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Abstract. ERDF stable model semantics is a recently proposed semantics for
ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs.
In this paper, we elaborate on the computability and complexity issues of the
ERDF stable model semantics. Based on the undecidability result of ERDF
stable model semantics, decidability under this semantics cannot be achieved,
unless ERDF ontologies of restricted syntax are considered. Therefore, we
propose a slightly modified semantics for ERDF ontologies, called ERDF #n-
stable model semantics. We show that entailment under this semantics is, in
general, decidable and also extends RDFS entailment. Equivalence statements
between the two semantics are provided. Additionally, we provide algorithms
that compute the ERDF #n-stable models of syntax-restricted and general
ERDF ontologies. Further, we provide complexity results for the ERDF #n-
stable model semantics on syntax-restricted and general ERDF ontologies.
Finally, we provide complexity results for the ERDF stable model semantics
on syntax-restricted ERDF ontologies.
Keywords: Extended RDF ontologies, Semantic Web, negation, rules, com-
plexity.

1 Introduction

Rules constitute the next layer over the ontology languages of the Semantic Web,
allowing arbitrary interaction of variables in the head and body of the rules. In
particular, Berners-Lee [12] identifies the following fundamental theoretical prob-
lems: negation and contradictions, open-world versus closed-world assumptions, and
rule systems for the Semantic Web. Therefore, in [6], the Semantic Web language
RDFS [38, 32] is extended to accommodate the two negations of Partial Logic [33],
namely weak negation ∼ (expressing negation-as-failure or non-truth) and strong
negation ¬ (expressing explicit negative information or falsity), as well as derivation
rules. In particular, users can now add negative triples to RDF graphs. The new lan-
guage is called Extended RDF (ERDF ). In [6], the ERDF stable model semantics of
ERDF ontologies is developed, based on Partial Logic, extending the model-theoretic
semantics of RDFS [32].

ERDF enables the combination of closed-world (non-monotonic) and open-world
(monotonic) reasoning, in the same framework, through the presence of weak nega-
tion (in the body of the rules) and the new metaclasses erdf :TotalProperty and
erdf :TotalClass, respectively. In particular, relating strong and weak negation at the
interpretation level, ERDF distinguishes two categories of properties and classes.



Partial properties are properties p that may have truth-value gaps, that is p(x, y) is
possibly neither true nor false. Total properties are properties p that satisfy totalness,
that is p(x, y) is either true or false. Partial and total classes c are defined similarly,
by replacing p(x, y) by rdf :type(x, c). ERDF also distinguishes between properties
(and classes) that are completely represented in a knowledge base and those that are
not. Clearly, in the case of a completely represented (closed) property p, entailment
of ∼p(x, y) allows to derive ¬p(x, y), and the underlying completeness assumption
has also been called Closed-World Assumption (CWA) in the AI literature.

Such a completeness assumption for closing a partial property p by default may
be expressed in ERDF by means of the rule ¬p(?x, ?y)← ∼p(?x, ?y) and for a partial
class c, by means of the rule ¬rdf :type(?x, c) ← ∼rdf :type(?x, c). These derivation
rules are called default closure rules. In the case of a total property p, default closure
rules are not applicable. This is because some of the considered interpretations will
satisfy p(x, y) and the rest of the considered interpretations will satisfy ¬p(x, y)4,
preventing the preferential entailment of ∼p(x, y). Thus, on total properties, an Open-
World Assumption (OWA) applies. Similarly to first-order logic, in order to infer
negated statements about total properties, explicit negative information has to be
supplied, along with ordinary (positive) information. We would like to note that in
ERDF properties and classes are partial by default.

Intuitively, an ERDF ontology is the combination of (i) an ERDF graph G con-
taining (implicitly existentially quantified) positive and negative information, and
(ii) an ERDF program P containing derivation rules, with possibly all connectives
∼, ¬, ⊃, ∧, ∨, ∀, ∃ in the body of a rule, and strong negation ¬ in the head of a rule.
Examples of ERDF ontologies are provided in the next section.

In [6], it is shown that ERDF stable model entailment conservatively extends
RDFS entailment from RDF graphs to ERDF ontologies. Unfortunately, as shown
in [6], satisfiability and entailment under the ERDF stable model semantics are in
general undecidable. In this work:

– In Section 4, we further elaborate on the undecidability result of the ERDF
stable model semantics. Decidability cannot be achieved under this semantics,
unless ERDF ontologies of restricted syntax are considered. Undecidability which
is obtained even with the single presence of weak and strong negation in an
ERDF ontology is due to the fact that the RDF vocabulary is infinite. Therefore,
we propose in Section 5 a modified semantics, called ERDF #n-stable model
semantics (for n ∈ IN), that achieves decidability of reasoning in the general case.
The new semantics also extends RDFS entailment from RDF graphs to ERDF
ontologies. Equivalence statements between the (original) ERDF stable and #n-
stable model semantics for objective ERDF ontologies (i.e., ERDF ontologies
whose rules contain only the logical factors ¬, ∧) are provided.

– In Section 6, we show that if O is a simple ERDF ontology (i.e., the bodies of
the rules of O contain only the logical factors ∼, ¬, ∧) then query answering
under the ERDF #n-stable model semantics reduces to query answering under
the answer set semantics [30] over a particular transformed program generated
from O.

– In Section 6 and Section 8, we provide algorithms that compute the ERDF #n-
stable models of simple and general ERDF ontologies, respectively.

4 On total properties p, the Law of Excluded Middle p(x, y)∨¬p(x, y) applies.
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– Using the previous algorithms, in Section 7 and Section 9, we provide model ex-
istence and query answering complexity results for the ERDF #n-stable model
semantics on objective and simple ERDF ontologies, ERDF ontologies without
quantifiers, and general ERDF ontologies. We consider both the case that an
ERDF ontology is bounded (i.e., there are no free variables in the body and
head of its rules) or is not bounded. In particular, the complexity of query an-
swering under the ERDF #n-stable model semantics (i) on bounded objective
and bounded simple ERDF ontologies is co-NP-complete, (ii) on objective and
simple ERDF ontologies, as well as on bounded ERDF ontologies without quan-

tifiers and ERDF ontologies without quantifiers, is ΠP
2 =co-NPNP-complete, and

(iii) on bounded ERDF ontologies and general ERDF ontologies is PSPACE-
complete. All previous results are with respect to the size of the ERDF ontology.
Additionally, in Section 10, we provide combined complexity results (i.e., with
respect to both the size of the ERDF ontology and the size of the query formula)
of query answering. In particular, in the case that the query formula does not
have quantifiers, the combined complexity of query answering is the same as the
complexity of query answering with respect to the size of ERDF ontology, for all
kinds of ERDF ontologies. Further, in the case that the query formula is general,
the combined complexity of query answering is PSPACE-complete, for all kinds
of ERDF ontologies. These complexity results are summarized in Table 1. We
see that when the complexity of the structure of an ERDF ontology increases, its
query answering complexity also increases though there are overlaps. The com-
bined complexity of query answering for a general query formula F is the same
for all kinds of ontologies due to the complexity of F .

– Finally, in Section 7, we provide complexity results for the (original) ERDF stable
model semantics when restricted to bounded objective and objective ERDF on-
tologies. In particular, the complexity of query answering under the ERDF stable
model semantics on bounded objective ERDF ontologies is co-NP-complete and
on objective ERDF ontologies is ΠP

2 -complete, provided that the query formula
is an ERDF d-formula (i.e. a disjunction of existentially quantified conjunctions
of ERDF triples, without free variables). This is due to the ERDF metaclasses
erdf :TotalClass and erdf :TotalProperty , on the instances of which the OWA ap-
plies.

This work extends our conference paper [7] (i) by showing that the ERDF stable
model semantics is undecidable even on objective ERDF ontologies, (ii) by showing
that if O is a simple ERDF ontology then query answering under the ERDF #n-
stable model semantics reduces to query answering under the answer set semantics,
(iii) by providing algorithms that compute the ERDF #n-stable models of simple
and general ERDF ontologies, (iv) by providing complexity results for the ERDF
#n-stable model semantics on bounded simple ERDF ontologies, bounded objective
ERDF ontologies, bounded ERDF ontologies without quantifiers, ERDF ontologies
without quantifiers, bounded ERDF ontologies, and general ERDF ontologies, and
(v) by extending related work and providing proofs for all propositions.

The rest of the paper is organized as follows: In Section 2, we present two examples
of ERDF ontologies. Section 3 reviews the ERDF stable model semantics of ERDF
ontologies. In Section 4, we show that the ERDF stable model semantics is undecid-
able even on objective ERDF ontologies. In Section 5, we propose the ERDF #n-
stable model semantics of ERDF ontologies that extends RDFS entailment on RDF
graphs and guarantees decidability of reasoning. Additionally, we provide equivalence
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model existence query answering combined complexity combined complexity
ERDF w.r.t. the size w.r.t. the size of query answering of query answering
ontology of the ERDF of the ERDF for an unquantified for a general

ontology ontology query formula query formula

bounded NP co-NP co-NP PSPACE
objective (Prop. 9.1) (Prop. 9.3) (Prop. 19.1) (Prop. 19.2)

objective NPNP co-NPNP co-NPNP PSPACE
(Prop. 12.1) (Prop. 12.2) (Prop. 19.1) (Prop. 19.2)

bounded NP co-NP co-NP PSPACE
simple (Prop. 7) (Prop. 8) (Prop. 19.1) (Prop. 19.2)

simple NPNP co-NPNP co-NPNP PSPACE
(Prop. 11.1) (Prop. 11.2) (Prop. 19.1) (Prop. 19.2)

bounded

without NPNP co-NPNP co-NPNP PSPACE
quantifiers (Prop.14.1) (Prop.14.2 ) (Prop. 19.1) (Prop. 19.2)

without

quantifiers NPNP co-NPNP co-NPNP PSPACE
(Prop.15.1) (Prop.15.2 ) (Prop. 19.1) (Prop. 19.2)

bounded PSPACE PSPACE PSPACE PSPACE
(Prop. 17.1) (Prop. 17.2) (Prop. 19.1) (Prop. 19.2)

general PSPACE PSPACE PSPACE PSPACE
(Prop. 18.1) (Prop. 18.2) (Prop. 19.1) (Prop. 19.2)

Table 1. Complexity of ERDF #n-stable model semantics (all entries are completeness
results)
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statements between the ERDF #n-stable and the (original) ERDF stable model se-
mantics. Section 6 considers query answering on simple ERDF ontologies under the
ERDF #n-stable model semantics. Section 7 provides complexity results w.r.t. the
size of the ERDF ontology for (i) the ERDF #n-stable model semantics on simple
and objective ERDF ontologies, and (ii) the (original) ERDF stable model semantics
on objective ERDF ontologies. Section 8 provides an algorithm that computes the
ERDF #n-stable models of general ERDF ontologies. Section 9 provides complexity
results w.r.t. the size of the ERDF ontology for the ERDF #n-stable model seman-
tics on ERDF ontologies without quantifiers and general ERDF ontologies. Section
10 provides combined complexity results for all kinds of ERDF ontologies. Section 11
reviews related work. Finally, Section 12 concludes the paper. All proofs are provided
in the Appendix A. Appendix B contains a list of symbols. Appendix C overviews
RDFS reasoning.

2 Examples of ERDF ontologies

In this Section, we present two examples of ERDF ontologies.

Example 1. We want to select wines for a dinner such that for each adult guest that
(we know that) likes wine, there is on the table exactly one wine that he/she likes.
Further, we want guests who are neither adults nor children to be served Coca-Cola.
Additionally, we want adult guests, for whom we do not know if they like wine, also
to be served Coca-Cola. Assume that in contrast to a child, we cannot decide if a
guest is an adult or not.

For this drink selection problem, we use the classes: (i) ex:Guest, whose instances
are the persons that will be invited to the dinner, (ii) ex:Wine, whose instances are
wines, (iii) ex:SelectedWine whose instances are the wines chosen to be served, (iv)
ex:Adult , whose instances are persons, 18 years of age or older, and (v) ex:Child ,
whose instances are persons, 10 years of age or younger. Additionally, we use the
properties: (i) ex:likes(X, Y ) indicating that we know that person X likes wine Y ,
and (ii) ex:serveSoftDrink(X ,Y ) indicating that person X will be served soft drink
Y .

An ERDF program P that describes this drink selection problem is the follow-
ing5,6:

(1) id(?x, ?x) ← true.
(2) rdf :type(?y,SelectedWine)← rdf :type(?x,Guest), rdf :type(?x,Adult),

rdf :type(?y,Wine), likes(?x, ?y),
∀?z (rdf :type(?z ,SelectedWine),∼id(?y , ?z ) ⊃ ∼likes(?x , ?z )).

(3) rdf :type(Adult , erdf :TotalClass) ← true.
(4) ¬rdf :type(?x ,Child) ← ∼rdf :type(?x ,Child).

(5) serveSoftDrink(?x ,Coca-Cola) ← rdf :type(?x ,Guest),¬rdf :type(?x ,Adult),
¬rdf :type(?x ,Child).

(6) serveSoftDrink(?x ,Coca-Cola) ← rdf :type(?x ,Guest), rdf :type(?x ,Adult),
∀?y (rdf :type(?y ,Wine) ⊃ ∼likes(?x , ?y)).

5 To improve readability, we ignore the example namespace ex:.
6 Commas “,” in the body of the rules indicate conjunction ∧.
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Consider now the ERDF graph G, containing the factual information:

G = {rdf :type(Carlos, Guest), rdf :type(Gerd, Guest),
rdf :type(Anne, Guest), rdf :type(Riesling, Wine),
rdf :type(Retsina, Wine), likes(Gerd, Riesling),
likes(Gerd, Retsina), likes(Carlos, Retsina),
rdf :type(Gerd, Adult), rdf :type(Carlos, Adult)
¬rdf :type(Riesling, Adult)}.

Then, O = 〈G,P 〉 is an ERDF ontology. Note that Adult is declared in P as a
total class7. Thus, on this class the OWA applies and case-based reasoning on the
truth value of rdf :type(Anne, Adult) is performed. This is because somebody is either
an Adult or is not and O does not contain complete knowledge about Adult . On the
other hand, likes(X, Y ) is a partial property because somebody may neither like a
wine and neither dislike it. Child is not a partial class because somebody is either
a Child or is not. However, O contains complete knowledge about Child . Thus, on
Child a CWA applies, expressed by a default closure rule in P (in line (4)). ✷

Example 2. Assume that a new drug for the Parkinson disease has been invented
by a pharmaceutical company with the name Steron. Before it is released into the
market it should pass preliminary tests on Parkinson patients. Assume that there
exists a team of Parkinson patients that take the drug and all of them should be
able to move each part of their body and not present dizziness or instability in order
for the new drug to be effective. This is expressed by the following ERDF ontology
O = 〈G,P 〉, where P =

(1) rdf :type(Steron,EffectiveParkisonDrug) ← ∀?x belongs(?x ,SteronTestTeam) ⊃
∼(∃?y rdf :type(?y , bodyPart),¬move(?x , ?y)),∼presents(?x , instability),
∼presents(?x , dizziness).

Consider now the ERDF graph G, containing the factual information:

G = {rdf :type(arm,BodyPart), rdf :type(leg ,BodyPart),
belongs(Anne,SteronTestTeam), belongs(Mary ,SteronTestTeam),
belongs(Peter ,SteronTestTeam), belongs(Joan,SteronTestTeam),
¬move(Anne, arm), presents(Joan, instability)}.

Since Anne and Joan belong to the test team for Steron and Anne cannot move
her arm and Joan presents instability, Steron is not considered an effective drug. ✷

3 Stable Model Semantics of ERDF Ontologies

In this Section, we provide the basic definitions of the ERDF stable model semantics
of ERDF ontologies. More details and examples can be found in [6].

According to RDF concepts [38, 32], URI references are used as globally unique
names for web resources. An RDF URI reference is a Unicode string that rep-
resents an absolute URI (with an optional fragment identifier). It may be repre-
sented as a qualified name, that is a colon-separated two-part string consisting of
a namespace prefix (an abbreviated name for a namespace URI) and a local name.

7 Of course, this declaration could had been included (equivalently) in G, instead of P .
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For example, given the namespace prefix “ex” defined to stand for the namespace
URI “http://www.example.org/”, the qualified name “ex:Riesling” (which stands for
“http://www.example.org/Riesling”) is a URI reference.

A (Web) vocabulary V is a set of URI references and/or literals (plain or typed).
We denote the set of all URI references by URI, the set of all plain literals by PL,
the set of all typed literals by T L, and the set of all literals by LIT . We consider a
set Var of variable symbols, such that the sets Var , URI, LIT are pairwise disjoint.
In our examples, variable symbols are prefixed by “?”.

Let V be a vocabulary. An ERDF triple over V is an expression of the form
p(s, o) or ¬p(s, o), where s, o ∈ V ∪ Var are called subject and object, respectively,
and p ∈ V ∩URI is called property. An ERDF graph G is a set of ERDF triples over
some vocabulary V . We denote the variables appearing in G by Var(G), and the set
of URI references and literals appearing in G by VG.

Let V be a vocabulary. We denote by L(V ) the smallest set that contains the
ERDF triples over V and is closed with respect to the following conditions: if F,G ∈
L(V ) then {∼F, ¬F, F∧G, F∨G, F ⊃ G, ∃xF, ∀xF} ⊆ L(V ), where x ∈ Var . An
ERDF formula over V is an element of L(V ). We denote the set of variables appearing
in the ERDF formula F by Var(F ), and the set of free variables appearing in F by
FVar(F ). Moreover, we denote the set of URI references and literals appearing in F
by VF .

Intuitively, an ERDF graph G represents an existentially quantified conjunc-
tion of ERDF triples. Specifically, let G = {t1, ..., tm} be an ERDF graph, and
let Var(G) = {x1, ..., xk}. Then, G represents the ERDF formula formula(G) =
∃?x1, ..., ∃?xk t1 ∧ ... ∧ tm. Existentially quantified variables in ERDF graphs are
handled by skolemization, where existential variables (blank nodes) are replaced by
skolem constants. We will denote the skolemized graph G, by sk(G).

An ERDF rule r over a vocabulary V is an expression of the form: Concl(r)←
Cond(r), where Cond(r) ∈ L(V ) ∪ {true} and Concl(r) is an ERDF triple or false.
Without loss of generality, we assume that no bound variable in Cond(r) appears
free in Concl(r). We denote the set of variables and the set of free variables of r
by Var(r) and FVar(r)8, respectively. An ERDF program P is a finite set of ERDF
rules. We denote the set of URI references and literals appearing in P by VP .

An ERDF ontology is a pair O = 〈G,P 〉, where G is an ERDF graph and P is an
ERDF program.

We now define three kinds of ERDF ontologies that are going to be used in the
paper.

Definition 1 (Simple, Objective ERDF ontology). An ERDF formula F is
called simple if it has the form t1∧...∧tk∧∼tk+1∧...∧∼tm, where each ti, i = 1, ...,m,
is a (positive or negative) ERDF triple. An ERDF program P is called simple if for all
r ∈ P , Cond(r) is a simple ERDF formula or true. An ERDF ontology O = 〈G,P 〉
is called simple, if P is a simple ERDF program. A simple ERDF ontology O (resp.
ERDF program P ) is called objective, if no weak negation appears in O (resp. P ). ✷

Definition 2 (Bounded ERDF ontology). Let O = 〈G,P 〉 be an ERDF ontol-
ogy. We say that O is bounded if for each r ∈ P , there are no free variables in Cond(r)
and Concl(r), i.e. FVar(Cond(r)) = ∅ and FVar(Concl(r)) = ∅. ✷

8 FVar(r) = FVar(Concl(r)) ∪ FVar(Cond(r)).
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Notice that the notion of bounded ERDF ontology is a generalization of grounded
logic programming rules, i.e. with no occurrence of variables, to general quantified
ERDF formulas in rule conditions. In fact, bounded simple and objective ontologies
can be equivalently defined as grounded simple and objective ontologies, respectively.

In the subsequent sections, we are going to define query answering according
to #n-stable model semantics and providing complexity of query answering for all
kinds on ERDF ontologies both with respect to the size of the ERDF ontology and
combined complexity (that is both w.r.t. the size of the ERDF ontology and the size
of the query ERDF formula).

A partial interpretation is an extension of a simple interpretation of RDF seman-
tics [32], where each property is associated not only with a truth extension but also
with a falsity extension.

Definition 3 (Partial interpretation). A partial interpretation I of a vocabulary
V consists of:

– A non-empty set of resources ResI , a set of properties PropI , and a set of literal
values LV I ⊆ ResI , which contains V ∩ PL.

– A vocabulary interpretation mapping: IV : V ∩ URI → ResI ∪ PropI .
– A property-truth extension mapping9: PT I : PropI → P(ResI ×ResI).
– A property-falsity extension mapping: PF I : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .

We define the mapping: I : V → ResI ∪ PropI , called denotation, such that: (i)
I(x) = IV (x), ∀x ∈ V ∩ URI, (ii) I(x) = x, ∀ x ∈ V ∩ PL, and (iii) I(x) = ILI(x),
∀ x ∈ V ∩ T L. ✷

Note that the truth and falsity extensions of a property p according to a partial
interpretation I, that is PTI(p) and PFI(p), are sets of pairs 〈subject, object〉 of
resources. The interpretation of URIs, plain literals and typed literals is done as in
the original RDFS semantics.

Example 3. Let a vocabulary V = {ex:Carlos, ex:Grigoris , ex:Riesling , ex:likes,
ex:denotationOf , Grigoris ˆ̂ xsd:string} and consider a structure I that consists
of:

– A set of resources ResI = {C,G,R, l, d, Grigoris }.
– A set of properties PropI = {l, d}.
– A vocabulary interpretation mapping IV : V ∩ URI → ResI ∪ PropI such that:

IV (ex:Carlos) = C, IV (ex:Grigoris) = G, IV (ex:Riesling) = R, IV (ex:likes) = l, and
IV (ex:denotationOf ) = d.

– A property-truth extension mapping PT I : PropI → P(ResI ×ResI) such that:
PTI(d) = {〈 Grigoris , G〉}.

– A property-falsity extension mapping PF I : PropI → P(ResI ×ResI) such that:
PFI(l) = {〈C,R〉}.

– A mapping ILI : V ∩T L → ResI such that: ILI( Grigoris ˆ̂ xsd :string) = Grigoris .
– A set of literal values LV I = { Grigoris }.

It is easy to see that I is a partial interpretation of V , expressing that: (i)
Grigoris is the denotation of Grigoris and (ii) Carlos dislikes Riesling . ✷

9 The notation P(S), where S is a set, denotes the power set of S.
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A partial interpretation I of a vocabulary V is coherent iff for all x ∈ PropI ,
PT I(x) ∩ PF I(x) = ∅, meaning that any triple cannot be simultaneously true and
false.

In order to be able to interpret variables in ERDF graphs and formulas, we require
as usual the notion of valuations. Let I be a partial interpretation of a vocabulary
V and let v be a partial function v : Var → ResI (called valuation). If x ∈ Var ,
we define [I + v](x) = v(x). If x ∈ V , we define [I + v](x) = I(x), i.e. we inter-
pret a variable according to the valuation and the remaining vocabulary using the
partial interpretation I. We now have all the necessary formal ingredients to define
satisfaction of ERDF formulas.

Definition 4 (Satisfaction of an ERDF formula w.r.t. a partial interpreta-
tion and a valuation). Let F,G be ERDF formulas and let I be a partial inter-
pretation of a vocabulary V . Additionally, let v be a mapping v : Var(F )→ ResI .

– If F = p(s, o) then I, v |= F iff p ∈ V ∩ URI, s, o ∈ V ∪Var , I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PT I(I(p)).

– If F = ¬p(s, o) then I, v |= F iff p ∈ V ∩ URI, s, o ∈ V ∪Var , I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PF I(I(p)).

– If F = ∼G then I, v |= F iff VG ⊆ V and I, v 6|= G.
– If F = F1∧F2 then I, v |= F iff I, v |= F1 and I, v |= F2.
– If F = F1∨F2 then I, v |= F iff I, v |= F1 or I, v |= F2.
– If F = F1 ⊃ F2 then I, v |= F iff I, v |= ∼F1∨F2.
– If F = ∃x G then I, v |= F iff there exists a mapping u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, and I, u |= G.
– If F = ∀x G then I, v |= F iff for all mappings u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, it is the case that I, u |= G.
– All other cases of ERDF formulas are treated by the following DeMorgan-style rewrite

rules expressing the falsification of compound ERDF formulas:
¬(F ∧G)→ ¬F ∨ ¬G, ¬(F ∨G)→ ¬F ∧ ¬G, ¬(¬F )→ F, ¬(∼ F )→ F 10,
¬(∃x F )→ ∀x ¬F, ¬(∀x F )→ ∃x ¬F, ¬(F ⊃ G)→ F∧¬G. ✷

Let F be an ERDF formula, let G be an ERDF graph, and let I be a partial
interpretation of a vocabulary V . We define: I |= F iff for each mapping v : Var(F )→
ResI , it is the case that I, v |= F . Additionally, we define: I |= G iff I |= formula(G).

We assume that for every partial interpretation I, it is the case that I |= true
and I 6|= false.

The vocabulary of RDF, VRDF , is a set of URI references in the rdf : names-
pace [32]. The vocabulary of RDFS, VRDFS , is a set of URI references in the rdfs :
namespace [32]. The vocabulary of ERDF is defined as VERDF = {erdf :TotalClass,
erdf :TotalProperty}. Intuitively, instances of the metaclass erdf :TotalClass are classes
c that satisfy totalness, meaning that each resource x belongs either to the truth or
falsity extension of c (i.e., the statement “x is of type c” is either true or explicitly
false). Similarly, instances of the metaclass erdf :TotalProperty are properties p that
satisfy totalness, meaning that each pair of resources 〈x, y〉 belongs either to the truth
or falsity extension of p (i.e., the statement “〈x, y〉 satisfies property p” is either true
or explicitly false).

Definition 5 (ERDF interpretation). An ERDF interpretation I of a vocabu-
lary V is a coherent, partial interpretation of V ∪VRDF ∪VRDFS ∪VERDF , extended

10 This transformation expresses that if it is false that F does not hold then F holds.
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by the new ontological categories ClsI ⊆ ResI for classes, TClsI ⊆ ClsI for total
classes, and TPropI ⊆ PropI for total properties, as well as the class-truth ex-
tension mapping CT I : ClsI → P(ResI), and the class-falsity extension mapping
CF I : ClsI → P(ResI), such that:

1. x ∈ CT I(y) iff 〈x, y〉 ∈ PT I(I(rdf :type)), and
x ∈ CF I(y) iff 〈x, y〉 ∈ PF I(I(rdf :type)).

