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Abstract

Within institutional computing infrastructure, currently available grid mid-
dlewares are considered to be overly complex. This is largely due to
behaviours required for untrusted networks. These behaviours however
are an integral part of grid systems and cannot be removed. Within this
work the development of a grid middleware suitable for unifying institu-
tional resources is proposed. The proposed system should be capa-
ble of interfacing with all Linux based systems within the QueensGate
Grid (QGG) campus grid, automatically determining the best resource
for a given job. This allocation should be done without requiring any ad-
ditional user effort, or impacting established user workflows. The frame-
work was developed to tackle this problem. It was simulated, utilising
real usage data, in order to assess suitability for deployment. The re-
sults gained from simulation were encouraging. There is a close match
between real usage data and data generated through simulation. Fur-
thermore the proposed framework will enable better utilisation of cam-
pus grid resources, will not require modification of user workflows, and
will maintain the security and integrity of user accounts.
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Chapter 1

Introduction

1.1 An overview of ’The Grid’

Grid computing was defined in the 1990s as computing infrastructure which could

be configured in such a way to allow large-scale resource sharing (Magoulès,

2010). Within computational science, grids play an important role in making dis-

parate resources accessible to end users. A great deal of work has been done

in this field producing a number of grid middlewares. In this project, the currently

available grid middlewares will be considered. Primarily, grid middlewares inte-

grate with underlying cluster middlewares and schedulers, so it was important to

consider these also. There is increasing pressure for grid solutions to be able to in-

terface with a wider range of end resource types. Cloud computing is becoming an

attractive option for allowing system scaling to be performed easily. Traditionally,

grid middlewares have generally been considered to be rather complex by users

and administrators alike. This is largely due to the security measures required

when sharing resources across global networks. Consequently, classic grid mid-

dlewares are not looked upon favourably when considering unification of resources

within an institution.
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1.1. An overview of ’The Grid’

1.2 The University of Huddersfield QueensGate Grid

At the University of Huddersfield (UoH) the High Performance Computing (HPC)

and High Throughput Computing (HTC) resources fall under the umbrella of the

QGG campus grid. The QGG is made up of a number of distinct resources. While

there is a common connection point for most systems, upon reaching this common

point users would branch out to their preferred system. Some systems are entirely

independent and must be accessed directly. This multiple system configuration

has serious drawbacks. System load balancing is almost impossible to achieve, as

this would require users to investigate the state of each suitable resource before

submitting a job to any one of them. In some cases, the user may not even know

that a resource is suitable and therefore it could be completely overlooked. In addi-

tion, more training is required to enable users to use differing systems. Dedicating

administrator and user time for training on a single scheduler or batch system can

be difficult, even more so in a situation where 4 or 5 different systems may be in

use. A novel solution would be required to overcome this situation, present minimal

impact on users and improve utilisation of existing resources.

1.3 Aims and Objectives

The overall goal of this project was to produce a method for allowing better unifica-

tion of campus computing resources. The key objectives for success were:

• Unify submission for as many computing resources as possible.

• Minimise any possible impact to end users.

• Minimise requirement of additional administration time.

• Maintain integrity of user accounting.

16



1.1. An overview of ’The Grid’

Deliverables for this project were considered to be a working proof of concept de-

ployment which would adhere to the aforementioned guidelines.

1.4 Methodology

In order to achieve the research aims and objectives a survey of current grid mid-

dleware was conducted. UoH campus grid systems and workflows were investi-

gated, with focus on grid security and deployed job schedulers. A simulator was

designed and implemented, which was verified against existing real usage data.

A novel job submission framework was designed, implemented and evaluated to

enable better utilisation of existing systems within the QGG, and reduce impact on

user workflows. This thesis presents the body of work, which has been carried out

for this research study, and is organised as follows:

• Chapter 2 - Investigate existing Grid middlewares, batch systems and cloud

technologies, also considering existing deployments.

• Chapter 3 - Analyse UoH resources and current architecture.

• Chapter 4 - Investigate Grid security.

• Chapter 5 - Propose and design a solution for easier access and better utili-

sation of available resources.

• Chapter 6 - Propose a suitable method for evaluation of developed solution.

• Chapter 7 - Implement and evaluate proposed solution(s).

17



Chapter 2

Literature Review

2.1 Definition of a Grid

As stated in the Introduction grid computing was defined during the mid 1990s as

computing infrastructure which could be configured in such a way to allow large-

scale resource sharing (Magoulès, 2010). This definition was further clarified by

Ian Foster in 1998 (Marowka, 2002), when he stated that a grid should adhere to

three fundamental rules:

• Provide coordination for resources which would not otherwise be centrally

controlled.

• Use standardised and preferably open-source interfaces and protocols, which

should remain as general purpose as possible.

• Provide a significant quality of service.

(Foster & Kesselman, 1999)

From here it was recognised that such definitions needed to be part of a standard-

ised framework and, as such, the Open Grid Service Architecture (OGSA) was

18



2. Literature Review

proposed in the paper ’The Physiology of the Grid, An Open Grid Services Ar-

chitecture for Distributed Systems Integration’ by Ian Foster, et al in 2002 (Foster,

Kesselman, Nick, & Tuecke, 2002). The OGSA, Version 1 was published in Jan-

uary 2005 (Foster et al., 2005) and has since become the standard to which almost

all grid oriented software development adheres. Open standards are a very high

priority in the OGSA in order to allow many different systems to be interoperable.

However with all the additional complexities/customisations of different hardware

and software stacks maintaining open standards is not always possible. Funda-

mentally the purpose of a grid is to allow disparate resources, such as CPU/hours,

Memory/core and storage space, to be utilised by a pool of users. These users,

who are potentially separated by thousands of miles, can then use these resources

in order to solve a common problem. The aim of grid infrastructure is to supply

greater resources than may be available locally and to allow work to be done much

faster. The grid middleware allows jobs to be passed to a local batch system or

scheduler which is managing an appropriate geographically distributed resource.

2.2 Grid Middleware Currently in Use

A vast amount of work has been done around the world to produce software that

can realise the goals set out by the OGSA. In this section we will look at some of

the most commonly used middlewares available today.

2.2.1 The Globus Toolkit

The Globus Toolkit (GT) has become the de-facto standard in grid middleware.

It is widely used across across Northern America and to a lesser extent across

Europe. Generally speaking most, if not all, other grid middlewares are capable

of using the Globus gatekeeper. The GT also provides a simple Certificate Au-

19



2. Literature Review

thority (CA) which helps system administrators lay the foundations for grid based

authentication. These components, along with the rest of the toolkit, ensure that

the GT can enable systems to easily join larger grids so long as certificates are

mutually trusted. The major drawback of the GT is that it lacks any kind of re-

source discovery which can be accessed by the end user from their submit node.

Instead GT Metacomputing Directory Service (MDS) can be configured to publish

aggregate data to websites which, if made available, can be accessed by the user.

This also means that the GT itself cannot perform any kind of load balancing and

all decisions on resources where a job will run are left to the user. All the compo-

nents which make up the GT, including the more recent Web Service components

are shown in Figure 2.1.

Figure 2.1: GT Architecture. (Boverhof, 2005)

20



2. Literature Review

2.2.2 EMI 3

The current European Middleware Initiative (EMI) release is European Middleware

Initiative V3 [Monte Bianco] (EMIv3). This is the third and final version of grid

software to be released under the EMI. Within this middleware architecture, high-

lighted in Figure 2.2, users log into a User Interface (UI) from which all resources

in their Virtual Organisation (VO) can be discovered through the use of a Berke-

ley Database Information Index (BDII) based system, and following the Grid Lab-

oratory Uniform Environment (GLUE) version 2 schema. Jobs are submitted to

the Workload Management System (WMS) which decides which Compute Ele-

ment (CE) is best suited for the job, based on user requirements and CE loading

among other factors. EMI was the middleware of choice for the UK based National

e-Infrastructure Service [Formally National Grid Service (NGS)] (NES). Both of

these projects are now at the end of their respective funding cycles. The National

Grid Service (NGS) has been almost fully dismantled, with just a few services re-

maining which are maintained and funded through other sources. The EMI will

maintain full support until 30/04/2014, at which time, support for individual compo-

nents will revert back to individual software developers.

The EMI WMS, which was used as part of the UK national e-infrastructure, was

essentially the WMS that was developed under the gLite project. gLite was brought

in as part of this larger European project. (Brennan et al., 2013) This middleware is

a very functional software which can cope with a great many resources, automating

their discovery and dealing with load balancing very well. However it does in its own

right require a large amount of resources. In order to have a functional EMI WMS

a minimum of five servers are required. While this is acceptable in a national level

service, such high resource demands can be difficult to cope with in an institutional

setting. One other problem with this system is that, even with a GT installation

High Throughput Condor (HTCondor) (as HTCondor was only supported in gLite
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3.1) systems seem unable to get the results of jobs back to the WMS. Also, it is

unable to support any kind of cloud platform.

Figure 2.2: UI/WMS Architecture

2.2.3 OSG

The Open Science Grid (OSG) middleware is widely adopted across the USA, and

directly integrates with TerraGrid. The OSG project continued the work started

by the Virtual Data Toolkit (VDT) project created at The University of Wisconsin-

Madison, which is no longer in active development. This project is similar to the

EMI. It is fundamentally a collection of software brought together under a common

banner to better enable national sharing of resources because everyone is using

the same software stack. The software used in the OSG middleware is centred
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around the GT, but with explicit support for plugins such as Local Credential Map-

ping System (LCMAPS) to enable VO support. It gives a standardised framework

for all software, right down to the compute node level. As this system is essentially

based upon the GT model, use at a command-line level still suffers from the same

resource discovery problems that are present in the donor middleware. However,

under the OSG project a web based UI called Bosco has been developed ex-

plicitly for Distributed High Throughput Computing (DHTC) and makes resource

discovery much more convenient. With Bosco, users can log into a web inter-

face which allows them to submit jobs to local resources, including Portable Batch

System (PBS) and HTCondor based systems, all OSG resources including cloud

technology based systems and any other resources that are explicitly linked with

the institution that the user is connecting from. The OSG middleware has not been

widely adopted across Europe as the EMI project was already in place and the

default pre configuration of the software is very biased towards USA based sys-

tems. However, considering the EMI project is coming to an end, the extended

functionality of the OSG system does seem to indicate that it could be a viable

alternative

23



2. Literature Review

2.3 Batch Systems Currently in Use

There are a wide range of batch systems and schedulers in use within the re-

sources available to researchers across the globe. Some batch systems, such

as HTCondor, were developed to make better use of existing resources but most

are targeted at making the best use of resources on dedicated machines. In the

following section some of the most popular solutions will be considered.

2.3.1 PBS, OpenPBS, PBSPro and Torque

The PBS resource manager currently exists in two different ’flavours’. When the

PBS project initially started in the early 1990’s it was developed by Veridian In-

formation Solutions and funded by National Aeronautics and Space Administra-

tion (NASA). Not long after the initial development, Veridian released a commer-

cial version of the software which was called PBSPro. It then followed that the

open source version came to be called OpenPBS. Within three years PBSPro

was acquired by Altair Engineering who discontinued development of OpenPBS.

At this point, development of the open source product was taken over by Adap-

tive Computing who, having no rights to the PBS brand, changed the name of the

software to Torque. Since that point the status-quo has been maintained with the

paid for commercial version remaining PBSPro and the open source version being

Torque.(Samuel, 2008)

PBS consists of three distinct parts, pbs server, pbs sched and pbs mom. There

is one pbs mom for each compute node within a system, all of which communicate

back to a single pbs server instance. The pbs server makes a queue for requested

jobs, delegates jobs to the pbs moms and collects all job related information such

as time taken etc. The bundled scheduler, pbs sched, is an interchangeable part

of the system which can be replaced with alternatives such as Maui, Moab or even
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a custom scheduler. The purpose of the scheduler is to decide which jobs should

run next, depending on which resources are available. While PBSPro is capable

of running under Microsoft Windows R© as well as with *NIX based systems, this

capability has not been extended to Torque, which means that Torque is unsuitable

for any software not built against a *NIX based system. (Beer, 2008)

2.3.2 Oracle Grid Engine

Sun Grid Engine (SGE) started its life codenamed Codine. It was originally devel-

oped in the early 1990’s by Fritz Ferstl and was based on Florida State University’s

Distributed Queuing System (DQS), and eventually evolved into Global Resource

Director (GRD). During August 2000 GRD was acquired by Sun Microsystems who

renamed the software SGE and, by 2001, they had released versions for Solaris

and Linux along with making the source code available Making the source code

avaliable helped fuel adoption of the software. SGE has recently undergone an-

other change of name to Oracle Grid Engine (OGE) and the software is currently

available in both open source and commercial form.(Univa Corporation, 2013)

The OGE software functionality is provided through three system daemons.

These are known as sge master, sge schedd and sge execd. The sge master

controls cluster management and scheduling, sge qmaster maintains information

about queues, hosts, jobs, user permissions, and current load. sge schedd is the

scheduling daemon and maintains an up-to-date view of the cluster status The

scheduling daemon makes the decisions pertaining to which jobs are dispatched

to which queues, how to reorder and change the priority of jobs to maintain the

best use of the system. These decisions are then passed to the sge master for

actioning. The execution daemon, sge execd is responsible for the queue on the

compute node upon which it is running, the execution of the jobs in that queue

and the reporting of job statistics and host load, back to the sge master.(Oracle
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Corporation, 2013)

2.3.3 LSF

Load Sharing Facility (LSF) is a system that is developed and distributed by Plat-

form Computing Corporation (PCC). It is a general purpose software, targeted at

distributed computing systems. LSF can be considered in terms of separately li-

censed components which make up the suite. These components are comprised

of LSF Multicluster, LSF Batch and LSF JobScheduler all of which run upon the

LSF Base system.

Figure 2.3: LSF Architecture.

Figure 2.3 shows the architecture of LSF within a homogenous system. The

base system is composed of three components. These are: the Load Sharing

Library (LSLIB), Load Information Manager (LIM) and Remote Execution Server

(RES). The LSLIB provides a standard Application Programming Interface (API)

for all LSF components to communicate with the LIM and RES, which are both

daemons running on the underlying operating systems. All of which allows the

user to be presented with a consistent platform independent environment. This
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middleware is able to run on a very broad range of different operating systems,

making it very versatile, however this is provided through a paid for model only

(Platform Computing Corporation, 1996).

2.3.4 HTCondor

HTCondor is a middleware which seeks to utilise CPU cycles which would other-

wise be ’wasted’ within an environment where there are many standard desktop

computers. Many large institutions provide a large number of workstations to be

used for general day to day tasks, The problem is that for a significant amount of

time these machines are left idle, leaving an expensive resource going to waste.

HTCondor runs a service/daemon on Microsoft Windows R© or *NIX based systems

which advertises itself as a worker node to a management server. This manage-

ment server, or head node, accepts jobs from a user and then forwards it on to a

suitable idle worker node for execution, employing underused resources to solve

computational problems. One potential drawback with this system is that when

a user wishes to directly use a machine which is being utilised by the system,

HTCondor must immediately stop any processing so there is no impact on the

user. This can cause a loss of data as, in most cases, any work already done is

’dumped’ and the job is passed to another worker node which will start the pro-

cess from the beginning, making the software unsuitable for long running jobs.

The team developing the middleware developed a solution which can mitigate this

problem somewhat. Where there is source code available for the software being

used, HTCondor has the ability to compile an executable with specific ’hooks’ al-

lowing checkpointing, meaning that the worker node can periodically report a jobs

progress along with any data to a checkpointing server. If a worker node then has

to ’dump’ that job then the next worker node can get the progress information from

the checkpoint server and continue the job from the point that the last checkpoint
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save was made, leading to far fewer lost cycles and much better overall utilisa-

tion of available systems. Another limitation of the HTCondor middleware is that

although it is capable of running parallel jobs which require a Message Passing In-

terface (MPI) environment, to do this requires that a HTCondor pool has specially

configured dedicated machines and cannot be achieved within the standard cycle

stealing model. (Thain, Tannenbaum, & Livny, 2005)

2.3.4.1 POVB

Within the HTCondor ecosystem there is a general shortcoming. This is because

most institutional general purpose computers with Microsoft Windows R© based op-

erating systems installed, whereas a large degree of computational science re-

quires *NIX type systems. This drawback is addressed by the Pool Of Virtual

Boxes (POVB) project. POVB can be installed upon a Microsoft Windows R© based

host. During this process a Linux based VirtualBox Virtual Machine (VM) is created

which has HTCondor installed. The created virtual machine is then controlled by

POVB passing required input to the virtualised HTCondor instance. This configu-

ration creates a Windows R© host that advertises itself to the HTCondor head node

as a Linux resource and can process any Linux based software. The VM within

POVB is always started at system boot time and controlled dynamically. When a

user is physically present and using the resource in question then the VM is scaled

back, in terms of memory and Central Processing Unit (CPU) usage, as far as

is possible to minimise any impact of this system on the user. Once the system

has been idle for a predetermined period of time then the VM is ’woken up’ and

the resources available to it are increased to allow for maximum utilisation of the

resource.(Herzfeld, Olson, & Struble, 2010)
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2.3.5 Warewulf Cluster Manager

Warewulf is a scalable systems management suite originally developed to man-

age High Performance Computing (HPC) Linux clusters. It was focused on general

systems management with scaleability as a primary concern. The system includes

a framework for system management, configuration, pre developed image provi-

sioning or installation, monitoring for filesystem changes, and event notification.

Warewulf is developed around a modular architecture allowing behaviour modifi-

cation through the development of additional modules. This provides a scaleable

and customisable cluster provisioning tool which is suitable for a wide range of

applications within HPC environments. Warewulf can configure a shared environ-

ment within a cluster via an image-like file system on the master node. These

images can then be provisioned to designated nodes through Pre-Boot Execution

Environment (PXE) utilising Trivial File Transfer Protocol (TFTP) (US Department

of Energy, 2013).

2.3.6 OSCAR

Open Source Cluster Application Resources (OSCAR) allows administrators, who

may have a limited experience of *NIX type systems, to install a Beowulf or classic

type HPC cluster. The OSCAR packages contain many common HPC cluster soft-

wares, for example Torque and C3 tools. These packages are presented through

a dedicated management tool allowing simple selection of packages, with a great

deal of the configuration being handled automatically. It also provides support

for administrators to develop custom packages to produce any required behaviour

outside the scope of the standard packages (Kim, 2009).

OSCAR is installed onto a HPC cluster head node on top of a supported

Linux distribution. The supported distributions include Red Hat R© Enterprise Linux R©
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(RHEL), Debian and Ubuntu, although only RHEL supports the OSCAR suite in its

entirety. During installation the system administrator selects the packages required

for installation. OSCAR then installs the required packages on the head node and

also creates an installation specific disk image for use on the compute nodes.

This image is then pushed to, and installed on, the configured nodes through PXE

and TFTP. This provides an easily scaleable and robust suite with very strong

management capabilities, which was used to win the first ever Cluster Challenge

competition held at Supercomputing 2007 (Greidanus & Klok, 2008).

The default OSCAR setup directly supports scientific computing using a MPI im-

plementation; several MPI packages are included in the default OSCAR packages.

OSCAR makes use of the ’modules’ command/binary to allow switching between

multiple versions of MPI versions either at system or user level (Naughton et al.,

2002).

2.4 National Grids: Past and Present

In this section we will look at how grids have been implemented at a national and

international level. These grids versatile as, by their very nature, they potentially

have extremely large user bases. Challenges like this are difficult to overcome

and, while much work has been done to make grids efficient and user friendly,

there are still many areas which warrant further work. This is especially true in the

area of interoperability to enable the use of as many different software packages

as possible.

2.4.1 National e-Infrastructure Service (NES)

The NES was a Joint Information Systems Committee (JISC) and Council for the

Central Laboratory of the Research Councils (CCLRC) funded project which ran
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between 2003 and 2013 with the mission ”To provide coherent electronic access

for UK researchers to all computational and data based resources and facilities

required to carry out their research, independent of resource or researcher loca-

tion” (Richards, 2007). The service was initially composed of compute clusters

at Oxford and Leeds Universities, a data cluster at Manchester University and an

e-Science funded data centre. To bring this infrastructure together the GT (then

in version 2) was used. This facilitated the provision of a UK CA allowing users

to register with the service and have secure credentials issued. These credentials

could then be used to access the resources provided within the grid. Grid Security

Infrastructure (GSI) enabled Secure SHell (SSH). It was available on some sys-

tems to allow secure interactive terminal sessions, secure file transfer. The Globus

gatekeeper allows for direct submission to service endpoints. By 2007, with phase

2 up and running, the core services provided by the NES had grown significantly

into the following list;

• UK CA and Registration Authority (RA) Network

• Helpdesk / User Support

• Documentation

• Training (www.nesc.ac.uk)

• Website(s), Wiki

• MyProxy (National Service + Java Client Upload tools)

• Portal (NGS Application Repository)

• INCA / Grid Integration Test Script Monitoring

• Berkeley Database Information Index

• Storage Resource Broker

• User Accounting System Registration, Accounting, Policing

• Advanced Reservation

• gLite Resource Broker / UI

31



2. Literature Review

• Grid Operations Centre DataBase (GOCDB)

• GSISSH Term

• Grid RegIstry with Metadata Oriented Interface: Robustness, Efficiency, Se-
curity (Universal Description, Discovery, and Integration)

These services were being utilised by 500 users and were underpinned by 48

compute nodes with Dual Socket Dual Core AMD Opteron 280 processors, 8GB

memory, 2x80GB disks, Myrinet 2000; 8 compute nodes with Quad Socket Dual

Core AMD Opteron 280 processors, 32GB memory, 2x80GB disks, Myrinet 2000;

8 storage nodes Dual Socket Dual Core AMD Opteron 280 processors, 8GB mem-

ory, 2x80GB disks, Myrinet 2000, Fibre HBA. 5 x 12 TB Infotrend Storage Arrays

and a Qlogic 5200 SANbox Testing using HPL on 240 Cores gave 934Gflops (81%

peak) (Richards, 2007). When funding for the NGS ended in 2013 there were 10

partners and 19 affiliates (NGS, 2013) providing and utilising a wide range of re-

sources which were largely coupled together with the EMI UI/WMS middleware. All

of the centrally managed infrastructure, apart from the CA, have now been taken

down and resource sharing has to be to be negotiated between individual institu-

tions.

