Zp of microspheres has been 

reported (Huang et al., 2003, Martinac et al., 2005). Lectin coating on gliadin microparticles 

positively increased the Zp of the microparticles (Umamaheshwari and Jain, 2003). The 

positive Zp is crucial for effective electrostatic interaction of the microspheres with the 

negatively charged sialic acid of the gastric mucosa leading to prolonged gastro-retention.  

 

7.3.2.9  In vitro drug release of conjugated microspheres 

Drug release from Con S3-46 and Con S4-46 microspheres was slower than the 

corresponding unconjugated S3-46 and S4-46 microspheres at pH 2.0, with no associated 

burst release as seen with S3-46 (f2 = 47.4) and S4-46 (f2 = 41.0)  (Figure 7-11). This may be 

due to the loss of the surface associated drug and the reaction at the surface of the 

microspheres, rendering it slightly less permeable than unconjugated microspheres. Drug 
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release kinetics followed Higuchi kinetics similar to the unconjugated microspheres. The „n‟ 

values for the conjugated drug loaded microspheres were 0.43 > n < 0.85 which indicate 

anomalous non-Fickian transport kinetics. This change in drug release kinetics may be due to 

the conjugation effects on the microsphere surface. 

 

 

 

Figure 7-11:  In vitro release profiles of conjugated microspheres in  SGF (pH 2.0) 
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7.3.2.10 In vitro interactions of conjugated microspheres with PGM 

The Con A conjugated microspheres have a higher affinity for pig gastric mucin than 

unconjugated EC microspheres (Figure 7- 12a). Mucin binding to S1-10 / S1-46 versus Con 

S1-10/Con S1-46 as a function of time is shown in Figure 7-12b. The amount of mucin bound 

to the ConS1-46 was about 81 % more than that bound to S1-46. An increase in bound mucin 

of about 79 % was observed with Con S1-10 (Figure 7-12a). The equilibrium for the 

interaction was reached after incubation between 60 to 120 minutes (Figure 7-12b) and the 

adsorption process was not affected by the different temperatures used (p > 0.05). The 

amount of bound mucin depended on the amount of lectin on the surface of the microspheres 

with approximately 10 - 22  % mucin binding on doubling Con A concentration.. 
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Figure 7-12: A) PGM binding of conjugated and non-conjugated microspheres; B) Lectin-mucin interaction 

kinetics. Results presented as mean ± SD (n=3), with Con S1-46 (0.5) and Con S1-46 (1) represemting 

microspheres conjugated with 0.05 and 0.1 %w/v Con A  
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7.3.2.11 Ex vivo wash off test 

Mucoadhesion of the Con A conjugated microspheres to porcine gastric mucosa at pH 2.0 

was 64.0 ± 3.58 % to 78.7 ± 2.87 % compared with 9.9 ± 4.37 to 15.5 ± 3.64 % of the 

unconjugated microspheres, which corresponds to an average enhancement in mucoadhesion 

of 85 % (Figure 7-12a). On increasing the pH to pH 5.0, there was a similar increase in 

mucoadhesion of the conjugated microspheres with ~ 90 % increase in mucoadhesion. This 

increase in mucoadhesion was due to the Con A coating on the microsphere surface (p < 0.05) 

due to the affinity of Con A to the mucin glycoproteins of the stomach mucus and mucosa. 

Increasing amount of surface lectin also increased the mucoadhesion with ~ 32 % increase in 

mucoadhesion in Con S3-46c compared with the mucoadhesion of Con S3-46b (Figure 7-

12a).  

  

7.3.2.12  In vitro drug diffusion of clarithromycin through PGM 

The release of drug from the microspheres and its diffusion through a 3 % mucin suspension  

was sustained over a period of 12 h at pH 2 and 5. There was no obvious burst release and 

there was an initial lag time of approximately 110 minutes observed with Con S3-46, while 

there was no lag time observed for the saturated solution and the S3-46 (Figure 7-13). The 

absence of a burst release and the sustained release of CMN from the microspheres may be 

due to the loss of the surface-associated drug. The sustained release may also be due to 

binding of the mucin to the surface of the microspheres, thus presenting a further barrier to 