2. The ontological categories are defined as follows:
PropI = CT I(I(rdf :Property)) ClsI = CT I(I(rdfs :Class))
ResI = CT I(I(rdfs :Resource)) LV I = CT I(I(rdfs :Literal))
TClsI = CT I(I(erdf :TotalClass)) TPropI = CT I(I(erdf :TotalProperty)).

3. If 〈x, y〉 ∈ PT I(I(rdfs :domain)) and 〈z, w〉 ∈ PT I(x) then z ∈ CT I(y).
4. If 〈x, y〉 ∈ PT I(I(rdfs :range)) and 〈z, w〉 ∈ PT I(x) then w ∈ CT I(y).
5. If x ∈ ClsI then 〈x, I(rdfs :Resource)〉 ∈ PT I(I(rdfs :subClassOf )).
6. If 〈x, y〉 ∈ PT I(I(rdfs :subClassOf )) then

x, y ∈ ClsI , CT I(x) ⊆ CT I(y), and CF I(y) ⊆ CF I(x).
7. PT I(I(rdfs :subClassOf )) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PT I(I(rdfs :subPropertyOf )) then

x, y ∈ PropI , PT I(x) ⊆ PT I(y), and PF I(y) ⊆ PF I(x).
9. PT I(I(rdfs :subPropertyOf )) is a reflexive and transitive relation on PropI .
10. If x ∈ CT I(I(rdfs :Datatype)) then
〈x, I(rdfs :Literal)〉 ∈ PT I(I(rdfs :subClassOf )).

11. If x ∈ CT I(I(rdfs :ContainerMembershipProperty)) then
〈x, I(rdfs :member)〉 ∈ PT I(I(rdfs :subPropertyOf )).

12. If x ∈ TClsI then CT I(x) ∪ CF I(x) = ResI .
13. If x ∈ TPropI then PT I(x) ∪ PF I(x) = ResI ×ResI .
14. If s ˆ̂ rdf :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI( s ˆ̂ rdf :XMLLiteral) is the XML value of s, and
ILI( s ˆ̂ rdf :XMLLiteral) ∈ CT I(I(rdf :XMLLiteral)).

15. If s ˆ̂ rdf :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI( s ˆ̂ rdf :XMLLiteral) ∈ ResI − LV I , and
ILI( s ˆ̂ rdf :XMLLiteral) ∈ CF I(I(rdfs :Literal)).

16. I satisfies the RDF and RDFS axiomatic triples [32], respectively.
17. I satisfies the following triples, called ERDF axiomatic triples:

rdfs :subClassOf (erdf :TotalClass, rdfs :Class).
rdfs :subClassOf (erdf :TotalProperty , rdfs :Class). ✷

Note that while RDFS interpretations [32] imply a two-valued interpretation of
the instances of rdf :Property , this is no longer the case with ERDF interpretations.
Specifically, let I be an ERDF interpretation, let p ∈ CTI (I (rdf :Property)), and
let 〈x, y〉 ∈ ResI × ResI . It may be the case that neither 〈x, y〉 ∈ PTI(I(p)) nor
〈x, y〉 ∈ PFI(I(p)). That is p(x, y) is neither true nor false.

Semantic conditions of ERDF interpretations may impose constraints to both the
truth and falsity extensions of properties and classes. Specifically, consider semantic
condition 6 of Definition 5 and assume that 〈x, y〉 ∈ PT I(I(rdfs :subClassOf )). Then,
I should not only satisfy CT I(x) ⊆ CT I(y) (as an RDFS interpretation I does), but
also CF I(y) ⊆ CF I(x). The latter is true because if it is certain that a resource z does
not belong to the truth extension of class y then it is certain that z does not belong
to the truth extension of class x. Thus, the falsity extension of y is contained in the
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falsity extension of x. Similar is the case for semantic condition 8. Semantic conditions
12 and 13 represent our definition of total classes and total properties, respectively.
Semantic condition 15 expresses that the denotation of an ill-typed XML literal is
not a literal value. Therefore (see semantic condition 2), it is certain that it is not
contained in the truth extension of the class rdfs :Literal. Thus, it is contained in the
falsity extension of the class rdfs :Literal.

In order to be able to define an appropriate semantics for the negation(s) of ERDF
we need to restrict to Herbrand like interpretations, in order to simplify matters. The
vocabulary of an ERDF ontology O = 〈G,P 〉 is defined as VO = Vsk(G)∪VP ∪VRDF ∪
VRDFS ∪ VERDF . Additionally, we denote by ResHO the union of VO and the set of
XML values of the well-typed XML literals in VO minus the well-typed XML literals
(i.e. the set of Herbrand resources ResHO is VO with the well-typed XML literals
substituted by their corresponding XML values).

Definition 6 (Herbrand interpretation of an ERDF ontology). Let O =
〈G,P 〉 be an ERDF ontology and let I be an ERDF interpretation of VO. We say
that I is a Herbrand interpretation of O iff: (i) ResI = ResHO , (ii) IV (x) = x, for all
x ∈ VO ∩ URI, (iii) ILI(x) = x, if x is a typed literal in VO other than a well-typed
XML literal, and ILI(x) is the XML value of x, if x is a well-typed XML literal in
VO. We denote the set of Herbrand interpretations of O by IH(O). ✷

Note that we first defined the notion of an ERDF interpretation and then the
notion of a Herbrand interpretation of an ERDF ontology in order to faithfully extend
the RDFS semantics [32]. As usual in the construction of Herbrand interpretations,
we map every constant to itself except for the predefined XML literals that have a
fixed interpretation in the original RDFS semantics. Accordingly, an ERDF Herbrand
interpretation can be succinctly described by the property-truth and property-false
extensions of properties.

Before we introduce the notion of ERDF stable models, we require some ex-
tra definitions. Since we allow arbitrary formulas in the body of rules some extra
complexity is necessary to obtain an intuitive semantics in the spirit of partial
logic [33]. This is not just a technical exercise and will provide extra expressive
power, as we will show later on. Let O = 〈G,P 〉 be an ERDF ontology and let
I, J ∈ IH(O). We say that J extends I, denoted by I ≤ J , iff PropI ⊆ PropJ , and
∀ p ∈ PropI , PT I(p) ⊆ PT J(p) and PF I(p) ⊆ PF J(p). Let I ⊆ I

H(O). We define
minimal(I) = {I ∈ I | 6 ∃J ∈ I : J 6= I and J ≤ I}. Let I, J ∈ IH(O). We define
[I, J ]O = {I ′ ∈ IH(O) | I ≤ I ′ ≤ J}.

Let V be a vocabulary and let r be an ERDF rule. We denote by [r]V the set
of rules that result from r if we replace each variable x ∈ FVar(r) by v(x), for
all mappings v : FVar(r) → V . Let P be an ERDF program. We define [P ]V =
⋃

r∈P [r]V .
Below, we define the stable models of an ERDF ontology, based on the coherent

stable models of Partial Logic [33].

Definition 7 (ERDF stable model). Let O = 〈G,P 〉 be an ERDF ontology and
let M ∈ IH(O). We say that M is an (ERDF) stable model of O iff there is a chain
of Herbrand interpretations of O, I0 ≤ ... ≤ Ik+1 such that Ik = Ik+1 = M11 and:

11 The condition Ik = Ik+1 = M actually states that two successive iterations, one com-
puting Ik and the next computing Ik+1 result to the same Herbrand interpretation of O,
which is equal to M .
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1. I0 ∈ minimal({I ∈ IH(O) | I |= sk(G)}).

2. For natural numbers α with 0 < α ≤ k + 1:
Iα ∈ minimal({I ∈ IH(O) | I ≥ Iα−1 and it is the case that:
∀ r ∈ [P ]VO

, if J |= Cond(r), ∀J ∈ [Iα−1,M ]O then I |= Concl(r)}).

The set of stable models of O is denoted byMst(O). ✷

Note that I0 is a minimal Herbrand interpretation of O = 〈G,P 〉 that satisfies
sk(G), while Herbrand interpretations I1, ..., Ik+1 correspond to a stratified sequence
of rule applications, where all applied rules remain applicable throughout the gener-
ation of a stable model M . In other words, a stable model is generated bottom-up by
the iterative application of the rules in the ERDF program P , starting from the infor-
mation in the ERDF graph G. Thus, ERDF stable model semantics, as a refinement
of minimal model semantics, captures the intuition that:

– Assertions rdf :type(p, erdf :TotalProperty) and rdf :type(c, erdf :TotalClass) should
only be accepted if the ontology contains some direct support for them in the
form of an acceptable rule sequence12 (that corresponds to a proof).

– Assertions p(s, o) and ¬p(s, o) should only be accepted if the ontology contains
some direct support for them in the form of an acceptable rule sequence, or
rdf :type(p, erdf :TotalProperty) is accepted.

– Assertions rdf :type(o, c) and ¬rdf :type(o, c) should only be accepted if the on-
tology contains some direct support for them in the form of an acceptable rule
sequence, or rdf :type(c, erdf :TotalClass) is accepted.

Let O = 〈G,P 〉 be an ERDF ontology and let F be an ERDF formula or ERDF
graph. We say that O entails F under the (ERDF) stable model semantics, denoted
by O |=st F , iff for all M ∈Mst(O), M |= F .

Example 4. Consider a class HappyParent whose instances are persons that have
children and every child that they have is married and has his/her own children.
Additionally, consider the property isParentOf(X,Y ), indicating that person X is
parent to person Y and the property isMarriedTo(X,Y ) indicating that person X is
married to person Y . An ERDF program P that describes this case is the following:

rdf :type(?x,HappyParent) ← isParentOf (?x , ?y),
∀?y isParentOf (?x , ?y) ⊃ (∃?z isMarriedTo(?y , ?z ), ∃?w isParentOf (?y , ?w)).

Consider now the ERDF graph G, containing the factual information:

G = { isParentOf (Peter , John), isParentOf (John,Mary), isMarriedTo(John,Anastasia)}.

Then, according to Definition 7, the ERDF ontology O = 〈G,P 〉 has a single
stable model, M , such that:

M |= rdf :type(Peter ,HappyParent) ∧ ∼rdf :type(John,HappyParent) ∧
∼rdf :type(Mary ,HappyParent) ∧ ∼rdf :type(Anastasia,HappyParent).

Stable model M is reached through the chain I0 ≤ M , where I0 is the single
Herbrand interpretation in minimal({I ∈ IH(O) | I |= sk(G)}). To verify this, note
that:

12 A sequence of ERDF rules r1,..., rn is called acceptable if the condition of each rule ri, for
i ∈ {1, ..., n}, is satisfied according to the conclusions of the previous rules, which remain
applicable throughout the generation of a stable model.
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{r ∈ [P ]VO
| J |= Cond(r), ∀J ∈ [I0,M ]O} =

{r ∈ [P ]VO
| J |= Cond(r), ∀J ∈ [M,M ]O} =

{rdf :type(Peter ,HappyParent)← isParentOf (Peter , John),
∀?y isParentOf (Peter , ?y) ⊃ (∃?z isMarriedTo(?y , ?z ), ∃?w isParentOf (?y , ?w))}.

✷

Example 5. Consider the ERDF ontology O = 〈G,P 〉 of Example 1. Then, O has two
kinds of stable modelsM1 andM2, where for all M ∈ M1, M |= ¬rdf :type(Anne,
Adult) and for all M ∈M2, M |= rdf :type(Anne, Adult). This is because: (i) due to
rule (3) of P , ex :Adult is a total class and (ii) we do not know if Anne is an adult. For
all M ∈ M1 ∪M2, it holds M |= ¬rdf :type(Anne,Child). This is due to the CWA
expressed by rule (4) of P . Additionally, for all M ∈ M1 ∪M2, it is the case that
M |= serveSoftDrink(Anne, Coca-Cola). This is because, if Anne is not an adult then,
since she is not a child, it is decided to drink Coca-Cola (rule (5)). If Anne is an adult
then, since it is not known if she likes wine, it is also decided to drink Coca-Cola (rule
(6)). Thus, it is the case that O |=st ¬rdf :type(Anne,Child) ∧ serveSoftDrink(Anne,
Coca-Cola). Additionally, for all M ∈ M1 ∪ M2, it holds M |= rdf :type(Retsina,
SelectedWine) ∧ ∼rdf :type(Riesling , SelectedWine). This is because (i) both Gerd
and Carlos like Retsina and (ii) Carlos likes only Retsina. Thus, it holds O |=st

rdf :type(Retsina, SelectedWine) ∧ ∼rdf :type(Riesling , SelectedWine). ✷

In [6], it is shown that stable model entailment conservatively extends RDFS
entailment from RDF graphs to ERDF ontologies.

Proposition 1. LetG,G′ be RDF graphs such that VG∩VERDF = ∅, VG′∩VERDF =
∅, and VG′ ∩ skG(Var(G)) = ∅. It holds that: G |=RDFS G′ iff 〈G, ∅〉 |=st G′. ✷

4 Undecidability of ERDF Stable Model Semantics

Unfortunately, satisfiability and entailment under the ERDF stable model semantics
are in general undecidable [6]. The proof of undecidability exploits a reduction from
the unbounded tiling problem, for which existence of a solution is known to be un-
decidable [11]. Note that since each constraint false ← F that appears in an ERDF
ontology O can be replaced by the rule ¬t← F , where t is an RDF, RDFS, or ERDF
axiomatic triple, the presence of constraints in O does not affect decidability.

The reduction in [6] shows that ERDF stable model satisfiability and entailment
remain undecidable, even if (i) O = 〈G,P 〉 is a simple ERDF ontology, (ii) the terms
erdf :TotalClass and erdf :TotalProperty do not appear in O (i.e., (VG∪VP )∩VERDF =
∅), and (iii) the entailed formula is a conjunction of ERDF literals.

Below, we prove a new result also by a reduction from the unbounded tiling
problem [11] that even if O = 〈G,P 〉 is an objective ERDF ontology, entailment of a
general ERDF formula F under the ERDF stable model semantics is still undecidable.

The unbounded tiling problem consists of placing tiles on an infinite grid, satis-
fying a given set of constraints on adjacent tiles. Specifically, the unbounded tiling
problem is a structure D = 〈T , H, V 〉, where T = {T1, ..., Tn} is a finite set of tile
types and H, V ⊆ T × T specify which tiles can be adjacent horizontally and verti-
cally, respectively. A solution to D is a tiling, that is, a total function τ : IN×IN → T
such that: (τ(i, j), τ(i+ 1, j)) ∈ H and (τ(i, j), τ(i, j + 1)) ∈ V , for all i, j ∈ IN . The
existence of a solution for a given unbounded tiling problem is known to be undecid-
able [11].
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Let D = 〈T , H, V 〉 be an instance of the unbounded tiling problem, where T =
{T1, ..., Tn}. We will construct an ERDF ontology OD = 〈GD, PD〉 and an ERDF
formula FD such that D has a solution iff OD does not entail FD under the ERDF
stable model semantics.

Consider (i) a class Tile whose instances are the tiles placed on the infinite grid,
(ii) a property ofType(x, T ), indicating that resource x is of type T , (ii) a class
TileType whose instances are the types of the tiles, (iii) a class HasTileType whose
instances are the tiles which have as type an instance of TileType, (iv) a prop-
erty right(x , y) indicating that resource y is right next to resource x, (v) a prop-
erty above(x , y) indicating that resource y is exactly above resource x, (vi) a class
HasTileRight whose instances are the tiles for which there exists a tile right next
to them, (vii) a class HasTileAbove whose instances are the tiles for which there
exists a tile exactly above them, (viii) a property HConstraint(T, T ′), indicating that
(T, T ′) ∈ H, and (ix) a property VConstraint(T, T ′), indicating that (T, T ′) ∈ V .

Let GD be the ERDF graph:

GD = {rdfs :subClassOf (rdfs :ContainerMembershipProperty ,Tile),
rdfs :subClassOf (Tile, rdfs :ContainerMembershipProperty)} ∪
{rdf :type(T,TileType) | T ∈ T } ∪
{HConstraint(T, T ′) | (T, T ′) ∈ H} ∪ {VConstraint(T, T ′) | (T, T ′) ∈ V } ∪
{rdf :type(ofType, erdf :TotalProperty), rdf :type(right , erdf :TotalProperty),
rdf :type(above, erdf :TotalProperty)}.

Let PD be the ERDF program, containing the following rules:

rdf :type(?x,HasTileType) ← rdf :type(?x,Tile) ∧ rdf :type(?y,TileType) ∧
ofType(?x, ?y).

rdf :type(?x,HasTileAbove)← rdf :type(?x,Tile) ∧ rdf :type(?y,Tile) ∧
above(?x, ?y).

rdf :type(?x,HasTileRight)← rdf :type(?x,Tile) ∧ rdf :type(?y,Tile) ∧
right(?x, ?y).

id(?x, ?x) ← rdf :type(?x, rdfs :Resource).

Note that in all stable models of OD = 〈GD, PD〉, the class Tile contains exactly
the (infinite in number) rdf : i terms, for i ∈ IN . This is because, computing the
stable models of O, only the minimal models of sk(G) are considered (see Definition
7, Step 1). Thus, each tile on the infinite grid is represented by an rdf : i term, for
i ∈ IN .

To finalize the reduction, we define:

FD =(∃?x∃?y∃?x′∃?y′∃?x′′ rdf :type(?x,Tile) ∧ rdf :type(?y,Tile) ∧
rdf :type(?x′,Tile) ∧ rdf :type(?y′,Tile) ∧
rdf :type(?x′′,Tile) ∧ right(?x, ?y) ∧
above(?y, ?y′) ∧ right(?x′, ?y′) ∧
above(?x′′, ?x′) ∧ ∼id(?x, ?x′′)) ∨

(∃?x rdf :type(?x,Tile) ∧ ∼rdf :type(?x,HasTileType)) ∨
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(∃?x∃?T∃?T ′ rdf :type(?x,Tile) ∧
rdf :type(?T,TileType) ∧ rdf :type(?T ′,TileType) ∧
ofType(?x, ?T ) ∧ ofType(?x, ?T ′) ∧ ∼id(?T, ?T ′)) ∨

(∃?x rdf :type(?x,Tile) ∧ ∼rdf :type(?x,HasTileRight)) ∨

(∃?x∃?y∃?y′ rdf :type(?x,Tile) ∧ rdf :type(?y,Tile) ∧ rdf :type(?y′,Tile) ∧
right(?x, ?y) ∧ right(?x, ?y′) ∧ ∼id(?y, ?y′)) ∨

(∃?x rdf :type(?x,Tile) ∧ ∼rdf :type(?x,HasTileAbove)) ∨

(∃?x∃?y∃?y′ rdf :type(?x,Tile) ∧ rdf :type(?y,Tile) ∧ rdf :type(?y′,Tile) ∧
above(?x, ?y) ∧ above(?x, ?y′) ∧ ∼id(?y, ?y′)) ∨

(∃?x∃?y∃?T∃?T ′ rdf :type(?x,Tile) ∧ rdf :type(?y,Tile)
rdf :type(T,TileType) ∧ rdf :type(T ′,TileType) ∧
ofType(?x, ?T ) ∧ ofType(?y, ?T ′) ∧
right(?x, ?y) ∧∼HConstraint(?T, ?T ′)) ∨

(∃?x∃?y∃?T∃?T ′ rdf :type(?x,Tile) ∧ rdf :type(?y,Tile)
rdf :type(T,TileType) ∧ rdf :type(T ′,TileType) ∧
ofType(?x, ?T ) ∧ ofType(?y, ?T ′) ∧
above(?x, ?y) ∧∼VConstraint(?T, ?T ′))

Formula FD expresses that:

1. there is a tile x such that, starting from x, if we move:

one tile right → one tile up → one tile left → one tile down

then we will meet a tile x′′ different than x, or
2. there is a tile that is not associated with exactly one tile type, or
3. there is a tile x that does not have exactly one tile right next to it, or
4. there is a tile x that does not have exactly one tile right above it, or
5. the types of the horizontally adjacent tiles do not respect the H relation of D, or
6. the types of the vertically adjacent tiles do not respect the V relation of D.

Proposition 2. Let D be an instance of the unbounded tiling problem. It holds: D
has a solution iff OD 6|=

st FD. ✷

From the previous proposition, it follows directly the following one.

Proposition 3. Let O be an objective ERDF ontology and let F be a general ERDF
formula. The problem O |=st F is undecidable. ✷

In [6], the undecidability result of the ERDF stable model semantics was achieved
by having rules in the corresponding ERDF program containing weak and strong
negation that guarantee that tiles are placed (i) one next to the other and (ii) one
above to the other satisfying the horizontal and vertical tile adjacency constraints.
Now the correct placement of tiles is expressed in the entailed ERDF formula FD.
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5 #n-Stable Model Semantics

Let O be a general ERDF ontology. The source of undecidability of the ERDF sta-
ble model semantics of O is the fact that VRDF is infinite, because of the con-
tainer membership properties. Thus, the vocabulary of O is also infinite (note that
{rdf : i | i ≥ 1} ⊆ VRDF ⊆ VO). Consequently, in this section, we slightly modify
the definition of the ERDF stable model semantics, based on a redefinition of the
vocabulary of an ERDF ontology, which now becomes finite by limiting the maxi-
mum number of container membership properties. We call the modified semantics,
the ERDF #n-stable model semantics (for n ∈ IN).

In order to define the ERDF #n-stable model semantics, we need to modify sev-
eral of the definitions on which the ERDF stable model semantics is based. Specifi-
cally:

– We define: V#n
RDF = VRDF − {rdf : i | i > n}.

– An ERDF #n-interpretation is defined exactly as an ERDF interpretation in
Def. 5 except that VRDF is replaced by V#n

RDF and in semantic condition 16, only

the RDF and RDFS axiomatic triples that contain URI references in V#n
RDF are

considered.

– Let O = 〈G,P 〉 be an ERDF ontology. We define: V #n
O = VO − {rdf : i | i > n},

and Res
H#n

O = ResHO − {rdf : i | i > n}.

Recall that the rdf : i properties are used to express members of containers (i.e. bags,
sequences, and alternatives), which are in practice finitely limited. Since undecidabil-
ity is achieved even with the presence of weak and strong negation and the presence
of the infinite number of rdf : i terms as shown in [6], it seems reasonable to make
the number of rdf : i terms finite and keep as many as you need.

This has a parallel in the OWL 2 language, where two semantics are defined [34]:
the OWL 2 Direct Semantics (or OWL 2 DL), and the OWL 2 RDF-Based Semantics
(or OWL 2 Full). The OWL 2 Full semantics is the natural extension of RDFS
semantics, but it is undecidable. The OWL 2 Direct Semantics is decidable, and is a
restriction of OWL 2 Full. We have followed the same approach in this paper.

The changes are straightforward and obtained by restricting to the V #n
O vocabu-

lary in the previous definitions.

Definition 8 (#n-Herbrand interpretation). Let O = 〈G,P 〉 be an ERDF on-

tology. An #n-Herbrand interpretation I of O is an ERDF #n-interpretation of V #n
O

such that: (i) ResI = Res
H#n

O , (ii) IV (x) = x, for all x ∈ V #n
O ∩URI, (iii) ILI(x) = x,

if x is a typed literal in V #n
O other than a well-typed XML literal, and ILI(x) is the

XML value of x, if x is a well-typed XML literal in V #n
O . We denote the set of

#n-Herbrand interpretations of O by IH#n(O). ✷

Let I, J ∈ IH#n(O). We define [I, J ]#n
O = {I ′ ∈ IH#n(O) | I ≤ I ′ ≤ J}.

Definition 9 (ERDF #n-stable model). Let O = 〈G,P 〉 be an ERDF ontology
and let M ∈ IH#n(O). We say that M is an (ERDF) #n-stable model of O iff
there is a chain of #n-Herbrand interpretations of O, I0 ≤ ... ≤ Ik+1, such that
Ik = Ik+1 = M and:

1. I0 ∈ minimal({I ∈ IH#n(O) | I |= sk(G)}).
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2. For natural numbers α with 0 < α ≤ k + 1:
Iα ∈ minimal({I ∈ IH#n(O) | I ≥ Iα−1 and it is the case that:

∀ r ∈ [P ]
V

#n

O

, if J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O , then I |= Concl(r)}).

The set of #n-stable models of O is denoted byMst#n(O). ✷

Below we define entailment of an ERDF formula or ERDF graph from an ERDF
ontology.

Definition 10 (ERDF formula or ERDF graph entailment). Let O = 〈G,P 〉
be an ERDF ontology and let F be an ERDF formula or ERDF graph. Let n ∈ IN .
We say that O entails F under the (ERDF) #n-stable model semantics, denoted by
O |=st#n F iff for all M ∈Mst#n(O), M |= F . ✷

The answers (solutions) to a query represented by an ERDF formula F over an
ontology O are in fact variable mappings of the free variables to the vocabulary for
which the query holds. This is exactly the approach followed in SPARQL semantics
[59] to represent solutions to queries. Formally, let O = 〈G,P 〉 be an ERDF ontology
and let F be an ERDF formula. Let n ∈ IN . The (ERDF) #n-stable answers of F
w.r.t. O are defined as follows13:

Ans
st#n

O (F ) =















“yes” if FVar(F ) = ∅ and M |=st#n F
“no” if FVar(F ) = ∅ and M 6|=st#n F

{v : FVar(F )→ V #n
O | ∀M ∈Mst#n(O) : M |= v(F )}

if FVar(F ) 6= ∅

Notice that if there are no free variables then the query has a simple “yes” or
“no” response, which can be used to capture ASK queries of the SPARQL language
[60] over ordinary RDF graphs. When a variable mapping is returned, the above
definition generalizes SPARQL semantics for RDF graphs since in SPARQL only one
model has to be considered while in our case several models may have to be taken
into account (see Example 7 below).

Example 6. Consider the ERDF ontology O of Example 4. Then, similarly to Exam-
ple 4, O has one #n-stable model M , for n ≥ 1, such that:

M |= rdf :type(Peter ,HappyParent) ∧ ∼rdf :type(John,HappyParent) ∧
∼rdf :type(Mary ,HappyParent) ∧ ∼rdf :type(Anastasia,HappyParent).

Thus,

O |=st#n rdf :type(Peter ,HappyParent) ∧ ∼rdf :type(John,HappyParent) ∧
∼rdf :type(Mary ,HappyParent) ∧ ∼rdf :type(Anastasia,HappyParent). ✷

Example 7. Consider the ERDF ontology O of Example 1. Then, similarly to Exam-
ple 5, O has two kinds of #n-stable models, for an n ≥ 1, M1 and M2, for which
hold the same results as these described in Example 5. Thus, it is the case that
O |=st#n¬rdf :type(Anne, Child) ∧ serveSoftDrink(Anne, Coca-Cola). Additionally,
O |=st#n rdf :type(Retsina, SelectedWine) ∧ ∼rdf :type(Riesling , SelectedWine). ✷

Theorem 1 below relates (original) stable model entailment and #n-stable model
entailment. First, we provide a definition for an important subset of ERDF formulas.