2.4.2 Extreme Science and Engineering Discovery Environment

The Extreme Science and Engineering Discovery Environment (XSEDE) falls into

four separate categories. Is can be considered as project, an institution, a set

of services and a VO. XSEDE provides widely distributed infrastructure, support

services and technical expertise. XSEDE supports advanced computing, high-

end visualisation, data analysis, and is funded by the National Science Foundation

(NSF). The XSEDE project has a $121 million grant award made by the NSF to

the National Center for Supercomputing Applications (NCAS) at the University of

Illinois and its partners in order to run for five years. XSEDE is the successor to
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the NSF funded TeraGrid project. Institutionally XSEDE is a collaboration of 18

partner organisations working together to deliver a series of services. As a set of

services, XSEDE integrates clusters, visualisation, data collections and software

into a unified virtual system. XSEDE also provides authentication and security

mechanisms allowing access to file systems, remote job submission, monitoring,

file transfer services, support services and a user portal (Reilly et al., 2013).

2.4.3 European Data Grid

The main goal of the Data Grid project was to develop an infrastructure that would

enable scientific collaboration, bringing together researchers regardless of their

geographical location to share data resources on a grand scale. The project de-

veloped software solutions and test beds to handle many petabytes of distributed

data, hundreds of computing resources and many simultaneous users. The test-

bed environment spanned twenty major sites in Europe, the USA, and Asia-Pacific.

It was operational throughout the project and offered more than one thousand

CPUs and several terabytes of storage. The test bed was used to explore the

potential grid technologies, in particular grid schedulers, data and fabric manage-

ment systems and grid information services. It was tested by applications from

multiple scientific disciplines. DataGrid fostered the wide-range use of grid com-

puting by allowing researchers to assess the benefits of grid technology in a large-

scale test. Additionally, an extensive tutorial programme targeted end-users, with

more than twenty events across the globe, which were attended by around seven

hundred people who received training. The resources from these sessions were

made available to universities and were used in several university courses. The

software and infrastructure developed for Data Grid project was evaluated in high-

energy physics, biology and earth sciences. These applications contributed to the

development of high-level tools like the portal Genius that made grid environments
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easier to use. The DataGrid software is available under an open source, OSI-

approved software licence (Gagliard, 2001).

2.4.4 World Community Grid

World Community Grid runs on Berkeley Open Infrastructure for Network Com-

puting (BOINC), developed at University of California, Berkeley, USA with funding

from the NSF and sponsorship from IBM. This allows anyone to install a service

on their personal computer which will enable their computer, or more specifically

idle CPU cycles, available to users that submit jobs to the World Community Grid.

This type of crowd-sourced grid has the potential to provide a great deal of com-

putational power for a very low cost. Made possible by using compute time that

may otherwise go un-utilised. However, due to the nature of using domestic ma-

chines which are not always on, the amount of compute resources can vary greatly.

(World Community Grid, 2013)

2.4.5 OurGrid

Cycle stealing Peer to Peer grid, Developed in Java to provide a free to join and free

to use distributed grid for individuals. This grid is not tied to any large resources

or clusters and has been running since 2004. Again as a cycle stealing grid the

potential for compute power is enormous. The same issues are present here as

in WGC discussed above. Maintaining suitable levels of available resources can

prove challenging. (Mowbray, 2007)
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2.5 Campus Grids

In this section we will consider some current campus grids and how the local ad-

ministrators have overcome challenges to deliver services tailored to their users.

2.5.1 The University of Reading Campus Grid

The University of Reading grid is fundamentally a HTCondor pool which is com-

posed of around five hundred worker nodes. These worker nodes have Microsoft

Windows R© XP and CoLinux installed, allowing both Windows R© and Linux binaries

to be run, without the need to have multi-boot systems. As only a single system it

is not really a true grid but simply a number of HTCondor pools with campus wide

flocking enabled. (University of Reading, 2013)

2.5.2 University of Cambridge Campus Grid

According to Calleja et al. (2008) CamGrid, the computing grid at the University

of Cambridge, is now primarily composed of HTCondor pools. There is a large

centrally managed pool which is augmented by other flocked pools administered

by individual schools within the university, allowing campus wide resource sharing.

While CamGrid has no central provision for a PBS based cluster it is potentially

supported through allowing HTCondor to submit jobs to PBS. Therby users to

run jobs which require tightly coupled MPI networks. There are some issues with

this system, one being that the PBS queue must be on the same machine as the

condor schedd. This means that any PBS based resource which is added in this

manner will not truly be an integral part of the CamGrid as a whole. The systems

implemented in this way will only be accessible from a school controlled HTCondor

head-node and not from the grid primary entry point which is controlled centrally

(CamGrid and PBS University Computing Service, 2013). While HTCondor can
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natively run MPI type jobs it is far from ideal as systems in HTCondor pools are not

very tightly coupled. Considering this along with the fact that HTCondor requires

dedicated resources for MPI universe jobs and cannot flock MPI jobs between

pools, it highlights a significant weakness within the deployment. (Thain et al.,

2005)

2.5.3 University of Oxford Campus Grid

The University of Oxford recognised almost a decade ago that with individual

schools purchasing resources to fulfil their own needs, it was very likely that a situ-

ation would arise where some departments may have excess resources, whereas

others may struggle to complete their work on what was available to them. To

avoid this situation, and to allow researchers access to external resources, the de-

cision was taken to implement campus wide resource sharing through a common

middleware. This system was to provide data storage along with computational re-

sources. Built around four main components, an information server, resource bro-

ker, VO manager and a data vault, the system became known as OxGrid (Wallom

& Trefethen, 2006).

Figure 2.4 shows that OxGrid provides a single ’control system’ which is the gate-

keeper, that all users of the system, internal or external to the university, must

connect through it. This control system is built around a VDT software stack util-

ising a Condor-G based Resource Broker (RB) and encompassing VO support.

Through this the users, with personal X-509 certificates, are able to utilise PBS,

SGE and HTCondor through a single submission interface (Wallom, 2007).

In order for this system to work all resource endpoints must advertise their capabil-

ities and supported VOs to an information server. When a user submits a job, the

RB must first check a users VO membership with a Virtual Organisation Manage-
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Figure 2.4: OxGrid Diagram (Wallom & Trefethen, 2006)

ment System (VOMS) server. Then it checks which resources that particular VO is

able to use, at which point a job can actually be submitted to one of the shortlisted

endpoints utilising the GT (Wallom, 2007).

2.5.4 University of Manchester Campus Grid

The University of Manchester (UoM) describes clusters interconnected through the

use of GT as ’super-clusters’ which can then be considered as a single shared re-

source (University of Manchester, 2013). According to Allan (2011) the UoM main-

tains a total of 69 nodes with 2.5TB of storage, all made available to researchers

through the GT middleware. The GT GSISSH is used as the primary access mech-

anism for this system, therefore all users must be in possession of a valid X-509

certificate. The underlying middleware is PBS. Although these systems are capa-

ble of being shared nationally through the GT it seems that as there is currently no

funding model for national sharing, The UoM has decided to only maintain internal

access to these systems.
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2.6 Distinction Between HPC and HTC

What are the differences between HPC and High Throughput Computing (HTC)?

HTC differs from HPC in that it is designed to process tasks that require fairly

short processing times, usually minutes or hours and are either purely serial or

embarrassingly parallel, and need to be run through hundreds or thousands of

iterations. Whereas HPC systems are designed to handle tasks which take large

amounts of CPU time and/or require tightly coupled parallel networks.

2.7 Cloud Computing

Cloud computing has evolved from Grid computing and research in the field of HPC

(Foster, Zhao, Raicu, & Lu, 2008). Cloud computing can provide Infrastructure as

a Service (IaaS), while Grid and HPC generally provide Platform as a Service

(PaaS) and Software as a Service (SaaS). This allows users of a Cloud system

to access, via a web interface or methods such as SSH, infrastructure which has

peen provisioned to their specifications. Cloud systems make excellent use of

resources allowing, for example, very high memory instances to be provisioned

which only exist for the time they are being used. This means institutions and

companies using Cloud technology can very effectively scale resources, without

having to constantly fund purchases of hardware which may only be useful for a

single task (Chang, Bacigalupo, Wills, & De Roure, 2010). There are a number of

commercial Cloud providers, such as Amazon’s EC2 and Azure. However these

use proprietary software and are obviously pay-per-use which generally puts them

out of reach of institutions such as the University of Huddersfield (UoH). These

are also often put out of reach for research purposes, due to the pay per use

model, as it can be difficult to determine costs at the beginning of a project. A
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study performed at the National Technical University of Athens, Greece found it

would have been cheaper to create private cloud rather than provision resources

on commercial cloud services (Konstantinou, Floros, & Koziris, 2012). To that end,

we will only consider open source Cloud middlewares within this section.

2.7.1 OpenStack

OpenStack first appeared in late 2010 and was developed as a joint project be-

tween Rackspace Hosting and NASA, with the aim to provide a standardised cloud

platform available to all. In late 2012 the OpenStack Foundation was formed and

assumed responsibility for the project. Since that time over 200 companies have

joined the foundation to help either financially or with various other aspects of the

business (The OpenStack Foundation, 2013). OpenStack has a 6 month release

cycle and is currently fully supported by Debian, Ubuntu and RedHat. The Open-

Stack deployment can change quite drastically between releases, making it a po-

tentially problematic software option for system administrators. However going for-

ward, this may become less of an issue, due to enterprise level distributions such

as Red Hat Distribution of OpenStack (RDO). OpenStack is released under the

Apache Licence and is comprised of nine individual components, some of which

are essential for a deployment and some which are not.

Figure 2.5 shows the communication paths present between each of the Open-

Stack modules. Nova Compute is the module responsible for integrating with an

existing system hypervisor, such as Kernel-based Virtual Machine (KVM), to con-

trol the actual instances of VMs that are spawned to service user requests.

Swift is the object storage module which offers data replication across all available

hardware, ensuring data is always available even in the case of a disk failure.

Cinder block storage allows various forms of storage to be attached to instances

within the cloud, allowing users to have immediate direct access to existing data
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Figure 2.5: OpenStack Architecture

within their cloud provisioned resource. This module is also capable of taking snap-

shots to enable backing up and restoration of data.

A graphical interface for users and administrators is provided over HTTP in the form

of the Horizon dashboard. Horizon allows administrators to manage users, groups

and quotas while allowing users to manage their account and directly create and

interact with instances.

Identity services are provided through Keystone, which holds a central database

of users with mappings for each resource that a user has permission to use. Key-

stone supports authentication using passwords, token based authentication and

Amazon Web Service type logins.

The Glance service manages all aspects of the VM images, including advertising

to other services what images are available, the management of snapshots and a

users personal images.(Jackson, 2013)

Networking in the latest versions of OpenStack is handled by Neutron, formerly

Quantum. This provides a framework which is capable of deploying almost any
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network topology to instances through the use of software defined networks, while

also handling IP address assignment for instances.

The Heat service provides a template based management service, which enables

the automatic creation of instance stacks. All usage based components report us-

age back to the accounting system Ceilometer that provides global billing across

an OpenStack deployment. (The OpenStack Foundation, 2013)

2.7.2 Eucalyptus

Eucalyptus in an open source Cloud middleware which maintains API compatibility

with the commercial Amazon Web Services (AWS), the architecture for which is

shown in Figure 2.6. This is a very attractive prospect for organisations which may

need to scale beyond their own resources into the AWS cloud with minimal user

or administrator effort.(Eucalyptus Systems, Inc, 2014). Nurmi et al. (2009) states

that Eucalyptus was developed to provide a simple modular cloud platform that was

designed with popular academic infrastructure in mind. Within this project, consid-

eration was also made for maintaining a user interface which would be intuitive for

existing HPC and Grid users, while also maintaing interoperability with those kinds

of systems and associated software.

A complete Eucalyptus installation comprises of five individual components,

which are briefly outlined below. The Cloud Controller service is central manager

for Eucalyptus, gathering information from and delegating work to other services.

This also provides the administration and user web based interfaces for interact-

ing with the system. Networking and VM provisioning is handled by the Cluster

Controller. This is achieved via a Node Controller service, which runs on the VM

capable hosts, to report system capabilities to the Cluster Controller thereby al-

lowing resource allocation decisions to be made and VM requests to be returned.

All images and snapshots need to be stored in a location that is available to all
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Figure 2.6: Eucalyptus Architecture

components of the system. This is made possible by the Storage Controller which

is accessible through Walrus. Walrus provides users with a method for storing

persistent data such as image snapshots. This service is also supports Amazons

S3 and is compatible with Amazon Machine Image management interface.(Wadia,

2012)

2.7.3 Ubuntu Enterprise Cloud

Ubuntu Enterprise Cloud (UEC) was an Ubuntu branded version of Eucalyptus.

This however was stopped in 2011 when Canonical decided to switch to Open-

Stack for Ubuntu cloud integration (Steven J. Vaughan-Nichols, 2012).

2.7.4 Proxmox

Proxmox is not truly a Cloud middleware in the current sense as it can not scale

seamlessly across multiple compute nodes. What it does provide is a management

interface to KVM capable resources (Proxmox Server Solutions GmbH, 2013). This
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allows VMs to be provisioned in the more traditional way, using standard type in-

stallations and whole instance clones. However Proxmox is incapable of dealing

with whole system management such as network management or load balanc-

ing. It is effectively just a Graphical User Interface (GUI) for standard Linux KVM

(Proxmox Server Solutions GmbH, n.d.).

2.8 Grid/Cluster Simulation

A number of existing grid simulation tools, SimGrid (Casanova, Legrand, & Quin-

son, 2008), GridSim (Buyya & Murshed, 2002a) and Maui’s simulation mode exist.

These allow potential changes, or entirely new systems, to be evaluated prior to

actual implementation.

SimGrid is a tool which provides a comprehensive simulation framework for

parallel systems. The main components of this simulator are focused around the

testing of new simulation algorithms and evaluation for potential performance of

newly developed parallel applications (Quinson, 2009),(Casanova, 2001).

GridSim is a Java based toolkit which allows for discrete event simulation of job

scheduling within grid resource brokers (Buyya & Murshed, 2002b). This toolkit,

with some developed extensions, is capable of testing Quality of Service (QoS) at

a grid level. Work has been completed to show that modelling of a system where

job re-negotiation may be required when a resource is unable to meet contractual

obligations. Such conditions cause violations of Service Level Agreement (SLA)s

potentially causing avoidable financial burden. The GridSim toolkit allows these sit-

uations to be avoided by generating results which can provide better constraints for

SLAs at the time of creation, making breaches of such agreements more unlikely.

The Maui simulator is capable of evaluating the behaviour of differing Maui poli-

cies or hardware configurations. This is achieved through the use of workload and
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resource trace files. However the behaviour of this simulator is not very trans-

parent, making it difficult to evaluate the results it generates. Upon completing a

simulation the Maui simulator processes data to give metrics presented in % of

system efficiency. (Adaptive Computing, 2014)

2.9 Hadoop

Hadoop is defined by Lam (2010) as a framework, developed as open source,

for the storage and processing of distributed internet-scale data, more commonly

referred to as ’Big Data’. Hadoop is essentially made up of two components. The

storage mechanism which handles data within a Hadoop cluster, called the Hadoop

Distributed File System (HDFS), and the data processing component of the system

which is Map/Reduce White (2010). Hadoop is essentially a cluster middleware,

utilising Java Virtual Machine (JVM), specifically developed to process extremely

large datasets. A Hadoop comprises four components:

• JobTracker - A Master control node which deals with job scheduling and sub-

mission

• NameNode - A HDFS Controller node responsible for data storage and man-

agement

• TaskTracker - Compute elements which deal with the actual processing of

data within the HDFS.

• DataNode - Compute elements which have storage that forms part of the

HDFS.

TaskTrackers and DataNodes are commonly combined into a single piece of hard-

ware, allowing data to be processed by the same node upon which it is stored.

(Chandar, 2010)
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The HDFS is based upon the proprietary Google File System (GFS). This file

system functions by splitting all data into blocks of a pre-determined size, which

are than distributed throughout the system. During distribution these blocks are

also replicated in triplicate, and each replica is stored on a different node. Thus

giving the HDFS very good inherent resilience to hardware failure (Rajaraman &

Ullman, 2012). Java is used to provide the Map/Reduce system within Hadoop,

This is also based around proprietary work by Google outlined by Lam (2010). As

suggested by the name Map/Reduce actually consists of two distinct processes.

The Map process takes input data in the form of key/value pairs and performs a

user defined operation upon that data. The output from this stage is considered

intermediate data and is collected by the Reduce function which consolidates all

Map output to generate final results Dean and Ghemawat (2004). A basic overview

of this process is shown in Figure 2.7

Figure 2.7: Basic Map/Reduce Workflow. (Rajaraman & Ullman, 2012)
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2.10 Summary

In this section we have considered multiple grids and grid middleware in use across

the globe. It has been shown, particularly with the example of the UK NES, that

funding for national and international grid systems can be difficult to maintain.

This is an issue which seriously needs addressing, either by somehow creating

a much more stable funding model (European Commission, 2013) or, by develop-

ing a global flexible grid framework to ensure middleware interoperability without

the need for centrally controlled projects (Foster, Kesselman, & Tuecke, 2001).

These large scale projects generally aim to promote the use and development of

middleware which is highly interoperable (Kranzlmller, Lucas, & ster, 2010) and

sustainable. However, when centralised projects come to an end there will be

concerns that the software developers are likely to be unconcerned about the in-

teroperability of software they do not own.

The institutions, who had a previous commitment to a nationally or internationally

supported middleware, may be left in a position where it is necessary to maintain

excessively resource intensive services. This point will be considered further in

chapter 3 using the example of the systems which were maintained but essentially

unnecessary after the end of the UK NES funding cycle.

Work carried out on grid systems over the past 20 years has paved the way for

cloud computing. This allows resources to be utilised in a much more efficient way

than ever before. However, cloud systems have not maintained close links with

current grid infrastructure and there are no standard middleware tools to make

these systems function together seamlessly. Such a middleware, allowing users to

access classic grid systems and cloud infrastructure as a single resource, would

allow for global compute power to be used much more efficiently.

Considering Table 2.1 it can be seen that in many campus grids examined,
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Campus
Grid

Middleware Access Current
Support

Easily
Scale

Admin
Effort

Source

Reading HTCondor Key Y Y Med Open
Cambridge HTCondor Key Y Y Med Open
Oxford VDT Cert N N High Open
Manchester GT Cert Y N High Open

Table 2.1: Middleware Comparison

HTCondor is the middleware of choice for many, as it offers a relatively simple

scaleable resource. HTCondor middleware is open source and is actively main-

tained, which makes this choice a very cost effective solution. However it should

also be said that HTCondor is not an appropriate solution for all institutions.
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UoH Campus Grid

In this chapter we will consider the current deployment of the University of Hudder-

sfield (UoH) QueensGate Grid (QGG) looking at the hardware which is available

along with deployed middlewares and campus cluster systems design. The ratio-

nale behind the decisions made on the QGG system design considered here were

discussed in chapter 2. There will be an overview of the various possible user

workflows within the system along with the level of administrator interaction which

is required for each of these.

3.1 QGG Systems

Table 3.1 below gives an overview of the systems which are currently available at

the UoH along with a basic information for each system.

As can be seen in Table 3.1 almost all systems in the QGG use Community

ENTerprise Operating System (CentOS) which is essentially a rebranded clone

of Red Hat R© Enterprise Linux R© (RHEL) along with a Windows R© based Graphical

Processing Unit (GPU) cluster. The High Throughput Condor (HTCondor) system

is not exclusively a Linux based system, as while the head-node runs CentOS 6
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Compute
Element

Operating
System

Cluster
Middleware

Grid
Enabled

Num
Nodes

Cores
Per Node

Tauceti CentOS 6 Torque/Warewulf YES 4 4
Eridani CentOS 5 Torque/VDT YES 37 4
Sol CentOS 6 Torque/Warewulf YES 64 4
Condor CentOS 6 HTCondor YES 1300 4-8
Cloud CentOS 6 OpenStack NO 2 24
Vega Windows R© Windows R© HPC NO 3 896 (CUDA)
Bellatrix CentOS 6 VDT YES N/A N/A

Table 3.1: QGG Overview

the compute nodes are a mixture of Windows R© and linux systems, which we will

consider in further detail below. All ’grid enabled’ systems have at least a mini-

mal Globus installation with some mechanism for publishing resource information.

Figure 3.1 describes how the various Linux based systems are interconnected,

forming the basis of the QGG.

Figure 3.1: QGG Current Configuration Overview. (Holmes & Kureshi, 2013)
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3.1.1 Tauceti

Tauceti is a development system and is only included here for completeness.

Tauceti runs on the CentOS 6 operating system and uses a Torque based cluster

middleware system deployed through the Warewulf Cluster Manager. The Tauceti

system is not available to standard users of the QGG and is only used by the

administrators to test the deployment of new software.

3.1.2 Eridani

The Eridani cluster is the oldest production server available at UoH and is a true

Beowulf cluster built using off the shelf consumer commodity components. The

middleware cluster was deployed using Open Source Cluster Application Resources

(OSCAR) on CentOS 5, while the grid deployment was handled through the Virtual

Data Toolkit (VDT). This is essentially a Torque based cluster which has a Globus

gatekeeper for grid based submission, Metacomputing Directory Service (MDS)

to publish resource information and Local Credential Mapping System (LCMAPS)

plugins to allow for Virtual Organisation (VO) support.

3.1.3 Sol

Sol is based around Sun Microsystems rack mount servers. It is the most recently

re-deployed system available within the QGG and has a software deployment

similar to Tauceti. Torque is the primary middleware which is deployed through

Warewulf onto CentOS 6, and each node is deployed in a stateless configuration

at each boot, where the operating system is held entirely in memory. This method,

while consuming more memory than a stateful node, allows the administrators to

easily re-deploy the system and ensure the base Operating System (OS) of the

nodes can never be seriously corrupted. The grid deployment for Sol includes
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the addition of Grid Security Infrastructure (GSI)Secure SHell (SSH) and GSI File

Transfer Protocol (FTP) to allow communication with more capable servers, as well

as an instance of MDS to advertise resource availability.