CMN diffusion from the microsphere surface. S3-46 did not also show an obvious burst 

release, however, the release rate was significantly higher than that of the equivalent 

conjugated formulation. The flux of the drug through the mucin dispersion and membrane 

was 145.8 ± 5.73 µgcm
-2

h
-1

 (ConS3-46) and 243.9± 8.85 µgcm
-2

h
-1 

(S3-46) compared with 

1020.1 ± 30.11 µgcm
-2

h
-1

 from a saturated solution at pH 2.0. Encapsulation reduced flux of 

CMN by over 300 % (Saturated solution versus S3-46).  There was also a reduction of about 
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40 % in drug flux for the conjugated formulation due to reduced drug availability at the 

particle surface, increased diffusional path-length and changes to the microsphere surface. At 

pH 5.0, the fluxes were significantly lower than those at pH 2.0 (p < 0.05) as expected with 

the decrease in CMN solubility at this pH. In the presence of mucin, there was still a 

sustained and adequate release of drug from the conjugated microspheres and the presence of 

lectin on the surface of the microsphere did not hinder the release of drug from the 

microspheres in the presence of mucin.  

 

 

 

Figure 7-13: Franz cell diffusion profiles of microspheres in mucin suspension (pH 2). Results presented as 

mean ± SD (n=3). 
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7.3.2.13 Storage stability of microspheres  

After 3 months of storage at 4 °C, there was no significant difference in the particle size, zeta 

potential, DEE, drug release (70 < f2 < 80 ) and the mucoadhesion of the formulations as 

shown in Figure 7-14 to Figure 7-16. The activity of the lectin was still maintained whilst 

stored at this temperature since there was no significant change in the proportion of 

microparticles adhered to the porcine gastric mucosa. However, storage at room temperature 

led to a slight change only in the mucoadhesion with all the other parameters remaining 

consistent. Drug release from these microspheres was unaffected by storage but to preserve 

lectin binding efficiency, lower storage temperatures may need to be used. 
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Figure 7-14: In vitro release profiles of microspheres stored at 4 °C: A) S3-46;  B) Con S3-46 
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Figure 7-15: Stability of microspheres stored at 4 °C over 3 months 
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Figure 7-16: Stability of microspheres stored at room temperature (20 °C) over 3 months 
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7.4 Conclusion  

CMN-loaded ethylcellulose microspheres were prepared using the solvent evaporation 

method and the mucin binding lectin, Concanavalin A, was successfully attached to the 

microspheres up to a maximum of 15.3 µg Con A per mg microsphere. The inclusion of 

CMN did not significantly reduce the amount of Con A bound to the surface of the 

microspheres, however, conjugation led to a reduction in the DEE of the microspheres with 

more drug loss being observed with the S-10 series than the S-46 series.  In vitro 

mucodhesion studies confirmed the enhancement of mucoahesion due to the presence of 

lectin. The drug loading, DEE, buoyancy and in vitro drug release in both the dissolution 

media and mucin dispersion were not compromised by the conjugation process. A combined 

approach of a floating – mucoadhesive formulation with a high buoyancy and high 

mucoadhesion may enhance the delivery of antibiotics to the target site in the stomach.  
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Chapter 8 FINAL CONCLUSIONS  

The aim of this research was to develop gastro-retentive drug delivery devices that can 

potentially be retained in the stomach for a prolonged period compared to conventional drug 

delivery systems. In this thesis, two different multi-unit formulations were prepared – 

calcium alginate beads and ethylcellulose microspheres. Both formulations combine two 

gastroretentive techniques, which include floating and mucoadhesive techniques in order to 

explore the synergistic effect of both techniques and improve the chances of the formulation 

to be retained in the stomach. In addition to these gastroretentive properties, drug release 

from these formulations was sustained over a period of at least 12 h.  