13 v(F ) results from F after replacing all the free variables x in F by v(x).
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Definition 11 (ERDF d-formula). Let F be an ERDF formula. We say that F is
an ERDF d-formula iff (i) F is the disjunction of existentially quantified conjunctions
of ERDF triples, and (ii) FVar(F ) = ∅. ✷

For example, let:

F =(∃?x rdf :type(?x ,Vertex ) ∧ rdf :type(?x ,Red)) ∨
(∃?x rdf :type(?x ,Vertex ) ∧ rdf :type(?x ,Blue)).

Then, F is an ERDF d-formula. It is easy to see that if G is an ERDF graph then
formula(G) is an ERDF d-formula. Since there are no free variables, d-formulas have
a boolean “yes” or “no” answer.

The following proposition states that stable model entailment of d-formulas from
objective ERDF ontologies coincides with #n-stable model entailment, provided that
n is large enough to include all rdf : i terms appearing in the queried ontology. The
concrete value n is determined resorting to the following auxiliary definition. Let
O = 〈G,P 〉 be an ERDF ontology. We define:

nO =

{

1, if (VG ∪ VP ) ∩ {rdf : i | i ≥ 1} = ∅
max({i ∈ IN | rdf : i ∈ VG ∪ VP }), otherwise

For example, if O is the ERDF ontology of Example 1 then nO = 0.

Theorem 1. Let O be an objective ERDF ontology and let n ≥ nO. Let F d be
an ERDF d-formula s.t. max({i ∈ IN | rdf : i ∈ VFd}) ≤ n. It holds: O |=st F d iff
O |=st#n F d. ✷

Since V #n
O (for n ∈ IN) is finite, query answering under the ERDF #n-stable

model semantics is decidable. Now, since satisfiability under the ERDF stable model
semantics is in general undecidable, Theorem 1 does not hold in the case that O =
〈G,P 〉 is a general ERDF ontology. Moreover, Theorem 1 does not hold when F d is
a general ERDF formula. For example, consider the ERDF graph G:

G = {rdf :type(x, c1) | x ∈ {c1, c2, id} ∪ V#0
RDF ∪ VRDFS ∪ VERDF }

Additionally, consider the ERDF program P = {id(?x, ?x)← true.} and the ERDF
formula F (which is not an ERDF d-formula):

F = ∃?x∃?y ∼rdf :type(?x, c1) ∧ ∼rdf :type(?y, c1) ∧ ∼id(?x, ?y).

Let O = 〈G,P 〉. It holds, nO = 0. Note that O |=st F , while O 6|=st#1 F .
It follows, from Theorem 1, the following Corollary.

Corollary 1. Let O = 〈G,P 〉 be an objective ERDF ontology and let n ≥ nO. It is
the case that: O has a stable model iff O has a #n-stable model. ✷

The following proposition is a direct consequence of Proposition 1 and and The-
orem 1, and shows that #n-stable model entailment also extends RDFS entailment
from RDF graphs to ERDF ontologies.

Proposition 4. LetG,G′ be RDF graphs such that VG∩VERDF = ∅, VG′∩VERDF =
∅, and VG′ ∩ skG(Var(G)) = ∅. Let O = 〈G, ∅〉 and n ≥ nO. If max({i ∈ IN | rdf : i ∈
VG′}) ≤ n then: G |=RDFS G′ iff O |=st#n G′. ✷
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Existing RDFS engines like [37, 17] take care at runtime to avoid the infinite
instantiation of container membership properties, guaranteeing termination of their
algorithms. Our results above formalize this process for our semantics, guaranteeing
decidabiltiy, soundness and completeness for important subsets of queries, namely for
performing standard RDFS entailment between graphs, as stated in Proposition 4.

6 Query Answering on Simple ERDF Ontologies

In this section, we consider another decidable fragment of ERDF ontologies where
the program rules are simple, i.e. the bodies are formed by conjunctions of ERDF
triples and weak negations of ERDF triples. Technically, we will show that the #n-
stable answers of a simple ERDF formula F with respect to a simple ERDF ontology
O = 〈G,P 〉 can be computed through Answer Set Programming [29, 30]14 on an

extended logic program (ELP) Π#n
O constructed from the ontology O. By using an

answer set solver like smodels [57], dlv [42], or clasp [26], one can perform query
answering on simple ERDF ontologies.

To give the precise definition of Π#n
O , a few auxiliary definitions are needed. Let

t be an ERDF triple, true, or false. We define:

Lt =







H (s, p, o) if t = p(s, o)
¬H (s, p, o) if t = ¬p(s, o)
t if t ∈ {true, false}

Intuitively, Lt is an extended logic programming literal (ELP literal15), representing
the ERDF triple t.

Let G be an ERDF graph. We define: ΠG = {Lt ← true | t ∈ sk(G)}. In-
tuitively, ΠG is a set of ELP facts, representing sk(G). For example, let G =
{hasMother(Manos ,Anastasia)}. Then,ΠG = {H (Manos , hasMother,Anastasia)←
true}.

Let P be a simple ERDF program. We define:

ΠP = {Lt0 ← Lt1 , ..., Ltk ,∼Ltk+1
, ...,∼Ltm | t0 ← t1, ..., tk,∼tk+1, ...,∼tm ∈ P}.

Intuitively, ΠP is an extended logic program, representing P . For example, let P =
{hasChild(?y, ?x)← hasMother(?x, ?y)}. Then,ΠP = {H (?y, hasChild , ?x)← H (?x,
hasMother , ?y)}.

Let O be an ERDF ontology. We denote by Π
H#n

O the extended logic program
that consists of the following two sets of rules16:

Partial Interpretation Rules

H (?z, type,Property)← H (?x, ?z, ?y).
H (?z, type,Property) ← ¬H (?x, ?z, ?y). (+)

For all x ∈ V
#n
O : H (x, type,Resource)← true.

For all x ∈ V
#n
O ∩ PL: H (x, type, Literal)← true.

14 Other references of Answer Set Programming include [49, 56, 45, 9, 46, 14, 25].
15 By ELP literal, we refer to an atom or the strong negation of an atom.
16 For simplicity, we have eliminated the namespace from the URIs in VRDF ∪ VRDFS ∪
VERDF .
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ERDF Interpretation Rules

H (?z, type, ?y) ← H (?x, domain, ?y),H (?z, ?x, ?w).
H (?w, type, ?y) ← H (?x, range, ?y),H (?z, ?x, ?w).

H (?x, subClassOf ,Resource) ← H (?x, type,Class).

H (?x, type,Class) ← H (?x, subClassOf , ?y).
H (?y, type,Class) ← H (?x, subClassOf , ?y).
H (?z, type, ?y) ← H (?x, subClassOf , ?y),H (?z, type, ?x).
¬H (?z, type, ?x) ← H (?x, subClassOf , ?y),¬H (?z, type, ?y). (†)
H (?x, subClassOf , ?x) ← H (?x, type,Class).
H (?x, subClassOf , ?z) ← H (?x, subClassOf , ?y),H (?y, subClassOf , ?z).

H (?x, type,Property) ← H (?x, subPropertyOf , ?y).
H (?y, type,Property) ← H (?x, subPropertyOf , ?y).
H (?z1, ?y, ?z2) ← H (?x, subPropertyOf , ?y),H (?z1, ?x, ?z2).
¬H (?z1, ?x, ?z2) ← H (?x, subPropertyOf , ?y),¬H (?z1, ?y, ?z2). (†)
H (?x, subPropertyOf , ?x) ← H (?x, type,Property).
H (?x, subPropertyOf , ?z) ← H (?x, subPropertyOf , ?y),H (?y, subPropertyOf , ?z).

H (?x, subClassOf , Literal) ← H (?x, type,Datatype).
H (?x, subPropertyOf ,member) ← H (?x, type,ContainerMembershipProperty).

¬H (?z, type, ?x)← H (?x, type,TotalClass),∼H (?z, type, ?x). (⋆)
H (?z, type, ?x) ← H (?x, type,TotalClass),∼ ¬H (?z, type, ?x). (⋆)

¬H (?z1, ?x, ?z2)← H (?x, type,TotalProperty),∼H (?z1, ?x, ?z2). (⋆)
H (?z1, ?x, ?z2) ← H (?x, type,TotalProperty),∼ ¬H (?z1, ?x, ?z2). (⋆)

For each s ˆ̂ rdf :XMLLiteral ∈ V
#n
O s.t. s is a well-typed XML literal string:

H ( s ˆ̂ rdf :XMLLiteral , type,XMLLiteral)← true.

For each s ˆ̂ rdf :XMLLiteral ∈ V
#n
O s.t. s is not a well-typed XML literal string:

¬H ( s ˆ̂ rdf :XMLLiteral , type, Literal)← true.

For each RDF, RDFS, or ERDF axiomatic triple p(s, o) s.t. p, s, o ∈ V
#n
O :

H (s, p, o)← true.

Intuitively, the Partial Interpretation Rules of an ERDF ontology O represent the
semantic conditions in Def. 3 (Partial Interpretation). Similarly, the ERDF Inter-
pretation Rules represent the semantic conditions in Def. 5 (ERDF Interpretation)
that a #n-Herbrand interpretation of O (for n ∈ IN) satisfies. For example, the
rules marked with (†) capture reasoning with the property-false extensions, specific
of ERDF. Additionally, note that the ERDF Interpretation Rules, corresponding to
metaclasses erdf :TotalClass and erdf :TotalProperty (indicated by (⋆)), represent the
semantic conditions 12 and 13 of Def. 5, respectively. Due to these rules, the OWA
applies to the truth values of rdf :type(x , c) and p(x, y), for total classes c and total
properties p. By dropping rules marked with (+), (†), and (⋆), we obtain complete
inference rules for RDFS reasoning similar to [68]. Note that similarly to [68], we
achieve completeness of RDFS reasoning, by allowing variables in the property posi-
tion of the atom H(subject, property, object).

The intended extended logic program is obtained by translating the triples in the
ERDF graph, the ERDF program rules, and adding the previous Partial and ERDF
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interpretation rules. Formally, let O = 〈G,P 〉 be a simple ERDF ontology and let
n ∈ IN . We define:

Π#n
O = ΠG ∪ΠP ∪Π

H#n

O .

To proceed in computing the stable models of an ERDF ontology, we need the
following auxiliary definition. Intuitively, a #n-semi-Herbrand interpretation of an
ERDF ontology O is a coherent, partial interpretation that satisfies the three con-
ditions of a #n-Herbrand interpretation regarding the interpretation of the vocabu-
lary, while the rest of the conditions are just the definitions of the ontological cat-
egories present in the definition of ERDF interpretation. The definition of a #n-
semi-Herbrand interpretation is needed for mapping #n-Herbrand interpretations to
consistent sets of ELP literals, and vice-versa.

Definition 12 (#n-semi-Herbrand interpretation). Let O be an ERDF ontol-
ogy. A #n-semi-Herbrand interpretation I of O is a coherent, partial interpretation of
V #n
O , extended by the ontological categories ClsI ⊆ ResI for classes, TClsI ⊆ ClsI

for total classes, and TPropI ⊆ PropI for total properties, as well as the class-truth
extension mapping CT I : ClsI → P(ResI), and the class-falsity extension mapping
CF I : ClsI → P(ResI), such that:

i) ResI = Res
H#n

O .

ii) IV (x) = x, for all x ∈ V #n
O ∩ URI.

iii) ILI(x) = x, if x is a typed literal in V #n
O other than a well-typed XML literal,

and ILI(x) is the XML value of x, if x is a well-typed XML literal in V #n
O .

Additionally:

1. x ∈ CT I(y) iff 〈x, y〉 ∈ PT I(I(rdf :type)), and
x ∈ CF I(y) iff 〈x, y〉 ∈ PF I(I(rdf :type)).

2. The ontological categories are defined as follows:
PropI = CT I(rdf :Property) ClsI = CT I(rdfs :Class)
ResI = CT I(rdfs :Resource) LV I = CT I(rdfs :Literal)
TClsI = CT I(erdf :TotalClass) TPropI = CT I(erdf :TotalProperty). ✷

Let O be an ERDF ontology. Below, we show how a #n-semi-Herbrand inter-
pretation I of O can be translated to a consistent Herbrand interpretation of Π#n

O ,
denoted by ELP(I). Let I be a #n-semi-Herbrand interpretation of O. We define:

ELP(I) = {H(s, p, o) | s, p, o ∈ V #n
O and 〈I(s), I(o)〉 ∈ PT I(p)} ∪

{¬H(s, p, o) | s, p, o ∈ V #n
O and 〈I(s), I(o)〉 ∈ PF I(p)}

Note that the function ELP (.) from the set of #n-semi-Herbrand interpretations
of O to the set of consistent sets of ELP literals H(s, p, o) and ¬H(s, p, o), where

s, p, o ∈ V #n
O , is a bijective mapping.

Theorem 2. Let O be a simple ERDF ontology and let n ≥ nO. Let M be a #n-
semi-Herbrand interpretation of O. It is the case that: M ∈ Mst#n(O) iff ELP (M)

is a consistent answer set of Π#n
O . ✷
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This result captures the intuitive idea that conditions (3-17) of ERDF inter-
pretations can be captured by extended logic programming rules under answer set
semantics, for the particular case of simple ontologies. Based on Theorem 2, the set
S = {ELP−1(N) | N is a consistent answer set of Π#n

O }, for n ≥ nO, computes the
set of all #n-stable models of O.

Using again Theorem 2, we can show that the #n-stable answers of a simple
ERDF formula F w.r.t. a simple ERDF ontology O can be computed through An-
swer Set Programming [29, 30] on Π#n

O . First, we provide a few definitions. Let Π
be an extended logic program (ELP) and let F be a query of the form: L1∧...∧Lk∧
∼Lk+1∧...∧∼Lm, where Li, i = 1, ...,m, is an ELP literal. We will denote byAnsAS

Π (F )
the (skeptical) answers of F w.r.t. Π according to answer set semantics [30]. Let F
be a simple ERDF formula of the form: F = t1∧...∧tk∧∼tk+1∧...∧ ∼tn, where each
ti = [¬]pi(si, oi). We define:

LF = Lt1 ∧ · · · ∧ Ltk ∧ ∼Ltk+1
∧ · · · ∧ ∼Ltn .

Proposition 5. Let O be a simple ERDF ontology and let n ≥ nO. Let F be a
simple ERDF formula over V #n

O .

1. If Π#n
O is a non-contradictory ELP then Ans

st#n

O (F ) = AnsAS

Π
#n

O

(LF ).

2. Otherwise,Mst#n(O) = ∅. ✷

Note that we represent an ERDF triple [¬]p(s, o) by the ELP literal [¬]H(s, p, o),
and not by the ELP literal [¬]p(s, o). This is because according to RDF(S) semantics
[32] and thus ERDF #n-stable model semantics, all properties, classes, and instances
are resources on which inferences can be made. Neglecting this fact results in incom-
pleteness, as what happens with the RDFS entailment rules present in the RDFS
recommendation [68]. For example, consider the following rules of Π

H#n

O :

H (?z1, ?y, ?z2) ← H (?x, subPropertyOf , ?y),H (?z1, ?x, ?z2).
¬H (?z1, ?x, ?z2)← H (?x, subPropertyOf , ?y),¬H (?z1, ?y, ?z2).
¬H (?z1, ?x, ?z2)← H (?x, type,TotalProperty),∼H (?z1, ?x, ?z2).
H (?z1, ?x, ?z2) ← H (?x, type,TotalProperty),∼ ¬H (?z1, ?x, ?z2).

Note that in the head of the rules and in the second ELP literal in the bodies of the
rules, there is a variable in the property position p of the corresponding ELP literal
[¬]H(s, p, o). Additionally, all variables of the first ELP literal in the body of the rules
correspond to properties. In some sense, limited high-order features are necessary to
fully capture RDFS reasoning which are not available in ordinary extended logic
programming. Generalizations like HiLog [16] are necessary to handle this.

The reader may wonder why we do not define the ERDF #n-stable model se-
mantics of simple ERDF ontologies directly based on the answer set semantics of
Π#n

O . However, in this case, the definition of the ERDF #n-stable model semantics
of simple ERDF ontologies would had been restricted without covering the case of
general ERDF ontologies, limiting expressivity as we shall see. In contrast, in our
case, we provide a pure model-theoretic definition of the #n-stable model semantics
of ERDF ontologies, faithfully extending RDFS semantics. In particular:

– We extend RDF graphs to ERDF graphs with the inclusion of strong nega-
tion, and then to ERDF ontologies with the inclusion of general derivation rules.
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ERDF graphs allow us to express existential positive and negative information,
whereas general derivation rules allow inferences based on formulas built using
the connectives ∼, ¬, ⊃, ∧, ∨ and the quantifiers ∀, ∃.

– We extend the vocabulary of RDF(S) with the terms erdf :TotalProperty and
erdf :TotalClass, representing the metaclasses of total properties and total classes,
on which the open-world assumption applies. These terms together with the
default closure rules, defined in Section 1, allow the combination of open-world
and closed-world reasoning in the same framework. Examples and arguments of
this need are provided in [5, 6, 3].

– We extend RDFS interpretations to ERDF interpretations, including both truth
and falsity extensions for properties and classes, and providing additional condi-
tions involving falsity extensions and the new metaclasses of total properties and
total classes.

– We define the Herbrand interpretations of an ERDF ontology and, based on these,
the stable models of an ERDF ontology. Since ERDF stable model satisfiability
and entailment are undecidable even for simple ERDF ontologies, we define the
ERDF #n-interpretations, the #n-Herbrand interpretations, and the #n-stable
model semantics of ERDF ontologies by removing the infinite number of terms
rdf : i, where i > n. Additionally, we show that #n-stable model entailment on
simple ERDF ontologies can be computed through Answer Set Programming on
Π#n

O .

A comparison of the #n-stable model semantics on general ERDF ontologies
with other semantics of logic programs with rules of a richer (than normal programs)
syntax is provided at the end of Section 11. All semantics that we consider for this
comparison extend the stable model semantics on normal programs [29].

7 Complexity Results for Simple & Objective ERDF
Ontologies

In this section, we provide complexity results for (i) the ERDF #n-stable model
semantics on simple and objective ERDF ontologies, and (ii) the ERDF stable model
semantics on objective ERDF ontologies. Recall that reasoning with simple ERDF
ontologies is undecidable, and thus we do not address them in this section. We also
consider the orthogonal notion of bounded ERDF ontologies

7.1 Bounded ontologies

We consider first the case of bounded ontologies since, as we will show, reasoning tasks
will be on the first level of the polynomial hierarchy. As expected, reasoning with
bounded ontologies will have lower complexity than reasoning with unbounded ones.
To prove this we start from the well-known NP-complete graph coloring problem.

Let D = (V,E) be a graph. We say that D is 3-colorable, if there is a mapping
color from the vertices V to colors {Red ,Green,Blue} such that if (v, u) ∈ E then
color(v) 6= color(u). The 3-colorability problem is the following: given a graph D,
decide if it is 3-colorable. From D, we will construct a bounded, objective ERDF
ontology OD = 〈GD, PD〉 such that D is 3-colorable iff OD has a #n-stable model,
for n ∈ IN . The 3-colorability problem is a classical NP-complete problem. Thus,
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based on this reduction, we will show that the satisfiability problem of a bounded,
objective ERDF ontology, under the #n-stable model semantics is NP-hard.

Consider (i) a property edge(v, u), indicating that there is an edge in D from
vertex v to vertex u, (ii) a class Red whose instances are vertices of color Red, (iii)
a class Green whose instances are vertices of color Green, (iv) a class Blue whose
instances are vertices of color Blue, (v) a property edgeR(v, u), indicating that in
edge 〈v, u〉, the color of v is Red, (vi) a property edgeG(v, u), indicating that in edge
〈v, u〉, the color of v is Green, (vii) a property edgeB(v, u), indicating that in edge
〈v, u〉, the color of v is Blue.

Let GD be the ERDF graph:

GD = {edge(v, u) | 〈v, u〉 ∈ E} ∪
{rdf :type(edgeR, erdf :TotalProperty), rdf :type(edgeG , erdf :TotalProperty),
rdf :type(edgeB , erdf :TotalProperty),
rdfs :domain(edgeR,Red), rdfs :range(edgeR,NotRed),
rdfs :domain(edgeG ,Green), rdfs :range(edgeG ,NotGreen),
rdfs :domain(edgeB ,Blue), rdfs :range(edgeB ,NotBlue),
rdfs :subClassOf (Red ,NotGreen), rdfs :subClassOf (Red ,NotBlue),
rdfs :subClassOf (Blue,NotGreen), rdfs :subClassOf (Blue,NotRed),
rdfs :subClassOf (Green,NotRed), rdfs :subClassOf (Green,NotBlue)}

Let PD be the bounded objective ERDF program, containing the following con-
straints:

{false ← edge(x, y) ∧ ¬edgeR(x, y) ∧ ¬edgeG(x, y) ∧ ¬edgeB(x, y).
false ← rdf :type(x ,Red) ∧ rdf :type(x ,NotRed).
false ← rdf :type(x ,Green) ∧ rdf :type(x ,NotGreen).
false ← rdf :type(x ,Blue) ∧ rdf :type(x ,NotBlue) | x, y ∈ V }

Proposition 6. Let D = (V,E) be a graph. D is 3-colorable iff OD = 〈GD, PD〉 has
a #n-stable model, for n ∈ IN . ✷

Using Proposition 6, we can provide the complexity of the satisfiability problem
of a bounded, simple ERDF ontology w.r.t. the ERDF #n-stable model semantics.

First, we give a few definitions that will be used throughout the algorithms and
proofs. Let Π be an ELP. By [Π], we denote the grounded version of Π and by
EHB(Π), we denote the Extended Herbrand Base of P . Let Π be a ground ELP. Let
r = L0 ← L1, ..., Lm,∼Lm+1, ...,∼Ln ∈ Π. We define: Head(r) = L0, Body(r)+ =
{L1, ..., Lm}, Body(r)− = {Lm+1, ..., Ln}, and Body(r) = Body(r)+∪Body(r)−. Let
N ⊆ EHB(Π). We define:
ΠN = {Head(r)← Body(r)+ | r ∈ Π and Body(r)− ∩N = ∅}.

LetΠ be a ground ELP such that for any r ∈ Π, it holds Body(r)− = ∅. We define
the mapping TΠ : P(EHB(Π))→ P(EHB(Π)), where TΠ(N) = N ∪ {Head(r) | r ∈
Π and Body(r) ⊆ N}.

Proposition 7. Let O = 〈G,P 〉 be a bounded, simple ERDF ontology and let n ≥
nO. The problem of establishing whether O has a #n-stable model is NP-complete
w.r.t. the size of O. ✷

Below, we present the Algorithm 5.1 Satisfies(I, F ) that checks if a partial in-
terpretation I of a vocabulary V satisfies an ERDF formula F with FVar(F ) = ∅.

24



This algorithm and Proposition 7 will be used to provide the complexity of the query
answering problem on a bounded, simple ERDF ontology w.r.t. the #n-stable model
semantics.

Algorithm 7.1 Satisfies(I, F )

Input: I is a partial interpretation of a vocabulary V and F is an ERDF query s.t.
FVar(F ) = ∅

Output: TRUE, if I |= F , and FALSE, otherwise

( 1) If VF 6⊆ V then return(FALSE);
( 2) case(F ) {
( 3) p(s, o): If p ∈ URI, p ∈ PropI , 〈I(s), I(o)〉 ∈ PT I(I(p)) then return(TRUE);
( 4) ¬p(s, o): If p ∈ URI, p ∈ PropI , 〈I(s), I(o)〉 ∈ PF I(I(p)) then return(TRUE);
( 5) ∼G: If Satisfies(I,G)=FALSE then return(TRUE);
( 6) F1∧F2: If Satisfies(I, F1)=TRUE and Satisfies(I, F2)=TRUE then

return(TRUE);
( 7) F1∨F2: If Satisfies(I, F1)=TRUE or Satisfies(I, F2)=TRUE then

return(TRUE);
( 8) F1 ⊃ F2: return(Satisfies(I,∼F1∨F2));
( 9) ∀xG: If for all u : {x} → V , it is the case that Satisfies(I, u(G))=TRUE

then return(TRUE);
(10) ∃xG: If it exists u : {x} → V such that Satisfies(I, u(G))=TRUE

then return(TRUE);
(11) ¬(F1 ∧ F2) : return(Satisfies(I,¬F1 ∨ ¬F2));
(12) ¬(F1 ∨ F2) : return(Satisfies(I,¬F1 ∧ ¬F2));
(13) ¬(¬G) : return(Satisfies(I,G));
(14) ¬(∼ G) : return(Satisfies(I,G));
(15) ¬(∃x G) : return(Satisfies(I,∀x ¬G));
(16) ¬(∀x G) : return(Satisfies(I,∃x ¬G));
(17) ¬(F1 ⊃ F2) : return(Satisfies(I, F1∧¬F2));

}
(11) return(FALSE);

Proposition 8. Let O = 〈G,P 〉 be a bounded, simple ERDF ontology and let F be
an ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F ) → V #n
O , if FVar(F ) 6= ∅. Let n ≥ nO. The problem of establishing

whether v ∈ Ans
st#n

O (F ) is co-NP-complete w.r.t. the size of O. ✷

Below, we state complexity results for the #n-stable model semantics of bounded,
objective ERDF ontologies. We see that even though no weak negation appears in
the rules of bounded, objective ERDF ontologies, complexity of reasoning remains
the same with that of bounded, simple ERDF ontologies. This is due to the ERDF
metaclasses erdf :TotalClass and erdf :TotalProperty , to the instances of which, the
OWA applies. This is natural, since the OWA is captured by rules making use of
weak negation generating alternative models.

Proposition 9. Let O = 〈G,P 〉 be a bounded, objective ERDF ontology. Let G′ be
an ERDF graph, let F d be an ERDF d-formula, and let F be an ERDF formula. Let
n ≥ nO.

25



1. The problem of establishing whether O has a #n-stable model is NP-complete
w.r.t. the size of O.

2. The problems of establishing whether:
(i) O |=st#n G′, (ii) O |=st#n F d

are co-NP-complete w.r.t. the size of O,
3. Let v be (i) “yes”, if FVar(F ) = ∅, or (ii) let a mapping v : FVar(F )→ V #n

O , if

FVar(F ) 6= ∅. Let n ≥ nO. The problem of establishing whether v ∈ Ans
st#n

O (F )
is co-NP-complete w.r.t. the size of O. ✷

Based on Corollary 1, Theorem 1, and Proposition 9, we provide complexity
results regarding the (original) stable model semantics for bounded, objective ERDF
ontologies:

Corollary 2. Let O = 〈G,P 〉 be a bounded, objective ERDF ontology. Let G′ be an
ERDF graph and let F d be an ERDF d-formula s.t. max({i ∈ IN | rdf : i ∈ VX}) ≤
nO, where X ∈ {G

′, Fd}.