3.1.4 HTCondor

By far the largest system in the QGG, by node and Central Processing Unit (CPU)

count, is the HTCondor system. This system is a truly heterogeneous pool utilising

the resources from various different hardware configurations and differing software

stacks. Within the HTCondor pool there are around 1160 Windows R© based sys-

tems, each having between 4 and 8 slots depending on how many CPU cores the

individual system has. These systems are located in the University’s computer lab-

oratories, and on resources provided by Computing & Library Services.

In addition to the above mentioned resources there are around 140 systems which

have Pool Of Virtual Boxes (POVB) installed, allowing linux based jobs to be run

on the system. These systems only advertise a single slot within HTCondor re-

gardless of how many CPU cores are available, although all systems are known

to have a minimum of 4 cores. Therefore it is possible to run some limited parallel

code on these nodes. At the UoH the majority of work carried out requires tightly

coupled Message Passing Interface (MPI) networks, which HTCondor can handle

but is not the developers primary focus. In situations where MPI is of high priority

it is more appropriate to use systems such as Portable Batch System (PBS) and

Sun Grid Engine (SGE), as the primary focus for the campus infrastructure.

3.1.5 Cloud

The QGG also provides Infrastructure as a Service (IaaS). This was deployed in

the form of an Red Hat Distribution of OpenStack (RDO) based cloud infrastructure
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allowing users to spawn virtual machines through a web interface or an Application

Programming Interface (API). This system is largely under utilised but has been

used for OS based training, to give students experience with system administra-

tion. The system has also been utilised for a novel method of automated formative

assessment of student work through the use of JClouds and Chef, as described by

Bonner et al., 2013.

3.1.6 Vega

This system is a Windows R© High Performance Computing (HPC) based GPU clus-

ter, which is primarily used for visualisation. Vega is not currently tightly integrated

into the QGG as access is granted through the UoH Active Directory (AD) rather

than through the QGG Lightweight Directory Access Protocol (LDAP).

3.1.7 Bellatrix

This is the primary connection point for the QGG. It is a single system which

exists within two networks. Publicly it is seen as qgg.hud.ac.uk and internal to

the UoH it is seen as bellatrix.hud.ac.uk. Bellatrix is responsible for managing all

user connections and for routing any cluster traffic which needs to reach external

servers.

3.1.8 GlusterFS

Common home directories for all users on the QGG is achieved through the use of

the GlusterFS network file system. GlusterFS provides replicated storage over a

local network, removing single point of failure risk (Beloglazov, Piraghaj, Alrokayan,

& Buyya, 2012). Through the use of GlusterFS the QGG has two mirrored storage

servers located in separate data centres on campus. All systems have access to
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both of these servers. The closest of which is configured for primary access. With

the further one being used as redundancy. This allows the QGG to provide resilient

and reliable storage to users.

3.2 QGG Workflow

Through various modifications completed on the QGG systems there has arisen

a situation where a user has various options for their choice of workflow. In this

section we will look at each of the possible workflows that are available to users of

the system. It is important to note that all Linux based systems within the QGG,

with the exception of the cloud resource, have common home directories for all

users. This common space is provided through two GlusterFS mirrored systems.

3.2.1 Standard Workflow

The current ’standard’ workflow, shown in Figure 3.2, within the QGG requires

users to connect internally to Bellatrix.hud.ac.uk, or to qgg.hud.ac.uk if connecting

from a remote location. Internal connections are facilitated through the use of SSH

keys and all user information is held on an LDAP server.

External connections are made through GSISSH using e-Science certificates. Once

the users have been authorised, their Distinguished Name (DN) is mapped to a lo-

cal account through a grid-mapfile, the information for which is again stored within

an LDAP server. The external QGG connection also maintains VO support through

an LCMAPS module, however this is only currently used for the DTEAM and OPS

VOs to allow for European Grid Infrastructure (EGI) and Grid Operations Centre

DataBase (GOCDB) system monitoring.

As shown in Figure 3.2, after the users have been authenticated and authorised

on the QGG, they can decide which service they need. This assumes that the
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Figure 3.2: Standard QGG Workflow

users need to be aware in advance of the systems available within the QGG so that

they can connect to them through SSH. Alternatively, jobs can be directly submitted

through use of the Globus Toolkit (GT) to systems supporting that method. Bellatrix

also has the OpenStack Python API available, allowing the creation of instances

within the cloud.

The decision of which resource to use is entirely left to the user. Once connected

to the head node of their chosen system the user may then submit their job script,

formatted in the correct syntax, directly to the batch system.

3.2.2 EMI WMS Workflow

In 2012 a true grid middleware was deployed on the QGG, in the form of gLite. This

was subsequently updated to European Middleware Initiative (EMI) 1 and then EMI
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2 as gLite became part of that project. The purpose of this deployment was to in-

tegrate, as far as possible, all systems within the QGG and those resources avail-

able through the National e-Infrastructure Service [Formally National Grid Service

(NGS)] (NES). The workflow for the user when utilising this middleware is much

more streamlined than the standard workflow. Once users have connected to Bel-

latrix they can then make a seamless SSH connection to the User Interface (UI)

node. Once connected to the UI a user may then format their job requirements into

a standardised Job Description Language (JDL), which can be submitted to the

system. The UI then queries the Workload Management System (WMS), which

in turn queries the top Berkeley Database Information Index (BDII), to determine

which resources are available to a user based on their VO membership. Informa-

tion in the top BDII is available because the information has been collected from

each individual resource Grid Index Information Service (GIIS), formally MDS, by

the site BDII which is in turn queried by the top BDII. The top BDII also queries

external site level BDIIs to gather information on which services are available ex-

ternally for example through the NES.

While the EMI middleware was very flexible, it also had some significant limita-

tions. Integration with HTCondor is not fully supported, and Cloud infrastructure is

not supported at all. Administrators at the UoH attempted to integrate HTCondor

with the EMI WMS through the use of a Globus Gatekeeper. These attempts failed

due to the configuration of the university network. When using the WMS all worker

nodes must be able to ’globus-url-copy’ the results of any jobs back up to the WMS

server itself, from where a user of the UI could retrieve the data. However due to

UoH firewall policies this was not possible. Therefore while HTCondor nodes could

in fact process jobs, users were unable to retrieve their results. Consequently, the

only internal resources available through this middleware were the Torque based

55



3. UoH Campus Grid

Figure 3.3: EMI Workflow Within the QGG

clusters, although it did simplify submission to a large number of external services.

Which means that this particular system was only functional for around 19.6% of

the available compute cores on campus.

The EMI middleware controls access to resources based on VO membership,

which in turn requires a user to posses a trusted X-509 certificate. This causes a

problem within an academic setting, because the UK e-Science Certificate Author-

ity (CA) does not allow certificates to be issued to students. Therefore to provide

a fully functioning system available to all users, staff and students alike, it would

be necessary to deploy a UoH CA and Virtual Organisation Management Sys-

tem (VOMS) server.

These systems were considered for implementation at the UoH but a number of

56



3. UoH Campus Grid

factors prevented this. Uptake of the WMS workflow was minimal among the users

who did have personal X-509 certificates. This was assumed to be due to the fact

that it would require learning a new JDL and changing from a workflow they were

already comfortable with.

Another more pressing consideration was the number of servers required to run

these services. To provide a fully functioning EMI WMS system, that can be used

internally and externally, would require the deployment of six additional servers to

those present in the standard workflow as shown within the EMI infrastructure in

Figure 3.3. These additional machines must be always powered on, consuming a

significant amount of power for little return, detracting from the universities green

agenda, and the cost of servers was also a factor to consider. The primary driving

factor for maintaing this resources required for the EMI was integration with the

NES, but when funding for the project ended in mid 2013 there was no external

infrastructure to which the WMS could connect, so becoming a purely internal sys-

tem. The system is still workable through the gridpp VOMS provision, but remains

largely unused due to the factors discussed above.

3.2.3 HTCondor Workflow

Users can also elect to connect to the QGG HTCondor head node and submit all

jobs from there. HTCondor defines jobs in subsets, or as the middleware terms

it a job ’universe’. The grid universe is available, allowing jobs to be submitted to

any resource which has a Globus gatekeeper. Therefore all job submission can

be achieved using a single JDL. The main drawbacks for this process are that

HTCondor has no real mechanism for automated discovery of grid resources, and

as stated previously, users are reluctant to move away from the familiar Torque

based submission. The real issue with not a having resource discovery mech-

anism is that a user must specify which endpoint they would like to use in the
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JDL. The users would need prior knowledge, and in this case could just as easily

make a direct SSH connection to the known system instead of via the HTCondor

head node. The real power of HTCondor lies within the vanilla and standard uni-

verse models. Within the vanilla universe HTCondor will choose suitable resources

from the pool of discovered resources based on the requirements of the job. The

standard universe is similar to vanilla, but has the added functionality of job check-

pointing. This allows binaries that have been compiled with condor compile to

periodically checkpoint their progress. Progress information created in this way

is sent to a checkpoint server, which can subsequently be used to restart the job

at that point if it fails for any reason, enabling HTCondor to deliver an extremely

resilient resource.

3.2.4 Globus Workflow

The GT is also installed on all Linux based systems within the QGG. This is con-

figured to trust the UK e-Science CA, but does not currently have any VO support,

and all trusted users are defined within the grid-mapfile. Bellatrix does not have a

globus-gatekeeper installed. Consequently, any external user cannot directly sub-

mit jobs to the QGG. Therefore to submit a job using the GT a user must already

be connected to the system. The additional complexity of generating proxies etc,

means this system is only really used within the QGG for training purposes.

3.3 Summary

In this chapter, the QGG campus grid was described in terms of systems, hardware

and software. Set out how systems architecture decisions are made based on the

properties of available Grid middleware. Within this context a number of workflow

models were explored. While the standard workflow allows almost all systems to
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be accessed from the Bellatrix node it does depend on the users knowledge of the

QGG. Without information on what systems are available and the related batch

system, published on the QGG webpage, it would be very difficult for a user to

navigate around the QGG.

The EMI middleware is a powerful tool capable of resource discovery and load

balancing. However the requirement of X-509 certificates, along with VO member-

ships, presents a great deal of complexity to users and administrators. In addition,

the students are unable to gain certificates from the nationally recognised CA, and

would be prevented from using the system.

.

The standard model remains the workflow of choice for users, most of whom elect

to exclusively use the Torque based systems, with no apparent regard for which

system is actually the most appropriate for the job. This issue can be addressed

by moving the decision on where to run jobs away from the users and having the

decision made at system level.

Such a change requires that different compute elements interact, to become more

autonomous, and reduce a users input. However, when opening lines of communi-

cation between systems which did not previously have any system level interaction,

consideration must be given to the security impact of these changes. Even within a

’trusted’ environment such as a closed campus network, there is always the possi-

bility that data could be compromised. Therefore current security standards should

be investigated, considering if or how such security would be used when opening

additional lines on communication between systems.
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Grid Security

Within any distributed computing environment security is always a key concern.

Wherever systems can communicate potentially sensitive information, steps must

be taken to ensure those messages stay private. According to Lee, 2013 there are

three cornerstone properties of computing security: Confidentiality, Integrity and

Availability. This means that any data within a computer system must be stored or

transmitted in such a way that it cannot be accessed by anyone, or anything, that is

not authorised. The data must not be modifiable by any subversive means and data

must be maintained, while remaining available to any sufficiently authenticated and

authorised agents. The most common methods for ensuring the privacy of com-

puter communications, are using some form of cryptography to encrypt all traffic

that passes between machines. Two of the most common forms of encryption are

considered in this chapter. (Lee, 2013)

4.1 Access to Campus Grids

Campus or national grids generally use one of two forms of encryption in order to

secure traffic. A long standing method is to use Digital Signature Algorithm (DSA)
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or Rivest-Shamir-Adleman (RSA) encryption to provide private keys to be used for

symmetric key cryptography, often referred to as Pre-Shared Key (PSK). As grids

have developed another standard has increasingly been adopted, using the same

encryption methods, in the form of asymmetric key cryptography underpinned by

Public Key Infrastructure (PKI).

4.1.1 PSK

PSK security is based around symmetric key cryptography. Using this model the

same key is used to both encrypt and decrypt data. This means that each party

that needs to have access to any given data, must have the same key. This key

must somehow be shared before any encryption can be used.(Wilkinson, 2010)

4.1.2 PKI

PKI is based around asymmetric key cryptography. One key is used to encrypt

data, which only the owner should have access to, and is referred to as the private

key. Another key, the public key, is made available to all and is required to decrypt

anything encrypted by the private key. Using this method the reverse is also true,

where data encrypted with the public key can only be decrypted by the private

key. There is a problem however, because the public key is available to all, the

origin of anything encrypted with it can not be guaranteed. Similarly just because

someone has a private key their actual identity cannot be assured. The first of

these problems is solved by both parties having public and private keys, each

using their own private key to encrypt data. The issue of proving an individual’s

identity is solved by introducing a third party, in the form of a Certificate Authority

(CA). The CA is responsible for ensuring a purported identity is actually valid.

With this assertion made, the CA generates a certificate which assures who has
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the ownership of a public key. This allows two entities to communicate, trusting

the other party they are communicating with, so long as the integrity of the CA is

maintained. (Wilkinson, 2010)

4.2 Security in the QueensGate Grid (QGG)

Connection to the QGG supports both PSK, through Secure SHell (SSH) and PKI,

through Grid Security Infrastructure (GSI)SSH. SSH is, almost, exclusively used

internally, and through the use of PSK allows seamless connections between the

various resources available on campus. Until recently (2013) GSISSH was the only

supported method for connecting to the QGG from any system that was external

to the University local network. The certificates which were accepted through this

method were signed by the UK e-Science CA, with users being mapped to static

or pool accounts based on their existing relationship with the University of Hudder-

sfield (UoH). This allowed absolute confidence in the identity of connecting users,

and also allowed users the same confidence in connections made to required ser-

vices. In late 2013 the policy to only allow GSISSH for external connections was

relaxed and an SSH service was made publicly visible. The main driving factor for

this shift was due to the fact that students of the UoH, or indeed any university, are

not eligible to obtain a UK e-Science CA signed certificate. Additionally, even for

users who are eligible to receive a UK e-Science CA certificate, GSISSH involves a

greater level of complexity then SSH does. This presented a situation where many

of the QGG local users could only access resources when on campus. It was de-

cided that an SSH daemon, accepting connections based on PSK, would maintain

security while allowing all validated users to access the system when off campus.

To mitigate the inherent problem of PSK, the sharing of the keys, when a user is

created the generated keys are only available to the user within the trusted local
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network. Regardless of the method used to connect to the QGG, all user informa-

tion is held within an Lightweight Directory Access Protocol (LDAP) server, moving

user account control away from accessible systems. This provides additional se-

curity, by ensuring no user ever directly connects to the machine responsible for

user management, and it allows User IDentity (UID)s and Group IDentity (GID)s to

be common across all QGG systems.

4.3 Summary

Security within any computational environment must be given a great deal of con-

sideration. The main emphasis of this for system administrators is to ensure that

only authorised users are allowed to connect to a system, and that those users

connot manipulate other users data or connections. Where connections are to be

made externally from a potentially unknown source, such as a foreign collabora-

tor, PKI along with a mutually recognised CA provides an invaluable security tool.

However, this does create a higher level of complexity for administrators and users

alike, within institutions where a great deal of control can be leveraged around the

creation of user accounts and keys. So long as the level of encryption on the keys

is sufficient, PSK over SSH can be considered a suitable security measure. How-

ever, care must be taken to internally assure the identity of any potential user, and

even then those credentials could never be trusted by any external network.
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PBS Based Trusted Grid

Development

5.1 Introduction

As mentioned previously, where multiple resources are available, load balancing

becomes very difficult as users have a tendency to consistently use the resource

they are most familiar with. For many reasons, such as time, cost, etc, it is always

preferential to balance load across all suitable resources. One approach to solv-

ing this would be to force all users into a particular batch system, such as High

Throughput Condor (HTCondor), which is capable of submitting to all resources.

This option was dismissed as some resources would still have to be explicitly spec-

ified by the user, and it was anticipated that users would be unhappy with this

approach. Therefore a submission system based on the ’favourite’ batch system

needed to be devised. Such a system needs to provide a submission mechanism

which behaves, from a user perspective exactly the same way as Torque, while

allowing the administrators to control load balance by sending jobs to an appropri-

ate resource. Another important aspect, from an administration perspective, was
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centralisation of all accounting records. Such a provision is essential to ensure all

resource usage is attributed to the appropriate user. Occasionally when users re-

quire resources which exceed those available within a classic cluster environment,

it was considered that use of a cloud based torque node would be the preferential

method of handling such requests.

5.2 Development

In order to achieve all of the previously stated requirements for this project, it was

deemed necessary to separate the problems into two distinct subsets. This was

required because allowing Torque to submit to HTCondor involves making the deci-

sions after the submission of a job. Inversely, in order to provision resources which

are not available, the job submission must be intercepted so resources can be pro-

visioned before Torque checks to see if such resources exist. The first of these

problems was addressed in implementing the PBStoCondor project with the latter

being handled by the pbsSurge code. The PBStoCondor software and pbsSurge

scripts are novel solutions to the problems faced, and were devised during the

course of this project. As the problem presented was considered to be essentially

a scriptable problem, but beyond what was feasible for a standard shell interpreter,

the decision was made to implement it in Python. Python offers high execution

speeds when compared to PHP or Ruby, has good shell integration (McKinney,

2012), and of particular interest for this project, Python’s direct Application Pro-

gramming Interface (API) compatibility with OpenStack.
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5.2.1 PBStoCondor

The first problem to overcome for this project was enabling Torque to recognise

the Pool Of Virtual Boxes (POVB) based resources within the HTCondor pool, as

potential compute nodes. It was determined very early in the project that it would

not be possible to simply run a pbs mom on each of these nodes, as such an

arrangement would be placing jobs on HTCondor resources without any of the

HTCondor services being aware of them. Therefore all jobs needed to be run

through HTCondor but monitored by Torque. From Torque version 3.0 it has been

possible to run multiple moms on a single node. With this capability it was possible

to run as many moms as there were required. However, consideration needed to

be made, of how much impact running many additional daemons would have on the

HTCondor head-node within the QueensGate Grid (QGG) (for example there were

200 POVB nodes). Through observation of running moms it was found that an av-

erage mom uses minimal (<0.1%) Central Processing Unit (CPU) time and around

30MB of memory. The HTCondor head-node in the QGG had a total of 15.5GB

of memory of which 13.8GB was free with all required processes running at any

given time. This means that the system was theoretically capable of running 471

moms, 235% over the potentially required 200 moms. The most intuitive method

for allowing Torque to choose POVB nodes was simply through queue manage-

ment. Torque was configured to send all jobs which requested a serial queue, and

a short enough wall-time, to the HTCondor based moms, where wall-time is the

total amount of real time taken up by a job. The reason for the wall-time stipulation

was that common applications were being used across all *NIX systems, mean-

ing jobs were limited to the vanilla universe. Therefore it was undesirable to have

very long running jobs submitted to HTCondor resources. To handle submission

into the HTCondor batch system a National Grid Service (NGS) Universal Execu-

tion Environment (UEE) style of application naming was adopted. This entailed
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the creation of a ’/ngs’ folder on all systems which would hold symlinks specific to

each system. On a pure Torque system, and on the POVB nodes, these simply

pointed to the relevant application. However, on the HTCondor head-node, the

symlinks pointed to a script which would generate a job submission script suitable

for HTCondor and subsequently submit it to the system. This script was also re-

quired to monitor the progress of the job and modify Torque accounting records to

maintain accuracy of the accounting across all systems. The script developed is

contained within Appendix B. The basic workflow of this system is quite simple, as

described in Figure 5.1.

Figure 5.1: Proposed System Overview

Although this system worked, it relied on Torque moms being manually started on

the HTCondor head-node. Given the dynamic nature of HTCondor this was not a

feasible solution. To address this issue a daemon was developed to monitor the
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available resources and start moms accordingly.

Figure 5.2: Flowchart for daemon

In Figure 5.2 the functionality of the developed daemon is shown, (the code for

this daemon can be found in Appendix C.) The daemon is started as a standard

system service, which will fail if the configuration file is missing. The initial startup

procedure creates a table of possible moms, including name and required ports,

generated from the variables within the configuration file. Once the program is run-

ning in the background, it cycles through the while loop once every 30 seconds.

This was done in order to prevent the daemon from unnecessarily using CPU cy-

cles. HTCondor pool is queried to discover the current number of POVB nodes

which are in an ’unclaimed’ state. If this number is greater than the number of

moms currently running, then an appropriate number of moms are started. If the

number of ’unclaimed’ nodes is less than the number of moms that are running

then a suitable number of moms are killed. When this situation is true, the daemon

checks that the mom to be killed has no child processes. This ensures that a mom

which is currently processing a job will not be killed by the daemon. If the mom
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currently being evaluated has child processes the daemon will then consider the

next mom within the array. Every time the daemon starts or stops a process, the

internal data array is updated to ensure there is always valid information of which

moms are running for the system to query. If at any point the daemon receives a

termination signal before starting a new cycle it will end all running moms before

exiting. This will ensure there are no orphaned processes on the system. PB-

StoCondor handles all short serial jobs submitted to a Torque batch system which

can be pushed to a more appropriate HTCondor resource. However, as mentioned

previously, there was also a requirement to allow the system to provision for jobs

which required resources greater than those currently available. This is considered

in the next section.

5.2.2 pbsSurge

When a job is submitted to a Torque based system which requires more resources

than the current configuration can provide, the job is immediately refused by the

scheduler. Therefore job requirements needed to be checked prior to Torque sub-

mission. The pbsSurge script was developed to handle these types of request.

Figure 5.3 shows the decisions and actions taken by the code which can be found

in Appendix D. This functionality is actually provided by two separate scripts. The

first script, referred to as the submitter, usurps the standard qsub command and

parses the job script for the requested resources. If these resources can be han-

dled by the system in the current configuration, the job is immediately passed on

to the standard scheduler. If the requested resources do exceed what the system

can provision, then the submitter takes over for a time. The process must first de-

termine, through the use of the OpenStack API, if the configured cloud has enough

resources to provision for the job. If it does not have sufficient resourcing then it

immediately exits reporting an error back to the user. In case that the configured
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Figure 5.3: Flowchart for pbsSurge

cloud has sufficient resources the first script runs to completion. Initially the Torque

job script is modified to change the requested queue to one associated with cloud

deployed nodes. The script then generates a custom flavour (OpenStack Foun-

dation, 2013a) within the cloud, based on the job requirements, and creates an

instance using the created flavour using an image (OpenStack Foundation, 2013b)

which has been previously configured to function as a Torque node. Once the

instance has finished spawning, and has been allocated an IP address, the job

is passed back to Torque and scheduled as normal. The submitter acquires the

job information at Torque submission time, passes this information to the watcher

script and exits. The watcher periodically queries Torque to discover when the job

has completed. Once this happens the watcher destroys the cloud instance and

deletes the flavour which was created for the job.
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5.3 Deployment

The developed systems were designed to be simple to deploy. PBStoCondor has

been packaged into Red Hat Package Manager (RPM) packagess to allow for rapid

deployment on any system which uses RPM packages. pbsSurge only needs a

symlink called qsub within the path the supersedes the standard Torque qsub.

