Matallanas, D., Arozarena, Imanol, Berciano, M.T., Aaronson, D.S., Pellicer, A., Lafarga, M. and Crespo, P. (2003) Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. Journal of Biological Chemistry, 278 (7). pp. 4572-4581. ISSN 0021-9258
Abstract

Ras GTPases include the isoforms H-Ras, K-Ras, and N-Ras. Despite their great biochemical and biological similarities, evidence is mounting suggesting that Ras proteins may not be functionally redundant. A widespread strategy for studying small GTPases is the utilization of dominant inhibitory mutants that specifically block the activation of their respective wild-type proteins. As such, H-Ras N17 has proved to be extremely valuable as a tool to probe Ras functions. However, a comparative study on the inhibitory specificities of H-, K-, and N-Ras N17 mutants has not been approached thus far. Herein, we demonstrate that H-, K-, and N-Ras N17 mutants exhibit markedly distinct inhibitory effects toward H-, K-, and N-Ras. H-Ras N17 can effectively inhibit the activation of all three isoforms. K-Ras N17 completely blocks the activation of K-Ras and is only slightly inhibitory on H-Ras. N-Ras N17 can mainly inhibit N-Ras activation. In light of the recent data on the compartmentalization of H-Ras and K-Ras in the plasma membrane, here we present for the first time a description of N-Ras cellular microlocalization. Overall, our results on Ras N17 mutants specificities exhibit a marked correlation with the localization of the Ras isoforms to distinct membrane microdomains.

Information
Library
Statistics
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email