1. The problem of establishing whether O has a stable model is NP-complete w.r.t.
the size of O.

2. The problems of establishing whether:
(i) O |=st G′ and (ii) O |=st F d

are co-NP-complete w.r.t. the size of O. ✷

7.2 Unbounded ontologies

By allowing variables in the body of objective and simple rules, complexity of the
reasoning tasks increases to the second level of the polynomial hierarchy. We will
show this by a reduction from the 2-QBF∀-problem. A 2-universal quantified boolean
formula (2-QBF∀) is a formula of the form:

F = ∀?x1...∀?xk∃?y1...∃?ym c1∧.......∧ cl,where

each ci is a clause of three literals from the variables ?x1, ..., ?xk, ?y1, ..., ?ym
17. De-

ciding if F is valid (called 2-QBF∀-problem) is a ΠP
2 =co-NPNP-complete problem

[66, 58].
Let F be a 2-universal quantified boolean formula. We will construct a simple

ERDF ontology, denoted by OF = 〈GF , PF 〉, such that F is invalid iff OF has a
#n-stable model, for n ∈ IN . Thus, based on this reduction, we will show that the
satisfiability problem of a simple ERDF ontology O = 〈G,P 〉, under the #n-stable
model semantics is ΣP

2 -hard w.r.t. the size of O.
Let X = {?x1, ..., ?xk} and let Y = {?y1, ..., ?yk}. Additionally, let s ∈ URI and

let xi ∈ URI, for each ?xi ∈ X. Further, by t, we will denote the truth value true
and by f, we will denote the truth value false.

Let GF = {p(xi, xi) | i = 1, ..., k} ∪ {rdf :type(IsTrue, erdf :TotalClass)}. The
triples of the form p(xi, xi) are included in the graph in order to guarantee that we
have in the vocabulary at least one URI for each universally quantified variable, which
together with the declaration that IsTrue is a total class will generate all possible
assignments of boolean truth-values to those variables. The rules and constraints in

17 The not operator is indicated by ∼.
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the following program PF will check if this is an invalid assignment. Let PF be the
ERDF program, containing the following rules (and constraints):

For each clause ci, we define rules which state the truth assignments to the vari-
ables from Y that make the clause true given the truth assignment of the variables
fromX in ci. This is best illustrated by examples, consider that ci =?xj ∨ ∼?xj′ ∨ ?yj′′ .
Then, we add to PF the rules.

ci(s, f) ← rdf :type(xj , IsTrue). ci(s, t) ← rdf :type(xj , IsTrue).
ci(s, f) ← ¬rdf :type(xj′ , IsTrue). ci(s, t) ← ¬rdf :type(xj′ , IsTrue).
ci(s, t) ← ¬rdf :type(xj , IsTrue), rdf :type(xj′ , IsTrue).

Informally, the first rule states that if ?xj is assigned the truth value true and
?yj′′ is assigned the truth value false then the clause ci is satisfied. Similarly, the last
rule states that if ?xj is assigned the truth value false , ?xj′ is assigned the truth
value true, and yj′′ assigned the truth value true then the clause ci is satisfied. The
symbol s in the conclusion of the rules is used for creating ERDF triples.

As another example, consider that ci =?xj ∨ ∼?yj′ ∨ ?yj′′ . Then, we add to PF

the rules.

ci,1(sf,f, f) ← rdf :type(xj , IsTrue). ci,2(sf,f, f)← rdf :type(xj , IsTrue).
ci,1(sf,t, f) ← rdf :type(xj , IsTrue). ci,2(sf,t, t)← rdf :type(xj , IsTrue).
ci,1(st,f, t) ← rdf :type(xj , IsTrue). ci,2(st,f, f)← rdf :type(xj , IsTrue).
ci,1(st,t, t) ← rdf :type(xj , IsTrue). ci,2(st,t, t)← rdf :type(xj , IsTrue).
ci,1(sf,f, f) ← ¬rdf :type(xj , IsTrue). ci,2(sf,f, f)← ¬rdf :type(xj , IsTrue).
ci,1(sf,t, f) ← ¬rdf :type(xj , IsTrue). ci,2(sf,t, t)← ¬rdf :type(xj , IsTrue).
ci,1(st,t, t) ← ¬rdf :type(xj , IsTrue). ci,2(st,t, t)← ¬rdf :type(xj , IsTrue).

Informally, the first two rules state that if ?xj is assigned the truth value true,
?yj′ is assigned the truth value false, and ?yj′′ is assigned the truth value false then
the clause ci is satisfied.

In particular, ci,1(sy,y′ , y′′) expresses that clause ci is true if the first variable in Y
appearing in the clause ci takes the value y′′ and the second variable in Y appearing
in clause ci takes the value y′. The value y is the same as the value y′′. Similarly,
ci,2(sy,y′ , y′′) expresses that the clause ci is true if the second variable in Y appearing
in clause ci takes the value y

′′ and the first variable in Y appearing in clause ci takes
the value y. The value y′ is the same as the value y′′. The reader will notice that
at each raw of rules the subject of the conclusion of the rules is the same. This is
because based on this common subject the two variables in Y are connected together.

As another example, consider that ci =?yj ∨ ∼?yj′ ∨ ?yj′′ . Then, we add to PF

the rules.

ci,1(st,f,f, t)← true. ci,2(st,f,f, f)← true. ci,3(st,f,f, f)← true.
ci,1(st,t,f, t)← true. ci,2(st,t,f, t)← true. ci,3(st,t,f, f)← true.
ci,1(st,f,t, t)← true. ci,2(st,f,t, f)← true. ci,3(st,f,t, t)← true.
ci,1(st,t,t, t)← true. ci,2(st,t,t, t)← true. ci,3(st,t,t, t)← true.
ci,1(sf,f,t, f)← true. ci,2(sf,f,t, f)← true. ci,3(sf,f,t, t)← true.
ci,1(sf,f,f, f)← true. ci,2(sf,f,f, f)← true. ci,3(sf,f,f, f)← true.
ci,1(sf,t,t, f)← true. ci,2(sf,t,t, t)← true. ci,3(sf,t,t, t)← true.

Informally, the first three rules state that if ?yj is assigned the truth value true,
?yj′ is assigned the truth value false, and ?yj′′ is assigned the truth value false then
the clause ci is satisfied.
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As final example, consider that ci =?xj ∨ ∼?xj′ ∨ ?xj′′ . Then, we add to PF the
rules.

ci(s, s) ← rdf :type(xj , IsTrue). ci(s, s) ← ¬rdf :type(xj′ , IsTrue).
ci(s, s) ← rdf :type(xj′′ , IsTrue).

Informally, the first rule states that if ?xj is assigned the truth value true then
the clause ci is satisfied.

Now, we add a rule to PF whose body corresponds to evaluating the formula18:
∃?y1...∃?ym c1∧...∧ cl, based on the truth assignment of ?x1, ..., ?xn:

w(s, s)← c′1, ..., c
′
l., where

If ci has the variables ?xj , ?xj′ , and ?yj′′ then c′i = ci(s, ?yj′′). If ci has the variables
?xj , ?yj′ , and ?yj′′ then c′i = ci,1(?x, ?yj′), ci,2(?x, ?yj′′). If ci has the variables ?yj ,
?yj′ , and ?yj′′ then c′i = ci,1(?x, ?yj), ci,2(?x, ?yj′), ci,3(?x, ?yj′′). If ci has the variables
?xj , ?xj′ , and ?xj′′ then c′i = ci(s, s).

Finally, we add the constraint:

false ← w(s, s).

Note that variables occur only in the condition part of the rule for w(s, s) being
the remaining rules in PF objective bounded ones.

According to the previous constraint, we will keep models where w(s, s) does not
hold, i.e. finding an assignment to variables ?x1, ..., ?xn that makes ∃?y1...∃?ym c1∧...
∧ cl false. Thus, the following result:

Proposition 10. Let F = ∀?x1...∀?xk∃?y1...∃?ym c1∧.......∧ cl be a 2-universal
quantified boolean formula. F is invalid iff OF = 〈GF , PF 〉 has a #n-stable model,
for n ∈ IN . ✷

Proposition 10 will be used to provide the complexity of the query answering
problem on a simple ERDF ontology w.r.t. the #n-stable model semantics.

Proposition 11. Let O = 〈G,P 〉 be a simple ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is ΣP
2 = NPNP-

complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) isΠP
2 = co-NPNP-complete

w.r.t. the size of O. ✷

We conclude our complexity analysis stating results for the #n-stable model se-
mantics with objective ERDF ontologies. We see that even though no weak negation
appears in the rules of objective ERDF ontologies, complexity of reasoning w.r.t.
simple ERDF ontologies remains the same. This is due to the ERDF metaclasses
erdf :TotalClass and erdf :TotalProperty , to the instances of which, the OWA applies.

18 The variable ?xi is assigned the truth value true iff rdf :type(xi , IsTrue) holds.
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Proposition 12. Let O = 〈G,P 〉 be an objective ERDF ontology. Let G′ be an
ERDF graph, let F d be an ERDF d-formula, and let F be an ERDF formula. Let
n ≥ nO.

1. The problem of establishing whether O has a #n-stable model is NPNP-complete
w.r.t. the size of O.

2. The problems of establishing whether:
(i) O |=st#n G′, (ii) O |=st#n F d

are co-NPNP-complete w.r.t. the size of O,
3. Let v be (i) “yes”, if FVar(F ) = ∅, or (ii) let a mapping v : FVar(F )→ V #n

O , if

FVar(F ) 6= ∅. Let n ≥ nO. The problem of establishing whether v ∈ Ans
st#n

O (F )

is co-NPNP-complete w.r.t. the size of O. ✷

Based on Corollary 1, Theorem 1, and Proposition 12, we provide complexity
results regarding the (original) stable model semantics for objective ERDF ontologies:

Corollary 3. Let O = 〈G,P 〉 be an objective ERDF ontology. Let G′ be an ERDF
graph and let F d be an ERDF d-formula s.t. max({i ∈ IN | rdf : i ∈ VX}) ≤ nO,
where X ∈ {G′, F d}.

1. The problem of establishing whether O has a stable model is NPNP-complete
w.r.t. the size of O.

2. The problems of establishing whether:
(i) O |=st G′ and (ii) O |=st F d

are co-NPNP-complete w.r.t. the size of O. ✷

Yet, as mentioned in Section 4, satisfiability and entailment on simple (and of
course, general) ERDF ontologies under the ERDF stable model semantics are un-
decidable. Additionally, in Section 4, we showed that entailment of a general ERDF
formula from an objective ERDF ontology under the ERDF stable models semantics
is also undecidable.

8 Computing the #n-Stable Models of General ERDF
Ontologies

In this section we address the problem of computing the #n-stable models of general
ERDF ontologies, since they cannot be computed directly with Answer Set Program-
ming because of syntactic limitations imposed to the body of rules (just conjunctions
of literals, i.e. simple bodies). Our approach mimics the theoretical definition of #n-
stable models, which suffices to prove complexity results. In a nutshell, our algorithm
has three main parts. Algorithm 8.1 (All-#n-StableModelsGeneral) is a brute force
search algorithm which generates every possible #n-semi-Herbrand interpretation
for a given ERDF ontology O and n, checking whether this interpretation is a stable
model by calling main Algorithm 8.2.

Algorithm 8.2 (Is-#n-StableModelGeneral) tries to construct the sequence of in-
terpretations which justifies that its third argument M is an #n-stable model. First,
it checks if M is a #n-Herbrand interpretation of the ERDF ontology and if it is a
minimal interpretation. Subsequently, it constructs iteratively the sequence starting
from skolemised ERDF graph by adding the consequences of the rules whose ap-
plicable conditions remain true, making the rule supported by the model M . The
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algorithm terminates after the fixpoint been reached, returning TRUE whenever the
sequence constructs the initial input model M . Algorithm 8.2 needs to call Algo-
rithm 8.3 (MiddleNotSatisfies) which checks if a formula is true in an interval of
interpretations.

In particular, Algorithm 6.1 All-#n-StableModelsGeneral(O,n) takes as input a
general ERDF ontology O and an n ≥ nO and computes the set of all #n-stable mod-
els of O. This algorithm calls the Algorithm 6.2 Is-#n-StableModelGeneral(O,n,M)
that takes as input a general ERDF ontology O, an n ≥ nO, and a #n-semi-Herbrand
interpretation M of O and returns TRUE, if M is a #n-stable model of O, and
FALSE, otherwise.

Algorithm 8.1 All-#n-StableModelsGeneral(O,n)

Input: (i) a general ERDF ontology O and (ii) an n ≥ nO

Output: the set of all #n-stable models of O

(1) S={};
(2) For all #n-semi-Herbrand interpretations M of O do
(3) If Is-#n-StableModelGeneral(O, n,M)=TRUE then S = S ∪ {M};
(4) Endfor
(5) return(S);

Algorithm Is-#n-StableModelGeneral(O,n,M) calls Algorithm 6.3
MiddleNotSatisfies( O,n, I,M,F ) which takes as input (i) a general ERDF ontology
O, (ii) an n ≥ nO, (iii) two ERDF #n-interpretations I, M of O, and (iv) an

ERDF formula F and returns TRUE, if it exists J ∈ [I,M ]#n
O and J 6|= F , and

FALSE, otherwise. Thus, MiddleNotSatisfies(O,n, I,M,F )=FALSE iff J |= F , ∀J ∈

[I,M ]#n
O .

Algorithm Is-#n-StableModelGeneral(O,n,M), in line (2), checks if M is a #n-
Herbrand interpretation of O, and if it is not then it returns FALSE. In line (3), it

computesN0 = T ↑ω

[ΠH#n

O
]N
(TΠG

(∅)).19 Thus, ELP−1(N0) ∈ minimal({I ∈ IH#n(O) | I

|= sk(G)}). This corresponds to item 1 of Definition 9 (ERDF #n-stable model). In
line (4), it checks if M < ELP−1(N0), and if this is the case then it returns FALSE.
Then, in line (6), it enters into a loop for α ∈ {0, 1, ...}, where in lines (9-10) it com-

putes S = Nα∪{LConcl(r) | r ∈ [P ]
V

#n

O

and J |= Cond(r), ∀J ∈ [ELP−1(Nα),M ]#n
O }

and in line (12) it computes Nα+1 = T ↑ω

[ΠH#n

O
]N
(S), until ELP−1(Nα) = ELP−1(

Nα+1) or ELP−1(Nα) > M . Thus, ELP−1(Nα) ∈ minimal({I ∈ IH#n(O) | I ≥

ELP−1(Nα−1) and ∀ r ∈ [P ]
V

#n

O

, if J |= Cond(r), ∀J ∈ [ELP−1(Nα−1),M ]#n
O ,

then I |= Concl(r)}). This corresponds to item 2 of Definition 9 (ERDF #n-stable
model). If there is α ∈ {0, 1, ...} such that ELP−1(Nα) = ELP−1(Nα+1) = M then
Is-#n-StableModelGeneral(O,n,M) returns TRUE else it returns FALSE. The user
can notice that ELP (.) and ELP−1(.) are used in the algorithm for translating a
#n-semi-Herband Interpretation M to an equivalent set S of consistent ELP literals
H(s, p, o) and ¬H(s, p, o), where s, p, o ∈ V #n

O and vice versa.

19 T
↑ω
P (S) denotes that the operator TP is applied from the set S until closure [47].
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Algorithm 8.2 Is-#n-StableModelGeneral(O,n,M)

Input: (i) a general ERDF ontology O = 〈G,P 〉, (ii) an n ≥ nO, and
(iii) a #n-semi-Herbrand interpretation M of O

Output: TRUE, if M is a #n-stable model of O, and FALSE, otherwise

(1) Let N = ELP (M);
(2) If T

[ΠH#n

O
]N

(N) 6= N then return(FALSE);

/* In this case, M is not a #n-Herbrand interpretation of O */

(3) Let N0 = T
↑ω

[ΠH#n

O
]N

(TΠG
(∅));

/* Note that ELP−1(N0) is a #n-Herbrand interpretation of O */
(4) If N ⊂ N0 then return(FALSE);
(5) Let α = 0;
(6) While Nα ⊆ N do

{
(7) S = Nα;
(8) I = ELP−1(Nα);
(9) For each r ∈ [P ]

V
#n

O

do

{
(10) If MiddleNotSatisfies(O,n, I,M,Cond(r))=FALSE then S = S ∪ {LConcl(r)};

}
(11) α = α+ 1;

(12) Let Nα = T
↑ω

[ΠH#n

O
]N

(S);

/* Note that ELP−1(Nα) is a #n-Herbrand interpretation of O */
(13) If Nα = Nα−1 then
(14) If Nα = N then return(TRUE);
(15) else return(FALSE);

}
(16) return(FALSE);

Algorithm 8.3 MiddleNotSatisfies(O,n, I,M,F )

Input: (i) a general ERDF ontology O, (ii) an n ≥ nO,
(iii) I,M are ERDF #n-interpretations of O, and (iv) F is an ERDF formula with
FVar = {}

Output: TRUE, if it exists J ∈ [I,M ]#n
O and J 6|= F , and FALSE, otherwise

(1) If a #n-semi-Herbrand interptetation J of O exists s.t.
(2) (i) T

[ΠH#n

O
]N

(N) ⊆ N , where N = ELP(J),

/* i.e. J is a #n-Herbrand interpretation of O */
(3) (ii) I ≤ J ≤M , and
(4) (iii) Satisfies(J, F )=FALSE
(5) then return(TRUE);
(6) else return(FALSE);
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The following proposition proves formally correctness of Algorithm
Is-#n-StableModelGeneral(O,n,M).

Theorem 3. Let O be a general ERDF ontology and let n ≥ nO. Let M be a
#n-semi-Herbrand-interpretation of O. It is the case that: M ∈Mst#n(O) iff Is-#n-
StableModelGeneral(O,n,M)=TRUE. ✷

Example 8. Consider the ERDF ontology O = 〈G,P 〉 of Example 4 and the single
#1-stable model M of O, presented in Example 6. Assume now that we call Is-#n-
StableModelGeneral(O, 1,M). Then, H(Peter ,rdf :type,HappyParent) ∈ N1. This is
due to the single rule of P . SinceN2 = N1 = ELP (M), Is-#n-StableModelGeneral(O,
1,M) returns TRUE. ✷

Example 9. Consider the ERDF ontology O = 〈G,P 〉 of Example 1 and a #1-stable
model M1 ∈M1 of the ERDF ontology O, presented in Example 7. Assume now that
we call Is-#n-StableModelGeneral(O, 1,M1). Then, ¬H(Anne,rdf :type,Adult) ∈ N1.
This is due to rule (3) of P and the rule:
¬H (?z, rdf :type, ?x) ← H (?x, rdf :type, erdf :TotalClass), ∼H (?z, rdf :type, ?x)

of Π
H#n

O . Additionally, ¬H(Anne, rdf :type,Child) ∈ N1. This is due to rule (4) of
P . Further, H(Retsina, rdf :type,SelectedWine) ∈ N1. This is due to rule (2) of P .
Now note that N2 = N1 ∪{H(Anne, serveSoftDrink ,Coca-Cola)}. This is due to rule
(5) of P . Since N3 = N2 = ELP (M1), Is-#n-StableModelGeneral(O, 1,M1) returns
TRUE. ✷

9 Complexity Results for General ERDF Ontologies

In this section, we provide complexity results for the ERDF #n-stable model seman-
tics on ERDF ontologies without quantifiers and on general ERDF ontologies. We
also consider the case of bounded ERDF ontologies without quantifiers and bounded
ERDF ontologies.

A 2-quantified boolean formula (2-QBF) is a formula of the form:

F = ∃?x1...∃?xk∀?y1...∀?ymR(?x1, ..., ?xk, ?y1, ..., ?ym),where

R(?x1, ..., ?xk, ?y1, ..., ?ym) is an unquantified boolean expression20, in disjunctive
normal form, over the variables ?x1, ..., ?xk, ?y1, ..., ?ym. Deciding if F is valid (called

2-QBF-problem) is a ΣP
2 =NPNP-complete problem [66, 58].

Let F be a 2-quantified boolean formula. We will construct a bounded, ERDF
ontology without quantifiers in the body of the rules, denoted by OF = 〈GF , PF 〉,
such that F is valid iff OF has a #n-stable model, for n ∈ IN . Thus, based on this
reduction, we will show that the satisfiability problem of a bounded, ERDF ontology
O = 〈G,P 〉 without quantifiers, under the #n-stable model semantics is ΣP

2 -hard.
Let F = ∃?x1...∃?xk∀?y1...∀?ymR(?x1, ..., ?xk, ?y1, ..., ?ym) be a 2-quantified boolean

formula. Let s ∈ URI. We denote by fR the ERDF formula fR = R(p1(s, s), ...,
pk(s, s), q1(s, s), ..., qm(s, s)).

Let GF = {} and let PF be the ERDF program, containing the following rules
(and constraints):

20 The not operator in R is indicated by ∼.
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¬pi(s, s) ← ∼pi(s, s).
pi(s, s) ← ∼ ¬pi(s, s), for i = 1, ..., k.

w(s, s) ← fR.
qi(s, s) ← fR, for i = 1, ...,m.

false ← ∼w(s, s).

Proposition 13. Let F = ∃?x1...∃?xk∀?y1...∀?ymR(?x1, ..., ?xk, ?y1, ..., ?ym) be a
2-quantified boolean formula. F is valid iff OF = 〈GF , PF 〉 has a #n-stable model,
for n ∈ IN . ✷

The following proposition provides the complexity of the #n-stable model seman-
tics of bounded, ERDF ontologies without quantifiers.

Proposition 14. Let O = 〈G,P 〉 be a bounded, ERDF ontology without quantifiers
and let F be an ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or

(ii) a mapping v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is ΣP
2 =NPNP-

complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) isΠP
2 =co-NPNP-complete

w.r.t. the size of O. ✷

The following proposition provides the complexity of the #n-stable model seman-
tics of ERDF ontologies without quantifiers.

Proposition 15. Let O = 〈G,P 〉 be an ERDF ontology without quantifiers and let
F be an ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a

mapping v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is ΣP
2 =NPNP-

complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) isΠP
2 =co-NPNP-complete

w.r.t. the size of O. ✷

A fully quantified boolean formula (QBF) is a formula of the form:

Φ = ∃?x1∀?x2...Qk?xkR(?x1, ..., ?xk),where

R(?x1, ..., ?xk) is an unquantified boolean expression21, in conjunctive normal form,
over the variables ?x1, ..., ?xk. Deciding if Φ is valid (called QBF-problem) is a
PSPACE-complete problem [66, 58].

Let Φ be a fully quantified boolean formula. We will construct a bounded ERDF
ontology, denoted by OΦ = 〈GΦ, PΦ〉, such that Φ is valid iff OΦ has a #n-stable
model, for n ∈ IN . Thus, based on this reduction, we will show that the satisfiability
problem of a bounded ERDF ontology O = 〈G,P 〉, under the #n-stable model
semantics, is PSPACE-hard.

21 The not operator in R is indicated by ∼.
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Let Φ = ∃?x1∀?x2...Qk?xkR(?x1, ..., ?xk) be a fully quantified boolean formula.
Let s ∈ URI. We denote by φR the ERDF formula φR = ∃?x1∀?x2...Qk?xkR(p1(?x1,
s), ..., pk(?xk, s)).

Let GΦ = {} and let PΦ be the ERDF program, containing the following rules
(and constraints):

pi(s, s) ← true, for i = 1, ..., k.

w(s, s) ← φR.
false ← ∼w(s, s).

Proposition 16. Let Φ = ∃?x1∀?x2...Qk?xkR(?x1, ..., ?xk) be a fully quantified
boolean formula. Φ is valid iff OΦ = 〈GΦ, PΦ〉 has a #n-stable model, for n ∈ IN . ✷

The following proposition provides the complexity of the #n-stable model seman-
tics of bounded ERDF ontologies. The PSPACE-completeness result is due to the
possible quantifiers in the condition part of the rules of a bounded ERDF ontology.

Proposition 17. Let O = 〈G,P 〉 be a bounded ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is PSPACE-
complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) is PSPACE-complete w.r.t.
the size of O. ✷

The following proposition provides the complexity of the #n-stable model seman-
tics of general ERDF ontologies.

Proposition 18. Let O = 〈G,P 〉 be a general ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is PSPACE-
complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) is PSPACE-complete w.r.t.
the size of O. ✷

10 Combined Complexity for all Kinds of ERDF Ontologies

Up to now we have considered the complexity of query answering w.r.t. the size of the
ERDF ontology. Below, we consider the complexity of query answering w.r.t. both
the size of the ERDF ontology and the size of the query formula (i.e. the combined
complexity of query answering). We investigate both the case that the query formula
does not have quantifiers and the case of a general ERDF query formula.

Proposition 19. Let O = 〈G,P 〉 be a general ERDF ontology, let F ′ be an ERDF
formula without quantifiers, and let F be an ERDF formula. Additionally, let v be
(i) “yes”, if FVar(F ) = ∅, or (ii) a mapping v : FVar(F ) → V #n

O , if FVar(F ) 6= ∅.
Let n ∈ IN .
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1. The problem of establishing whether v ∈ Ans
st#n

O (F ′) has the same complexity
w.r.t. the size of O and F as the complexity w.r.t. the size of O, for all kinds of
ERDF ontologies considered in this work.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) is PSPACE-complete w.r.t.
the size of O and F , for all kinds of ERDF ontologies considered in this work. ✷

The importance of these new results is that we were able to show that query
answering with general ERDF ontologies and general ERDF query formulas under
the #n-stable model semantics is no more complex than reasoning with SPARQL
over ordinary RDFS graphs. In particular, the combined complexity of SPARQL
querying is known to be PSPACE-complete22 [59]. Thus, we define more complex
entailment regimes over more complex ontologies without increasing the complexity
of already adopted languages. Additionally, we do RDFS entailment and not only
simple entailment with no extra complexity. Further, one can consider alternative
scenarios with incomplete information in a more natural fashion via alternative model
generation.

11 Related Work

In this Section, we briefly review recent extensions of web ontology languages with
rules. In [6], we reviewed and compared ERDF with the following older extensions of
web ontology languages with rules [68, 67, 65, 70, 13, 1, 8, 10, 18, 43, 54, 21, 22, 61, 62].
Additionally, at the end of this Section, we provide a comparison of the #n-stable
model semantics on general ERDF ontologies with other semantics of logic programs
with rules of a richer (than normal programs) syntax.