Both require modifications to Torque, creating a dedicated queue for each. The

only system dependancies for these are Python2.x and the OpenStack client tools.

5.4 Summary

The two developed systems allow Torque to delegate particular jobs to a HTCondor

system and to move very large jobs into the cloud. Most importantly, this added

functionality allows for better use of more tightly coupled resources while maintain-

ing a consistent, and familiar, submission method to users. While the pbsSurge

code performed well in testing the true benefit to the system is difficult to quantify.

This is due to the fact that users are aware of the system limitations and remain

within those constraints or find a larger system. It was deemed that quantifiable

results could only be gained by deploying this system and making users aware of

it, which was not possible at the time of this work. As the behaviour of the PBSto-

Condor system is very predictable, there was the opportunity to test this system by

using historic Torque accounting logs. The aim of which was to highlight improved

overall throughput by automatically pushing all serial jobs to HTCondor.
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Simulator

6.1 Introduction

In order to test the effectiveness of PBStoCondor two potential methods were

considered. The first of these methods was to implement the developed system

onto the production systems in the QueensGate Grid (QGG). This approach was

deemed unsuitable for a number of reasons. The first factor was repeatability of

the test results. As user behaviour fluctuates during any given period of time it

could have been very difficult to make a meaningful comparison between the sys-

tem before and after implementation. Another reason was lack of time. Once

the system had been implemented, there would have been a very limited record

of system behaviour to analyse. During a limited period of a few months, with the

aforementioned fluctuations in job submissions, the real-time test results would not

have given a fair evaluation on the developed system. Therefore other possibilities

needed to be considered. Hence, it was decided to to simulate the system ex-

hibiting the modified behaviour induced by PBStoCondor. The goal was to achieve

simulated results that would be directly comparable to historical Torque accounting

data collected over twelve months. This approach was not without difficulties. A
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number of existing grid simulation tools, SimGrid (Casanova et al., 2008), GridSim

(Buyya & Murshed, 2002a), and Maui in simulation mode were considered for this

task. These were found to be unsuitable. All of the developed grid simulators are

targeted at application performance or scheduler algorithms. For all experiments

the scheduler behaviour and performance of applications was required to be con-

stant, as determined by historic accounting data. Also, the experiments would only

be required to consider changes in the number and configuration of systems, not

any differences achieved through hardware or application modification. The key

questions that needed to be answered were: can resources be better utilised and

can job completion times be improved? As none of the available simulation soft-

ware could answer these questions, it was decided to design a simulator capable

of providing answers to these questions. The work detailed within this chapter was

completed in collaboration with Mr Ibad Kureshi, and the Hadoop code described

was developed in collaboration with Mr Stephen Bonner.

6.2 Development

Once it was determined that the effectiveness of PBStoCondor was to be tested by

simulation, the next step was to clearly define required behaviour of the developed

simulator. To maintain compatibility with the rest of the developed software, Python

was chosen as a programming language. It was decided that the simulator must:

• Create a simulated system of any required configuration.

• Read in job information from historic Torque accounting logs.

• Schedule the jobs to an appropriate simulated resource.

• Remove ’completed’ jobs from the simulated resource.
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• Produce modified logs for simulated system

Within the brief framework outlined above, specific behaviour needed to be ascer-

tained. A simulated system would be constructed of x number of nodes with y

number of cores. However, it is not required that all nodes have the same number

of cores. Hence, the simulator also needed to be capable of simulating a system of

x nodes where y cores could be different for each node. When reading historical

logs, only those records pertaining to the completion of a job should be evalu-

ated by the system, as these records contain complete job information. In order to

maintain data integrity, the time at which a job was created on the system, referred

to as ctime within Torque, should never be modified, otherwise the historical user

behaviour would be modified. The simulator need only produce modified records

for the end of a job. This output was to be produced based on when the simulator

decided a job could start and the historic duration of the job. An assumption is

made here that a job will take the same amount of time to complete in the simula-

tor as it did in reality, recorded in the Torque log. This was considered acceptable

as the additional resources made available by the PBStoCondor tool should en-

able faster execution of jobs compared to jobs originally run on smaller resources.

Some mechanism needed to be employed to keep track of how long a job would

be ’running’ without it being tied to any clock or considering real-time. The final

logs produced by the simulator were required to include all pertinent information

gathered from the historical logs such as User IDentity (UID), job ID, time job was

created etc. Simulated logs should also provide modified, if appropriate, modified

job completion times. All times within these logs should adhere to Unix epoch stan-

dard. UNIX epoch standard determines time in the number of seconds that have

elapsed since midnight on the first of January 1970 using Coordinated Universal

Time (Love, 2005). The scheduling of the simulator was to consider jobs on a first

come first served basis, with aggressive backfilling. Implementation of fair share
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policies within Maui is difficult to determine. Therefore the decision was taken to

initially leave this functionality out of the simulator and analyse what impact this

had on the results.

6.3 Runtime Functionality of the Simulator

The structure and functionality of the developed code (full listing available in Ap-

pendix E) is outlined in Figure 6.1. The simulator is invoked via the console and

requires a Torque log file to be passed as an argument. In the beginning, the pro-

gram checks for the presence of a ’resources.txt’ file in the working directory which

describes the resources to be simulated. Using the information in this file a 2D

array is generated where rows denote nodes and columns denote cores. Table 6.1

shows a sample array, consisting of 3 nodes each with 4 cores. Cores within nodes

are represented in a binary form. A ”1” indicates the core is free and a ”0” con-

versely denotes a core which is busy. All cores are initially set to ”1”, representing

an entirely free system. Table 6.1 defines a system where one node has 2 busy

cores and the other systems are entirely free. The next stage is to read in the

0 0 1 1
1 1 1 1
1 1 1 1

Table 6.1: Sample Simulator Array

Torque log file and use the information extracted from it to populate an initial table.

This initial table is populated with: jobid, user, queue, ctime, qtime, etime, start,

end, nodes, ppn and duration. Duration is a value calculated within the simulator

using start and end. All variables used are defined in Table 6.2.

The information held within the initial table is then bubble sorted (Daintith & Wright,

2008) based on jobno. This is required because the simulator reads in job end
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Figure 6.1: Simulator Flowchart
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Variable Description
jobid Unique job identifier allocated by Torque
user UID job running under
queue Queue requested for job
ctime Time job was created
qtime Time job was queued
etime Time job became eligible to run
start Time job started to run
end Time job exited (either successfully or unsuccessfully)
nodes Number of requested nodes
ppn Number of requested cores per node
duration end - start
trigger Earliest end of a running job within simulator

Table 6.2: Torque Log Naming Conventions

records which, due to duration differences, are unlikely to be found in chronologi-

cal order with respect to creation time. Creation time cannot be used for this sorting

procedure as it is possible for more than one job to be created at exactly the same

time. As the emphasis is on emulating an existing system it is reasonable to simply

use the job numbering that was historically determined. It should be noted that any

jobs that require more resources will be excluded from the initial table and an error

will be produced to inform the user. The program can now begin ’running’ jobs. The

system will consider jobs in the initial table one by one. If there are enough free

resources those cores will be set to busy and allocated to the incoming job. Then

the job will be moved to a running table and marked as such in a sorting table. If

the system does not have enough free resources to service a request then the job

is placed in a queueing table and appropriately marked in the sorting table. The

sorting table holds a value referred to within the program code as trigger time. Trig-

ger time is the mechanism which controls time within the simulated environment.

The trigger time is evaluated based on when the job has been allowed to start and

the job duration. Effectively this is the earliest time when a job in a running state

within the simulator will end. For the first job to enter the system this trigger time
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is simply the end time gathered from the original logs. Every time a new entry is

added to the sorting table it is bubble sorted based on the trigger time value. The

program can then check if the start time of an incoming job is greater than the

smallest trigger time within the sorting table. This represents a situation where a

job is created after another is finished. Therefore the completed job occupying the

system can be removed. A log entry for the removed job can be printed out. The

new job can start, with appropriately modified start and end times. When a job en-

ters the system that cannot be immediately run due to lack of resources. That job

will be queued and the next job in the initial table will be considered. This continues

until all jobs are either running or queued. At this point the program continues to

cycle, modifying start times based on trigger times of previous jobs. Determining a

new end time for each job that is allocated resources and marked as running. This

continues until all tables are empty, at which point the simulator exits. This pro-

cess provides extensive log files which require some form of analysis to determine

exactly how the system has behaved.
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6.4 Verification of Simulator

In order to use the simulator in evaluating the PBStoCondor system, the operation

and accuracy on the simulator first needed to be verified. To achieve this, the sim-

ulator was run with combined historic Torque logs produced over one year. During

this verification test, the simulator was configured to have the same resources as

the Eridani Cluster, the system which originally ran the jobs. The historic logs were

limited to one year due to the requirement of the simulator to have sequential job

numbers. The simulator running time varied greatly based on the provided system

configuration. When running based on the original Eridani configuration the sim-

ulation took 1.3 hours to complete. When using a configuration representative of

Eridani enabled with PBStoCondor the simulator took 3.5 hours to complete. The

simulator output and the original logs were then analysed through Hadoop to find

the respective arrival and completion rates for each log file. Within this context,

arrival and completion rates are defined as a number of jobs arriving or completing

within a defined time period. The Hadoop code developed to perform this function

is written in Java and can be found in Appendix F. Arrival rates would always re-

main the same as the simulator cannot modify the time a job had been historically

created. The significance of this test was to ensure that results from the system

being simulated, matched a configuration produced in the historical logs. Then

the job completion rates for the simulator logs and the historical logs should be

as close as possible, preferably identical. The produced results were encouraging

and will be considered at length in chapter 7.
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6.5 Summary

This chapter presents the design and development of a simulator and the consid-

erations that led to its creation. In order to test the effectiveness of PBStoCondor

it was determined the most appropriate method was to use a simulator. This sim-

ulator was required to allow direct comparison between historic and modified High

Performance Computing (HPC) system configurations. Output was formulated to

closely replicate actual Torque logs to simplify comparison. The primary interest of

this endeavour was to consider the impact of removing serial jobs from a parallel

system, rather than resource dependant application speed. Jobs were required

to be scheduled, to ’run’ on a suitable resource, and allowed to ’run’ to comple-

tion. The developed simulator was able to perform all of the functions that were

defined as required prior to its development. The resulting simulator produced a

mechanism for testing the impact on job completion times when more resources

are added to a known system, assuming that the duration of a job will not change.

Also, as applications and hardware specifications beyond number of cores was not

considered, but start and finish times were considered to be fluid. The simulator

produces very large amounts of data which needs to be analysed for meaningful

results. This analysis was achieved through the use of Hadoop, which is specif-

ically designed to handle large amounts of data. Utilising the simulator tool, to-

gether with Hadoop, resulted in the creation of structured data and information to

allow the behaviour analysis of existing systems. Thereby providing better system

understanding to allow for improved future system design.
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Results

7.1 Introduction

Once the simulator and PBStoCondor had been developed it was possible to test

these two systems in three stages:

1) Initially the simulator code required verification. This was achieved by con-

figuring the simulator to mirror an existing High Performance Computing (HPC)

system comparing the output to ascertain that the simulator behaved as like the

real HPC system.

2) The simulator could then be configured to behave as a PBStoCondor en-

abled system.

3) Only then the results for the PBStoCondor system could be compared against

the original system output, hopefully showing some improvement in the rate at

which jobs were completed. As mentioned in the previous chapter, the work de-

tailed within sections 2 and 3 of this chapter was completed in collaboration with

Mr Ibad Kureshi, and the Hadoop code described was developed in collaboration

with Mr Stephen Bonner.
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7.2 Testing Procedure

The test strategy was based around one year of Torque accounting logs taken from

the Eridani cluster. Torque logs are organised as a single file for each day as they

are produced. Using these files a single file of all logs from 2013 was produced,

which is referred to as the original Torque log. Initially there was an intention to use

three years of logs from the Eridani cluster containing records of jobs created and

completed. However, through regular maintenance and re-installation of Eridani

there were points where the job ID counter had been reset. This posed a problem

for the simulator, as sequential job IDs were required. It was therefore deemed that

one year of logged system behaviour would be a sufficient data sample, represen-

tative of ongoing system loads. The original Torque logs were then passed to the

simulator along with a configuration file determining the system to be simulated.

Depending on the system to be assessed simulation time varied greatly, using a

36 quad core node simulation took around 1.5 hours and 36 quad core nodes

plus 200 single core slots taking around 3 hours. Once simulated log files had

been produced, those logs, along with the original Torque logs, were passed to the

developed Hadoop code shown in Appendix F. The purpose of this was to extract

useful data, such as arrival and completion rates, from the very large logs. Hadoop

was used for this task because it is a framework specifically developed for dealing

with large data sets. Through the use of Hadoop Distributed File System (HDFS)

and Map/Reduce large amounts of data can be quickly analysed based on a user

defined algorithm. Using this method allowed log files for an entire year to be anal-

ysed in under one minute. The algorithm used determined how many jobs had

been completed within interval x which was n seconds in length. Intervals were

all based upon epoch times read from job end times within the logs. For simplicity

epoch 0 was set at 2013/01/01 00:00:00. To clarify, using an interval of 24 hours,
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or 86400 seconds, produces a log of 365 intervals with an associated Arrival/Com-

pletion value. These interval values can be converted back to a standard epoch

format to find a real time and date using the following formula:

(Interval ∗ IntervalLength(s)) + 1356998400 Where 1356998400 is the true

epoch for 2013/01/01 00:00:00. This produced a log of how many jobs had been

completed within a given time interval (Completion Rates). Also, in the case of the

original Torque logs, the number of jobs created on the system within a given in-

terval was determined (Arrival Rates). These logs required one further processing

step. The Hadoop process would not report intervals in which zero jobs arrived or

completed. To rectify this a simple script was created to fill in the missing zeroes

within the Hadoop output (zero padding), ensuring that results using the same time

interval would have matching dataset lengths. This allowed for direct comparison

of simulated and real system performance.

7.3 Simulator Validation Results

Using the procedure outlined in the previous section, results were initially obtained

to show the validity of the simulator using a known system layout. During 2013

Eridani had 36 nodes, each with 4 cores, and the simulator was configured ac-

cordingly. Using the Hadoop cluster, completion rates were calculated for 24 hour,

1 hour and 15 minute intervals. Considering job completion data for the entire year,

Figure 7.1 shows the results for the original Torque logs and those for the simu-

lated completion; they are almost identical. Looking more closely at the data for a

1 month period, April 2013, shown in Figure 7.2, it can be seen that in periods of

high load there is some discrepancy in the results. This is due to Maui fair share

policy having an impact on the real system, since the simulator does not have a

fair share feature. This limitation translates to an average difference of 8 jobs per
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day between the simulated and original data using 24 hour intervals. This is only

1.2 jobs when considering 1 hour intervals. More detailed analysis of the data con-

sidered a 2 week period between March and April 2013. Figure 7.3 shows that

when fair share is not an issue, then the results for the simulated system and those

for the original system actually become identical. Even though there were some

differences within the two datasets, this actually represented a 4.6% difference in

completion rates within the considered one year time period, as a total of 62376

jobs were completed during 2013. This difference was primarily due to the simula-

tor lacking a fair share component. Taking the results as a whole, it was considered

that the simulators deviation from the original data was acceptable. Therefore the

simulator was a suitable test for the effectiveness of the PBStoCondor code.
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7.4 PBStoCondor Results

Using the same procedure, with a system configuration replicating that of a PBSto-

Condor enabled QueensGate Grid (QGG), data for the new system was gathered.

The simulator was configured to have 36 quad core nodes to represent the Eri-

dani cluster and 200 single core nodes to represent the available Pool Of Virtual

Boxes (POVB) slots within the High Throughput Condor (HTCondor) pool. As with

the simulation utilising the Eridani cluster configuration, the logs produced from

the PBStoCondor simulation were analysed through Hadoop. This provided the

job completion rates for the POVB enabled system. Figure 7.4 shows an overview

of the 2013 data, comparing the original Torque data and the PBStoCondor sim-

ulation data. It is clearly shown that the completion rates for the PBStoCondor

system are higher for a significant portion of the results. When a large number of

jobs have been created on the system it appears that the PBStoCondor system

starts to lag behind the Eridani only system after the initial interval. This however

is because PBStoCondor is more efficient in job completion and has less jobs left

to finish, meaning that the system becomes free more quickly. This will make the

system idle and could start saving power sooner than Eridani alone could do. The

POVB slots provide additional resources to complete jobs sooner and provide bet-

ter energy efficiency, since POVB ran on machines with a more energy efficient

architecture than the Eridani cluster. Looking at the period covering April 2013 in

Figure 7.5 it is clear that the PBStoCondor system (Eridani + POVB) consistently

out performs the Eridani only system. Lower figures are shown only in in cases

where PBStoCondor has previously completed a larger number of jobs than the

original system. At time interval 111 in Figure 7.5 the PBStoCondor system has

completed all created jobs while the Eridani system is still processing. This would

cause the system to be idle, or in some systems be switched off, for that day,
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providing significant savings on overall power usage across a year.
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Figure 7.6 highlights a situation where PBStoCondor has no impact on a standard

Torque based system. During this period all jobs created on the system were par-

allel in nature. This presents a time period where PBStoCondor is unable to have

any impact on system load. Conversely the 2 week period shown on Figure 7.7

depicts a situation where serial jobs make up a significant proportion of submis-

sions. Where this type of situation arises the PBStoCondor comes into its own.

During this period there are 5 additional days where the system is entirely free.

These days could be used to save power as mentioned previously or to process

more parallel jobs on the resources that would be made available.

7.5 Summary

Within this section the testing procedure used to evaluate the simulator and PB-

StoCondor system was outlined, followed by consideration of the output generated

from the experiments. The first results considered were those which verify the va-

lidity of the developed cluster simulator. These results showed that even though

the simulator lacks fair-share functionality, it still models the Eridani system very

well. The slight deviation in the results as a consequence of this difference only

amounted to an overall difference of 4.6%. Therefore any results taken for the PB-

StoCondor enabled system could be considered accurate to ± 5%. The PBSto-

Condor results showed that for a significant portion of 2013 the developed code

would outperform Eridani in terms of job completion. While this system has no im-

pact on periods where many parallel jobs are created, the difference in completion

rates is impressive in periods where many serial jobs are created. This improved

job completion rate produced multiple days where, had PBStoConder been imple-

mented, Eridani would have been entirely idle. This idle time could provide Central

Processing Unit (CPU) time for additional jobs or to provide power savings and
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reduce the carbon footprint of large parallel compute systems.
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Chapter 8

Conclusion

This project has focused on making the best use of institutional computational

resources. Current Grid, Cluster, and Cloud software solutions were examined,

followed with investigation into how other institutions had configured their available

resources. These investigations found a mixture of High Performance Comput-

ing (HPC) and High Throughput Computing (HTC) systems with all cross-system

campus level jobs originating from a High Throughput Condor (HTCondor) sched-

uler. Users within the QueensGate Grid (QGG) had displayed a reluctance to move

between Torque and HTCondor systems. Administrator observation showed most

users remained exclusively on Torque based systems regardless of the type of job

being run. This project was undertaken in an attempt to make utilisation of re-

sources more appropriate with minimal user impact. Throughout this project four

software frameworks were developed. The initial two of these were pbsSurge and

PBStoCondor followed by the simulator and Hadoop required for evaluation. The

aim of these developments was to improve institutional grid user experience, and

to facilitate better use of available resources. pbsSurge software was developed to

allow cloud resources to be utilised within a standard cluster job scheduling envi-

ronment. This allows very large jobs to be submitted to a system which would not
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otherwise have the resources available to service such requests. The developed

software was produced as a proof of concept and was tested for pure functionality.

However, as QGG users know what is available on a system they tend to remain

within those constraints. This means that real quantifiable data was impossible to

gather for this system. pbsSurge has almost no cost for implementation in terms of

processing and memory overheads. If it is implemented on a production system,

and the users made aware of its capabilities, it could be used to provide an elastic

cluster, able to mould to users requirements. Work in this area made a large contri-

bution to a publication in the International Journal of Advanced Computer Science

and Applications (Kureshi et al., 2013). PBStoCondor development was focused

around better use of existing resources in an attempt to address utilisation issues

raised in previous work by the author (Łysik et al., 2013). Within the QGG there

is a very large HTCondor pool which was largely under-utilised. The developed

software allowed users to maintain use of the more familiar Torque based sub-

mission, seamlessly pushing suitable jobs to the HTCondor pool, thus allowing the

overall grid to complete computational processes much quicker. This was achieved

through better load balancing of the systems. As a consequence this will also po-

tentially provide some power savings on the high power consumption clusters. In

order to test PBStoCondor further development was required to gain real compar-

ative data. This was developed in the form of a simulator to emulate the system

modifications which would have been provided by a PBStoCondor deployment.