The calcium alginate beads were produced through the ionotropic-gelation method and 

encapsulation of drugs (MET and CMN) into the beads was simple and straightforward, 

producing spherical beads with an average size of 2 -3 mm. The limitations of these beads are 

the fact that they release their drug contents quickly – MET within 3 h and CMN within 8h 

(the difference in release profile being dependent on the aqueous solubilities of the drugs) and 

the limited buoyancy of the beads when in contact with simulated gastric fluids. These beads 

were modified by addition of olive oil (an oil demonstrated to have anti-H. pylori activities) 

to primarily improve the buoyancy of the beads and secondarily sustain drug release due to 

the increase in hydrophobicity of the bead matrix due to the presence of oil in the 

formulation. It was observed that beads modified with ≥ 10 % olive oil exhibited 100 % 

buoyancy with lag times ˂ 1 minute, thereby improving the gastro-retentive potential of the 
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beads. Drug release of MET from the beads was not sustained until ˃ 10 %w/w oil was 

included in the formulation, while for CMN beads, drug release was sustained on inclusion of 

≥ 10 %w/w olive oil. The addition of oil at high concentrations (˃ 15 %w/w) had a 

detrimental effect on the mechanical strength and structure of the beads, therefore, the use of 

high concentrations of oil as a means of further sustaining MET release from the beads were 

discarded. Chitosan, a mucoadhesive polymer, was used to coat oil-modified beads to convert 

the beads from a floating formulation to a floating-mucoadhesive formulation. Chitosan also 

provides an additional barrier, which reduces the rate of drug diffusion from the bead surface, 

thereby sustaining drug release from the beads. Solid-state characterisation indicated the 

stability of both drugs in the beads. Coating of these oil-modified beads led to the production 

of beads with high DEE, 100 % buoyancy over a 24 h period and drug release from beads 

loaded with either MET and CMN over a 12 h period, thereby fulfilling all the characteristics 

desired in a gastro-retentive formulation. 

There is further work that can be done to improve this formulation and this includes a means 

of reducing the sizes of the beads, ideally to within the nano/micron size range; this will help 

with the packing and formulation administration issues. This can be achieved with electro-

spray techniques where small droplets are generated through the use of electric field between 

a nozzle and a eletroconductive solution underneath. The droplet size will depend on factors 

such as the electric field strength, the nozzle diameter and the flow rate of liquid, as well as 

liquid properties such as viscosity, electrical conductivity and surface tension (Ku and Kim, 

2002). Performance of the developed formulation in GI tract can be also visualized by 

gamma scintigraphy in animal models to further determine the effectiveness of the 

formulation. In addition, the bead formulation can also be further evaluated for their 

effectiveness in eradicating H. pylori, by exposing strains of H. pylori to these formulations 

and comparing its effectiveness with that of plain drug through assessment of H. pylori 

growth inhibition. Also, another area of research is to try to incorporate two antibiotic drugs 

into alginate beads to be able to determine if both drugs will be sufficiently loaded into the 

beads and the effect of the physicochemical properties of the drugs on the entrapment 

efficiencies of the drug in the beads. This approach is due to the multiple drug therapy 
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required in the eradication of the bacteria; the combination of 2 antibiotics in the same 

formulation will help reduce the total number of drugs to be used thereby improving patient 

compliance.  

Ethylcellulose microspheres were prepared using an emulsification/solvent evaporation 

method with two grades of ethylcellulose (10 cps and 46 cps). The particles sizes were within 

the range of 50 – 211 µm with the DEE increasing with increasing polymer-drug ratio. 

Buoyancy of these microspheres was high due to the hydrophobic nature of ethylcellulose 

demonstrating good gastro-retentive potential. Conjugation efficiency of lectin to the 

microspheres was high with a maximum of ~ 77 % and it increased with increasing lectin 

added. DEE of S-46 series were higher than that of S-10 series and conjugation of the 

microspheres did not affect the buoyancy of the microspheres. Conjugation with lectin 

improved the mucoadhesion of the microspheres (with ˃ 60 % mucoadhesion in conjugated 

microspheres versus ˂ 15 % mucoadhesion observed in unconjugated microspheres) and this 

combined with the high buoyancy of the microspheres produced a formulation with a high 

gastro-retentive potential. Clarithromycin release was sustained beyond 12 h and conjugation 

with lectin reduced release rate, which may be due to the conjugation effects on the surface 

on the microspheres. Solid-state characterisation indicated the stability of clarithromycin in 

the unconjugated and conjugated microspheres.  

Further work can be done by direct compression and formulating the microspheres into fast 

disintegrating tablets, which can be subjected to in vivo studies in animal models for 

assessment of the effectiveness of the formulation. Also, the microspheres can be further 

evaluated for their effectiveness in eradicating H. pylori, by exposing strains of H. pylori to 

these formulations and comparing its effectiveness with that of plain drug through assessment 

of H. pylori growth inhibition. 
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