RDFLog [15] is a recursive, rule-based RDF query language that allows full arbi-
trary quantifier alternation in the front of the rules and blank nodes in rule heads.
However, existential variables should only appear in the head of the rules. RDFLog
extends a subset of RDFS [38, 32], called ρdf [55]. RDFLog rules should be range
restricted, that is, (i) if a variable in the head is universal then it should appear in
the body of the rule and (ii) if a variable in the head is existential, in the scope of a
variable x, then x should also appear in the body of the rule. However, in this work,
weak and strong negation are not considered. Thus, closed-world reasoning is not
supported. Compared to RDFLog, ERDF extends RDFS. Additionally, through the
metaclasses erdf :TotalProperty and erdf :TotalClass and the presence of strong and
weak negation, it supports open-world and closed-world reasoning on a selective basis
for all properties and classes. RDFLog is a very expressive language, with entailment
being already EXPTIME-complete for ontologies with blank nodes in data only [24].

Network Graphs [64] is a declarative mechanism to define RDF graphs both exten-
sionally by listing statements and intentionally by using views on other graphs. The
proposed mechanism is very powerful and flexible, as it allows one to use almost all
of the expressiveness of SPARQL CONSTRUCT [60] queries, including negation and
- when used insided Network Graphs - recursive views. However, SPARQL cannot be
used to query triples entailed from subclass, subproperty, range, domain, and other
relations which can be represented using RDFS [32]. This is because the SPARQL
specification defines results of queries based on RDF simple entailment [32]. Addi-
tionally, in our theory, the condition of a rule is any ERDF formula over a vocabulary

22 The combined complexity of SPARQL querying is also PSPACE-complete for graph pat-
tern expressions constructed by using only AND, FILTER, and OPT operators.
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V , (thus, involving any of the connectives ∼, ¬, ⊃, ∧, ∨, ∀, and ∃) and the head
can be a strongly-negated ERDF triple. Combined complexity for Network Graphs
evaluation is EXPTIME-complete, while data complexity is polynomial.

Description Logic Rules [40], a subset of SWRL [36], is a rule language for com-
bining Description Logics (DLs) with first-order rules, while the combination remains
decidable and can be completely internalized within the DL SROIQ [35]. However
due to the latter fact, the bodies of the rules are conjunctions of atoms and the head
is an atom. Additionally, the rules are of a very restricted form, representing the reg-
ularity constraints of the role inclusion axioms (RIA) of SROIQ. Complexity results
depend on the underlying Description Logic used, but authors are more concerned
with tractable fragments.

In [51], an ALCu
P
knowledge base consists of an ALC DL and a PBox P of general

rules that share predicates with DL concepts and DL roles. To model open answer
set semantics, extended Herbrand structures are used for interpreting DL concepts
and DL roles, while open answer sets hold for the general rules. The head of the
rules is a DL atom and the bodies of the rules is a conjunction of DL atoms and
weakly-negated DL atoms. Rules should satisfy the Datalog safeness condition that
each variable of the rule should appear in one of the positive DL atoms in the body
of the rules. Additionally, to avoid undecidability, a semantic weak safeness condition
is adopted that relies on grounding the variables in the head of the rules with only
named individuals. Compared to ALCu

P
, ERDF does not pose a safeness condition.

Additionally, in ERDF, the condition of a rule is any ERDF formula over a vocabu-
lary V , (thus, involving any of the connectives ∼, ¬, ⊃, ∧, ∨, ∀, and ∃) and the head
can be a strongly-negated ERDF triple. Further, ERDF allows the derivation of met-
alevel statements such as subclass and subproperty relationships, property and class
totalness. Authors provide algorithms for the entailment and satisfiability problems
which run in 3EXPTIME w.r.t. the size of the ALCu

P
knowledge base.

In [19], a hybrid program is a pair of a description logic knowledge base with a
set of hybrid rules. The head of a hybrid rule is a datalog atom and the body is a
conjunction of a DL constraint, a set of datalog atoms, and a set of weakly-negated
datalog atoms. Hybrid rules should be safe, that is, each variable in the head of the
rule, each variable in one of the weakly-negated datalog atoms in the body of the rule,
and each free variable in the DL constraint in the body of the rule should be bound
in the DL constraint to a constant or to a variable appearing in one of the positive
datalog atoms in the body of the rule. The proposed semantics for a hybrid program
is defined as a generalization of the well-founded semantics of normal programs [27].
However, in this work, rule-based reasoning is supported only for datalog atoms.
In contrast, in ERDF, properties and classes appearing in ERDF graphs can freely
appear in the heads and bodies of the rules. No complexity results are provided.

DL+log [63] is the general framework for the integration of Description Logics
and disjunctive datalog. In particular, a DL+log KB is a pair a description logic
knowledge base and a disjunctive logic program. The head of a rule is a disjunction
of DL atoms or datalog atoms and the body of the rule is a conjunction of datalog
atoms, DL atoms, and weakly negated datalog atoms. The datalog safeness condi-
tion is imposed, that is every variable occurring in a rule must appear in one of the
positive atoms in the body of the rule. Additionally, the weak safeness condition is
imposed, that is every variable appearing in the head of the rule must appear in one
of the positive datalog atoms in the body of the rule. According to the proposed
NM -semantics for DL+log KBs, DL predicates are still interpreted under the clas-
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sical open-world assumption, while the datalog predicates are interpreted under the
closed-world-assumption. Compared to DL+log, ERDF does not impose a safety con-
dition. Additionally, through the metaclasses erdf :TotalProperty and erdf :TotalClass
and the presence of strong and weak negation, it supports open-world and closed-
world reasoning on a selective basis for all properties and classes. Data complexity
of satisfiability problems ranges from PTIME-complete to Σ2

2 -complete for DL-lite
description logics.

The DLclog framework [69] extends the DL+log [63] framework by allowing
weakly negated DL atoms in the bodies of the disjunctive datalog rules. A DL-
safeness condition is applied to the rules of DLclog KBs, where every variable of
a rule must appear in at least one of the positive datalog atoms in the body of
the rule. The Nonmonotonic Circumscriptive (NMC) Semantics for DLclog KBs is
based on a hybrid, modular semantics integrating classical semantics, circumscription
[50], and stable model semantics [31]. In particular, in NMC-semantics, DL atoms
in rules are evaluated under the circumscriptive models of the DL ontology in the
sense of the McCarthy’s parallel circumscription [50]. Complexity of satisfiability is

NEXPTIMENP-complete.

In [48], a combination of Description Logics and disjunctive logic programs is pro-
posed, which guarantees decidability of reasoning without assuming syntactic restric-
tions. In particular, a disjunctive dl-program is a pair of a description logic knowledge
base and a disjunctive logic program. The head of a rule is a disjunction of atoms
and the body of the rule is a conjunction of atoms and weakly-negated atoms, where
an atom can be a DL atom or a datalog atom. The proposed answer set semantics
for disjunctive dl-programs faithfully extends the answer set semantics on disjunctive
logic programs [31], when the DL component is empty, and the first-order seman-
tics of description logic knowledge bases, when no rules are present. Complexity for

satisfiability is NEXPTIMENP-complete and combined complexity of entailment is

co-NEXPTIMENP-complete.

In [52, 53], a framework of hybrid MKNF knowledge bases that faithfully inte-
grates Description Logics and disjunctive logic programming is presented, using the
logic of Minimal Knowledge and Negation as Failure (MKNF) [44]. A hybrid MKNF
knowledge base is a pair of a description logic knowledge base and a set of MKNF
rules of the form: K H1 ∨...∨ K Hn ← K B+

1 , ..., K B+
m, not B−

1 , ..., not B−
k , where

Hi, B
+
i , B−

i are DL or non-DL atoms and K and not are modal operators. The se-
mantics of a hybrid MKNF knowledge base K are defined by translating K into a
first-order MKNF formula. To achieve decidability a DL-safety condition is imposed,
where every variable of an MKNF rule should appear in at least one non-DL KB
atom in the body of the rule. The proposed semantics for hybrid MKNF knowledge
bases faithfully extends the stable model semantics on disjunctive logic programs
[31], when the DL component is empty, and the first-order semantics of description
logic knowledge bases, when no rules are present. Combined complexity of entailment

is at least NEXPTIMENP-complete, depending on the underlying description logic.

In [39], a coherent well-founded model for hybrid MKNF knowledge bases [52]
is proposed, where disjunction in the head of the MKNF rules is not considered.
The same DL-safety condition on the MKNF rules, as that imposed in [52], is also
imposed here. This semantics soundly approximates the semantics of [52] and is in
a strictly lower complexity class, making a polynomial number of queries to the
underlying description logic reasoner. Additionally, it faithfully extends the well-
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founded semantics of normal programs [28], when the DL component is empty, and
the first-order semantics of description logic knowledge bases, when no rules are
present. Assuming that entailment of ground DL-atoms in DL is decidable with data
complexity C, the data complexity of computing the well-founded partition is in PC .

Compared to [69, 48, 53, 39], in ERDF, the condition of a rule is any ERDF for-
mula over a vocabulary V , (thus, involving any of the connectives ∼, ¬, ⊃, ∧, ∨, ∀,
and ∃) and the head can be a strongly-negated ERDF triple. Further, ERDF allows
the derivation of metalevel statements such as subclass and subproperty relationships,
property and class totalness.

In [23], the stable models of first-order formulas are defined. Comparing our work
with that of [23], we realized that we achieve different results. For example, consider
the ERDF ontology O =< {}, P >, where P = {p(s, s)← ∼∼p(s, s).}. Then, there is
a unique #n-stable model M of O such that M |= ∼p(s, s) while, according to [23],
there are two stable models of P : {} and {p(s, s)}. Additionally, consider the ERDF
ontology O =< {}, P >, where P = {q(s, s) ← p(s, s)∨∼p(s, s)., p(s, s) ← q(s, s).}.
Then, there is a unique #n-stable model M of O such that M |= p(s, s)∧q(s, s),
while, according to [23], there are no stable models of P . In [41], first-order loop
formulas in the context of first-order reasoning were defined. The same comments
with [23] apply also here.

12 Conclusions

In this paper, we elaborated on the computability and complexity issues of the ERDF
stable model semantics of ERDF ontologies. Based on the work in [6], decidability
under this semantics cannot be achieved, unless ERDF ontologies of restricted syntax
are considered. We proposed the ERDF #n-stable model semantics of ERDF ontolo-
gies (for n ∈ IN) and showed that entailment under this semantics extends RDFS
entailment. Moreover, we showed that query answering under the ERDF #n-stable
model semantics is decidable. Equivalence statements between the ERDF stable and
#n-stable model semantics for objective ERDF ontologies were provided. We showed
that if O is a simple ERDF ontology then query answering under the ERDF #n-
stable model semantics reduces to query answering under the answer set semantics
[30]. We provided algorithms that compute the ERDF #n-stable models of simple
and general ERDF ontologies. Further, we provided complexity results for the ERDF
#n-stable model semantics on objective and simple ERDF ontologies, ERDF ontolo-
gies without quantifiers, and general ERDF ontologies. We consider both the case
that an ERDF ontology is bounded or is not bounded. In particular, the complexity
of query answering under the ERDF #n-stable model semantics (i) on bounded ob-
jective and bounded simple ERDF ontologies is co-NP-complete, (ii) on objective and
simple ERDF ontologies, as well as on bounded ERDF ontologies without quantifiers

and ERDF ontologies without quantifiers, is ΠP
2 =co-NPNP-complete, and (iii) on

bounded ERDF ontologies and general ERDF ontologies is PSPACE-complete. All
previous results are w.r.t. the size of the ERDF ontology.

Additionally, we provided combined complexity results of query answering accord-
ing to ERDF #n-stable model semantics. In particular, in the case that the query
formula does not have quantifiers, the combined complexity of query answering is the
same as the complexity of query answering w.r.t. the size of the ERDF ontology, for
all kinds of ERDF ontologies. Further, in the case that the query formula is general,
the combined complexity of query answering is PSPACE-complete, for all kinds of
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ERDF ontologies. All of these complexity results are summarized in Table 1 in the
introductory section.

Finally, we provided complexity results for the (original) ERDF stable model
semantics on bounded objective and objective ERDF ontologies. In particular, the
complexity of query answering under the ERDF stable model semantics on bounded
objective ERDF ontologies is co-NP-complete and on objective ERDF ontologies is
ΠP

2 -complete, provided that the query formula is an ERDF d-formula.
Note that by allowing general ERDF formulas in the bodies of the rules of an

ERDF ontology, the user can specify his/her need in a concise and straightforward
way. For example, consider the ERDF ontology O = 〈G,P 〉 of Example 4, where P
is defined as follows:

rdf :type(?x,HappyParent) ← isParentOf (?x , ?y),
∀?y isParentOf (?x , ?y) ⊃ (∃?z isMarriedTo(?y , ?z ), ∃?w isParentOf (?y , ?w)).

An ERDF ontology equivalent to O is the simple ERDF ontology O′ = 〈G,P ′〉,
where P ′ is defined as follows:

rdf :type(?x,HappyParent) ← isParentOf (?x , ?y),∼rdf :type(?x,Aux).
rdf :type(?x,Aux) ← isParentOf (?x , ?y),∼rdf :type(?y, IsMarried).
rdf :type(?x,Aux) ← isParentOf (?x , ?y),∼rdf :type(?y,HasChild).
rdf :type(?x, IsMarried) ← isMarriedTo(?x , ?y).
rdf :type(?x,HasChild) ← isParentOf (?x , ?y).

Obviously, the desire of the user is expressed more straightforwardly through the
ERDF ontology O than the simple ERDF ontology O′. Moreover, consider the ERDF
ontology OΦ = 〈GΦ, PΦ〉, defined above Proposition 16, which contains existential and
universal quantifiers. Due to Proposition 16, deciding if OΦ has a #n-stable model
is PSPACE-complete. Therefore, due to Proposition 17.1, there is no equivalent to
OΦ

23, simple ERDF ontology of size polynomial in the size of OΦ.
In [2, 4], we propose a framework for modular ERDF ontologies, called modular

ERDF framework, which enables collaborative reasoning over a set of ERDF ontolo-
gies, while support for hidden knowledge is also provided. In particular, the modular
ERDF stable model semantics of modular ERDF ontologies is defined, extending
the ERDF #n-stable model semantics. In [4], we provide algorithms that compute
the proposed modular ERDF stable model semantics and complexity results. Future
work concerns the implementation of our ERDF framework and its application to
practical problems, such as planning [45], biomedicine, applications on science and
humanities, and industrial applications [46, 14].

Appendix A: Proofs

In this appendix, we provide proofs for the propositions not presented in the main
paper. The proof of the rest of the propositions is included in the main text. To
reduce the size of the proofs, we have eliminated the namespace from the URIs in
VRDF ∪ VRDFS ∪ VERDF .

23 We say that two ERDF ontologies are equivalent if they have the same #n-stable models
(for n ∈ IN).
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Proposition 2 Let D be an instance of the unbounded tiling problem. It holds: D
has a solution iff OD 6|=

st FD.
Proof:
⇒) Let τ be a solution to D. Since IN × IN is denumerable, there exists a bijective
function π : IN × IN → IN . Let I0 be the minimal Herbrand interpretation of OD

such that:

1. CTI0(Tile) = {rdf : i | i ∈ IN} and CFI0(T ile) = ∅.
2. PTI0(HConstraint) = H and PFI0(HConstraint) = ∅.
3. PTI0(VConstraint) = V and PFI0(VConstraint) = ∅.

4. CTI0(erdf :TotalProperty) = {ofType, right, above} and CFI0(erdf :TotalProperty) =
∅.

5. PTI0(ofType) = {〈rdf : π(i, j), τ(i, j)〉 | i, j ∈ IN} and
PFI0(ofType) = ResHOD

×ResHOD
− PTI0(ofType).

6. PTI0(right) = {〈rdf : π(i, j), rdf : π(i+ 1, j)〉 | i, j ∈ IN} and
PFI0(right) = ResHOD

×ResHOD
− PTI0(right).

7. PTI0(above) = {〈rdf : π(i, j), rdf : π(i, j + 1)〉 | i, j ∈ IN} and
PFI0(above) = ResHOD

×ResHOD
− PTI0(above).

8. CTI0(HasTileRight) = CTI0(HasTileAbove) = CTI0(HasTileType) = ∅.
CFI0(HasTileRight) = CFI0(HasTileAbove) = CFI0(HasTileType) = ∅.

9. PTI0(id) = ∅ and PFI0(id) = ∅.

Let I1 be the minimal Herbrand interpretation of OD which is the same as I0,
except that:

1. CTI1(HasTileRight) = CTI1(HasTileAbove) = CTI1(HasTileType) = {rdf : i | i ∈
IN}.

2. PTI1(id) = {〈x, x〉 | x ∈ ResHOD
}.

It is easy to see that I1 is a stable model of OD, generated by the sequence I0 < I1.
Additionally, it is the case that I1 6|= FD. Thus, OD 6|=

st FD.

⇐) Let D = 〈T , H, V 〉, where T = {T1, ..., Tn}. Assume that OD 6|=
st FD and let

I be a stable model of OD = 〈GD, PD〉 such that I 6|= FD. Obviously, CTI(Tile) =
{rdf : i | i ∈ IN}. Since OD 6|=

st FD, it is the case that starting from tile rdf : 0 and
placing tiles according to PTI(right) and PTI(above) relations, a grid is formed. We
define π(i, j) = k, for i, j, k ∈ IN , iff the tile rdf : k has been placed on the 〈i, j〉
position of the previous grid. Note that π is a total function. Further, it is the case
that each tile is assigned a unique type in T = {T1, ..., Tn} and this type assignment
satisfies the horizontal and vertical adjacency constraints of D. Thus, a solution of
D is τ : IN × IN → T , where τ(i, j) = T iff 〈rdf : π(i, j), T 〉 ∈ PTI(ofType). Since π
is a total function and, for all k ∈ IN , tile rdf : k is assigned a unique type in T , it
follows that τ is a total function. ✷

Proposition 3 Let O be an objective ERDF ontology and let F be a general ERDF
formula. The problem O |=st F is undecidable.
Proof: Since the unbounded tiling problem is undecidable [11], it follows directly
from Proposition 2 that if O is an objective ERDF ontology, entailment of a general
ERDF formula F under the ERDF stable model semantics is undecidable. ✷
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Theorem 1 Let O be an objective ERDF ontology and let n ≥ nO. Let F d be an
ERDF d-formula s.t. max({i ∈ IN | rdf : i ∈ VFd}) ≤ n. It holds: O |=st F d iff
O |=st#n F d.
Proof:
⇐) Let O = 〈G,P 〉 and let O |=st F d. We will show that O |=st#n F d. Specifically,
let I ∈Mst#n(O), we will show that I |= F d.

First, we define a mapping m : ResHO → Res
H#n

O as follows:

m(x) =

{

rdf : n if x ∈ {rdf : i | i > n}, and
x otherwise

Note that I is an ERDF #n-interpretation of V #n
O . Based on I, we construct a

partial interpretation J of VO as follows:

– ResJ = ResHO .
– JV (x) = x, for all x ∈ VO ∩ URI.
– We define the mapping: ILJ : VO ∩ T L → ResJ such that:

ILJ(x) = x, if x is a typed literal in VO other than a well-typed XML literal, and
ILI(x) is the XML value of x, if x is a well-typed XML literal in VO.

– We define the mapping: J : VO → ResJ such that:

• J(x) = JV (x), ∀x ∈ VO ∩ URI.
• J(x) = x, ∀ x ∈ VO ∩ PL.
• J(x) = ILJ (x), ∀ x ∈ VO ∩ T L.

– PropJ = {x ∈ ResJ | m(x) ∈ PropI}.
– The mapping PT J : PropJ → P(ResJ ×ResJ) is defined as follows:
∀x, y, z ∈ ResHO , it holds:
〈x, y〉 ∈ PT J(z) iff 〈m(x),m(y)〉 ∈ PT I(m(z)).

– We define the mapping PF J : PropJ → P(ResJ ×ResJ) as follows:
∀x, y, z ∈ ResHO , it holds:
〈x, y〉 ∈ PF J (z) iff 〈m(x),m(y)〉 ∈ PF I(m(z)).

– LV J = {x ∈ ResJ | 〈x, J(Literal)〉 ∈ PT J (J(type))}.

To show that J is a partial interpretation, it is enough to show that VO ∩ PL ⊆
LV J . Let x ∈ VO ∩ PL. Then, x ∈ LV I . Thus, 〈x, I(Literal)〉 ∈ PT I(I(type)). This
implies that 〈x, J(Literal)〉 ∈ PT J(J(type)). Thus, x ∈ LV J .

Now, we extend J with the ontological categories:
ClsJ = {x ∈ ResJ | 〈x, J(Class)〉 ∈ PT J(J(type))},
TClsJ = {x ∈ ResJ | 〈x, J(TotalClass)〉 ∈ PT J(J(type))}, and
TPropJ = {x ∈ ResJ | 〈x, J(TotalProperty)〉 ∈ PT J(J(type))}.
We define the mappings CT J ,CF J : ClsJ → P(ResJ) as follows:
x ∈ CT J(y) iff 〈x, y〉 ∈ PT J(J(type)), and
x ∈ CF J (y) iff 〈x, y〉 ∈ PF J(J(type)).

We will show that J is an ERDF interpretation of VO. Note that ∀x ∈ V #n
O , it is

the case that m(J(x)) = J(x) = I(x).
First, we will show that J satisfies semantic condition 2 of Definition 5 (ERDF

interpretation), in a number of steps:
Step 1:Here, we prove thatResJ = CT J(J(Resource)). Obviously, CT J(J(Resource))
⊆ ResJ . We will show that ResJ ⊆ CT J(J(Resource)). Let x ∈ ResJ . We want to
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show that 〈x, J(Resource)〉 ∈ PT J(J(type)). It holds: 〈x, J(Resource)〉 ∈
PT J(J(type)) iff 〈m(x), I(Resource)〉 ∈ PT I(I(type)), which is true, since I is an

ERDF #n-interpretation of V #n
O , and thus m(x) ∈ ResI . Therefore,

x ∈ CT J(J(Resource)). Therefore, ResJ = CT J(J(Resource)).

Step 2: Here, we prove that PropJ = CT J(J(Property)). We will show that PropJ ⊆
CT J (J(Property)). Let x ∈ PropJ . We want to show that 〈x, J(Property)〉 ∈
PT J(J(type)). It holds: 〈x, J(Property)〉 ∈ PT J(J(type)) iff 〈m(x), I(Property)〉 ∈
PT I(I(type)), which is true, since m(x) ∈ PropI . Thus, x ∈ CT J(J(Property)).
Therefore, PropJ ⊆ CT J(J(Property)).

We will now show that CT J (J(Property)) ⊆ PropJ . Let x ∈ CT J(J(Property)).
It holds 〈x, J(Property)〉 ∈ PT J(J(type)), which implies that 〈m(x), I(Property)〉 ∈
PT I(I(type)). Thus,m(x) ∈ PropI and x ∈ PropJ . Therefore, CT J(J(Property)) ⊆
PropJ .

Step 3: By definition, it holds ClsJ = CT J(J(Class)), LV J = CT J(J(Literal)),
TClsJ = CT J(J(TotalClass)), and TPropJ = CT J(J(TotalProperty)).

We will now show that J satisfies semantic condition 3 of Definition 5 (ERDF
Interpretation). Let 〈x, y〉 ∈ PT J (J(domain)) and 〈z, w〉 ∈ PT J(x). We will show
that z ∈ CT J (y). It holds 〈m(x),m(y)〉 ∈ PT I(I(domain)) and 〈m(z),m(w)〉 ∈
PT I(m(x)). Since I is an ERDF #n-interpretation, it holds 〈m(z),m(y)〉 ∈
PT I(I(type)). Thus, 〈z, y〉 ∈ PT J(J(type)) and z ∈ CT J(y).

In a similar manner, we can prove that J also satisfies the rest of the semantic
conditions of Definition 5. Thus, J is an ERDF interpretation of VO.

Moreover, we will show that J is a coherent ERDF interpretation. Assume that
this is not the case. Thus, there is z ∈ PropJ s.t. PT J(z) ∩ PF J(z) 6= ∅. Thus,
there are x, y ∈ ResJ s.t. 〈x, y〉 ∈ PT J(z) ∩ PF J (z), for such a z. It follows that
〈m(x),m(y)〉 ∈ PT I(m(z)) and 〈m(x),m(y)〉 ∈ PF I(m(z)). But this is impossible,
since I is a (coherent) ERDF #n-interpretation. Therefore, J is also a coherent ERDF
interpretation.

Thus, J ∈ IH(O).

We will now show that J |= sk(G). Let p(s, o) ∈ sk(G). It holds p, s, o ∈ V #n
O .

Since I |= sk(G), it holds I(p) ∈ PropI . Thus, 〈I(p), I(Property)〉 ∈ PT I(I(type)).
Note that m(J(p)) = J(p) = I(p), m(J(Property)) = J(Property) = I(Property),
andm(J(type)) = J(type) = I(type). Therefore, it follows that 〈J(p), J(Property)〉 ∈
PT J(J(type)) and thus, J(p) ∈ PropJ . It holds: 〈J(s), J(o)〉 ∈ PT J(J(p)) iff 〈m(J(s)),
m(J(o))〉 ∈ PT I(m(J(p))) iff 〈I(s), I(o)〉 ∈ PT I(I(p)). The last statement is true
since I |= sk(G). Thus, J |= sk(G).

Let r ∈ [P ]VO
such that J |= Cond(r), we will show that J |= Concl(r). First, we

define a total function u′ : VO → VO, as follows:

m′(x) =

{

x if x is a well-typed XML literal
m(x) otherwise

Let r be of the form:
p′(s′, o′)← p1(s1, o1), ...., pk(sk, ok),¬pk+1(sk+1, ok+1), ...,¬pn(sn, on).
It is the case that J |= pi(si, oi), for i = 1, ..., k and J |= ¬pi(si, oi), for i = k+1, ..., n.

Note that p′, pi ∈ V #n
O . Additionally, note that s′, o′, si, oi are either terms in V #n

O or
the instantiation of variables. Therefore, I |= pi(m

′(si),m
′(oi)), for i = 1, ..., k and

I |= ¬pi(m
′(si),m

′(oi)), for i = k+1, ..., n. This implies that 〈I(m′(s′)), I(m′(o′))〉 ∈
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PTI(m(p′)). Note that I(m′(s′)) = m(J(s)), I(m′(o′)) = m(J(o)), and J(p′) = p′.
Therefore, 〈m(J(s′)), m(J(o′))〉 ∈ PTI(m(J(p′))). Thus, 〈J(s′), J(o′)〉 ∈ PTJ(J(p

′)).
It follows from this that J |= p′(s′, o′). Similarly, if Concl(r) = ¬p′(s′, o′), we can
show that J |= ¬p′(s′, o′).