The data produced by this system was then analysed through the final framework

developed, using a Hadoop cluster. The results gained showed that the simulator

was capable of emulating a real system to within ±4.6%. Even when considering

the simulator without a fair share quota system, and assuming that all 200 Pool Of

Virtual Boxes (POVB) nodes would always be available, it was demonstrated that

the simulator could be used as an effective tool for predicting system behaviour.
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The final results obtained from comparison of PBStoCondor simulation to histori-

cal Eridani logs was very encouraging. These results showed that PBStoCondor

provided a significant improvement in job completion times over a period of one

year. This improvement was particularly apparent when the system had very large

numbers of serial jobs submitted. Had this system been deployed at the begin-

ning of the testing period, then there would have been 306 hours, almost 13 days,

where the system would have been idle, compared to still working on completing

jobs when only Eridani was being used. These periods could represent significant

power savings or allow users to submit more jobs, thus making far better use of

existing resources.
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Further Work

While a number of aspects have been considered during this project, there are a

number of aspects which warrant further investigation. The work completed so far

is only suitable for use within a trusted network. This is largely due to a lack of en-

cryption within Torque. Communication between moms is entirely un-encrypted

and process transport uses Secure SHell (SSH). The mom communication is

entirely inappropriate to be used within an untrusted environment, and it is sus-

pected that the same applies to SSH. To mitigate this, Torque would need to be re-

designed in order to incorporate Grid Security Infrastructure (GSI) enabled traffic

across all protocols. This approach, while securing communications, would still not

be suitable for inter institutional jobs, as Torque would still require a common user

file space. This is a problem for which the author currently has no proposed solu-

tion. Torque also requires that all possible compute elements are pre-configured,

requiring a restart if any additional nodes are to be added. This limits the flexibility

of PBStoCondor and pbsSurge. Further work, allowing Torque to dynamically inte-

grate new resources without requiring a restart, would be greatly beneficial to this

project. pbsSurge could be improved by adding the ability to use multiple cloud

resources, whether private or commercial, along with developing modularity to ex-

98



9. Further Work

tend functionality beyond OpenStack cloud deployments. When considering wider

usability PBStoCondor is also limited to integration with Torque. Possibly this could

be made more modular allowing integration with a variety of schedulers. Many

High Throughput Condor (HTCondor) pools are deployed on Windows R© based re-

sources. Resource utilisation could be further improved if submission to these

types of nodes could be incorporated, since the current solution uses only Pool

Of Virtual Boxes (POVB). The simulator developed during the course of this work

could also benefit from some further development. From conception, the simulator

code was designed to be modular, allowing its behaviour to be easily modified. This

could be leveraged in order to incorporate a fair share policy allowing even better

representation of the Maui scheduler. Modules could also be created to allow the

simulator to simulate a range of schedulers, making it a much more versatile tool.
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Appendix A

Raw Data

A.1 Historic Log Snippet

02/27/2013 00:18 :18 ;E;75153. e r i d a n i . qgg . hud . ac . uk ; user=u0652238 group=pgr jobname= d l p o l y

queue=parastd ct ime=1361888026 qtime=1361888026 etime=1361888026 s t a r t =1361924284

owner=u0652238@qgg . hud . ac . uk exec host=enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i

. qgg . hud . ac . uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0+

enode11 . e r i d a n i . qgg . hud . ac . uk /3+enode11 . e r i d a n i . qgg . hud . ac . uk /2+enode11 . e r i d a n i . qgg .

hud . ac . uk /1+enode11 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00

Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t . nodect=2

Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime =48:00:00 session=21563 end

=1361924298 E x i t s t a t u s =0 resources used . cput =00:00:00 resources used .mem=6536kb

resources used .vmem=189596kb resources used . wa l l t ime =00:00:14

02/27/2013 00:18 :22 ;E;75801. e r i d a n i . qgg . hud . ac . uk ; user=ngs378 group=ngs jobname=STDIN

queue=ngs . ac . uk ct ime=1361923036 qtime=1361923036 etime=1361923036 s t a r t =1361923036

owner=ngs378@qgg . hud . ac . uk exec host=enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t .

cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes=1 Resource L is t . nodect

=1 Resource L is t . nodes=1 Resource L is t . wa l l t ime =48:00:00 session=4504 end=1361924302

E x i t s t a t u s =0 resources used . cput =00:15:25 resources used .mem=861372kb resources used .

vmem=1023884kb resources used . wa l l t ime =00:21:06

02/27/2013 00:18 :24 ;S;75154. e r i d a n i . qgg . hud . ac . uk ; user=u0652238 group=pgr jobname= d l p o l y

queue=parastd ct ime=1361888027 qtime=1361888027 etime=1361888027 s t a r t =1361924304

owner=u0652238@qgg . hud . ac . uk exec host=enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i

. qgg . hud . ac . uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0+

enode11 . e r i d a n i . qgg . hud . ac . uk /3+enode11 . e r i d a n i . qgg . hud . ac . uk /2+enode11 . e r i d a n i . qgg .

hud . ac . uk /1+enode11 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00
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Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t . nodect=2

Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime =48:00:00

02/27/2013 00:18 :39 ;E;75154. e r i d a n i . qgg . hud . ac . uk ; user=u0652238 group=pgr jobname= d l p o l y

queue=parastd ct ime=1361888027 qtime=1361888027 etime=1361888027 s t a r t =1361924304

owner=u0652238@qgg . hud . ac . uk exec host=enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i

. qgg . hud . ac . uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0+

enode11 . e r i d a n i . qgg . hud . ac . uk /3+enode11 . e r i d a n i . qgg . hud . ac . uk /2+enode11 . e r i d a n i . qgg .

hud . ac . uk /1+enode11 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00

Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t . nodect=2

Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime =48:00:00 session=21650 end

=1361924319 E x i t s t a t u s =0 resources used . cput =00:00:00 resources used .mem=808kb

resources used .vmem=13352kb resources used . wa l l t ime =00:00:15

02/27/2013 00:18 :45 ;Q;75812. e r i d a n i . qgg . hud . ac . uk ; queue=ngs . ac . uk

02/27/2013 00:18 :45 ;Q;75813. e r i d a n i . qgg . hud . ac . uk ; queue=ngs . ac . uk

02/27/2013 00:18 :45 ;S;75812. e r i d a n i . qgg . hud . ac . uk ; user=ngs378 group=ngs jobname=STDIN

queue=ngs . ac . uk ct ime=1361924325 qtime=1361924325 etime=1361924325 s t a r t =1361924325

owner=ngs378@qgg . hud . ac . uk exec host=enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t .

cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes=1 Resource L is t . nodect

=1 Resource L is t . nodes=1 Resource L is t . wa l l t ime =48:00:00

02/27/2013 00:18 :45 ;S;75813. e r i d a n i . qgg . hud . ac . uk ; user=ngs378 group=ngs jobname=STDIN

queue=ngs . ac . uk ct ime=1361924325 qtime=1361924325 etime=1361924325 s t a r t =1361924325

owner=ngs378@qgg . hud . ac . uk exec host=enode01 . e r i d a n i . qgg . hud . ac . uk /2 Resource L is t .

cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes=1 Resource L is t . nodect

=1 Resource L is t . nodes=1 Resource L is t . wa l l t ime =48:00:00

02/27/2013 00:18 :49 ;S;75155. e r i d a n i . qgg . hud . ac . uk ; user=u0652238 group=pgr jobname= d l p o l y

queue=parastd ct ime=1361888027 qtime=1361888027 etime=1361888027 s t a r t =1361924329

owner=u0652238@qgg . hud . ac . uk exec host=enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i

. qgg . hud . ac . uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0+

enode11 . e r i d a n i . qgg . hud . ac . uk /3+enode11 . e r i d a n i . qgg . hud . ac . uk /2+enode11 . e r i d a n i . qgg .

hud . ac . uk /1+enode11 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00

Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t . nodect=2

Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime =48:00:00
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A.2 Simulator Log Snippet

26/02/2013 18:15 :29 ;E;75153.0 ; user=u0652238 queue=parastd ct ime =1361888026 qtime

=1361902515 etime=1361888026 s t a r t =1361902515 end=1361902529 Resource L is t . nodes =2:ppn

=4 dura t i on =14

26/02/2013 18:15 :44 ;E;75154.0 ; user=u0652238 queue=parastd ct ime =1361888027 qtime

=1361902529 etime=1361888027 s t a r t =1361902529 end=1361902544 Resource L is t . nodes =2:ppn

=4 dura t i on =15

26/02/2013 18:15 :55 ;E;75155.0 ; user=u0652238 queue=parastd ct ime =1361888027 qtime

=1361902544 etime=1361888027 s t a r t =1361902544 end=1361902555 Resource L is t . nodes =2:ppn

=4 dura t i on =11

26/02/2013 18:16 :09 ;E;75156.0 ; user=u0652238 queue=parastd ct ime =1361888033 qtime

=1361902555 etime=1361888034 s t a r t =1361902555 end=1361902569 Resource L is t . nodes =2:ppn

=4 dura t i on =14

26/02/2013 18:16 :34 ;E;75157.0 ; user=u0652238 queue=parastd ct ime =1361888036 qtime

=1361902569 etime=1361888036 s t a r t =1361902569 end=1361902594 Resource L is t . nodes =2:ppn

=4 dura t i on =25

26/02/2013 18:16 :58 ;E;75158.0 ; user=u0652238 queue=parastd ct ime =1361888037 qtime

=1361902594 etime=1361888037 s t a r t =1361902594 end=1361902618 Resource L is t . nodes =2:ppn

=4 dura t i on =24

26/02/2013 18:17 :34 ;E;75159.0 ; user=u0652238 queue=parastd ct ime =1361888038 qtime

=1361902618 etime=1361888038 s t a r t =1361902618 end=1361902654 Resource L is t . nodes =2:ppn

=4 dura t i on =36

26/02/2013 18:17 :56 ;E;75160.0 ; user=u0652238 queue=parastd ct ime =1361888042 qtime

=1361902654 etime=1361888042 s t a r t =1361902654 end=1361902676 Resource L is t . nodes =2:ppn

=4 dura t i on =22

26/02/2013 18:18 :21 ;E;75161.0 ; user=u0652238 queue=parastd ct ime =1361888043 qtime

=1361902676 etime=1361888043 s t a r t =1361902676 end=1361902701 Resource L is t . nodes =2:ppn

=4 dura t i on =25

26/02/2013 18:18 :58 ;E;75162.0 ; user=u0652238 queue=parastd ct ime =1361888049 qtime

=1361902701 etime=1361888049 s t a r t =1361902701 end=1361902738 Resource L is t . nodes =2:ppn

=4 dura t i on =37

26/02/2013 18:19 :27 ;E;75163.0 ; user=u0652238 queue=parastd ct ime =1361888050 qtime

=1361902738 etime=1361888050 s t a r t =1361902738 end=1361902767 Resource L is t . nodes =2:ppn

=4 dura t i on =29

26/02/2013 18:19 :48 ;E;75164.0 ; user=u0652238 queue=parastd ct ime =1361888051 qtime

=1361902767 etime=1361888051 s t a r t =1361902767 end=1361902788 Resource L is t . nodes =2:ppn

=4 dura t i on =21

26/02/2013 18:20 :07 ;E;75165.0 ; user=u0652238 queue=parastd ct ime =1361888052 qtime

=1361902788 etime=1361888052 s t a r t =1361902788 end=1361902807 Resource L is t . nodes =2:ppn

=4 dura t i on =19
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26/02/2013 18:20 :31 ;E;75166.0 ; user=u0652238 queue=parastd ct ime =1361888053 qtime

=1361902807 etime=1361888053 s t a r t =1361902807 end=1361902831 Resource L is t . nodes =2:ppn

=4 dura t i on =24

26/02/2013 18:21 :01 ;E;75167.0 ; user=u0652238 queue=parastd ct ime =1361888053 qtime

=1361902831 etime=1361888053 s t a r t =1361902831 end=1361902861 Resource L is t . nodes =2:ppn

=4 dura t i on =30

26/02/2013 18:21 :33 ;E;75168.0 ; user=u0652238 queue=parastd ct ime =1361888055 qtime

=1361902861 etime=1361888056 s t a r t =1361902861 end=1361902893 Resource L is t . nodes =2:ppn

=4 dura t i on =32

26/02/2013 18:22 :06 ;E;75169.0 ; user=u0652238 queue=parastd ct ime =1361888058 qtime

=1361902893 etime=1361888058 s t a r t =1361902893 end=1361902926 Resource L is t . nodes =2:ppn

=4 dura t i on =33
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Appendix B

PBStoCondor Translator Code

# ! / b in / bash

#

# Generic PBS to Condor run s c r i p t v1 .0

#

# John Brennan

#

# Change Log

# Version Date Desc r i p t i on

#−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+

# 1.0 | 18Jun13 | I n i t i a l re lease |

#−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+

# This s c r i p t i s designed to run under a pbs mom on a condor

# headnode . I t w i l l take any arguements passed to PBS, generate

# a condor j d l to run the re l evan t / usr / ngs s c r i p t on the compute

# node wi th the requ i red arguements and then cont inue to watch

# the condor job u n t i l i t completes .

# Source condor f i l e s #

#source / opt / condor−7.6.7/ condor . sh # Required f o r o ld qggcondor deployment

# Var iab le Creat ion #

JOBSCRIPT= ”$PBS O WORKDIR/$PBS JOBNAME. j c l ”

ERRFILE= ”$PBS O WORKDIR/$PBS JOBNAME. e r r ”

OUTFILE= ”$PBS O WORKDIR/$PBS JOBNAME. out ”

LOGFILE= ”$PBS O WORKDIR/$PBS JOBNAME. log ”
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# Sor t and format f i l e syntax , f i x i n g any non standard paths t h a t may have been used

for i in $@

do t e s t − f $ i && RAWINP= ”$RAWINP $ i ” ; done

INPUTFILES= ‘ echo $RAWINP | sed ” s# # , #g ” ‘

for i in $@

do

i f [ ! − f $ i ] ;

then ARGS= ”$ARGS $ i ”

else ARGS= ”$ARGS ‘ basename $i ‘ ”

f i ;

done

# S t r i p path from executable name

EXE= ‘basename $0 ‘

# Create submission s c r i p t #

echo ” un iverse = v a n i l l a ” > $JOBSCRIPT

echo ’ requirements = (OpSys == ” LINUX ” && Arch == ” X86 64 ” ) ’ >> $JOBSCRIPT

echo ” t r a n s f e r i n p u t f i l e s = $INPUTFILES ” >> $JOBSCRIPT

echo ” executable = / usr / ngs /$EXE” >> $JOBSCRIPT

echo ” t r a n s f e r e x e c u t a b l e = f a l s e ” >> $JOBSCRIPT

echo ” arguments = $ARGS” >> $JOBSCRIPT

echo ” e r r o r = $ERRFILE” >> $JOBSCRIPT

echo ” log = $LOGFILE” >> $JOBSCRIPT

echo ” output = $OUTFILE” >> $JOBSCRIPT

echo ” s h o u l d t r a n s f e r f i l e s = YES” >> $JOBSCRIPT # Required f o r new condor deployment

echo ” when to t r ans fe r ou tpu t =ON EXIT OR EVICT ” >> $JOBSCRIPT # Required f o r new condor

deployment

#echo ” t r a n s f e r f i l e s = ALWAYS” >> $JOBSCRIPT # Required f o r o ld qggcondor deployment

echo ” i n i t i a l d i r = $PBS O WORKDIR” >> $JOBSCRIPT

echo ” N o t i f i c a t i o n = ERROR” >> $JOBSCRIPT

echo ” queue 1 ” >> $JOBSCRIPT

# Submit job to queue and determine job number#

JOBNO= ‘ condor submit $JOBSCRIPT | t a i l −1 | cut −c 31− | sed s / \ . $ / / ‘

# Wait f o r job to f i n i s h #

condor wai t $LOGFILE $JOBNO > / dev / n u l l

# Push a l l ou tput to pbs mom

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ” Begin Logging ”
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echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

ca t $LOGFILE

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”End Logging ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ” Begin Output ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

ca t $OUTFILE

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”End Output ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” >&2

echo ” Begin Er ro r ” >&2

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” >&2

cat $ERRFILE >&2

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” >&2

echo ”End Er ro r ” >&2

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” >&2

# Fix Condor logg ing to show PBStoCondor has been used

LINE= ‘ grep −rne ” C l u s t e r I d = $JOBNO” / var / l i b / condor / spool / h i s t o r y | head −n 1 | sed s

/ : . ∗ / / ‘

i f [ [ −z ” $INPUTFILES ” ] ]

then DIFF=29

else DIFF=30

f i

LINE= ‘ expr $LINE − $DIFF ‘

STRING= ” ’ $LINE s / . ∗ / Owner = ”$USER−PtoC ” / ’ / var / l i b / condor / spool / h i s t o r y ”

STRING=$ ( echo $STRING | sed ’ s / Owner = / Owner = \ ” / ’ )

STRING=$ ( echo $STRING | sed ’ s / PtoC / PtoC \ ” / ’ )

eva l sed − i −c $STRING

# Clean up #

rm − r f $JOBSCRIPT $LOGFILE $OUTFILE $ERRFILE

e x i t $?

$
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Appendix C

PBStoCondor-Daemon Code

C.1 Main

# ! / usr / b in / python

import sys

from subprocess import Popen , PIPE

# Setup Logging

import l ogg ing

logger = logg ing . getLogger ( ’ PBStoCondord ’ )

h d l r = logg ing . F i leHand le r ( ’ / var / log / PbstoCondord . log ’ )

f o r m a t t e r = logg ing . Formatter ( ’%(asct ime ) s %(name) s %(levelname ) s %(message ) s ’ , datefmt= ’%

b %d %Y %H:%M:%S ’ )

h d l r . se tFormat ter ( f o r m a t t e r )

logger . addHandler ( h d l r )

logger . se tLeve l ( logg ing .ERROR)

logger . propagate = False

# Def ine the S t r u c t c lass . This creates a s t r u c t u r e to be used w i t h i n an ar ray .

# Popula t ing i t w i th the ” Headings ” hostname ( s t r i n g ) , a c t i v e ( bool ) , running ( bool ) ,

# mport ( i n t ) , r p o r t ( i n t ) .

class S t r u c t :

def i n i t ( s e l f , hostname ) :

s e l f . hostnames = hostname

a c t i v e = False
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running = False

mport = 0

r p o r t = 0

# Funct ion to read c o n f i g u r a t i o n i n fo rma t i on

def sys in foParser ( ) :

# Set con f i g f i l e path and read mode

t ry :

con f i g = f i l e ( ’ / e tc / pbstocondord / pbstocondord . con f i g ’ , ’ r ’ )

except IOError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” IOError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” Conf ig f i l e can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

# Def ine g loba l v a r i ab l e s which can be used outs ide t h i s f u n c t i o n

global node pre f i x

node pre f i x = ” ”

global max moms int

global m i n p o r t i n t

global ma x po r t i n t

# Def ine l o c a l va r iab les , These need to be predef ined as empty f o r the con f i g f i l e

# e r r o r checking to f u n c t i o n p rope r l y

max moms = ” ”

min por t = ” ”

max port = ” ”

# S p l i t con f i g l i n e s using = as d e l i m i t e r , and assign values to v a r i a b l es

# Igno r ing any l i n e s s t a r t i n g w i th # or whitespace

for l i n e in con f i g :

i f l i n e . s t a r t s w i t h ( ’ # ’ ) or l i n e . s t a r t s w i t h ( ’ ’ ) :

pass

else :

temp = l i n e . s p l i t ( ’ = ’ )

i f temp [ 0 ] == ”NODE PREFIX” :

node pre f i x = temp [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp [ 0 ] == ’MAX MOMS ’ :

max moms = temp [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp [ 0 ] == ’MIN PORT ’ :

m in por t = temp [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp [ 0 ] == ’MAX PORT ’ :

max port = temp [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp [ 0 ] == ’DEBUG LEVEL ’ :
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debug leve l = s t r ( temp [ 1 ] . r s t r i p ( ’ \n ’ ) )

# Check f o r missing values i n con f i g f i l e

i f not node pre f i x or not max moms or not min por t or not max port :

logger . c r i t i c a l ( ’ Missing v a r i a b l e s i n con f i g f i l e , Please check your con f i g f i l e f o r

e r r o r s ’ )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

else :

pass

i f not debug leve l :

pass

e l i f debug leve l == ”DEBUG” :

logger . se tLeve l ( logg ing .DEBUG)

logger . debug ( ” s e t t i n g debug l e v e l to DEBUG” )

e l i f debug leve l == ” INFO” :

logger . se tLeve l ( logg ing . INFO)

logger . i n f o ( ” s e t t i n g debug l e v e l to INFO” )

e l i f debug leve l == ”WARNING” :

logger . se tLeve l ( logg ing .WARNING)

logger . warning ( ” s e t t i n g debug l e v e l to WARNING” )

e l i f debug leve l == ”ERROR” :

logger . se tLeve l ( logg ing .ERROR)

logger . e r r o r ( ” s e t t i n g debug l e v e l to ERROR” )

e l i f debug leve l == ” CRITICAL ” :

logger . se tLeve l ( logg ing . CRITICAL )

logger . c r i t i c a l ( ” s e t t i n g debug l e v e l to CRITICAL ” )

max moms int = i n t (max moms)

m i n p o r t i n t = i n t ( m in por t )

ma x po r t i n t = i n t ( max port )

logger . i n f o ( ”NODE PREFIX = ” + s t r ( node pre f i x ) )

logger . i n f o ( ”MAX MOMS = ” + s t r (max moms) )

logger . i n f o ( ”MIN PORT = ” + s t r ( m in por t ) )

logger . i n f o ( ”MAX PORT = ” + s t r ( max port ) )

# Funct ion to enumerate a l l requ i red permutat ions o f c o n f i g u r a t i o n i n fo rma t i on and s to re

them

# i n a s t r u c t u r e d ar ray

def valenumerator ( ) :
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# Needed to avoid ” UnboundLocalError : l o c a l v a r i a b l e ’ m i n p o r t i n t ’ re ferenced before

assignment ”

global m i n p o r t i n t

global mom counter

global mom table

# Def ine an ar ray c a l l e d mom table

mom table = [ ]

# I n i t i a l i s e counter as a s t r i n g

counter = ” 1 ”

mom counter = 0

for i in range (0 , max moms int ) :