Let K0 = minimal({N ∈ IH(O) | N ≤ J and N |= sk(G)}). For α ∈ {1, ...}, let
Kα = minimal({N ∈ IH(O) | N ≥ Kα−1, N ≤ J and ∀ r ∈ [P ]VO

, if N |= Cond(r)
then N |= Concl(r)}). Note that K0 and Kα are well-defined and that it exists
λ s.t. Kλ = Kλ+1. Let K = Kλ. Obviously, K ≤ J . Since O is an objective
ERDF ontology, it follows that K0 ∈ minimal({N ∈ IH(O) | N |= sk(G)}) and
Kα ∈ minimal({I ∈ IH(O) | N ≥ Iα−1 and it is the case that: ∀ r ∈ [P ]VO

, if

N |= Cond(r), ∀N ∈ [Iα−1,K]#n
O then N |= Concl(r)}). Thus, K ∈ Mst(O) and

K ≤ J .

Since K ∈Mst(O) and O |=st F d, it follows that K |= F d. Since F d is an ERDF
d-formula, it is the case that

F d = (∃?x1...∃?xk1
F1) ∨ ... ∨ (∃?x1...∃?xkn

Fn),

where Fi = t1 ∧ ... ∧ tmi
and tj , for j = 1, ...,mi, is an ERDF triple. Thus, there is

an i ∈ {1, ..., n} and u : Var(Fi)→ ResHO s.t. K,u |= Fi.

We will show that J, u |= Fi.
Let p(s, o) ∈ {t1, ..., tmi

}. Since K is an ERDF interpretation of VO, K, u |= Fi, and
PropK ⊆ PropJ , it follows that p ∈ VO, s, o ∈ VO∪Var , and J(p) = K(p) ∈ PropK ⊆
PropJ . Additionally, 〈[K+u](s), [K+u](o)〉 ∈ PTK(p). Since 〈[J+u](s), [J+u](o)〉 =
〈[K+u](s), [K+u](o)〉 and PTK(p) ⊆ PT J(p), it follows that 〈[J+u](s), [J+u](o)〉 ∈
PT J(p). Thus, J, u |= p(s, o).
Let ¬p(s, o) ∈ {t1, ..., tmi

}. Since K is an ERDF interpretation of VO, K, u |= Fi, and
PropK ⊆ PropJ , it follows that p ∈ VO, s, o ∈ VO∪Var , and J(p) = K(p) ∈ PropK ⊆
PropJ . Additionally, 〈[K+u](s), [K+u](o)〉 ∈ PFK(p). Since 〈[J+u](s), [J+u](o)〉 =
〈[K+u](s), [K+u](o)〉 and PFK(p) ⊆ PF J (p), it follows that 〈[J+u](s), [J+u](o)〉 ∈
PF J(p). Thus, J, u |= ¬p(s, o).

Now, we define a total function u′ : Var(Fi)→ ResI s.t. u′(x) = m(u(x)).

Let p(s, o) ∈ {t1, ..., tmi
}. Then, p ∈ VFi

and s, o ∈ VFi
∪ Var . Since max({i ∈

IN | rdf : i ∈ VFd}) ≤ n, it follows that VFi
⊆ V #n

O . Thus, p ∈ V #n
O and s, o ∈

V #n
O ∪ Var .

We will now show that I(p) ∈ PropI . It holds:
〈I(p), I(Property)〉 ∈ PT I(I(type)) iff
〈J(p), J(Property)〉 ∈ PT J(J(type)), which holds since J, u |= Fi. We will show that
I, u′ |= Fi.

We want to show that 〈[I + u′](s), [I + u′](o)〉 ∈ PT I(I(p)).

Note that ∀x ∈ VFi
, it holds: I(x) = m(J(x)) and [I + u′](x) = m([J + u](x)).

Moreover, ∀x ∈ Var(Fi), it holds: [I + u′](x) = m(u(x)) = m([J + u](x)). Therefore,
it holds:
〈[I + u′](s), [I + u′](o)〉 ∈ PT I(I(p)) iff
〈m([J + u](s)),m([J + u](o))〉 ∈ PT I(m(J(p))) iff
〈[J + u](s), [J + u](o)〉 ∈ PT J(J(p)), which is true since J, u |= Fi. Thus, I, u

′ |=
p(s, o).

Let ¬p(s, o) ∈ {t1, ..., tmi
}. We can show that I, u′ |= ¬p(s, o), in a similar manner.
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Thus, I, u′ |= Fi, which implies that I |= Fi. Therefore, O |=
st#n F .

⇒) Let O |=st# F d. We will show that O |=st F d. Let I ∈ Mst(O). We will show
that I |= F d.

Note that I is an ERDF interpretation of VO. Based on I, we construct a partial
interpretation J of V #n

O as follows:

– ResJ = Res
H#n

O .

– JV (x) = x, for all x ∈ V #n
O ∩ URI.

– We define the mapping: ILJ : V #n
O ∩ T L → ResJ such that:

ILJ(x) = x, if x is a typed literal in V #n
O other than a well-typed XML literal,

and ILI(x) is the XML value of x, if x is a well-typed XML literal in V #n
O .

– We define the mapping: J : V #n
O → ResJ such that:

• J(x) = JV (x), ∀x ∈ V #n
O ∩ URI.

• J(x) = x, ∀ x ∈ V #n
O ∩ PL.

• J(x) = ILJ (x), ∀ x ∈ V #n
O ∩ T L.

– PropJ = PropI ∩ResJ .
– ∀x ∈ PropJ , PT J(x) = PT I(x) and PF J(x) = PF I(x).
– LV J = {x ∈ ResJ | 〈x, J(Literal)〉 ∈ PT J (J(type))}.

Now, we extend J with the ontological categories:
ClsJ = {x ∈ ResJ | 〈x, J(Class)〉 ∈ PT J(J(type))},
TClsJ = {x ∈ ResJ | 〈x, J(TotalClass)〉 ∈ PT J(J(type))}, and
TPropJ = {x ∈ ResJ | 〈x, J(TotalProperty)〉 ∈ PT J(J(type))}.
We define the mappings CT J ,CF J : ClsJ → P(ResJ) as follows:
x ∈ CT J(y) iff 〈x, y〉 ∈ PT J(J(type)), and
x ∈ CF J (y) iff 〈x, y〉 ∈ PF J(J(type)).

As in the proof of ⇐), we can show that: (i) J is a (coherent) ERDF #n-

interpretation of V #n
O , and (ii) I |= F d. ✷

Corollary 1 Let O = 〈G,P 〉 be an objective ERDF ontology and let n ≥ nO. It is
the case that: O has a stable model iff O has a #n-stable model.
Proof: Let F = p(s, o)∧¬p(s, o), for p, s, o ∈ URI. It follows from Theorem 1 that
O |=st F iff O |=st#n F . Thus, O has no stable model iff O has no #n-stable model.
Therefore, O has a stable model iff O has a #n-stable model. ✷

Theorem 2 Let O be a simple ERDF ontology and let n ≥ nO. Let M be a #n-
semi-Herbrand interpretation of O. It is the case that: M ∈ Mst#n(O) iff ELP (M)

is a consistent answer set of Π#n
O .

Proof: First, we give a definition that will be used throughout the proof. Let Π be
an ELP and let C be a set of constants. By [Π]C , we denote the instantiation of Π
w.r.t. the constants appearing in C.

⇒) Let M ∈Mst#n(O). We will show that N = ELP(M) is a consistent answer set

of Π#n
O . Since V #n

O is finite and M ∈ Mst#n(O), it follows that there is a sequence
of #n-Herbrand interpretations I0 ≤ ... ≤ Ik+1 such that Ik = Ik+1 = M and:

1. I0 ∈ minimal({I ∈ IH#n(O) | I |= sk(G)}).
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2. For successor ordinals α with 0 < α ≤ k + 1:
Iα ∈ minimal({I ∈ IH#n(O) | I ≥ Iα−1 and it is the case that:

∀ r ∈ [P ]
V

#n

O

, if J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O , then I |= Concl(r)}.

Now, we define a sequence N0 ⊆ .... ⊆ Nk+1 ⊆ EHB(Π#n
O ), as follows:

N0 = T ↑ω

[Π
H#n

O
]N
(TΠG

(∅)).

Nα = T ↑ω

[Π
H#n

O
]N
(T([ΠP ]

V
#n

O

)N (Nα−1)), where 1 ≤ α ≤ k + 1.

Lemma: It holds Nα = ELP(Iα), for α = 0, ..., k + 1.
Proof: We will prove the Lemma, by induction.

First, we will show that N0 ⊆ ELP(I0). Since I0 |= sk(G), it follows that
TΠG

(∅) ⊆ ELP(I0). As I0 ∈ I
H#n(O), it follows that ELP(I0) satisfies all rules in

[Π
H#n

O ]. Now, as ELP(I0) ⊆ N , it follows that ELP(I0) satisfies all rules in [Π
H#n

O ]N .

Moreover, as TΠG
(∅) ⊆ ELP(I0), it follows that T ↑ω

[Π
H#n

O
]N
(TΠG

(∅)) ⊆ ELP(I0).

Therefore, N0 ⊆ ELP(I0).

Let H (p, type,TotalProperty) ∈ N0, for p ∈ V #n
O . AsN0 ⊆ ELP (I0)⊆ ELP (M) =

N , it follows that H (p, type,TotalProperty) ∈ N . Therefore, for all x, y ∈ V #n
O ,

[¬]H(x, p, y) ∈ N0 iff [¬]H(x, p, y) ∈ N . Similarly, let H (c, type,TotalClass) ∈ N0, for

c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N . Therefore, for all x ∈ V #n

O , [¬]H(x, type,
c) ∈ N0 iff [¬]H(x, type, c) ∈ N . Now, from the above and as N0 satisfies all rules in

[Π
H#n

O ]N , it follows that N0 satisfies all rules in [Π
H#n

O ]. Therefore, ELP−1(N0) sat-
isfies all semantic conditions of a (coherent) #n-Herbrand interpretation of O. Thus,
ELP−1(N0) ∈ I

H#n(O). Moreover, ELP−1(N0) |= sk(G). Therefore, ELP−1(N0) ∈
{I ∈ IH#n(O) | I |= sk(G)}. Now as I0 ∈ minimal({I ∈ IH#n(O) | I |= sk(G)})
and N0 ⊆ ELP(I0), it follows that N0 = ELP(I0).

Assumption: We assume that Nα−1 = ELP(Iα−1), for an α ≤ k.
We will show that Nα = ELP(Iα). First, we will show that Nα ⊆ ELP(Iα).

Due to assumption Nα−1 = ELP(Iα−1) and the fact Iα−1 ≤ Iα, it follows that
Nα−1 ⊆ ELP(Iα). Based on (i) the assumption Nα−1 = ELP(Iα−1) and (ii) the fact

Iα |= Concl(r), for all r ∈ [P ]
V

#n

O

s.t. J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O , it follows

that T([ΠP ]
V

#n

O

)N (Nα−1) ⊆ ELP(Iα).

As Iα ∈ I
H#n(O), it follows that ELP(Iα) satisfies all rules in [Π

H#n

O ]. As

ELP(Iα) ⊆ N , it follows that ELP(Iα) satisfies all rules in [Π
H#n

O ]N . Now as

T([ΠP ]
V

#n

O

)N (Nα−1) ⊆ ELP(Iα), it follows that T ↑ω

[Π
H#n

O
]N
(T([ΠP ]

V
#n

O

)N (Nα−1)) ⊆

ELP(Iα). Therefore, Nα ⊆ ELP(Iα).

Let H (p, type,TotalProperty) ∈ Nα, for p ∈ V #n
O . As Nα ⊆ ELP (Iα) ⊆ ELP (M)

= N , it follows that H (p, type,TotalProperty) ∈ N . Therefore, for all x, y ∈ V #n
O ,

[¬]H(x, p, y) ∈ Nα iff [¬]H(x, p, y) ∈ N . Similarly, let H (c, type,TotalClass) ∈ Nα,

for c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N . Therefore, for all x ∈ V #n

O , [¬]H(x,
type, c) ∈ Nα iff [¬]H(x, type, c) ∈ N . Now, from the above and as Nα satisfies

all rules in [Π
H#n

O ]N , it follows that Nα satisfies all rules in [Π
H#n

O ]. Therefore,
ELP−1(Nα) satisfies all semantic conditions of a (coherent) #n-Herbrand interpreta-
tion of O. Thus, ELP−1(Nα) ∈ I

H#n(O). Moreover, ELP−1(Nα) ≥ ELP−1(Nα−1) =

45



Iα−1. Now, based on the assumption that Nα−1 = ELP(Iα−1) ⊆ N and the fact that
T([ΠP ]

V
#n

O

)N (Nα−1) ⊆ Nα, it follows that ELP−1(Nα) |= Concl(r), for all r ∈ [P ]
V

#n

O

s.t. J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O . Therefore, ELP−1(Nα) ∈ {I ∈ I

H#n(O) | I ≥

Iα−1 and I |= Concl(r), for all r ∈ [P ]
V

#n

O

s.t. J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O }.

Now as Iα ∈ minimal({I ∈ IH#n(O) | I ≥ Iα−1 and I |= Concl(r), for all

r ∈ [P ]
V

#n

O

s.t. J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O }) and Nα ⊆ ELP(Iα), it fol-

lows that Nα = ELP(Iα).
End of Lemma

Therefore, Nk = Nk+1 = ELP(M). Since M is a coherent #n-Herbrand interpre-

tation, it follows that N = ELP(M) is consistent. Moreover, since [Π#n
O ]N = ΠG ∪

([ΠP ]V #n

O

)N ∪ [Π
H#n

O ]N , it follows that T ↑ω

[Π#n

O
]N
(∅) = N . Therefore, N = ELP(M)

is a consistent answer set of Π#n
O .

⇐) Let N = ELP (M) be a consistent answer set of Π#n
O . We will show that M ∈

Mst#n(O). Since N is a consistent answer set of Π#n
O , it follows that T ↑ω

[Π#n

O
]N

= N .

We define a sequence Nα ⊆ EHB(Π#n
O ), α ∈ {0, 1, ...}, as follows:

N0 = T ↑ω

[Π
H#n

O
]N
(TΠG

(∅)).

Nα = T ↑ω

[Π
H#n

O
]N
(T([ΠP ]

V
#n

O

)N (Nα−1)), where 1 ≤ α.

Since EHB(Π#n
O ) is a finite set and [Π#n

O ]N = ΠG ∪ ([ΠP ]V #n

O

)N ∪ [Π
H#n

O ]N , it

follows that there is k ∈ {0, 1, ...} such that Nk = Nk+1 = N .

Let H (p, type,TotalProperty) ∈ N0, for p ∈ V #n
O . As N0 ⊆ N , it follows that

H (p, type,TotalProperty) ∈ N . Therefore, for all x, y ∈ V #n
O , [¬]H(x, p, y) ∈ N0 iff

[¬]H(x, p, y) ∈ N . Similarly, let H (c, type,TotalClass) ∈ N0, for c ∈ V #n
O . Then,

H (c, type,TotalClass) ∈ N . Therefore, for all x ∈ V #n
O , [¬]H(x, type, c) ∈ N0 iff

[¬]H(x, type, c) ∈ N . Now, from the above and as N0 is the smallest subset of

EHB(Π#n
O ) that satisfies all rules in ΠG ∪ [Π

H#n

O ]N , it follows that N0 satisfies

all rules in [Π
H#n

O ]. Therefore, N0 is a minimal subset of EHB(Π#n
O ) that satisfies

all rules ΠG ∪ [Π
H#n

O ]. Thus, ELP−1(N0) ∈ minimal({I ∈ IH#n(O) | I |= sk(G)}).

Let α such that 1 ≤ α ≤ k+1. Note that Nα is the smallest subset of EHB(Π#n
O )

such that (i)Nα ⊇ Nα−1, (ii) satisfies all rules in [Π
H#

O ]N , and (iii)Head(r) ∈ Nα, for
all r ∈ ([ΠP ]V #n

O

)N such that Body(r) ⊆ Nα−1. Let H (p, type,TotalProperty) ∈ Nα,

for p ∈ V #n
O . As Nα ⊆ N , it follows that H (p, type,TotalProperty) ∈ N . There-

fore, for all x, y ∈ V #n
O , [¬]H(x, p, y) ∈ Nα iff [¬]H(x, p, y) ∈ N . Similarly, let

H (c, type,TotalClass) ∈ Nα, for c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N . There-

fore, for all x ∈ V #n
O , [¬]H(x, type, c) ∈ Nα iff [¬]H(x, type, c) ∈ N . Now, from

the above, it follows that Nα is a minimal subset of EHB(Π#n
O ) such that (i)

Nα ⊇ Nα−1, (ii) satisfies all rules in [Π
H#n

O ], and (iii) Head(r) ∈ Nα, for all
r ∈ ([ΠP ]V #n

O

)N such that Body(r) ⊆ Nα−1. Therefore, as Nα−1 ⊆ N , it follows
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that ELP−1(Nα) ∈ minimal({I ∈ IH#n(O) | I ≥ ELP−1(Nα−1) and I |= Concl(r),
for all r ∈ [P ]

V
#n

O

s.t. J |= Cond(r), ∀J ∈ [ELP−1(Nα−1),ELP
−1(N)]}).

Now as ELP−1(N0) ≤ ... ≤ ELP−1(Nk+1) and ELP−1(Nk) = ELP−1(Nk+1) =
ELP−1(N) = M , it follows that M ∈Mst#n(O). ✷

Proposition 5 Let O be a simple ERDF ontology and let n ≥ nO. Let F be a simple
ERDF formula over V #n

O .

1. If Π#n
O is a non-contradictory ELP then Ans

st#n

O (F ) = AnsAS

Π
#n

O

(LF ).

2. Otherwise,Mst#n(O) = ∅.

Proof:
1.
⇒) Let v ∈ Ans

st#n

O (F ) and let v(F ) = t1 ∧ ... ∧ tk ∧ ∼tk+1 ∧ ... ∧ ∼tn, where
ti = [¬]pi(si, oi). We will show that v ∈ AnsAS

Π
#n

O

(LF ). Let N be a consistent answer

set of Π#n
O . Then, based on Theorem 2, ELP−1(N) ∈ M

st#n

O . Thus, ELP−1(N) |=
v(F ). Then, N |= Lti , for i = 1, ..., k. Additionally, N |= ∼Lti , for i = k + 1, ..., n.
Thus, N |= v(LF ). Therefore, v ∈ AnsAS

Π
#n

O

(LF ).

⇐) Let v ∈ AnsAS

Π
#n

O

(LF ) and let v(F ) = t1 ∧ ... ∧ tk ∧ ∼tk+1 ∧ ... ∧ ∼tn,

where ti = [¬]pi(si, oi). We will show that v ∈ Ans
st#n

O (F ). Let M ∈ M
st#n

O . Then,

based on Theorem 2, ELP(M) is a consistent answer set of Π#n
O . Then, ELP(M) |=

v(LF ). Thus, ELP(M) |= Lti , for i = 1, ..., k. Additionally, ELP(M) |= ∼Lti , for
i = k + 1, ..., n. Therefore, M |= ti, for i = 1, ..., k. Additionally, M |= ∼ti, for

i = k + 1, ..., n. Thus, M |= v(F ). Thus, v ∈ Ans
st#n

O (F ).

2. If Π#n
O is a contradictory ELP then there is no consistent answer set of Π#n

O .
Assume now that there is an M ∈Mst#n(O). Then, based on Theorem 2, ELP(M)

is a consistent answer set of Π#n
O , which is impossible. Therefore,Mst#n(O) = ∅. ✷

Proposition 6 Let D = (V,E) be a graph. D is 3-colorable iff OD = 〈GD, PD〉 has
a #n-stable model, for n ∈ IN .
Proof:
⇒) Assume that D = (V,E) is 3-colorable and let color be a mapping from V to
{Red, Green, Blue}. Let I be the minimal #n-Herbrand interpretation of OD such
that: I |= GD and

1. PTI(edge) = {〈v, u〉 | (v, u) ∈ E} and PFI(edge) = ∅.
2. PTI(edgeR) = {〈v, u〉 | (v, u) ∈ E and color(v) = Red} and

PFI(edgeR) = Res
H#n

OD
×Res

H#n

OD
− PTI(edgeR).

3. PTI(edgeG) = {〈v, u〉 | (v, u) ∈ E and color(v) = Green} and

PFI(edgeG) = Res
H#n

OD
×Res

H#n

OD
− PTI(edgeG).

4. PTI(edgeB) = {〈v, u〉 | (v, u) ∈ E and color(v) = Blue} and

PFI(edgeB) = Res
H#n

OD
×Res

H#n

OD
− PTI(edgeB).

5. CTI(Red) = {v | ∃(v, u) ∈ E and color(v) = Red}.
6. CTI(Green) = {v | ∃(v, u) ∈ E and color(v) = Green}.
7. CTI(Blue) = {v | ∃(v, u) ∈ E and color(v) = Blue}.

8. CTI(NotRed) = CTI(Green) ∪ CTI(Blue) ∪ {u | ∃(v, u) ∈ E and color(v) = Red}.
9. CTI(NotGreen) = CTI(Red) ∪ CTI(Blue) ∪ {u | ∃(v, u) ∈ E and color(v) = Green}.
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10. CTI(NotBlue) = CTI(Red) ∪ CTI(Green) ∪ {u | ∃(v, u) ∈ E and color(v) = Blue}.

Note that I does not satisfy the body of any constraint in PD. It is easy the see
that I is a #n-stable model of OD.

⇐) Let I be a #n-stable model of OD. We define:

1. color(v) = Red , for all v ∈ V such that it does not exist u ∈ V s.t.
〈v, u〉 ∈ PTI(edge) or 〈u, v〉 ∈ PTI(edge).

2. color(v) = Red , for all v ∈ V s.t. it exists u ∈ V s.t. 〈v, u〉 ∈ PTI(edgeR).
3. color(v) = Green, for all v ∈ V s.t. it exists u ∈ V , 〈v, u〉 ∈ PTI(edgeG).
4. color(v) = Blue, for all v ∈ V s.t. it exists u ∈ V , 〈v, u〉 ∈ PTI(edgeB).

5. color(u) = Blue, for all u ∈ V s.t. it exists v ∈ V , 〈v, u〉 ∈ PTI(edgeR) and
it does not exist u′ ∈ V s.t. 〈u, u′〉 ∈ PTI(edgeG).

6. color(u) = Green, for all u ∈ V s.t. it exists v ∈ V , 〈v, u〉 ∈ PTI(edgeB) and
it does not exist u′ ∈ V s.t. 〈u, u′〉 ∈ PTI(edgeR).

7. color(u) = Red , for all u ∈ V s.t. it exists v ∈ V , 〈v, u〉 ∈ PTI(edgeG) and
it does not exist u′ ∈ V s.t. 〈u, u′〉 ∈ PTI(edgeB).

We will show that color is a mapping from the vertices V to colors {Red ,Green,
Blue} such that if (v, u) ∈ E then color(v) 6= color(u).

If v ∈ V s.t. there is no edge 〈u, u′〉 ∈ E with v = u or v = u′ then v is assigned
the color Red (due to rule 1). If v ∈ V and there is an edge 〈v, u〉 ∈ E then v is
assigned one of the colors Red, Green, Blue (due to rules 2-4). If (i) v ∈ V , (ii) v
is not assigned a color due to rules 2-4, and (iii) there is an edge 〈u, v〉 ∈ E then v
is assigned one of the colors Red, Green, Blue (due to rules 5-7). Note that, due to
constraints in PD, no v ∈ V is assigned more than one color and that if (v, u) ∈ E
then color(v) 6= color(u). Thus, graph D = (V,E) is 3-colorable. ✷

Proposition 7 Let O = 〈G,P 〉 be a bounded, simple ERDF ontology and let n ≥ nO.
The problem of establishing whether O has a #n-stable model is NP-complete w.r.t.
the size of O.
Proof:
Hardness) It follows from Proposition 9.1 (Hardness), since a bounded objective
ontology is a bounded simple ontology.

Membership) Guess now a #n-semi-Herbrand interpretationM of O. Due to Theorem

2, it is the case that M ∈Mst#n(O) iff ELP (M) is a consistent answer set of Π#n
O .

Thus, to verify that M ∈ Mst#n(O), it is enough to verify that T ↑ω

[Π#n

O
]ELP(M)

(∅) =

ELP(M). Note that the complexity of this step is polynomial w.r.t. the size of O, since
O is a bounded, simple ERDF ontology. Thus, the complexity of deciding whether
O has a #n-stable model is in NP w.r.t. the size of O.

From the hardness and membership steps, above, it follows that the problem of
establishing whether O has a #n-stable model is NP-complete w.r.t. the size of O. ✷

Proposition 8 Let O = 〈G,P 〉 be a bounded, simple ERDF ontology and let F be
an ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F ) → V #n
O , if FVar(F ) 6= ∅. Let n ≥ nO. The problem of establishing

whether v ∈ Ans
st#n

O (F ) is co-NP-complete w.r.t. the size of O.
Proof:
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Hardness) It follows from Proposition 9.3 (Hardness), since a bounded objective
ontology is a bounded simple ontology.
Membership)
Case max({i ∈ IN | rdf : i ∈ VF }) ≤ n: Assume that we want to verify if O 6|=st#n

v(F ). Guess now a #n-semi-Herbrand interpretation I of O. Then, test if I ∈
Mst#n(O) (Step 1) as in the proof of the membership part of Proposition 7. If
Satisfies(I, F ) =FALSE (Step 2) then O 6|=st#n v(F ). The complexity of Steps 1
and 2 are in P w.r.t. the size of O. Therefore, the complexity of checking whether
O 6|=st#n v(F ) is in NP w.r.t. the size of O. Thus, the complexity of deciding whether
O |=st#n v(F ) is in co-NP w.r.t. the size of O.

Case max({i ∈ IN | rdf : i ∈ VF }) > n: We want to verify if O |=st#n v(F ). This
is true only if O has no #n-stable model. From Proposition 7, it follows that the
complexity of this problem is in co-NP w.r.t. the size of O.

From the hardness and membership steps, above, it follows that the problem of
establishing whether v ∈ Ans

st#n

O (F ) is co-NP-complete w.r.t. the size of O. ✷

Proposition 9 Let O = 〈G,P 〉 be a bounded, objective ERDF ontology. Let G′ be
an ERDF graph, let F d be an ERDF d-formula, and let F be an ERDF formula. Let
n ≥ nO.

1. The problem of establishing whether O has a #n-stable model is NP-complete
w.r.t. the size of O.

2. The problems of establishing whether:
(i) O |=st#n G′, (ii) O |=st#n F d

are co-NP-complete w.r.t. the size of O,
3. Let v be (i) “yes”, if FVar(F ) = ∅, or (ii) let a mapping v : FVar(F )→ V #n

O , if

FVar(F ) 6= ∅. Let n ≥ nO. The problem of establishing whether v ∈ Ans
st#n

O (F )
is co-NP-complete w.r.t. the size of O.

Proof:
1)
Hardness) Let D = (V,E) be a graph. Note that OD = 〈GD, PD〉 is a bounded,
objective ERDF ontology and to generate OD from D, it takes polynomial time w.r.t.
the size of D. Now, from Proposition 6, and since 3-colorability is an NP-complete
problem, it follows that the problem of establishing whether O has a #n-stable model
is NP-hard w.r.t. the size of O.

Membership) Note that a bounded, objective ERDF ontology is also a bounded,
simple ERDF ontology. Therefore, it follows directly from Proposition 7 that the
problem of establishing whether O has a #n-stable model is in NP w.r.t. the size of
O.

2.i)
Hardness) Let G′ = {p(s, o), ¬p(s, o)}, for p, s, o ∈ URI. Then, O |=st#n G′ iff O has
no #n-stable model. From Proposition 9.1, it follows that the complexity of deciding
whether O has a #n-stable model is NP-hard w.r.t. the size of O. Therefore, the
complexity of deciding whether O |=st#n G′ is co-NP-hard w.r.t. the size of O.

Membership) It is the case that O |=st#n G′ iff “yes” ∈ Ans
st#n

O (formula(G ′)). It fol-

lows from Proposition 8, that the complexity of answering if “yes” ∈ Ans
st#n

O (formula(
G′)) is in co-NP w.r.t. the size of O. Therefore, the complexity of deciding if O |=st#n

G′ is in co-NP w.r.t. the size of O.
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2.ii)
Hardness) Let F d = p(s, o) ∧ ¬p(s, o), for p, s, o ∈ URI. Then, O |=st#n F d iff O has
no #n-stable model. From Proposition 9.1, it follows that the complexity of deciding
whether O has a #n-stable model is NP-hard w.r.t. the size of O. Therefore, the
complexity of deciding whether O |=st#n F d is co-NP-hard w.r.t. the size of O.

Membership) It is the case that O |=st#n F d iff “yes” ∈ Ans
st#n

O (F d). It follows from

Proposition 8, that the complexity of answering if “yes” ∈ Ans
st#n

O (F d) is in co-NP
w.r.t. the size of O. Therefore, the complexity of deciding if O |=st#n F d is in co-NP
w.r.t. the size of O.

3)
Hardness) It follows directly from Proposition 9.2.
Membership) It follows directly from Proposition 8. ✷

Proposition 10 Let F = ∀?x1...∀?xk∃?y1...∃?ym c1∧.......∧ cl be a 2-universal quan-
tified boolean formula. F is invalid iff OF = 〈GF , PF 〉 has a #n-stable model, for
n ∈ IN .
Proof:
⇒) Assume that F is invalid. Then, there exist truth values Xi, for ?xi, i = 1, ..., k,
such that for all truth values for ?yi, for i = 1, ...,m, it is the case that ∼(c1∧.......∧cl)
is valid.

Let I0 be the minimal #n-Herbrand interpretation of OF s.t. I0 |= GF and xi ∈
CTI0(IsTrue) if and only if Xi = true. If Xi = true, we say that rdf :type(xi, IsTrue)
is evaluated to true and If Xi = false, we say that ¬rdf :type(xi, IsTrue) is evaluated
to true.

Let I1 be the minimal #n-Herbrand interpretation of OF that extends I0 s.t.:

1. If ci has variables ?xj , ?xj′ , and ?yj′′ then
PTI1(ci) = {〈x, x

′〉 | if ci(x, x
′) is the head of a rule in PF whose body is evaluated to

true }.
2. If ci has variables ?xj , ?yj′ , and ?yj′′ then

PTI1(ci,1) = {〈x, x
′〉 | if ci,1(x, x

′) is the head of a rule in PF whose body is evaluated
to true }, and
PTI1(ci,2) = {〈x, x

′〉 | if ci,2(x, x
′) is the head of a rule in PF whose body is evaluated

to true }.
3. If ci has variables ?yj , ?yj′ , and ?yj′′ then

PTI1(ci,1) = {〈x, x
′〉 | if ci,1(x, x

′) is the head of a rule in PF},
PTI1(ci,2) = {〈x, x

′〉 | if ci,2(x, x
′) is the head of a rule in PF}, and

PTI1(ci,3) = {〈x, x
′〉 | if ci,3(x, x

′) is the head of a rule in PF}.
4. If ci has variables ?xj , ?xj′ , and ?xj′′ then

PTI1(ci) = {〈s, s〉 | if ci(s, s) is the head of a rule in PF whose body is evaluated to
true }.

Note that since F is invalid, I1 does not satisfy the body of the rule w(s, s) ←
c′1, ..., c

′
l. in PF . Thus, I1 does not satisfy the body of the single constraint in PF . It

is easy to see that I1 is a #n-stable model of OF .

⇐) Assume that I is a #n-stable model of OF . Assume that we assign to each
variable ?xi the truth value true if xi ∈ CTI(IsTrue) and the truth value false if
xi 6∈ CTI(IsTrue). Since I is a #n-stable model of OF , I 6|= w(s, s). This means that
I does not satisfy the body of the rule w(s, s)← c′1, ..., c

′
l. in PF . From this it follows

that for all truth values of the variables ?y1, ..., ?ym, it holds ∼(c1∧...∧ cl), given the
above thruth assignments of the variables ?x1, ..., ?xn. Thus, F is invalid. ✷
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Proposition 11 Let O = 〈G,P 〉 be a simple ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is ΣP
2 =NPNP-

complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) isΠP
2 =co-NPNP-complete

w.r.t. the size of O.

1.
Hardness) It follows from Proposition 12.1 (Hardness), since an objective ERDF
ontology is a simple ERDF ontology.

Membership) Guess now a #n-semi-Herbrand interpretation M of O. Due to Propo-
sition 2, it is the case that M ∈ Mst#n(O) iff ELP (M) is a consistent answer set

of Π#n
O . Since the arities of the predicates appearing in Π#n

O are bounded, it follows

from Lemma 2 of [20], that deciding if ELP (M) is a consistent answer set of Π#n
O

is in PNP w.r.t. the size of Π#n
O , and thus w.r.t. the size of O. Therefore, the com-

plexity of deciding whether O has a #n-stable model is in NPNP w.r.t. the size of
O.

From the hardness and membership steps, above, it follows that the problem of

establishing whether O has a #n-stable model is NPNP-complete w.r.t. the size of
O.

2.
Hardness) It follows from Proposition 12.3 (Hardness), since an objective ERDF
ontology is a simple ERDF ontology.
Membership)
Case max({i ∈ IN | rdf : i ∈ VF }) ≤ n: Assume that we want to verify if O 6|=st#n

v(F ). Guess now a #n-semi-Herbrand interpretation I of O. Then, test if I ∈
Mst#n(O) (Step 1) as in the proof of the membership part of Proposition 11.1.
If Satisfies(I, v(F )) =FALSE (Step 2) then O 6|=st#n v(F ). The complexity of Step 1

is in PNPw.r.t. the size of O and the complexity of Step 2 is polynomial w.r.t. the

size of O. Therefore, the complexity of checking whether O 6|=st#n v(F ) is in NPNP

w.r.t. the size of O. Thus, the complexity of deciding whether O |=st#n v(F ) is in

co-NPNP w.r.t. the size of O.

Case max({i ∈ IN | rdf : i ∈ VF }) > n: We want to verify if O |=st#n v(F ). This is
true only if O has no #n-stable model. From Proposition 11.1, it follows that the

complexity of this problem is in co-NPNP w.r.t. the size of O. ✷

Proposition 12 Let O = 〈G,P 〉 be an objective ERDF ontology. Let G′ be an
ERDF graph, let F d be an ERDF d-formula, and let F be an ERDF formula. Let
n ≥ nO.

1. The problem of establishing whether O has a #n-stable model is NPNP-complete
w.r.t. the size of O.

2. The problems of establishing whether:
(i) O |=st#n G′, (ii) O |=st#n F d

are co-NPNP-complete w.r.t. the size of O,
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3. Let v be (i) “yes”, if FVar(F ) = ∅, or (ii) let a mapping v : FVar(F )→ V #n
O , if

FVar(F ) 6= ∅. Let n ≥ nO. The problem of establishing whether v ∈ Ans
st#n

O (F )

is co-NPNP-complete w.r.t. the size of O. ✷

Proof:
1)
Hardness) Let F be a 2-universal quantified boolean formula. Note that OF =
〈GF , PF 〉 is an ojective ERDF ontology and to generate OF from F , it takes poly-
nomial time w.r.t. the size of F . Now, from Proposition 10, and since the 2-QBF∀

problem is a ΠP
2 =co-NPNP-complete problem, it follows that the problem of es-

tablishing whether O has a #n-stable model is ΣP
2 =NPNP-hard w.r.t. the size of

O.

Membership) Note that an objective ERDF ontology is also a simple ERDF ontology.
Therefore, it follows directly from Proposition 11 that the problem of establishing

whether O has a #n-stable model is in NPNP w.r.t. the size of O.

2.i)
Hardness) Let G′ = {p(s, o), ¬p(s, o)}, for p, s, o ∈ URI. Then, O |=st#n G′ iff O has
no #n-stable model. From Proposition 12.1, it follows that the complexity of deciding

whether O has a #n-stable model is NPNP-hard w.r.t. the size of O. Therefore, the

complexity of deciding whether O |=st#n G′ is co-NPNP-hard w.r.t. the size of O.

Membership) It is the case that O |=st#n G′ iff “yes” ∈ Ans
st#n

O (formula(G ′)). It fol-

lows from Proposition 11, that the complexity of answering if “yes” ∈ Ans
st#n

O (formula(

G′)) is in co-NPNP w.r.t. the size of O. Therefore, the complexity of deciding if

O |=st#n G′ is in co-NPNP w.r.t. the size of O.

2.ii)
Hardness) Let F d = p(s, o) ∧ ¬p(s, o), for p, s, o ∈ URI. Then, O |=st#n F d iff O has
no #n-stable model. From Proposition 12.1, it follows that the complexity of deciding

whether O has a #n-stable model is NPNP-hard w.r.t. the size of O. Therefore, the

complexity of deciding whether O |=st#n F d is co-NPNP-hard w.r.t. the size of O.

Membership) It is the case that O |=st#n F d iff “yes” ∈ Ans
st#n

O (F d). It follows from

Proposition 11, that the complexity of answering if “yes” ∈ Ans
st#n

O (F d) is in co-

NPNP w.r.t. the size of O. Therefore, the complexity of deciding if O |=st#n F d is in

co-NPNP w.r.t. the size of O. ✷

3)
Hardness) It follows directly from Proposition 12.2.
Membership) It follows directly from Proposition 11.2. ✷

Theorem 3 Let O be a general ERDF ontology and let n ≥ nO. Let M be a
#n-semi-Herbrand-interpretation of O. It is the case that: M ∈Mst#n(O) iff Is-#n-
StableModelGeneral(O,n,M)=TRUE.
Proof:
⇒) LetM ∈Mst#n(O). We will show that Is-#n-StableModelGeneral(O,n,M)=TRUE.

Since V #n
O is finite and M ∈ Mst#n(O), it follows that there is a sequence of #n-

Herbrand interpretations I0 ≤ ... ≤ Ik+1 such that Ik = Ik+1 = M and:

1. I0 ∈ minimal({I ∈ IH#n(O) | I |= sk(G)}).
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2. For successor ordinals α with 0 < α ≤ k + 1:
Iα ∈ minimal({I ∈ IH#n(O) | I ≥ Iα−1 and it is the case that:

∀ r ∈ [P ]
V

#n

O

, if J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O , then I |= Concl(r)}.

Now, we define a sequence N0 ⊆ .... ⊆ Nk+1 ⊆ EHB(Π#n
O ), as follows:

N0 = T ↑ω

[Π
H#n

O
]N
(TΠG

(∅)).

Nα = T ↑ω

[Π
H#n

O
]N
(Nα−1 ∪ {LConcl(r) | r ∈ [P ]

V
#n

O

and J |= Cond(r),

∀J ∈ [ELP−1(Nα−1),M ]#n
O }), where 1 ≤ α ≤ k + 1.

Lemma: It holds Nα = ELP(Iα), for α = 0, ..., k + 1.
Proof: We will prove the Lemma, by induction.

First, we will show that N0 ⊆ ELP(I0). Since I0 |= sk(G), it follows that
TΠG

(∅) ⊆ ELP(I0). As I0 ∈ I
H#n(O), it follows that ELP(I0) satisfies all rules in

[Π
H#n

O ]. Now, as ELP(I0) ⊆ N , it follows that ELP(I0) satisfies all rules in [Π
H#n

O ]N .

Moreover, as TΠG
(∅) ⊆ ELP(I0), it follows that T ↑ω

[Π
H#n

O
]N
(TΠG

(∅)) ⊆ ELP(I0).

Therefore, N0 ⊆ ELP(I0).

Let H (p, type,TotalProperty) ∈ N0, for p ∈ V #n
O . AsN0 ⊆ ELP (I0)⊆ ELP (M) =

N , it follows that H (p, type,TotalProperty) ∈ N . Therefore, for all x, y ∈ V #n
O ,

[¬]H(x, p, y) ∈ N0 iff [¬]H(x, p, y) ∈ N . Similarly, let H (c, type,TotalClass) ∈ N0, for

c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N . Therefore, for all x ∈ V #n

O , [¬]H(x, type,
c) ∈ N0 iff [¬]H(x, type, c) ∈ N . Now, from the above and as N0 satisfies all rules in

[Π
H#n

O ]N , it follows that N0 satisfies all rules in [Π
H#n

O ]. Therefore, ELP−1(N0) sat-
isfies all semantic conditions of a (coherent) #n-Herbrand interpretation of O. Thus,
ELP−1(N0) ∈ I

H#n(O). Moreover, ELP−1(N0) |= sk(G). Therefore, ELP−1(N0) ∈
{I ∈ IH#n(O) | I |= sk(G)}. Now as I0 ∈ minimal({I ∈ IH#n(O) | I |= sk(G)})
and N0 ⊆ ELP(I0), it follows that N0 = ELP(I0).

Assumption: We assume that Nα−1 = ELP(Iα−1), for an α ≤ k.
We will show that Nα = ELP(Iα). First, we will show that Nα ⊆ ELP(Iα).

Due to assumption Nα−1 = ELP(Iα−1) and the fact Iα−1 ≤ Iα, it follows that
Nα−1 ⊆ ELP(Iα). Based on this and the fact Iα |= Concl(r), for all r ∈ [P ]

V
#n

O

s.t.

J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O , it follows that Nα−1 ∪ {LConcl(r) | r ∈ [P ]

V
#n

O

and

J |= Cond(r), ∀J ∈ [ELP−1(Nα−1),M ]#n
O } ⊆ ELP(Iα).

As Iα ∈ I
H#n(O), it follows that ELP(Iα) satisfies all rules in [Π

H#n

O ]. As

ELP(Iα) ⊆ N , it follows that ELP(Iα) satisfies all rules in [Π
H#n

O ]N . Now as

Nα−1 ∪ {LConcl(r) | r ∈ [P ]
V

#n

O

and J |= Cond(r), ∀J ∈ [ELP−1(Nα−1), N ]#n
O }

⊆ ELP(Iα), it follows that T ↑ω

[Π
H#n

O
]N
(Nα−1 ∪ {LConcl(r) | r ∈ [P ]

V
#n

O

and J |=

Cond(r), ∀J ∈ [ELP−1(Nα−1),M ]#n
O }) ⊆ ELP(Iα). Therefore, Nα ⊆ ELP(Iα).

Let H (p, type,TotalProperty) ∈ Nα, for p ∈ V #n
O . As Nα ⊆ ELP (Iα) ⊆ ELP (M)

= N , it follows that H (p, type,TotalProperty) ∈ N . Therefore, for all x, y ∈ V #n
O ,

[¬]H(x, p, y) ∈ Nα iff [¬]H(x, p, y) ∈ N . Similarly, let H (c, type,TotalClass) ∈ Nα,

for c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N . Therefore, for all x ∈ V #n

O , [¬]H(x,
type, c) ∈ Nα iff [¬]H(x, type, c) ∈ N . Now, from the above and as Nα satisfies
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all rules in [Π
H#n

O ]N , it follows that Nα satisfies all rules in [Π
H#n

O ]. Therefore,
ELP−1(Nα) satisfies all semantic conditions of a (coherent) #n-Herbrand interpreta-
tion of O. Thus, ELP−1(Nα) ∈ I

H#n(O). Moreover, ELP−1(Nα) ≥ ELP−1(Nα−1) =
Iα−1. Now, based on the assumption that Nα−1 = ELP(Iα−1) ⊆ N and the fact that

Nα−1 ∪ {LConcl(r) | r ∈ [P ]
V

#n

O

and J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O } ⊆ Nα, it fol-

lows that ELP−1(Nα) |= Concl(r), for all r ∈ [P ]
V

#n

O

s.t. J |= Cond(r), ∀J ∈

[Iα−1,M ]#n
O . Therefore, ELP−1(Nα) ∈ {I ∈ I

H#n(O) | I ≥ Iα−1 and I |=

Concl(r), for all r ∈ [P ]
V

#n

O

s.t. J |= Cond(r), ∀J ∈ [Iα−1,M ]#n
O }. Now as Iα ∈

minimal({I ∈ IH#n(O) | I ≥ Iα−1 and I |= Concl(r), for all r ∈ [P ]
V

#n

O

s.t. J |=

Cond(r), ∀J ∈ [Iα−1,M ]#n
O }) and Nα ⊆ ELP(Iα), it follows that Nα = ELP(Iα).

End of Lemma

Therefore, Nk = Nk+1 = ELP(M). Thus, Is-#n-StableModelGeneral(O,n,M)
=TRUE.

⇐) LetM be a #n-semi-Herbrand-interpretation ofO s.t. Is-#n-StableModelGeneral(
O, n, M)=TRUE. We will show that M ∈Mst#n(O).

We define a sequence Nα ⊆ EHB(Π#n
O ), α ∈ {0, 1, ...}, as follows:

N0 = T ↑ω

[Π
H#n

O
]N
(TΠG

(∅)).

Nα = T ↑ω

[Π
H#n

O
]N
(Nα−1 ∪ {LConcl(r) | r ∈ [P ]

V
#n

O

and J |= Cond(r),

∀J ∈ [ELP−1(Nα−1),M ]#n
O }), where 1 ≤ α.

Since Is-#n-StableModelGeneral(O, n, M)=TRUE, it follows that there is k ∈
{0, 1, ...} such that Nk = Nk+1 = ELP (M).

Let N = ELP (M). Let H (p, type,TotalProperty) ∈ N0, for p ∈ V #n
O . As N0 ⊆

N , it follows that H (p, type,TotalProperty) ∈ N . Therefore, for all x, y ∈ V #n
O ,

[¬]H(x, p, y) ∈ N0 iff [¬]H(x, p, y) ∈ N . Similarly, let H (c, type,TotalClass) ∈ N0, for

c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N . Therefore, for all x ∈ V #n

O , [¬]H(x, type,
c) ∈ N0 iff [¬]H(x, type, c) ∈ N . Now, from the above and as N0 is the smallest subset

of EHB(Π#n
O ) that satisfies all rules in ΠG ∪ [Π

H#n

O ]N , it follows that N0 satisfies

all rules in [Π
H#n

O ]. Therefore, N0 is a minimal subset of EHB(Π#n
O ) that satisfies

all rules ΠG ∪ [Π
H#n

O ]. Thus, ELP−1(N0) ∈ minimal({I ∈ IH#n(O) | I |= sk(G)}).

Let α such that 1 ≤ α ≤ k+1. Note that Nα is the smallest subset of EHB(Π#n
O )

such that (i) Nα ⊇ Nα−1, (ii) satisfies all rules in [Π
H#n

O ]N , and (iii) LConcl(r) ∈ Nα,

for all r ∈ [P ]
V

#n

O

and J |= Cond(r), ∀J ∈ [ELP−1(Nα−1),M ]#n
O . Let H (p, type,

TotalProperty)∈ Nα, for p ∈ V #n
O . AsNα ⊆ N , it follows that H (p, type,TotalProperty)

∈ N . Therefore, for all x, y ∈ V #n
O , [¬]H(x, p, y) ∈ Nα iff [¬]H(x, p, y) ∈ N . Simi-

larly, let H (c, type,TotalClass) ∈ Nα, for c ∈ V #n
O . Then, H (c, type,TotalClass) ∈ N .

Therefore, for all x ∈ V #n
O , [¬]H(x, type, c) ∈ Nα iff [¬]H(x, type, c) ∈ N . Now,

from the above, it follows that Nα is a minimal subset of EHB(Π#n
O ) such that

(i) Nα ⊇ Nα−1, (ii) satisfies all rules in [Π
H#n

O ], and (iii) LConcl(r) ∈ Nα, for all

r ∈ [P ]
V

#n

O

and J |= Cond(r), ∀J ∈ [ELP−1(Nα−1),M ]#n
O . Therefore, it follows
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that ELP−1(Nα) ∈ minimal({I ∈ IH#n(O) | I ≥ ELP−1(Nα−1) and I |= Concl(r),
for all r ∈ [P ]

V
#n

O

s.t. J |= Cond(r), ∀J ∈ [ELP−1(Nα−1),M ]}).

Now as ELP−1(N0) ≤ ... ≤ ELP−1(Nk+1) and ELP−1(Nk) = ELP−1(Nk+1) =
M , it follows that M ∈Mst#n(O). ✷

Proposition 13 Let F = ∃?x1...∃?xk∀?y1...∀?ymR(?x1, ..., ?xk, ?y1, ..., ?ym) be a 2-
quantified boolean formula. F is valid iff OF = 〈GF , PF 〉 has a #n-stable model, for
n ∈ IN .
Proof:
⇒)
Case ∀?y1...∀?ymR(false, ..., false, ?y1, ..., ?ym) is valid:

Let I0 be the minimal #n-Herbrand interpretation of OF . Thus, pi, qj , w /∈
CTI0(rdf :Property), for i = 1, ..., k and j = 1, ...,m. Thus, (i) I0 |= ∼pi(s, s), for
i = 1, ..., k, (ii) I0 |= ∼qi(s, s), for i = 1, ...,m, and (iii) I0 |= ∼w(s, s).
Let I1 be the minimal #n-Herbrand interpretation of OF s.t.:

1. PFI1(pi) = {〈s, s〉} and PTI1(pi) = Res
H#n

OF
×Res

H#n

OF
−PTI1(pi), for i = 1, ..., k.

2. PTI1(qi) = {〈s, s〉} and PFI1(qi) = ∅, for i = 1, ...,m.
3. PTI1(w) = {〈s, s〉} and PFI1(w) = ∅.

It is easy to see that I1 is a #n-stable model of OF generated by the sequence
I0, I1.

Case ∀?y1...∀?ymR(false, ..., false, ?y1, ..., ?ym) is not valid:
Since ∃?x1...∃?xk∀?y1...∀?ymR(?x1, ..., ?xk, ?y1, ..., ?ym) is true, there exist truth

values X1, ..., Xk such that ∀?y1...∀?ymR(X1, ..., Xk, ?y1, ..., ?ym) is true,
As in the previous case, let I0 be the minimal #n-Herbrand interpretation of OF .

Let I1 be the minimal #n-Herbrand interpretation of OF s.t.:

1. PTI1(pi) = {〈s, s〉} and PFI1(pi) = Res
H#n

OF
×Res

H#n

OF
− PTI1(pi), if Xi = true,

for i = 1, ..., k.

2. PFI1(pi) = {〈s, s〉} and PTI1(pi) = Res
H#n

OF
×Res

H#n

OF
−PFI1(pi), if Xi = false,

for i = 1, ..., k.

Let I2 be the minimal #n-Herbrand interpretation of OF s.t.:

1. PTI2(pi) = {〈s, s〉} and PFI2(pi) = Res
H#n

OF
×Res

H#n

OF
− PTI2(pi), if Xi = true,

for i = 1, ..., k.

2. PFI2(pi) = {〈s, s〉} and PTI2(pi) = Res
H#n

OF
×Res

H#n

OF
−PFI2(pi), if Xi = false,

for i = 1, ..., k.
3. PTI2(qi) = {〈s, s〉} and PFI2(qj) = ∅, for j = 1, ...,m.
4. PTI2(w) = {〈s, s〉} and PFI2(w) = ∅.

It is easy to see that I2 is a #n-stable model of OF generated by the sequence
I0, I1, I2.

⇐) Let OF = 〈GF , PF 〉 have a #n-stable model M . Then, M is generated either by
a sequence I0 < M or by a sequence I0 < I1 < M . Consider that M is generated
by a sequence I0 < M . Note that I0 |= ∼pi(s, s), for i = 1, ..., k, (ii) I0 |= ∼qj(s, s),
for j = 1, ...,m, and (iii) I0 |= ∼w(s, s). Additionally note that due to the single
constraint in PF , it follows that M |= w(s, s). Thus, M |= qj(s, s), for all j = 1, ...,m.

55



Further note that M |= pi(s, s)∨¬pi(s, s), for i = 1, ..., k. Since M is a #n-stable

model of OF , it follows that for all J ∈ I
H#n

OF
s.t. I0 ≤ J ≤ M , it is the case that

J |= fR. It follows from this that F is valid.
Consider now that M is generated by a sequence I0 < I1 < M . Note that I0 |=

∼pi(s, s), for i = 1, ..., k, (ii) I0 |= ∼qj(s, s), for j = 1, ...,m, and (iii) I0 |= ∼w(s, s).
Additionally, note that due to the single constraint in PF , it follows thatM |= w(s, s).
Thus, M |= qj(s, s), for all j = 1, ...,m. Further, note that (i) I1 |= pi(s, s)∨¬pi(s, s),
for i = 1, ..., k, and (ii) I1 |= ∼qj(s, s), for j = 1, ...,m. Since M is a #n-stable model

of OF and M |= w(s, s), it follows that for all J ∈ I
H#n

OF
s.t. I1 ≤ J ≤ M , it is the

case that J |= fR. It follows from this that F is valid. ✷

Proposition 14 Let O = 〈G,P 〉 be a bounded, ERDF ontology without quantifiers
and let F be an ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or

(ii) a mapping v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is ΣP
2 =NPNP-

complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) isΠP
2 =co-NPNP-complete

w.r.t. the size of O.

Proof:
1.
Hardness) Let F be a 2-quantified boolean formula. Note that OF = 〈GF , PF 〉 is a
bounded ERDF ontology without quantifiers and to generate OF from F , it takes
polynomial time w.r.t. the size of F . Now, from Proposition 13, and since the 2-

QBF-problem is a ΣP
2 =NPNP-complete problem, it follows that the problem of

establishing whether O has a #n-stable model is ΣP
2 =NPNP-hard w.r.t. the size of

O.

Membership) It follows from Proposition 15.1 (Membership), since a bounded ERDF
ontology without quantifiers is an ERDF ontology without quantifiers.