# Catch e r r o r s i n con f i g p e r t a i n i n g to al lowed po r t range

i f m i n p o r t i n t >= ma x po r t i n t :

logger . c r i t i c a l ( ’ Not enough por ts assigned f o r given number o f moms. Please ensure

t o t a l po r t range i s equal to double the number o f requ i red moms! ’ )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

else :

pass

hosttemp = ” ” . j o i n ( ( node pre f i x , counter ) )

counter = i n t ( counter )

counter = counter + 1

counter = s t r ( counter )

logger . debug ( ” Hostname = ” + s t r ( hosttemp ) )

i f i == 0 :

mport = m i n p o r t i n t

logger . debug ( ” mom service port = ” + s t r ( mport ) )

m i n p o r t i n t = m i n p o r t i n t + 1

r p o r t = m i n p o r t i n t

logger . debug ( ” mom manager port = ” + s t r ( r p o r t ) )

else :

m i n p o r t i n t = m i n p o r t i n t + 1

mport = m i n p o r t i n t

logger . debug ( ” mom service port = ” + s t r ( mport ) )

m i n p o r t i n t = m i n p o r t i n t + 1

r p o r t = m i n p o r t i n t

logger . debug ( ” mom manager port = ” + s t r ( r p o r t ) )

mom table . append ( S t r u c t ( hosttemp ) )

mom table [ mom counter ] . mport = mport

mom table [ mom counter ] . r p o r t = r p o r t
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mom table [ mom counter ] . a c t i v e = False

mom table [ mom counter ] . running = False

mom counter = mom counter + 1

# Funct ion to f i n d the number o f POVB nodes c u r r e n t l y a v a l i a b l e

def povbgetnum ( ) :

global conodes

t ry :

pipe0 = Popen ( [ ” condor s ta tus ” ] , s tdou t=PIPE )

except OSError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” OSError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” condor s ta tus can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

pipe1 = Popen ( [ ” grep ” , ” / LINUX ” ] , s t d i n =pipe0 . stdout , s tdou t=PIPE )

pipe2 = Popen ( [ ” cu t ” , ”−c ” , ”24−26” ] , s t d i n =pipe1 . s tdout , s tdou t=PIPE )

t ry :

totconodes = i n t ( pipe2 . communicate ( ) [ 0 ] . r s t r i p ( ’ \n ’ ) )

except ValueError :

logger . debug ( ” condor s ta tus re turned NULL, s e t t i n g totconodes to 0 ” ) #debug

totconodes = 0

logger . debug ( ” totconodes = ” + s t r ( totconodes ) ) #debug

t ry :

pipe00 = Popen ( [ ” condor s ta tus ” ] , s tdou t=PIPE )

except OSError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” OSError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” condor s ta tus can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

pipe01 = Popen ( [ ” grep ” , ” / LINUX ” ] , s t d i n =pipe00 . stdout , s tdou t=PIPE )

pipe02 = Popen ( [ ” cu t ” , ”−c ” , ”30−32” ] , s t d i n =pipe01 . stdout , s tdou t=PIPE )

t ry :

ownconodes = i n t ( pipe02 . communicate ( ) [ 0 ] . r s t r i p ( ’ \n ’ ) )

except ValueError :

logger . debug ( ” condor s ta tus re turned NULL, s e t t i n g ownconodes to 0 ” ) #debug

ownconodes = 0

logger . debug ( ” ownconodes = ” + s t r ( ownconodes ) ) #debug

logger . i n f o ( ” totconodes = ” + s t r ( totconodes ) )

logger . i n f o ( ” ownconodes = ” + s t r ( ownconodes ) )
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conodes = totconodes − ownconodes

logger . i n f o ( ” conodes = ” + s t r ( conodes ) )

# Funct ion to f i n d a c t i v e moms

def momgetactive ( ) :

global momact ive in t

global mom table

temp = ” ”

momact ive in t = 0

t ry :

pipe0 = Popen ( [ ” pbsnodes ” , ”− l ” , ” a c t i v e ” ] , s tdou t=PIPE )

except OSError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” OSError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” pbsnodes can not be found . E x i t i n g . . ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

pipe1 = Popen ( [ ” grep ” , s t r ( node pre f i x ) ] , s t d i n =pipe0 . s tdout , s tdou t=PIPE )

seds t r = ” sed −e ’ s / ∗ job−exc lus i ve / / g ’ ”

pipe2 = Popen ( [ seds t r ] , s t d i n =pipe1 . s tdout , s tdou t=PIPE , s h e l l =True )

momactive = pipe2 . communicate ( ) [ 0 ]

logger . i n f o ( ” a c t i v e moms = ” + s t r ( momactive ) )

# Parse momactive to f i n d an i n t value o f how many moms are running and update mom table

w i th those t h a t are running

for l i n e in momactive :

temp = temp + l i n e

i f l i n e == ’ \n ’ :

momact ive in t = momact ive in t + 1

temp = i n t ( temp . l s t r i p ( node pre f i x ) . r s t r i p ( ’ \n ’ ) ) − 1

mom table [ temp ] . a c t i v e = True

logger . debug ( temp + ” has been marked as a c t i v e = ” + mom table [ temp ] . a c t i v e )

temp = ” ”

else :

pass

l ogger . i n f o ( ” a c t i v e moms i n t = ” + s t r ( momact ive in t ) )

# Find moms marked as running i n mom table , or i n f i r s t pass check wi th pbs server

def momgetrunning ( ) :

global momrunning int

global f i r s t p a s s

momrunning int = 0

temp = ” ”
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i f f i r s t p a s s == True :

f i r s t p a s s = False

logger . i n f o ( ” Enter ing f i r s t pass o f momgetrunning ( ) ” )

t ry :

pipe0 = Popen ( [ ” pbsnodes ” , ”− l ” , ” f r ee ” ] , s tdou t=PIPE )

except OSError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” OSError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” pbsnodes can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

pipe1 = Popen ( [ ” grep ” , s t r ( node pre f i x ) ] , s t d i n =pipe0 . s tdout , s tdou t=PIPE )

seds t r = ” sed −e ’ s / ∗ f r ee / / g ’ ”

pipe2 = Popen ( [ seds t r ] , s t d i n =pipe1 . s tdout , s tdou t=PIPE , s h e l l =True )

momrunning = pipe2 . communicate ( ) [ 0 ]

logger . i n f o ( ” running moms = ” + s t r ( momrunning ) . r s t r i p ( ’ \n ’ ) )

for l i n e in momrunning :

temp = temp + l i n e

i f l i n e == ’ \n ’ :

momrunning int = momrunning int + 1

temp = i n t ( temp . l s t r i p ( node pre f i x ) . r s t r i p ( ’ \n ’ ) ) − 1

mom table [ temp ] . running = True

logger . debug ( s t r ( temp ) + ” has been marked as running = ” + s t r ( mom table [ temp ] .

running ) )

temp = ” ”

else :

for i in range (0 , mom counter ) :

i f mom table [ i ] . running == True :

momrunning int = momrunning int + 1

else :

pass

l ogger . i n f o ( ”mom running i n t = ” + s t r ( momrunning int ) )

# I f there are more condor nodes than moms s t a r t more moms

def startmoms ( ) :

global mom table

i f momrunning int < conodes :

logg ing . i n f o ( ” momrunning i n t < conodes = True ” )

for i in range (0 , mom counter ) :

i f momrunning int < conodes :

logger . debug ( ” startmoms momrunning i n t = ” + s t r ( momrunning int ) )

logger . debug ( ” startmoms conodes = ” + s t r ( conodes ) )
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i f mom table [ i ] . running == False :

command = ”pbs mom −m −M ” + s t r ( mom table [ i ] . mport ) + ” −R ” + s t r ( mom table [ i

] . r p o r t ) + ” −H ” + s t r ( mom table [ i ] . hostnames )

logger . i n f o ( ” S ta r ing a mom, wi th the f o l l o w i n g command : ” + command)

t ry :

p = Popen (command, s tdou t=PIPE , s h e l l =True )

except OSError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” OSError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” pbs mom can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

r e s u l t = p . communicate ( ) [ 0 ]

logg ing . debug ( ” S t a r t mom Popen vars are : ” + s t r ( vars ( p ) ) )

logg ing . debug ( ” Resul t o f s t a r t mom i s : ” + s t r ( r e s u l t ) )

mom table [ i ] . running = True

momgetrunning ( )

else :

pass

else :

pass

else :

pass

# I f there are less condor nodes than moms stop some moms, ensur ing moms to be stopped are

not a c t i v e

def ki l lmoms ( ) :

global mom table

i f momrunning int > conodes :

logger . i n f o ( ” momrunning int > conodes = True ” )

for i in range (0 , mom counter ) :

i f momrunning int > conodes :

i f mom table [ i ] . a c t i v e == False and mom table [ i ] . running == True :

command = ” momctl −s −p ” + s t r ( mom table [ i ] . r p o r t )

logger . i n f o ( ” Stopping a mom wi th the f o l l o w i n g command : ” + command)

t ry :

p = Popen (command, s tdou t=PIPE , s h e l l =True )

except OSError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” OSError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” momctl can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )
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r e s u l t = p . communicate ( ) [ 0 ]

logg ing . debug ( ” Stop mom Popen vars are : ” + s t r ( vars ( p ) ) )

logg ing . debug ( ” Resul t o f stop mom i s : ” + s t r (

r e s u l t ) )

mom table [ i ] . running = False

momgetrunning ( )

else :

pass

else :

pass

else :

pass

def go ( ) :

import t ime

global f i r s t p a s s

f i r s t p a s s = True

sys in foParser ( )

logger . i n f o ( ” I n i t i a l i s i n g . . . . . . ” )

valenumerator ( )

logger . i n f o ( ” Enter ing main loop . . . . . . ” )

while ( 1 ) :

momgetrunning ( )

momgetactive ( )

povbgetnum ( )

startmoms ( )

povbgetnum ( )

ki l lmoms ( )

t ime . sleep (30)
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C.2 init.py

# ! / usr / b in / python

import sys , t ime

from pbstocondord daemon import Daemon

from pbstocondord main import go

class MyDaemon(Daemon) :

def run ( s e l f ) :

while True :

go ( )

i f name == ” ma in ” :

daemon = MyDaemon( ’ / tmp / pbstocondord . p id ’ )

i f l en ( sys . argv ) == 2:

i f ’ s t a r t ’ == sys . argv [ 1 ] :

daemon . s t a r t ( )

e l i f ’ s top ’ == sys . argv [ 1 ] :

daemon . stop ( )

e l i f ’ r e s t a r t ’ == sys . argv [ 1 ] :

daemon . r e s t a r t ( )

e l i f ’ s t a tus ’ == sys . argv [ 1 ] :

daemon . s ta tus ( )

else :

pr in t ”Unknown command”

sys . e x i t ( 2 )

sys . e x i t ( 0 )

else :

pr in t ” usage : %s s t a r t | stop | r e s t a r t ” % sys . argv [ 0 ]

sys . e x i t ( 2 )
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C.3 RHEL init

# ! / b in / sh

# Star tup s c r i p t f o r PBStoCondor Daemon

# chkconf ig : 2345 55 25

# processname : pbstocondord

# con f i g : / e tc / pbstocondord . con f i g

### BEGIN INIT INFO

# Provides : pbstocondord

# Required−S t a r t : $ l o c a l f s $network $syslog

# Required−Stop : $ l o c a l f s $syslog

# Should−S t a r t : $syslog

# Should−Stop : $network $syslog

# Defau l t−S t a r t : 2 3 4 5

# Defau l t−Stop : 0 1 6

# Short−Desc r i p t i on : S t a r t up the PBStoCondor server daemon

# Desc r i p t i on :

#

### END INIT INFO

# I f the daemon i s not there , then e x i t .

t e s t −x $EXEC | | e x i t 5

EXEC=/ opt / pbstocondord / pbs tocondo r d i n i t

case ” $1 ” in

s t a r t )

$EXEC $1 ; ;

stop )

$EXEC $1 ; ;

r e s t a r t )

$EXEC $1 ; ;

s ta tus )

$EXEC $1 ; ;

∗ )

# For i n v a l i d arguments , p r i n t the usage message .

echo ” Usage : $0 { s t a r t | stop | r e s t a r t | s ta tus } ”

e x i t 2 ; ;

esac

{\ co lo r {whi te} $}
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C.4 Config

# PBStoCondord con f i g f i l e

NODE PREFIX=conode

MAX MOMS=200

MIN PORT=20000

MAX PORT=30000

DEBUG LEVEL=INFO
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pbsSurge Code

D.1 Submitter

# ! / usr / b in / python

# Standard impor ts

import os , t ime , uuid , sys , re , f i l e i n p u t , s h u t i l

from subprocess import Popen , PIPE

# Creden t ia l s f un c t i on s

import c r e d e n t i a l s

# Impor t nova API

import novac l i en t . v1 1 . c l i e n t as n v c l i e n t

# Impor t keystone / glance API

import keys tonec l i en t . v2 0 . c l i e n t as k s c l i e n t

# impor t g l a n c e c l i e n t . v2 . c l i e n t as g l c l i e n t

import g l a n c e c l i e n t . v1 . c l i e n t as g l c l i e n t

# Get creds and vars

nvcreds = c r e d e n t i a l s . get nova creds ( )

nova = n v c l i e n t . C l i e n t (∗∗ nvcreds )

se rv id = uuid . uuid4 ( ) . hex

f l a v i d = uuid . uuid4 ( ) . hex

torq img = ”CentOS−6”

sshkey = ” t a u c e t i r o o t ”

i ppoo l = ” pbsSurge ”

rawmem= ” 0gb ”

flavmem= ” 1024 ”
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f l avhdd= ” 10 ”

f l avcpu= ” 1 ”

j o b s c r i p t = sys . argv [ 1 ]

s h u t i l . copy ( j o b s c r i p t , ’ tmp ’ )

j o b s c r i p t = f i l e ( j o b s c r i p t , ’ r ’ )

for l i n e in j o b s c r i p t :

i f l i n e . s t a r t s w i t h ( ’ #PBS ’ ) :

temp = l i n e . s p l i t ( ’ ’ )

i f temp [ 1 ] == ”− l ” :

temp1 = temp [ 2 ] . s p l i t ( ’ : ’ )

for var in temp1 :

temp2 = var . s p l i t ( ’ = ’ )

i f temp2 [ 0 ] == ’ ncpus ’ :

f l avcpu = temp2 [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp2 [ 0 ] == ”mem” :

rawmem = temp2 [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp2 [ 0 ] == ” ppn ” :

f l avcpu = temp2 [ 1 ] . r s t r i p ( ’ \n ’ )

e l i f temp2 [ 0 ] == ” nodes ” :

numnodes = temp2 [ 1 ] . r s t r i p ( ’ \n ’ )

r = re . compile ( ” ( [0−9]+) ( [ a−zA−Z ] + ) ” )

m = r . match (rawmem)

i f m. group ( 2 ) == ’ gb ’ or m. group ( 2 ) == ’GB ’ :

flavmem = i n t (m. group ( 1 ) ) ∗1024

e l i f m. group ( 2 ) == ’ kb ’ or m. group ( 2 ) == ’KB ’ :

flavmem = i n t (m. group ( 1 ) ) /1024

# p r i n t ”num nodes i n s c r i p t ” + numnodes

# p r i n t ”num cpus i n s c r i p t ” + f l avcpu

# p r i n t ”mem i n s c r i p t ” + s t r ( flavmem )

i f i n t ( flavmem ) < 1048 and i n t ( f l avcpu ) < 4:

## Run job as normal

pr in t ” / usr / b in / qsub ” + ” ” + sys . argv [ 1 ]

os . remove ( ’ tmp ’ )

sys . e x i t ( 0 )

else :

## Modify submit queue i n job s c r i p t

for l i n e in f i l e i n p u t . F i l e I n p u t ( ’ tmp ’ , i np lace =1) :
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i f l i n e . s t a r t s w i t h ( ’ #PBS −q ’ ) :

# l i n e = re . sub ( r ’#PBS −q .∗ ’ , r ’#PBS −q highmemq ’ , l i n e )

l i n e = re . sub ( r ’ #PBS −q .∗ ’ , r ’ #PBS −q s e r i a l s t d ’ , l i n e )

pr in t l i n e . r s t r i p ( ’ \n ’ )

else :

pr in t l i n e . r s t r i p ( ’ \n ’ )

## Create Flavour

r e q f l a v o r = nova . f l a v o r s . c reate (name= f l a v i d , ram=flavmem , d isk=f lavhdd , vcpus= f lavcpu )

## S t a r t ins tance

image = nova . images . f i n d (name=torq img )

ins tance = nova . servers . c reate (name=serv id , image=image , f l a v o r = req f l avo r , key name=

sshkey )

# p r i n t ins tance

# p r i n t s t r ( ins tance )

# P o l l a t 5 second i n t e r v a l s , u n t i l the s ta tus i s no longer ’BUILD ’

s ta tus = ins tance . s ta tus

while s ta tus == ’BUILD ’ :

t ime . sleep ( 5 )

# Ret r ieve the ins tance again so the s ta tus f i e l d updates

ins tance = nova . servers . get ( ins tance . i d )

s ta tus = ins tance . s ta tus

# p r i n t ” s ta tus : %s ” % s ta tus

# At tach f l o a t i n g IP

i p = nova . f l o a t i n g i p s . c reate ( pool= ippoo l )

ins tance . a d d f l o a t i n g i p ( i p )

# p r i n t ” f l o a t i n g i p = ” + i p

## Run job

pipe0 = Popen ( [ ” / usr / b in / qsub ” , ” tmp ” ] , s tdou t=PIPE , s t d e r r =PIPE )

jobno , j o b e r r = pipe0 . communicate ( )

i f j o b e r r . s t a r t s w i t h ( ’ qsub : submit e r r o r ’ ) :

jobno = ’ 0 ’

pr in t s t r ( j o b e r r ) . r s t r i p ( ’ \n ’ )

sys . e x i t ( 1 )

else :

pass

os . remove ( ’ tmp ’ )

pr in t s t r ( jobno ) . r s t r i p ( ’ \n ’ )

pipe1 = Popen ( [ ” / home / u0765098 / t e s t i n g / pbsSurge / watcher . py ” , jobno , serv id , f l a v i d , ”&” ]

, s tdou t=PIPE )

sys . e x i t ( 0 )
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D.2 Watcher

# ! / usr / b in / python

import os , t ime , sys

from subprocess import Popen , PIPE

# Creden t ia l s f un c t i on s

import c r e d e n t i a l s

# Impor t nova API

import novac l i en t . v1 1 . c l i e n t as n v c l i e n t

## sys args :

jobno = sys . argv [ 1 ]

se rv id = sys . argv [ 2 ]

f l a v i d = sys . argv [ 3 ]

j o b s t a t = ” 1 ”

nvcreds = c r e d e n t i a l s . get nova creds ( )

nova = n v c l i e n t . C l i e n t (∗∗ nvcreds )

ins tance = nova . servers . f i n d (name= se rv id )

s ta tus = ins tance . s ta tus

i n s t i d = ins tance . i d

r e q f l a v o r = nova . f l a v o r s . f i n d (name= f l a v i d )

i p = nova . f l o a t i n g i p s . f i n d ( i n s t a n c e i d = i n s t i d )

## Wait f o r job to f i n i s h

while j o b s t a t :

pipe1 = Popen ( [ ” / usr / b in / qs ta t ” , jobno ] , s tdou t=PIPE , s t d e r r =PIPE )

j o b s t a t = pipe1 . communicate ( ) [ 0 ]

t ime . s leep (30)

## K i l l ins tance

ins tance . de le te ( )

while s ta tus == ’ De le t ing ’ :

t ime . sleep ( 5 )

## Delete F lavor

nova . f l a v o r s . de le te ( r e q f l a v o r )

nova . f l o a t i n g i p s . de le te ( i p )

sys . e x i t ( 0 )
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Simulator Code

E.1 resources.txt snippet

## Scheduler S imula tor resource c o n f i g u r a t i o n f i l e

0 4

1 4

2 4

3 4

4 4

5 4

6 1

7 1

8 1

9 1

E.2 simulator.py

# ! / usr / b in / python

import sys , t ime

# Setup Logging

import l ogg ing

logger = logg ing . getLogger ( ’ resource parser ’ )

h d l r = logg ing . F i leHand le r ( ’ resource parser . log ’ )

f o r m a t t e r = logg ing . Formatter ( ’%(asct ime ) s %(name) s %(levelname ) s %(message ) s ’ , datefmt= ’%

b %d %Y %H:%M:%S ’ )
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h d l r . se tFormat ter ( f o r m a t t e r )

logger . addHandler ( h d l r )

DEBUG2=0

DEBUG3=0

i f DEBUG2:

logger . se tLeve l ( logg ing .DEBUG)

else :

logger . se tLeve l ( logg ing .ERROR)

logger . propagate = False

global r unn ing tab le

runn ing tab le = [ ]

global queue ing tab le

queue ing tab le = [ ]

global s o r t i n g t a b l e

s o r t i n g t a b l e = [ ]

global p r e v i o u s t r i g g e r

################

## Funct ion to read the resources f i l e and populate the resou rce tab le [ ] based on the

number o f cores a v a l i a b l e .

## The resourec f i l e cons i s t s o f space seperated values node number and number o f no cpus

def resource parse ( ) :

global resou rce tab le

resou rce tab le = [ ]

t ry :

r e s o u r c e f i l e = f i l e ( ’ resources . t x t ’ , ’ r ’ )

except IOError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” IOError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” resources . t x t can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

for l i n e in r e s o u r c e f i l e :

## Ensure l i n e s t a r t s w i th a numer ica l d i g i t before processing

i f l i n e [ 0 ] . i s d i g i t ( ) :

temp = l i n e . s p l i t ( ’ ’ )

r esou rce tab le . append ( [ ] )

for i in range (0 , i n t ( temp [ 1 ] ) ) :

r esou rce tab le [ i n t ( temp [ 0 ] ) ] . append ( 1 )
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else :

pass

# f o r j i n range (0 , i n t ( temp [ 0 ] ) + i n t ( 1 ) ) :

# p r i n t resou rce tab le [ j ]

# p r i n t resou rce tab le [ 1 ] [ 0 ]

return resou rce tab le #FIXME( r e t u r n i s not needed )

#FIXME resou rce tab le i s a l redy g loba l

#################

# Def ine the St ruc t0 c lass . This creates a s t r u c t u r e to be used w i t h i n an ar ray .

# Popula t ing i t w i th Headings

class St ruc t0 :

def i n i t ( s e l f , jobno ) :

s e l f . jobnos = jobno

ct ime = 0

nodes = 0

f jobno = ” ”

ppn = 0

queue = ” ”

username = ” ”

qt ime = 0

etime = 0

s t a r t = 0

end = 0

dura t i on = 0

resources = [ ]

#################

# Def ine the St ruc t1 c lass . This creates a s t r u c t u r e to be used w i t h i n an ar ray .

# Popula t ing i t w i th Headings

class St ruc t1 :

def i n i t ( s e l f , t r i g g e r t i m e ) :

s e l f . t r i g g e r t i m e s = t r i g g e r t i m e

jobnos = ” ”

# Resource L is t . nodes =2:ppn=4

run OR sort = ” ”

#################

def l og parse ( to rque log ) :
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global i n i t t a b l e

i n i t t a b l e = [ ]

global i n i t t a b l e n g t h

i n i t t a b l e n g t h = 0

## The f o l l o w i n g values only cu r remt l y remain g loba l to g ive the other tab les some i n i t i a l

values .

# g loba l jobno

# g loba l nodes

# g loba l ppn

# g loba l queue

# g loba l ct ime

# g loba l qt ime

# g loba l et ime

# g loba l s t a r t

# g loba l end

# g loba l username

# g loba l du ra t i on

t ry :

l o g f i l e = f i l e ( to rque log , ’ r ’ )

except IOError as ( errno , s t r e r r o r ) :

logger . c r i t i c a l ( ” IOError ({0} ) : {1} ” . format ( errno , s t r e r r o r ) )

logger . c r i t i c a l ( ” account ing log can not be found . E x i t i n g ” )

sys . s t d e r r . w r i t e ( ” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ” )

sys . e x i t ( 1 )

logger . debug ( ” Log Parse : Popula t ing the i n i t t a b l e ” )

for l i n e in l o g f i l e :

temp0 = l i n e . s p l i t ( ” ; ” )

# p r i n t temp0

# p r i n t temp0 [ 1 ]

## Only process E records from account ing log

i f temp0 [ 1 ] == ”E” :

f j obno = s t r ( temp0 [ 2 ] )

temp1 = f jobno . s p l i t ( ” . ” )

i f ” [ ” not in temp1 [ 0 ] :

jobno = temp1 [ 0 ] + ” .0 ”

else :

k=temp1 [ 0 ] . s p l i t ( ” [ ” )

j =k [ 1 ] . s p l i t ( ” ] ” )

jobno=k [ 0 ] + ” . ” + j [ 0 ]

135



E. Simulator Code

#jobno=k [ 0 ]

temp1 = temp0 [ 3 ] . s p l i t ( ” ” )

# p r i n t temp1

for i in range (0 , len ( temp1 ) ) :

# p r i n t temp1 [ i ]

i f temp1 [ i ] . s t a r t s w i t h ( ” user ” ) :

username = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” queue ” ) :

queue = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” ct ime ” ) :

ct ime = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” qt ime ” ) :

qt ime = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” et ime ” ) :

et ime = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” s t a r t ” ) :

s t a r t = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” end ” ) :

end = s t r ( temp1 [ i ] . s p l i t ( ” = ” ) [ 1 ] )

e l i f temp1 [ i ] . s t a r t s w i t h ( ” Resource L is t . nodes ” ) :

temp2 = temp1 [ i ] . s p l i t ( ” : ” )

nodes = temp2 [ 0 ] . s p l i t ( ” = ” ) [ 1 ]

i f l en ( temp2 ) == 2:

ppn = i n t ( temp2 [ 1 ] . s p l i t ( ” = ” ) [ 1 ] )

else :

ppn = 1

dura t i on = i n t ( end ) − i n t ( s t a r t )

i f f i nd space ( i n t ( nodes ) , i n t ( ppn ) , jobno ) :

i n i t t a b l e . append ( S t ruc t0 ( jobno ) )

i n i t t a b l e [ i n i t t a b l e n g t h ] . f j obno = f jobno

i n i t t a b l e [ i n i t t a b l e n g t h ] . queue = queue

i n i t t a b l e [ i n i t t a b l e n g t h ] . ct ime = i n t ( ct ime )

i n i t t a b l e [ i n i t t a b l e n g t h ] . qt ime = i n t ( qt ime )

i n i t t a b l e [ i n i t t a b l e n g t h ] . et ime = i n t ( et ime )

i n i t t a b l e [ i n i t t a b l e n g t h ] . s t a r t = i n t ( s t a r t )

i n i t t a b l e [ i n i t t a b l e n g t h ] . end = i n t ( end )

i n i t t a b l e [ i n i t t a b l e n g t h ] . nodes = i n t ( nodes )

i n i t t a b l e [ i n i t t a b l e n g t h ] . ppn = i n t ( ppn )

i n i t t a b l e [ i n i t t a b l e n g t h ] . username = username
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i n i t t a b l e [ i n i t t a b l e n g t h ] . du ra t i on = i n t ( du ra t i on )

i n i t t a b l e n g t h = i n i t t a b l e n g t h + 1

else :

logger . debug ( ” Log Parse : System Con f igu ra t i on i s not compat ib le f o r job : ” + s t r (

jobno ) )

logger . debug ( ” Log Parse : Completed the i n i t t a b l e ” )

#################

def bubb le so r t ( seq , index ) :

# I n e f f i c i e n t l y s o r t the mutable sequence ( l i s t ) i n place .

# seq MUST BE A MUTABLE SEQUENCE.

mycount=1

# As wi th l i s t . s o r t ( ) and random . s h u f f l e t h i s does NOT r e t u r n

# 9−12−13 roset tacode . org / w i k i / S o r t i n g a l g o r i t h m s / Bubb le sor t #Python

i f index == ’ i n i t ’ :

changed = True

while changed :

pr in t mycount

changed = False

for i in range ( len ( seq ) − 1) :

i f f l o a t ( seq [ i ] . jobnos ) > f l o a t ( seq [ i + 1 ] . jobnos ) :

seq [ i ] , seq [ i +1] = seq [ i +1] , seq [ i ]

changed = True

mycount += 1

e l i f index == ’ s o r t ’ :

changed = True

while changed :

changed = False

for i in range ( len ( seq ) − 1) :

i f seq [ i ] . t r i g g e r t i m e s > seq [ i + 1 ] . t r i g g e r t i m e s :

seq [ i ] , seq [ i +1] = seq [ i +1] , seq [ i ]

changed = True

return None

#################

def make busy ( nodes , ppn , jobnos ) :

no cpus = 0

no nodes = 0
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pass1 = 0

cont = True

v = ” ”

global made busy

made busy = [ ]

logger . debug ( ” Making Busy f o r ” + s t r ( jobnos ) )

for i in range (0 , len ( resou rce tab le ) ) :

i f no nodes != i n t ( nodes ) :

i f len ( resou rce tab le [ i ] ) == ppn and cont == True :

for j in range (0 , len ( resou rce tab le [ i ] ) ) :

i f resou rce tab le [ i ] [ j ] == 1 :

no cpus = no cpus + 1

i f no cpus == ppn :

for k in range (0 , no cpus ) :

resou rce tab le [ i ] [ k ] = 0

made busy . extend ( ( i , k ) )

no nodes = no nodes + 1

no cpus = 0

# pass1 = 1

else :

logger . debug ( ” Busy−Pass 1: the number o f cpus has a l ready been a l l o c a te d ” )

pass

else :

logger . debug ( ” Busy−Pass 1: the core i s busy ” )

cont = False

else :

logger . debug ( ” Busy−Pass 1: nodes s ize does not match ppn exac t l y ” )

pass

else :

logger . debug ( ” Busy−Pass 1: node a l l o c a t i o n s are now complete ” )

pass

# i f pass1 == 0:

for i in range (0 , len ( resou rce tab le ) ) :

i f no nodes != i n t ( nodes ) :

i f len ( resou rce tab le [ i ] ) >= ppn :

core sum=0

for j in range (0 , len ( resou rce tab le [ i ] ) ) :

core sum=core sum + resou rce tab le [ i ] [ j ]

# p r i n t core sum , ppn
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i f core sum >= ppn :

no nodes=no nodes+1

no cpus=0

for j in range (0 , len ( resou rce tab le [ i ] ) ) :

i f resou rce tab le [ i ] [ j ] == 1 and no cpus<ppn :

no cpus = no cpus + 1

resou rce tab le [ i ] [ j ] = 0

made busy . extend ( ( i , j ) )

else :

logger . debug ( ” Busy−Pass 2: core i s e i t h e r busy or a l l a l l o c a t i o n s complete ” )

pass

else :

logger . debug ( ” Busy−Pass 2: node does not have enough f ree cores ” )

pass

else :

logger . debug ( ” Busy−Pass 2: node does not have enough cores to match ppn ” )

pass

else :

logger . debug ( ” Busy−Pass 2: node a l l o c a t i o n s are now complete ” )

pass

i f no nodes != i n t ( nodes ) :

return 0

else :

pr in t ” Making A l l o c a t i o n : ” , nodes , ppn

i f 1:

for xx in range (0 , len ( resou rce tab le ) ) :

pr in t resou rce tab le [ xx ]

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

return made busy

#################

def make free ( busy cores ) :

for i in range (0 , len ( busy cores ) ,2 ) :

resou rce tab le [ busy cores [ i ] ] [ busy cores [ i + 1 ] ] = 1

#################

def f i nd space ( nodes , ppn , jobnos ) :

no cpus = 0
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no nodes = 0

pass1 = 0

cont = True

node sum=0

core sum=0

v = ” ”

logger . debug ( ” Find Space f o r ” + s t r ( jobnos ) )

# I d e n t i f y i f we even have enough nodes to make such an a l l o c a t i o n

for i in range (0 , len ( resou rce tab le ) ) :

i f len ( resou rce tab le [ i ] ) >= ppn :

node sum=node sum+1

i f node sum>=nodes :

#Pass 1− f i n d those nodes t h a t match exac t l y

for i in range (0 , len ( resou rce tab le ) ) :

cont=True

i f no nodes != i n t ( nodes ) :

i f l en ( resou rce tab le [ i ] ) == ppn :

for j in range (0 , len ( resou rce tab le [ i ] ) ) :

i f resou rce tab le [ i ] [ j ] == 1 and cont == True :

no cpus = no cpus + 1

i f no cpus == ppn :

no nodes = no nodes + 1

no cpus = 0

else :

logger . debug ( ” Space−Pass 1: not enough space on the node ” )

pass

else :

logger . debug ( ” Space−Pass 1: the core i s busy ” )

cont = False

no cpus=0

else :

logger . debug ( ” Space−Pass 1: nodes s ize does not match ppn exac t l y ” )

pass

else :

logger . debug ( ” Space−Pass 1: node a l l o c a t i o n s are now complete ” )

pass

for i in range (0 , len ( resou rce tab le ) ) :

i f no nodes != i n t ( nodes ) :
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i f l en ( resou rce tab le [ i ] ) > ppn :

core sum=0

for j in range (0 , len ( resou rce tab le [ i ] ) ) :

core sum=core sum + resou rce tab le [ i ] [ j ]

# p r i n t core sum , ppn

i f core sum >= ppn :

no nodes=no nodes+1

no cpus=0

for j in range (0 , len ( resou rce tab le [ i ] ) ) :

i f resou rce tab le [ i ] [ j ] == 1 and no cpus<ppn :

no cpus = no cpus + 1

else :

logger . debug ( ” Space−Pass 2: core i s e i t h e r busy or a l l a l l o c a t i o n s

complete ” )

pass

else :

logger . debug ( ” Space−Pass 2: node does not have enough f ree cores ” )

pass

else :

logger . debug ( ” Space−Pass 2: node does not have enough cores to match ppn ” )

pass

else :

logger . debug ( ” Space−Pass 2: node a l l o c a t i o n s are now complete ” )

pass

i f no nodes != i n t ( nodes ) :

return 0

else :

return 1

#################

def p r i n t l o g s ( completed job ) :

tstamp = t ime . s t r f t i m e ( ’%d/%m/%Y %H:%M:%S ’ , t ime . l o c a l t i m e ( completed job . end ) )

new log = open ( s t r ( sys . argv [ 1 ] ) + ” . new” , ’ a ’ )

new log . w r i t e ( tstamp+ ” ;E ; ” +completed job . jobnos+ ” ; user= ” + completed job . username + ”

queue= ” + completed job . queue+ ” ct ime= ” + s t r ( completed job . ct ime ) + ” qt ime= ” + s t r (

completed job . qt ime ) + ” et ime= ” + s t r ( completed job . et ime ) + ” s t a r t = ” + s t r ( completed job .

s t a r t ) + ” end= ” + s t r ( completed job . end ) + ” Resource L is t . nodes= ” + s t r ( completed job .

nodes ) + ” : ppn= ” + s t r ( completed job . ppn ) + ” du ra t i on = ” + s t r ( completed job . du ra t i on ) + ” \n ” )

new log . c lose ( )
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#################

def move job ( s rc tab , s rc index , dest tab , resources , s o r t f l a g ) :

des t rec index = ” ”

i f s o r t f l a g == ’R ’ :

des t tab . append ( S t ruc t1 ( s r c t ab [ s rc index ] . s t a r t + s r c t ab [ s rc index ] . du ra t i on ) )

des t tab [ len ( des t tab ) −1]. jobnos = s r c t ab [ s rc index ] . jobnos

des t tab [ len ( des t tab ) −1]. run OR sort = s o r t f l a g

des t rec index = len ( des t tab )−1

e l i f s o r t f l a g == ’Q ’ :

des t tab . append ( S t ruc t1 ( s r c t ab [ s rc index ] . ct ime ) )

des t tab [ len ( des t tab ) −1]. jobnos = s r c t ab [ s rc index ] . jobnos

des t tab [ len ( des t tab ) −1]. run OR sort = s o r t f l a g

des t rec index = len ( des t tab )−1

else :

des t tab . append ( S t ruc t0 ( s r c t ab [ s rc index ] . jobnos ) )

des t tab [ len ( des t tab ) −1].nodes = s r c t ab [ s rc index ] . nodes

des t tab [ len ( des t tab ) −1].ppn = s r c t ab [ s rc index ] . ppn

des t tab [ len ( des t tab ) −1].queue = s r c t ab [ s rc index ] . queue

des t tab [ len ( des t tab ) −1].username = s r c t ab [ s rc index ] . username

des t tab [ len ( des t tab ) −1]. ct ime = s r c t ab [ s rc index ] . ct ime

des t tab [ len ( des t tab ) −1]. qt ime = s r c t ab [ s rc index ] . qt ime

des t tab [ len ( des t tab ) −1]. et ime = s r c t ab [ s rc index ] . et ime

des t tab [ len ( des t tab ) −1]. s t a r t = s r c t ab [ s rc index ] . s t a r t

des t tab [ len ( des t tab ) −1].end = s r c t ab [ s rc index ] . end

des t tab [ len ( des t tab ) −1]. du ra t i on = s r c t ab [ s rc index ] . du ra t i on

i f resources == −999:

des t tab [ len ( des t tab ) −1]. resources = 0

else :

des t tab [ len ( des t tab ) −1]. resources = resources

des t rec index = len ( des t tab )−1

return des t rec index

#################

def f i n d i n d e x ( jobno , t ab l e ) :

for i in range (0 , len ( t ab l e ) ) :
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i f t ab l e [ i ] . jobnos == jobno :

return i

#################

def make running ( i , tab le , p r e v i o u s t r i g g e r ) :

pr in t ” A l l o c a t i n g job : ” , t ab l e [ i ] . jobnos , t ab l e [ i ] . nodes , t ab l e [ i ] . ppn

i f 0:

for xx in range (0 , len ( resou rce tab le ) ) :

pr in t resou rce tab le [ xx ]

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

r unn ing job index =move job ( tab le , i , runn ing tab le , make busy ( t ab l e [ i ] . nodes , t ab l e [ i ] . ppn ,

t ab l e [ i ] . jobnos ) ,−999)

# p r i n t ” T r igge r Time : ” , p r e v i o u s t r i g g e r

i f p r e v i o u s t r i g g e r != 0 :

i f p r e v i o u s t r i g g e r<r unn ing tab le [ runn ing job index ] . ct ime :

i f r unn ing tab le [ runn ing job index ] . et ime <= runn ing tab le [ runn ing job index ] . ct ime :

runn ing tab le [ runn ing job index ] . s t a r t = runn ing tab le [ runn ing job index ] . ct ime

else :

r unn ing tab le [ runn ing job index ] . s t a r t = runn ing tab le [ runn ing job index ] . et ime

else :

r unn ing tab l e [ runn ing job index ] . s t a r t = p r e v i o u s t r i g g e r

else :

i f r unn ing tab le [ runn ing job index ] . et ime <= runn ing tab le [ runn ing job index ] . ct ime :

runn ing tab l e [ runn ing job index ] . s t a r t = runn ing tab le [ runn ing job index ] . ct ime

else :

r unn ing tab l e [ runn ing job index ] . s t a r t = runn ing tab le [ runn ing job index ] . et ime

runn ing tab le [ runn ing job index ] . qt ime= runn ing tab l e [ runn ing job index ] . s t a r t

r unn ing tab le [ runn ing job index ] . end= runn ing tab le [ runn ing job index ] . s t a r t +

runn ing tab le [ runn ing job index ] . du ra t i on

# p r i n t s t r ( r unn ing tab le [ runn ing job index ] . end )

#move job ( tab le , i , s o r t i n g t a b l e ,−999 , ’R ’ )

# bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

i f DEBUG2:

d i s p l a y t a b l e ( ” r unn ing tab le ” )

d i s p l a y t a b l e ( ” queue ing tab le ” )

d i s p l a y t a b l e ( ” s o r t i n g t a b l e ” )

return r unn ing job index
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#################

def make queued ( i ) :

pr in t ”Can not make a l l o c a t i o n f o r : ” , i n i t t a b l e [ i ] . jobnos , i n i t t a b l e [ i ] . nodes ,

i n i t t a b l e [ i ] . ppn

pr in t ” Job being queued : ” , i n i t t a b l e [ i ] . jobnos

queued job index=move job ( i n i t t a b l e , i , queueing table ,−999,−999)

#move job ( i n i t t a b l e , i , s o r t i n g t a b l e ,−999 , ’Q ’ )

# bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

i f DEBUG2:

d i s p l a y t a b l e ( ” r unn ing tab le ” )

d i s p l a y t a b l e ( ” queue ing tab le ” )

d i s p l a y t a b l e ( ” s o r t i n g t a b l e ” )

return queued job index

#################

def process queue i tems ( i n i t t r i g g e r ) :

global p r e v i o u s t r i g g e r

j =0

# f o r j i n range (0 , len ( s o r t i n g t a b l e ) ) :

while j < l en ( s o r t i n g t a b l e ) :

i f i n i t t r i g g e r > s o r t i n g t a b l e [ j ] . t r i g g e r t i m e s :

i f s o r t i n g t a b l e [ j ] . run OR sort == ’R ’ :

make free ( runn ing tab le [ f i n d i n d e x ( s o r t i n g t a b l e [ j ] . jobnos , runn ing tab l e ) ] .

resources )

completed job= runn ing tab le . pop ( f i n d i n d e x ( s o r t i n g t a b l e [ j ] . jobnos , runn ing tab le ) )

p r i n t l o g s ( completed job )

p r e v i o u s t r i g g e r = s o r t i n g t a b l e [ j ] . t r i g g e r t i m e s

pr in t ” Popping : ” + s o r t i n g t a b l e [ j ] . jobnos

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

s o r t i n g t a b l e . pop ( j )

i f DEBUG3:

pr in t ” C a l l i n g i n s i d e wh i le ( poped jobs ) ”

d i s p l a y t a b l e ( ” s o r t i n g t a b l e ” )

j =0

#break
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else :

queue index= f i n d i n d e x ( s o r t i n g t a b l e [ j ] . jobnos , queue ing tab le )

i f f i nd space ( queue ing tab le [ queue index ] . nodes , queue ing tab le [ queue index ] . ppn ,

queue ing tab le [ queue index ] . jobnos ) :

pr in t ” Se t t i ng a Queued job wi th index : ” + s t r ( queue index ) + ” and j o b i d : ” +

s o r t i n g t a b l e [ j ] . jobnos + ” to running\n ”

runn ing job index =make running ( queue index , queueing table , p r e v i o u s t r i g g e r )

s o r t i n g t a b l e [ j ] . t r i g g e r t i m e s =queue ing tab le [ queue index ] . du ra t i on +

p r e v i o u s t r i g g e r

s o r t i n g t a b l e [ j ] . run OR sort = ’R ’

bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

queue ing tab le . pop ( queue index )

j =0

#break

else :

j += 1

i f len ( s o r t i n g t a b l e ) == 0:

# p r i n t ” f o r : the leng th i s now 0”

break

else :

j += 1

return 0

#################

def d i s p l a y t a b l e ( t ab l e ) :

i f t ab l e == ” s o r t i n g t a b l e ” :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−so r t i ng−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” T r igge r | Job No | Queue”

for k in range (0 , len ( s o r t i n g t a b l e ) ) :

pr in t s t r ( s o r t i n g t a b l e [ k ] . t r i g g e r t i m e s ) + ” ” + s o r t i n g t a b l e [ k ] . jobnos + ”

” + s o r t i n g t a b l e [ k ] . run OR sort

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

e l i f t ab l e == ” queue ing tab le ” :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−queueing−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” Job No | ct ime | nodes | ppn | dura t i on ”
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for k in range (0 , len ( queue ing tab le ) ) :

pr in t queue ing tab le [ k ] . jobnos + ” ” + s t r ( queue ing tab le [ k ] . ct ime ) + ” ” + s t r (

queue ing tab le [ k ] . nodes ) + ” ” + s t r ( queue ing tab le [ k ] . ppn ) + ” ” +

s t r ( queue ing tab le [ k ] . du ra t i on )

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−running−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” Job No | ct ime | nodes | ppn | dura t i on | s t a r t | end | resources ”

for k in range (0 , len ( runn ing tab le ) ) :

pr in t r unn ing tab le [ k ] . jobnos + ” ” + s t r ( r unn ing tab le [ k ] . ct ime ) + ” ” + s t r (

r unn ing tab le [ k ] . nodes ) + ” ” + s t r ( r unn ing tab le [ k ] . ppn ) + ” ” +

s t r ( r unn ing tab le [ k ] . du ra t i on ) + ” ” + s t r ( r unn ing tab le [ k ] . s t a r t ) + ”

” + s t r ( r unn ing tab le [ k ] . end ) + ” ” + s t r ( r unn ing tab le [ k ] . resources

)

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

#################

i f name == ” ma in ” :

resource parse ( )

log parse ( sys . argv [ 1 ] )

debug showdata=0

p r e v i o u s t r i g g e r = 0

bubb le so r t ( i n i t t a b l e , ’ i n i t ’ )

i f debug showdata :

for j in range (0 , len ( resou rce tab le ) ) :

pr in t resou rce tab le [ j ]

for i in range (0 , i n i t t a b l e n g t h ) :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ”New Job i s : ” + i n i t t a b l e [ i ] . jobnos + ” a t t ime ” + s t r ( i n i t t a b l e [ i ] . et ime )