2.
Hardness) Let F = p(s, o)∧¬p(s, o), for p, s, o ∈ URI. Then, O |=st#n F iff O has no
#n-stable model. From Proposition 14.1, it follows that the complexity of deciding

whether O has a #n-stable model is NPNP-hard w.r.t. the size of O. Therefore, the

complexity of deciding whether O |=st#n F is co-NPNP-hard w.r.t. the size of O.
Membership) It follows from Proposition 15.2 (Membership), since a bounded ERDF
ontology without quantifiers is an ERDF ontology without quantifiers.. ✷

Proposition 15 Let O = 〈G,P 〉 be an ERDF ontology without quantifiers and let
F be an ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a

mapping v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is ΣP
2 =NPNP-

complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) isΠP
2 =co-NPNP-complete

w.r.t. the size of O.

Proof: First, we give a definition that will be used in the proof. Let Π be an ELP
and let C be a set of constants. By [Π]C , we denote the instantiation of Π w.r.t. the
constants appearing in C.

56



1.
Hardness) This hardness part follows directly from the hardness part of Proposition
14.1.

Membership)
Guess now a #n-semi-Herbrand interpretation M of O. It is the case that M ∈
Mst#n(O) iff the following Condition 1 and Condition 2 hold.
Condition 1) The following should hold:

1. For all t ∈ sk(G), it is the case that Satisfies(M , t)=TRUE.
2. For all r ∈ [P ]

V
#n

O

, if Satisfies(M ,Cond(r))=TRUE then Satisfies(M ,Concl(r))=TRUE.

3. For all r ∈ [Π
H#n

O ]
V

#n

O

, it is the case that ELP(M) satisfies r.

Condition 2) For each L ∈ ELP (M), there is a founded proof r1θ1, ...,rkθk of L,

where ri ∈ ΠG ∪ P ∪ Π
H#n

O and θi is a substitution of the free variables of ri over

V #n
O . We define:

Li =







Head(ri) if ri ∈ ΠG

LConcl(riθi) if ri ∈ P

Head(riθi) if ri ∈ Π
H#n

O

Additionally, we define:

Ii =

{

ELP−1({L1, ..., Li−1}) if ri ∈ P

{L1, ..., Li−1} if ri ∈ Π
H#n

O

It should hold:

1. Lk = L.
2. If ri ∈ P then MiddleNotSatisfies(O ,n, Ii ,M ,Cond(riθi))=FALSE.

3. If ri ∈ Π
H#n

O then Body+(riθi) ⊆ Ii and Body−(riθi) ∩ ELP(M) = ∅.

First, we consider Condition 1. The complexity of Condition 1.1 is in P. To
check the complement of Condition 1.2, guess an r ∈ P and a substitution θ of
the free variables of r over V #n

O . Then, check if Satisfies(M ,Cond(rθ))=TRUE and
Satisfies(M ,Concl(rθ))=FALSE. The complexity of this ckeck is in P. Thus, the
complexity of the complement of Condition 1.1. is in NP. Therefore, the complexity
of Condition 1.2. is in co-NP. To check the complement of Condition 1.3, guess an

r ∈ Π
H#n

O and a substitution θ of the free variables of r over V #n
O . Then, check if

ELP(M) does not satisfy rθ. The complexity of this check is in P. Thus, the com-
plexity of the complement of Condition 1.3 is in NP. Therefore, the complexity of
Condition 1.3 is in co-NP.

Now, we consider Condition 2. Note that the size of ELP(M) is in P w.r.t. the size
of O. Additionally, note that the size of each founded proof of an L ∈ ELP(M) is in P
w.r.t. the size of O. The complexity of Condition 2.2 is in NP. This is because the com-
plexity of the steps (2-4) of Algorithm MiddleNotSatisfies(O ,n, Ii ,M ,Cond(riθi)) is
in P. The complexity of Condition 2.3 is in P. Therefore, the complexity of Condition

2 is in PNP.
Thus, Conditions 1 and 2 can be solved by P, NP, and PNP oracle calls. Note

that P ⊆ NP ⊆ PNP. Thus, the complexity of the problem of establishing whether

O has a #n-stable model is in NPP
NP

=NPNP w.r.t. the size of O.
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2.
Hardness) This hardness part follows directly from the hardness part of Proposition
14.2.

Membership)
Case max({i ∈ IN | rdf : i ∈ VF }) ≤ n: Assume that we want to verify if O 6|=st#n

v(F ). Guess now a #n-semi-Herbrand interpretation I of O. Then, test if I ∈
Mst#n(O) (Step 1) as in the proof of the membership part of Proposition 15.1.
If Satisfies(I, v(F )) =FALSE (Step 2) then O 6|=st#n v(F ). The complexity of Step 1

is in PNPw.r.t. the size of O and the complexity of Step 2 is polynomial w.r.t. the

size of O. Therefore, the complexity of checking whether O 6|=st#n v(F ) is in NPNP

w.r.t. the size of O. Thus, the complexity of deciding whether O |=st#n v(F ) is in

co-NPNP w.r.t. the size of O.

Case max({i ∈ IN | rdf : i ∈ VF }) > n: We want to verify if O |=st#n v(F ). This is
true only if O has no #n-stable model. From Proposition 15.1, it follows that the

complexity of this problem is in co-NPNP w.r.t. the size of O. ✷

Proposition 16 Let Φ = ∃?x1∀?x2...Qk?xkR(?x1, ..., ?xk) be a fully quantified
boolean formula. Φ is valid iff OΦ = 〈GΦ, PΦ〉 has a #n-stable model, for n ∈ IN .

Proof:

⇒) Assume that Φ is valid. Let I0 be the minimal #n-Herbrand interpretation of OΦ.
Let I1 be the minimal #n-Herbrand interpretation of OΦ s.t. PTI1(pi) = {〈s, s〉} and
PFI1(pi) = ∅, for i = 1, ..., k. Let I2 be the minimal #n-Herbrand interpretation of
OΦ s.t.: PTI2(pi) = {〈s, s〉} and PFI2(pi) = ∅, for i = 1, ..., k, and PTI2(w) = {〈s, s〉}
and PFI2(w) = ∅.

Note that since Φ is valid, for all J ∈ I
H#n

OΦ
s.t. I1 ≤ J ≤ I2, it is the case

that J |= φR. Therefore, I2 is a #n-stable model of OΦ generated by the sequence
I0, I1, I2.

⇐) Let OΦ = 〈GΦ, PΦ〉 have a #n-stable model M . Due to the single constraint
in PΦ, it follows that M |= w(s, s). Further, M |= pi(s, s), for all i = 1, ..., k and

M |= ∼pi(x, y), for all i = 1, ..., k and 〈x, y〉 ∈ V #n
OΦ
× V #n

OΦ
− {〈s, s〉}. Since M is a

#n-stable model of OΦ, it follows that M |= φR. Thus, Φ is valid. ✷

Proposition 17 Let O = 〈G,P 〉 be a bounded ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is PSPACE-
complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) is PSPACE-complete w.r.t.
the size of O.

Proof:

1.
Hardness) Let Φ be a fully quantified boolean formula. Note that OΦ = 〈GΦ, PΦ〉 is a
bounded ERDF ontology and to generate OΦ from Φ, it takes polynomial time w.r.t.
Φ. Now, from Proposition 16, and since the QBF-problem is a PSPACE-complete
problem, it follows that the problem of establishing whether O has a #n-stable
model is PSPACE-hard w.r.t. the size of O.
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Membership) It follows from Proposition 18.1 (Membership), since a bounded ERDF
ontology is a general ERDF ontology.

2.
Hardness) Let F = p(s, o)∧¬p(s, o), for p, s, o ∈ URI. Then, O |=st#n F iff O has no
#n-stable model. From Proposition 17.1, it follows that the complexity of deciding
whether O has a #n-stable model is PSPACE-hard w.r.t. the size of O. Therefore,
the complexity of deciding whether O |=st#n F is co-PSPACE-hard w.r.t. the size of
O. But co-PSPACE=PSPACE.
Membership) It follows from Proposition 18.2 (Membership), since a bounded ERDF
ontology is a general ERDF ontology.. ✷

Proposition 18 Let O = 〈G,P 〉 be a general ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) “yes”, if FVar(F ) = ∅, or (ii) a mapping

v : FVar(F )→ V #n
O , if FVar(F ) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has a #n-stable model is PSPACE-
complete w.r.t. the size of O.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) is PSPACE-complete w.r.t.
the size of O.

Proof:
1.
Hardness) This hardness part follows directly from the hardness part of Proposition
17.1.

Membership)
Guess now a #n-semi-Herbrand interpretation M of O. It is the case that M ∈
Mst#n(O) iff Condition 1 and Condition 2 in the proof of the membership part of
Proposition 15.1 hold.

First, we consider Condition 1. The complexity of Condition 1.1 is in P. To
check the complement of Condition 1.2, guess an r ∈ P and a substitution θ of
the free variables of r over V #n

O . Then, check if Satisfies(M ,Cond(rθ))=TRUE and
Satisfies(M ,Concl(rθ))=FALSE. The complexity of this check is in PSPACE (due
to the possible quantifiers appearing in Cond(r)). Thus, the complexity of the com-
plement of Condition 1.1. is in NPSPACE=PSPACE. Therefore, the complexity of
Condition 1.2. is in co-PSPACE=PSPACE. To check the complement of Condition

1.3, guess an r ∈ Π
H#n

O and a substitution θ of the free variables of r over V #n
O .

Then, check if ELP(M) does not satisfies rθ. The complexity of this check is in P.
Thus, the complexity of the complement of Condition 1.3 is in NP. Therefore, the
complexity of Condition 1.3 is in co-NP ⊆ PSPACE.

Now, we consider Condition 2. Note that the size of ELP(M) is in P w.r.t. the
size of O. Additionally, note that the size of each founded proof of an L ∈ ELP(M) is
in P w.r.t. the size of O. The complexity of Condition 2.2 is in NPSPACE. This is be-
cause the complexity of the steps (2-4) of Algorithm MiddleNotSatisfies(O ,n, Ii ,M ,
Cond(riθi)) is in PSPACE (due to the possible quantifiers appearing in Cond(ri)).
The complexity of Condition 2.3 is in P. Therefore, the complexity of Condition 2 is

in PNPSPACE=PSPACE.
Thus, Conditions 1 and 2 can be solved by P and PSPACE oracle calls. Thus,

the complexity of the problem of establishing whether O has a #n-stable model is in

NPPSPACE ⊆PSPACEPSPACE=PSPACE w.r.t. the size of O.
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2.
Hardness) This hardness part follows directly from the hardness part of Proposition
17.2.
Membership)
Case max({i ∈ IN | rdf : i ∈ VF }) ≤ n: Assume that we want to verify if O 6|=st#n

v(F ). Guess now a #n-semi-Herbrand interpretation I of O. Then, test if I ∈
Mst#n(O) (Step 1) as in the proof of the membership part of Proposition 18.1.
If Satisfies(I, v(F )) =FALSE (Step 2) then O 6|=st#n v(F ). The complexity of Step

1 is in PNPSPACE ⊆ PSPACE w.r.t. the size of O. The complexity of Step 2 is in
P w.r.t. the size of O. Therefore, the complexity of checking whether O 6|=st#n v(F )

is in NPPSPACE ⊆PSPACE w.r.t. the size of O. Thus, the complexity of deciding
whether O |=st#n v(F ) is in co-PSPACE=PSPACE w.r.t. the size of O.

Case max({i ∈ IN | rdf : i ∈ VF }) > n: We want to verify if O |=st#n v(F ). This is
true only if O has no #n-stable model. From Proposition 18.1, it follows that the
complexity of this problem is in co-PSPACE=PSPACE w.r.t. the size of O. ✷

Proposition 19 Let O = 〈G,P 〉 be a general ERDF ontology, let F ′ be an ERDF
formula without quantifiers, and let F an ERDF formula. Additionally, let v be (i)

“yes”, if FVar(F ) = ∅, or (ii) a mapping v : FVar(F ) → V #n
O , if FVar(F ) 6= ∅. Let

n ∈ IN .

1. The problem of establishing whether v ∈ Ans
st#n

O (F ′) has the same complexity
w.r.t. the size of O and F as the complexity w.r.t. the size of O, for all kinds of
ERDF ontologies considered in this work.

2. The problem of establishing whether v ∈ Ans
st#n

O (F ) is PSPACE-complete w.r.t.
the size of O and F , for all kinds of ERDF ontologies considered in this work. ✷

Proof:
1. The proof is the same as the proof of the propositions 8, 9.3, 11.2, 12.3, 14.2, 15.2,
17.2, and 18.2, where we replace the phrase “w.r.t. the size of O” by “w.r.t. the size
of O and F”.

2.
Hardness) Let Φ = ∃?x1∀?x2...Qk?xkR(?x1, ..., ?xk) be a fully quantified boolean for-
mula, defined in Section 9. Let s ∈ URI. We denote by FR the ERDF formula FR =
∃?x1∀?x2...Qk?xkR( p1(?x1, s), ..., pk(?xk, s)). Let GΦ = {pi(s, s) | i ∈ {1...k}}, let
PΦ = {}, and let OΦ = 〈GΦ, PΦ〉.
Lemma: Φ is valid iff OΦ |= FR.

Proof:
⇒) Let Φ be valid. Note that OΦ has a single #n-stable model s.t.M |= pi(s, s), for all

i = 1, ..., k and M |= ∼pi(x, y), for all i = 1, ..., k and 〈x, y〉 ∈ V #n
OΦ
× V #n

OΦ
− {〈s, s〉}.

Note that M |= FR. Therefore, OΦ |= FR.
⇐) Assume that OΦ |= FR. Note that OΦ has a single #n-stable model s.t. M |=
pi(s, s), for all i = 1, ..., k and M |= ∼pi(x, y), for all i = 1, ..., k and 〈x, y〉 ∈

V #n
OΦ
× V #n

OΦ
− {〈s, s〉}. Since OΦ |= FR, it follows that M |= FR. Then, Φ is valid.

End of Lemma

Note that to generate OΦ from Φ, it takes polynomial time w.r.t. Φ. Now, since
the QBF-problem is a PSPACE-complete problem, it follows from Lemma that the
problem of establishing whether “yes” ∈ Ans

st#n

O (F ′) is PSPACE-hard w.r.t. the
size of O and F ′. Since OΦ is a bounded, objective ERDF ontology, it follows that
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problem of establishing whether v ∈ Ans
st#n

O (F ′) is PSPACE-hard w.r.t. the size of
O and F ′, for all kinds of ERDF ontologies considered in this work.
Membership)
Case max({i ∈ IN | rdf : i ∈ VF }) ≤ n: Assume that we want to verify if O 6|=st#n

v(F ). Guess now a #n-semi-Herbrand interpretation I of O. Then, test if I ∈
Mst#n(O) (Step 1) as in the proof of the membership part of Proposition 18.1.
If Satisfies(I, v(F )) =FALSE (Step 2) then O 6|=st#n v(F ). The complexity of Step 1

is in PNPSPACE ⊆ PSPACE w.r.t. the size of O and F . The complexity of Step 2
is in PSPACE w.r.t. the size of O and F , due to the possible quantifiers appearing
in the formula F . Therefore, the complexity of checking whether O 6|=st#n v(F ) is in

NPPSPACE ⊆PSPACE w.r.t. the size of O and F . Thus, the complexity of deciding
whether O |=st#n v(F ) is in co-PSPACE=PSPACE w.r.t. the size of O and F . Since
O is a general ERDF ontology, it follows that the problem of establishing whether
O |=st#n v(F ) is in PSPACE w.r.t. the size of O and F , for all kinds of ERDF
ontologies considered in this work.

Case max({i ∈ IN | rdf : i ∈ VF }) > n: We want to verify if O |=st#n v(F ). This
is true only if O has no #n-stable model. From Proposition 18.1, it follows that
the complexity of this problem is in co-PSPACE=PSPACE w.r.t. the size of O and
F . Since O is a general ERDF ontology, it follows that the problem of establishing
whether O |=st#n v(F ) is in PSPACE w.r.t. the size of O and F , for all kinds of
ERDF ontologies considered in this work. ✷
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Appendix B: Table of Symbols

List of Symbols

Symbol Description

VG the URI references and literals appearing in an ERDF graph G

Cond(r) the condition of an ERDF rule r

Concl(r) the conclusion of an ERDF rule r

V ar(r) the set of variables of an ERDF rule r

FV ar(r) the set of free variables of an ERDF rule r

VP the URI references and literals appearing in an ERDF program P

VF the URI references and literals appearing in an ERDF formula F

sk(G) the skolemization of an ERDF graph G

O = 〈G,P 〉 an ERDF ontology

VO Vsk(G) ∪ VP ∪ VRDF ∪ VRDFS ∪ VERDF

ResHO VO with the well-typed literals substituted by their corresponding XML values

IH(O) the set of Herbrand interpretations of O

Mst(O) the set of stable models of O

V#n
RDF VRDF − {rdf : i | i > n}

V
#n
O VO − {rdf : i | i > n}

Res
H#n

O ResHO − {rdf : i | i > n}

IH#n(O) the set of #n-Herbrand interpretations of O

[I, J ]#n
O {I ′ ∈ IH#n(O) | I ≤ I ′ ≤ J}

Mst#n(O) the set of #n-stable models of O

Ans
st#n

O (F ) the set of #n-stable answers of an ERDF formula F w.r.t. O

Π
#n
O ΠG ∪ΠP ∪Π

H#n

O

ELP(I) {H(s, p, o) | s, p, o ∈ V
#n
O and 〈I(s), I(o)〉 ∈ PT I(p)} ∪

{¬H(s, p, o) | s, p, o ∈ V
#n
O and 〈I(s), I(o)〉 ∈ PF I(p)}

Head(r) L0, where r = L0 ← L1, ..., Lm,∼Lm+1, ...,∼Ln ∈ Π

Body(r)+ {L1, ..., Lm}, where r = L0 ← L1, ..., Lm,∼Lm+1, ...,∼Ln

Body(r)− {Lm+1, ..., Ln}, where r = L0 ← L1, ..., Lm,∼Lm+1, ...,∼Ln

Body(r) Body(r)+ ∪Body(r)−

ΠN {Head(r)← Body(r)+ | r ∈ Π and Body(r)− ∩N = ∅}.
TΠ(N) N ∪ {Head(r) | r ∈ Π and Body(r) ⊆ N}.

Table 2. Symbols and Description
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Appendix C: RDF(S) Semantics

For self-containment, in this appendix, we review the definitions of simple, RDF, and
RDFS interpretations, as well as the definitions of satisfaction of an RDF graph and
RDFS entailment. For details, see the W3C Recommendation of RDF semantics [32].
For simplicity, we have eliminated the namespace from the URIs in VRDF ∪ VRDFS .

Let URI denote the set of URI references, PL denote the set of plain literals,
and T L denote the set of typed literals, respectively. A vocabulary V is a subset of
URI ∪ PL ∪ T L.

Definition 13 (Simple interpretation). A simple interpretation I of a vocabulary
V consists of:

– A non-empty set of resources ResI , called the domain or universe of I.
– A set of properties PropI .
– A vocabulary interpretation mapping IV : V ∩ URI → ResI ∪ PropI .
– A property extension mapping PT I : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .
– A set of literal values LV I ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : V → ResI ∪ PropI such that:

– I(x) = IV (x), ∀x ∈ V ∩ URI.
– I(x) = x, ∀ x ∈ V ∩ PL.
– I(x) = ILI(x), ∀ x ∈ V ∩ T L. ✷

Definition 14 (Satisfaction of an RDF graph w.r.t. a simple interpreta-
tion). Let G be an RDF graph and let I be a simple interpretation of a vocabulary
V . Let v be a mapping v : Var(G)→ ResI . If x ∈ Var(G), we define [I+v](x) = v(x).
If x ∈ V , we define [I + v](x) = I(x). We define:

– I, v |= G iff ∀ p(s, o) ∈ G, it holds that: p ∈ V ∩ URI, s, o ∈ V ∪ Var , I(p) ∈
PropI , and 〈[I + v](s), [I + v](o)〉 ∈ PT I(I(p)).

– I satisfies the RDF graph G, denoted by I |= G, iff there exists a mapping
v : Var(G)→ ResI such that I, v |= G. ✷

type(:type,Property)
type(subject,Property)
type(predicate,Property)
type(object,Property)
type(first,Property)
type(rest,Property)
type(value,Property)
type( i,Property), ∀i ∈ {1, 2, ...}
type(nil, List)

Table 3. The RDF axiomatic triples

Definition 15 (RDF interpretation). An RDF interpretation I of a vocabulary
V is a simple interpretation of V ∪ VRDF , which satisfies the following semantic
conditions:
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1. x ∈ PropI iff 〈x, I(Property)〉 ∈ PT I(I(type)).
2. If s ˆ̂ rdf :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI( s ˆ̂ rdf :XMLLiteral) is the XML value of s,
ILI( s ˆ̂ rdf :XMLLiteral) ∈ LV I , and
〈ILI( s ˆ̂ rdf :XMLLiteral), I(XMLLiteral)〉 ∈ PT I(I(type)).

3. If s ˆ̂ rdf :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI( s ˆ̂ rdf :XMLLiteral) ∈ ResI − LV I , and
〈ILI( s ˆ̂ rdf :XMLLiteral), I(XMLLiteral)〉 6∈ PT I(I(type)).

4. I satisfies the RDF axiomatic triples, shown in Table 3. ✷

Definition 16 (RDF entailment). Let G,G′ be RDF graphs. We say that G RDF-
entails G′ (G |=RDF G′) iff for every RDF interpretation I, if I |= G then I |= G′.
✷

Definition 17 (RDFS interpretation). An RDFS interpretation I of a vocab-
ulary V is an RDF interpretation of V ∪ VRDF ∪ VRDFS , extended by the new
ontological category ClsI ⊆ ResI for classes, as well as the class extension mapping
CT I : ClsI → P(ResI), such that:

1. x ∈ CT I(y) iff 〈x, y〉 ∈ PT I(I(type)).
2. The ontological categories are defined as follows:

ClsI = CT I(I(Class)),
ResI = CT I(I(Resource)), and
LV I = CT I(I(Literal)).

3. If 〈x, y〉 ∈ PT I(I(domain)) and 〈z, w〉 ∈ PT I(x) then z ∈ CT I(y).
4. If 〈x, y〉 ∈ PT I(I(range)) and 〈z, w〉 ∈ PT I(x) then w ∈ CT I(y).
5. If x ∈ ClsI then 〈x, I(Resource)〉 ∈ PT I(I(subClassOf )).
6. If 〈x, y〉 ∈ PT I(I(subClassOf )) then x, y ∈ ClsI , CT I(x) ⊆ CT I(y).
7. PT I(I(subClassOf )) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PT I(I(subPropertyOf )) then x, y ∈ PropI , PT I(x) ⊆ PT I(y).
9. PT I(I(subPropertyOf )) is a reflexive and transitive relation on PropI .

10. If x ∈ CT I(I(Datatype)) then 〈x, I(Literal)〉 ∈ PT I(I(subClassOf )).
11. If x ∈ CT I(I(ContainerMembershipProperty)) then
〈x, I(member)〉 ∈ PT I(I(subPropertyOf )).

12. I satisfies the RDFS axiomatic triples, shown in Table 4. ✷

Definition 18 (RDFS entailment). Let G,G′ be RDF graphs. We say that G
RDFS-entails G′ (G |=RDFS G′) iff for every RDFS interpretation I, if I |= G then
I |= G′. ✷
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domain(type,Resource)
domain(domain,Property)
domain(range,Property)
domain(subPropertyOf ,Property)
domain(subClassOf ,Class)
domain(subject, Statement)
domain(predicate, Statement)
domain(object, Statement)
domain(member,Resource)
domain(first, List)
domain(rest, List)
domain(seeAlso,Resource)
domain(isDefinedBy,Resource)
domain(comment,Resource)
domain(label,Resource)
domain(value,Resource)
range(type,Class)
range(domain,Class)
range(range,Class)
range(subPropertyOf ,Property)
range(subClassOf ,Class)
range(subject,Resource)
range(predicate,Resource)
range(object,Resource)
range(member,Resource)
range(first,Resource)
range(rest, List)
range(seeAlso,Resource)
range(isDefinedBy,Resource)
range(comment, Literal)
range(label, Literal)
range(value,Resource)
subClassOf (Alt, Container)
subClassOf (Bag,Container)
subClassOf (Seq, Container)
subClassOf (ContainerMembershipProperty ,Property)
subPropertyOf (isDefinedBy, seeAlso)
type(XMLLiteral , Datatype)
subClassOf (XMLLiteral , Literal)
subClassOf (Datatype,Class)
type( i,ContainerMembershipProperty), ∀i ∈ {1, 2, ...}
domain( i,Resource), ∀i ∈ {1, 2, ...}
range( i,Resource), ∀i ∈ {1, 2, ...}

Table 4. The RDFS axiomatic triples
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57. I. Niemelä and P. Simons. Smodels - An Implementation of the Stable Model and
Well-Founded Semantics for Normal LP. In 4th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-1997), pages 421–430, 1997.

58. C. M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
59. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM

Transanctions on Database Systems, 34(3), Article 16 (45 pages), 2009.
60. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Recom-

mendation, 15 January 2008. Available at http://www.w3.org/TR/rdf-sparql-query/.
61. R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:

Preliminary Report. In Proc. of the 1999 Description Logic Workshop (DL-1999), pages
160–164, 1999.

62. R. Rosati. On the Decidability and Complexity of Integrating Ontologies and Rules.
Journal of Web Semantics, 3:61–73, 2005.

68



63. R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Datalog.
In 10th International Conference on Principles of Knowledge Representation and Rea-
soning (KR-2006), 2006.

64. S. Schenk and S. Staab. Networked graphs: a declarative mechanism for SPARQL rules,
SPARQL views and RDF data integration on the web. In 17th International Conference
on World Wide Web (WWW-2008), pages 585–594, 2008.

65. M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation Language
for the Semantic Web. In 1st International Semantic Web Conference (ISWC-2002),
pages 364–378. Springer-Verlag, 2002.

66. L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Exponential Time: Prelim-
inary Report. In Fifth Annual ACM Symposium on Theory of Computing (STOC-1973),
pages 1–9, 1973.

67. H. J. ter Horst. Extending the RDFS Entailment Lemma. In 3rd International Semantic
Web Conference (ISWC-2004), pages 77–91, 2004.

68. H. J. ter Horst. Completeness, Decidability and Complexity of Entailment for RDF
Schema and a Semantic Extension Involving the OWL Vocabulary. Journal of Web
Semantics, 3(2-3):79–115, 2005.

69. F. Yang and X. Chen. DLclog: A Hybrid System Integrating Rules and Description
Logics with Circumscription. In 2007 International Workshop on Description Logics
(DL-2007), 2007.

70. G. Yang, M. Kifer, and C. Zhao. Flora-2: A Rule-Based Knowledge Representation
and Inference Infrastructure for the Semantic Web. In 2nd International Conference
on Ontologies, DataBases, and Applications of Semantics for Large Scale Information
Systems (ODBASE’03), pages 671–688, 2003.

69