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

i f len ( s o r t i n g t a b l e ) == 0:

runn ing job index =make running ( i , i n i t t a b l e , 0 )

move job ( runn ing tab le , runn ing job index , s o r t i n g t a b l e ,−999, ’R ’ )

bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

else :

i f i n i t t a b l e [ i ] . c t ime < s o r t i n g t a b l e [ 0 ] . t r i g g e r t i m e s :

i f f i nd space ( i n i t t a b l e [ i ] . nodes , i n i t t a b l e [ i ] . ppn , i n i t t a b l e [ i ] . jobnos ) :
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r unn ing job index =make running ( i , i n i t t a b l e , 0 )

move job ( runn ing tab le , runn ing job index , s o r t i n g t a b l e ,−999, ’R ’ )

bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

else :

queued job index=make queued ( i )

move job ( queueing table , queued job index , s o r t i n g t a b l e ,−999, ’Q ’ )

bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

else :

i f DEBUG3:

pr in t ” C a l l i n g before the whi le ”

d i s p l a y t a b l e ( ” s o r t i n g t a b l e ” )

done sor t ing =1

while ( s o r t i n g t a b l e [ 0 ] . t r i g g e r t i m e s < i n i t t a b l e [ i ] . c t ime ) and ( done sor t ing ==

1) :

# p r i n t ” t h i s ”

done sor t ing=process queue i tems ( i n i t t a b l e [ i ] . c t ime )

# p r i n t ” t h i s 2 ”

i f l en ( s o r t i n g t a b l e ) == 0:

# p r i n t ” wh i le : the leng th i s now 0”

break

#mytemp= f ind space ( i n i t t a b l e [ i ] . nodes , i n i t t a b l e [ i ] . ppn , i n i t t a b l e [ i ] . jobnos )

# p r i n t mytemp

i f f i nd space ( i n i t t a b l e [ i ] . nodes , i n i t t a b l e [ i ] . ppn , i n i t t a b l e [ i ] . jobnos ) :

r unn ing job index =make running ( i , i n i t t a b l e , p r e v i o u s t r i g g e r )

move job ( runn ing tab le , runn ing job index , s o r t i n g t a b l e ,−999, ’R ’ )

bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

else :

queued job index=make queued ( i )

move job ( queueing table , queued job index , s o r t i n g t a b l e ,−999, ’Q ’ )

bubb le so r t ( s o r t i n g t a b l e , ’ s o r t ’ )

######

i f DEBUG3:

pr in t ” C a l l i n g before the whi le ”

d i s p l a y t a b l e ( ” s o r t i n g t a b l e ” )

while len ( s o r t i n g t a b l e ) > 0:

process queue i tems (9999999999)
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i f len ( s o r t i n g t a b l e ) == 0:

# p r i n t ” wh i le : the leng th i s now 0”

break

###########

pr in t ” \n\n ”

i f 0:

for i in range (0 , i n i t t a b l e n g t h ) :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” jobno i s − ” + i n i t t a b l e [ i ] . jobnos

pr in t ” queue i s − ” + i n i t t a b l e [ i ] . queue

pr in t ” ct ime i s − ” + s t r ( i n i t t a b l e [ i ] . c t ime )

pr in t ” qt ime i s − ” + s t r ( i n i t t a b l e [ i ] . qt ime )

pr in t ” et ime i s − ” + s t r ( i n i t t a b l e [ i ] . et ime )

pr in t ” s t a r t i s − ” + s t r ( i n i t t a b l e [ i ] . s t a r t )

pr in t ” end i s − ” + s t r ( i n i t t a b l e [ i ] . end )

pr in t ” nodes i s − ” + s t r ( i n i t t a b l e [ i ] . nodes )

pr in t ” ppn i s − ” + s t r ( i n i t t a b l e [ i ] . ppn )

pr in t ” du ra t i on − ” + s t r ( i n i t t a b l e [ i ] . du ra t i on )

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

i f 1:

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−c los i ng statement−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” Jobs processed : ” , s t r ( len ( i n i t t a b l e ) )

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

d i s p l a y t a b l e ( ” r unn ing tab le ” )

d i s p l a y t a b l e ( ” queue ing tab le ” )

d i s p l a y t a b l e ( ” s o r t i n g t a b l e ” )

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−system−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

for i in range (0 , len ( resou rce tab le ) ) :

pr in t resou rce tab le [ i ]

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
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Hadoop Code

F.1 Driver

F.1.1 DriverPBSLog.java

package Dr i ve r ;

import java . net . URI ;

import java . u t i l . Date ;

import org . apache . hadoop . f i l e c a c h e . Dis t r ibutedCache ;

import org . apache . hadoop . f s . Path ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . Nu l lWr i t a b l e ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapred . l i b . Mul t ip leTextOutputFormat ;

import org . apache . hadoop . mapreduce . l i b . i npu t . F i le Inpu tFormat ;

import org . apache . hadoop . mapreduce . l i b . i npu t . Text InputFormat ;

import org . apache . hadoop . mapreduce . l i b . output . F i leOutputFormat ;

import org . apache . hadoop . mapreduce . l i b . output . Mu l t i p leOutpu ts ;

import org . apache . hadoop . mapreduce . l i b . output . TextOutputFormat ;

import org . apache . hadoop . mapreduce . Job ;

import org . apache . hadoop . conf . Con f i gu ra t i on ;

@SuppressWarnings ( ” unused ” )

public class DriverPBSLog

{

s t a t i c S t r i n g p a t h p r e f i x = ” /LUBM/ ” ;

s t a t i c S t r i n g logsPath = ” l ogs / ” ;
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s t a t i c S t r i n g ISWCPath = nul l ;

s t a t i c S t r i n g tmpPath = nul l ;

s t a t i c S t r i n g fac tsPath = nul l ;

s t a t i c I n t ege r numOfMaps = 1 , numOfReduces = 1;

private s t a t i c void parseArgs ( S t r i n g [ ] args ) {

t ry {

S t r i n g arg ;

i n t i = 0 ;

while ( i < args . leng th ) {

arg = args [ i ++ ] ;

i f ( arg . equals ( ”−maps” ) ) {

i f ( i < args . leng th ) {

arg = args [ i ++ ] ;

numOfMaps = In tege r . pa rse In t ( arg ) ;

i f (numOfMaps < 1)

throw new NumberFormatException ( ) ;

}

else

throw new NumberFormatException ( ) ;

}

else i f ( arg . equals ( ”−reduces ” ) ) {

i f ( i < args . leng th ) {

arg = args [ i ++ ] ;

numOfReduces = In tege r . pa rse In t ( arg ) ;

i f ( numOfReduces < 1)

throw new NumberFormatException ( ) ;

}

else

throw new NumberFormatException ( ) ;

}

else i f ( arg . equals ( ”−p a t h p r e f i x ” ) ) {

i f ( i < args . leng th ) {

arg = args [ i ++ ] ;

p a t h p r e f i x = arg ;

}

}

else i f ( arg . equals ( ”−f a c t s p a t h ” ) ) {

i f ( i < args . leng th ) {

arg = args [ i ++ ] ;

fac tsPath = arg ;

}
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}

}

}catch ( Except ion e ) {

System . e r r . p r i n t l n (

” Usage : RunExperiments\n ” +

” \ t [−maps <num of maps ( 1 ˜ ” + In tege r .MAX VALUE + ” ) >]\n ” +

” \ t [− reduces <num of reduces ( 0 ˜ ” + In tege r .MAX VALUE + ” ) >]\n ” +

” \ t [− p a t h p r e f i x <p r e f i x f o r a l l paths >]\n ” +

” \ t [− f a c t s p a t h <path o f the fac ts >]\n ”

) ;

System . e x i t ( 0 ) ;

}

}

public s t a t i c void main ( S t r i n g [ ] args ) throws Except ion

{

Con f i gu ra t i on conf = new Con f i gu ra t i on ( ) ;

/ / Need to add these con f i g f i l e s so t h a t i t looks f o r hdfs and not l o c a l f i l e system

conf . addResource (new Path ( ” / usr / l o c a l / hadoop / hadoop−1.0.3/ conf / core−s i t e . xml ” ) ) ;

conf . addResource (new Path ( ” / usr / l o c a l / hadoop / hadoop−1.0.3/ conf / hdfs−s i t e . xml ” ) ) ;

Job job = new Job ( conf ) ;

job . setJobName ( ” Pass 1 ” ) ;

job . setOutputKeyClass ( Text . class ) ;

job . setOutputValueClass ( I n t W r i t a b l e . class ) ;

job . setMapperClass ( Mappers . Pass1 . class ) ;

job . setReducerClass ( Reducers . Reduce1 . class ) ;

job . set InputFormatClass ( Text InputFormat . class ) ;

job . setOutputFormatClass ( TextOutputFormat . class ) ;

S t r i n g i npu t = ” i npu t / ” ;

S t r i n g output = ” output / pass1 / ” ;

F i le Inpu tFormat . se t InputPaths ( job , new Path ( i npu t ) ) ;

F i leOutputFormat . setOutputPath ( job , new Path ( output ) ) ;

/ / job . setNumReduceTasks ( 0 ) ;

job . setJarByClass ( DriverPBSLog . class ) ;

Date s ta r tT ime = new Date ( ) ;

System . out . p r i n t l n ( ” Job Star ted : ” + s ta r tT ime ) ;

i n t exitCode = job . wai tForComplet ion ( true ) ? 0 : 1 ;

i f ( exi tCode == 0)

{

Date end t ime = new Date ( ) ;

System . out . p r i n t l n ( ” Job Ended : ” + end t ime ) ;
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System . out . p r i n t l n ( ” Pass 1 Took ” + ( end t ime . getTime ( ) − s ta r tT ime . getTime ( ) ) /1000.0

+ ” seconds . ” ) ;

}

else

{

System . out . p r i n t l n ( ” Job Fa i led − Please Check Console Output ” ) ;

}

/ / second pass look ing f o r complet ion ra te

conf . addResource (new Path ( ” / usr / l o c a l / hadoop / hadoop−1.0.3/ conf / core−s i t e . xml ” ) ) ;

conf . addResource (new Path ( ” / usr / l o c a l / hadoop / hadoop−1.0.3/ conf / hdfs−s i t e . xml ” ) ) ;

job = new Job ( conf ) ;

job . setJobName ( ” Pass 2 ” ) ;

job . setOutputKeyClass ( Text . class ) ;

job . setOutputValueClass ( I n t W r i t a b l e . class ) ;

job . setMapperClass ( Mappers . Pass2 . class ) ;

job . setReducerClass ( Reducers . Reduce1 . class ) ;

job . set InputFormatClass ( Text InputFormat . class ) ;

job . setOutputFormatClass ( TextOutputFormat . class ) ;

ou tput = ” output / pass2 / ” ;

F i le Inpu tFormat . se t InputPaths ( job , new Path ( i npu t ) ) ;

F i leOutputFormat . setOutputPath ( job , new Path ( output ) ) ;

/ / job . setNumReduceTasks ( 0 ) ;

job . setJarByClass ( DriverPBSLog . class ) ;

s ta r tT ime = new Date ( ) ;

System . out . p r i n t l n ( ” Job Star ted : ” + s ta r tT ime ) ;

exi tCode = job . wai tForComplet ion ( true ) ? 0 : 1 ;

i f ( exi tCode == 0)

{

Date end t ime = new Date ( ) ;

System . out . p r i n t l n ( ” Job Ended : ” + end t ime ) ;

System . out . p r i n t l n ( ” Pass 2 Took ” + ( end t ime . getTime ( ) − s ta r tT ime . getTime ( ) ) /1000.0

+ ” seconds . ” ) ;

}

else

{

System . out . p r i n t l n ( ” Job Fa i led − Please Check Console Output ” ) ;

}

}
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F.2 Mappers

F.2.1 Pass1.java

package Mappers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

public class Pass1 extends Mapper<LongWritable , Text , Text , I n t W r i t a b l e>

{

private s t a t i c i n t startEpochTime = 1293840000;

private s t a t i c i n t i n t e r v a l = 86400;

private f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e ( 1 ) ;

public void map( LongWri table key , Text value , Context con tex t ) throws IOException ,

In te r rup tedExcep t i on

{

Text t i m e I n t e r v a l = new Text ( ) ;

S t r i n g l i n e v a l u e = value . t o S t r i n g ( ) ;

S t r i n g lineValSplitOnComma [ ] = l i n e v a l u e . s p l i t ( ” ; ” ) ;

i f ( l ineValSplitOnComma [ 1 ] . equals ( ”S” ) )

{

S t r i n g l ineValSpl i tOnWhi teSpace [ ] = lineValSplitOnComma [ 3 ] . s p l i t ( ” ” ) ;

for ( i n t i = 0 ; i < l ineValSpl i tOnWhi teSpace . leng th ; i ++)

{

i f ( l ineValSpl i tOnWhi teSpace [ i ] . s t a r t s W i t h ( ” ct ime= ” ) )

{

S t r i n g c t i m e S p l i t [ ] = l ineValSpl i tOnWhi teSpace [ i ] . s p l i t ( ” = ” ) ;

i n t ctimeEpoch = In tege r . pa rse In t ( c t i m e S p l i t [ 1 ] ) ;

i n t d i f f e r a n c e = ( i n t ) ( ctimeEpoch−startEpochTime ) / i n t e r v a l ;

t i m e I n t e r v a l . se t (new Text ( S t r i n g . valueOf ( d i f f e r a n c e ) ) ) ;

con tex t . w r i t e ( t i m e I n t e r v a l , one ) ;

}

}

}

}

}
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F.2.2 Pass2.java

package Mappers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

public class Pass2 extends Mapper<LongWritable , Text , Text , I n t W r i t a b l e>

{

private s t a t i c i n t startEpochTime = 1293840000;

private s t a t i c i n t i n t e r v a l = 86400;

private f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e ( 1 ) ;

public void map( LongWri table key , Text value , Context con tex t ) throws IOException ,

In te r rup tedExcep t i on

{

Text t i m e I n t e r v a l = new Text ( ) ;

S t r i n g l i n e v a l u e = value . t o S t r i n g ( ) ;

S t r i n g lineValSplitOnComma [ ] = l i n e v a l u e . s p l i t ( ” ; ” ) ;

i f ( l ineValSplitOnComma [ 1 ] . equals ( ”E” ) )

{

S t r i n g l ineValSpl i tOnWhi teSpace [ ] = lineValSplitOnComma [ 3 ] . s p l i t ( ” ” ) ;

for ( i n t i = 0 ; i < l ineValSpl i tOnWhi teSpace . leng th ; i ++)

{

i f ( l ineValSpl i tOnWhi teSpace [ i ] . s t a r t s W i t h ( ” end= ” ) )

{

S t r i n g end t imeSp l i t [ ] = l ineValSpl i tOnWhi teSpace [ i ] . s p l i t ( ” = ” ) ;

i n t endtimeEpoch = In tege r . pa rse In t ( end t imeSp l i t [ 1 ] ) ;

i n t d i f f e r a n c e = ( i n t ) ( endtimeEpoch−startEpochTime ) / i n t e r v a l ;

t i m e I n t e r v a l . se t (new Text ( S t r i n g . valueOf ( d i f f e r a n c e ) ) ) ;

con tex t . w r i t e ( t i m e I n t e r v a l , one ) ;

}

}

}

}

}
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F.2.3 uEcomprate.java

package Mappers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

public class uEcomprate extends Mapper<LongWritable , Text , Text , I n t W r i t a b l e>

{

private s t a t i c i n t startEpochTime = 1362268800;

private s t a t i c i n t i n t e r v a l = 900;

private f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e ( 1 ) ;

public void map( LongWri table key , Text value , Context con tex t ) throws IOException ,

In te r rup tedExcep t i on

{

S t r i n g userName = nul l ;

S t r i n g t i m e I n t e r v a l = nul l ;

S t r i n g l i n e v a l u e = value . t o S t r i n g ( ) ;

S t r i n g lineValSplitOnComma [ ] = l i n e v a l u e . s p l i t ( ” ; ” ) ;

i f ( l ineValSplitOnComma [ 1 ] . equals ( ”E” ) )

{

S t r i n g l ineValSpl i tOnWhi teSpace [ ] = lineValSplitOnComma [ 3 ] . s p l i t ( ” ” ) ;

for ( i n t i = 0 ; i < l ineValSpl i tOnWhi teSpace . leng th ; i ++)

{

i f ( l ineValSpl i tOnWhi teSpace [ i ] . s t a r t s W i t h ( ” user= ” ) )

{

S t r i n g u s e r S p l i t [ ] = l ineValSpl i tOnWhi teSpace [ i ] . s p l i t ( ” = ” ) ;

userName = u s e r S p l i t [ 1 ] ;

/ /

for ( i n t j = 0 ; j < l ineValSpl i tOnWhi teSpace . leng th ; j ++)

{

i f ( l ineValSpl i tOnWhi teSpace [ j ] . s t a r t s W i t h ( ” end= ” ) )

{

S t r i n g c t i m e S p l i t [ ] = l ineValSpl i tOnWhi teSpace [ j ] . s p l i t ( ” = ” ) ;

i n t ctimeEpoch = In tege r . pa rse In t ( c t i m e S p l i t [ 1 ] ) ;

i n t d i f f e r a n c e = ( i n t ) ( ctimeEpoch−startEpochTime ) / i n t e r v a l ;

t i m e I n t e r v a l = S t r i n g . valueOf ( d i f f e r a n c e ) ;

con tex t . w r i t e (new Text ( userName+ ”−” + t i m e I n t e r v a l ) , one ) ;

}

}}}}}}
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F.2.4 userExtractor.java

package Mappers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . LongWri table ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Mapper ;

public class use rEx t rac to r extends Mapper<LongWritable , Text , Text , I n t W r i t a b l e>

{

private s t a t i c i n t startEpochTime = 1362268800;

private s t a t i c i n t i n t e r v a l = 900;

private f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e ( 1 ) ;

public void map( LongWri table key , Text value , Context con tex t ) throws IOException ,

In te r rup tedExcep t i on

{

S t r i n g userName = nul l ;

S t r i n g t i m e I n t e r v a l = nul l ;

S t r i n g l i n e v a l u e = value . t o S t r i n g ( ) ;

S t r i n g lineValSplitOnComma [ ] = l i n e v a l u e . s p l i t ( ” ; ” ) ;

i f ( l ineValSplitOnComma [ 1 ] . equals ( ”S” ) )

{

S t r i n g l ineValSpl i tOnWhi teSpace [ ] = lineValSplitOnComma [ 3 ] . s p l i t ( ” ” ) ;

for ( i n t i = 0 ; i < l ineValSpl i tOnWhi teSpace . leng th ; i ++)

{

i f ( l ineValSpl i tOnWhi teSpace [ i ] . s t a r t s W i t h ( ” user= ” ) )

{

S t r i n g u s e r S p l i t [ ] = l ineValSpl i tOnWhi teSpace [ i ] . s p l i t ( ” = ” ) ;

userName = u s e r S p l i t [ 1 ] ;

/ /

for ( i n t j = 0 ; j < l ineValSpl i tOnWhi teSpace . leng th ; j ++)

{

i f ( l ineValSpl i tOnWhi teSpace [ j ] . s t a r t s W i t h ( ” ct ime= ” ) )

{

S t r i n g c t i m e S p l i t [ ] = l ineValSpl i tOnWhi teSpace [ j ] . s p l i t ( ” = ” ) ;

i n t ctimeEpoch = In tege r . pa rse In t ( c t i m e S p l i t [ 1 ] ) ;

i n t d i f f e r a n c e = ( i n t ) ( ctimeEpoch−startEpochTime ) / i n t e r v a l ;

t i m e I n t e r v a l = S t r i n g . valueOf ( d i f f e r a n c e ) ;

con tex t . w r i t e (new Text ( userName+ ”−” + t i m e I n t e r v a l ) , one ) ;

}

}}}}}}
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F.3 Reducers

F.3.1 Reduce1.java

package Reducers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Reducer ;

public class Reduce1 extends Reducer<Text , I n t W r i t a b l e , Text , I n t W r i t a b l e>

{

public void reduce ( Text key , I t e r a b l e<I n t W r i t a b l e> values , Context con tex t ) throws

IOException , In te r rup tedExcep t i on

{

i n t sum = 0;

for ( I n t W r i t a b l e va l : values )

{

sum += va l . get ( ) ;

}

contex t . w r i t e ( key , new I n t W r i t a b l e (sum) ) ;

}

}
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F.3.2 Reduce2.java

package Reducers ;

import java . i o . IOExcept ion ;

import org . apache . hadoop . conf . Con f i gu ra t i on ;

import org . apache . hadoop . i o . I n t W r i t a b l e ;

import org . apache . hadoop . i o . Text ;

import org . apache . hadoop . mapreduce . Job ;

import org . apache . hadoop . mapreduce . Reducer ;

import org . apache . hadoop . mapreduce . l i b . output . Mu l t i p leOutpu ts ;

import org . apache . hadoop . mapreduce . l i b . output . TextOutputFormat ;

public class Reduce2 extends Reducer<Text , I n t W r i t a b l e , Text , Text>

{

private Mul t ip leOutpu ts<Text , Text> mul t i p leOutpu ts ;

@Override

protected void setup ( Context con tex t ) throws IOException , In te r rup tedExcep t i on

{

mul t i p leOutpu ts = new Mul t ip leOutpu ts<Text , Text>( con tex t ) ;

}

public void reduce ( Text key , I t e r a b l e<I n t W r i t a b l e> values , Context con tex t ) throws

IOException , In te r rup tedExcep t i on

{

i n t sum = 0;

for ( I n t W r i t a b l e va l : values )

{

sum += va l . get ( ) ;

}

S t r i n g s p l i t K e y [ ] = key . t o S t r i n g ( ) . s p l i t ( ”−” ) ;

Text f inalSum = new Text ( I n tege r . t o S t r i n g (sum) ) ;

mu l t i p leOutpu ts . w r i t e ( s p l i t K e y [ 0 ] , new Text ( s p l i t K e y [ 1 ] ) , f inalSum ) ;

}

protected void cleanup ( Context con tex t ) throws IOException , In te r rup tedExcep t i on

{

mul t i p leOutpu ts . c lose ( ) ;

}

}
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