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Abstract: The ultimate objective of this research project is to develop creep damage constitutive equations 

for low Cr-Mo alloy and its weldment under low stress (0.2-0.4 yield stress, 𝜎𝑌). This paper summarizes a 

critical analysis on the cavity nucleation and growth and the deformation mechanisms and creep damage 

evolution characteristics at low stress with temperature ranging from 450 °C to 650 °C, in order to firmly 

establish the physical base for the theoretical constitutive modeling work. Moreover, it covers the influence 

of the stress level on the development of cavity nucleation and growth, leading to the final rupture, and 

proposes and discusses a new idea for failure criterion to be used in the constitutive equations under uni-

axial stress state. This paper contributes to knowledge and the development of methodology. 
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1. Introduction 

        Low Cr-Mo alloy steel is widely used for steam pipeworks in the power generation industry, 

particularly in fossil fuel plants and nuclear reactors at elevated temperatures of 450-550 °C and with stress 

levels of 40-200 MPa. This steel is selected as it offers the necessary creep strength at optimal cost. In 

attempt to expand its application, experimental work has been carried out to a wider range of stress (30-

350 MPa) and even higher temperature (up to 650 °C) [1]. This results in the need to understand and monitor 

the creep deformation and damage evolution under the lower stress level. The long life of power generation 

installation signifies the importance of lifetime prediction under low stress. That is the concern of this 

research project. Here, a stress level is conventionally deemed as low, intermediate, or high, depending on 

its ratio to the yield stress (0.2-0.4𝜎𝑌, 0.4-0.5𝜎𝑌, and > 0.5𝜎𝑌, respectively) at a particular temperature.  

        Most frequently applying temperature and the average operating stresses for low Cr-Mo alloy, such 

as, 0.5Cr0.5Mo0.25V, 0.5CrMoV, 1CrMoV,1.25Cr-1Mo and 2.25Cr-Mo alloy, is approximately 

450~600°C at approximately of 50~100MPa, within low stress level (0.2𝜎𝑌-0.4𝜎𝑌). Clearly evidences from 

the industry and research institutions show the need for a new set of creep damage constitutive equations 

which is capable to depict the creep deformation, damage, and rupture under low stress level accurately [2-

4].  

        The most popular Kachanov-Robatnov-Hayhurst (KRH) creep damage constitutive equations 

formulation was not necessarily developed and calibrated for low stress level and cannot depict the creep 

strain accurately under multi-axial state of stress due to its three-dimensional generation method used [4-

6]. In 2004, the ECCC (European Creep Collaborative Committee) [2] established a new project to develop 

a new set of constitutive equations for low alloy steel because the previous creep model cannot present 

accurate results for the high temperature industry. Likewise, the same requirement raised by ECCC was 

raised by the Nuclear Research Index (UK) [3] to ensure the inspection of operated components. In 2012, 

Hosseini et al. [7] of the SFL (Swiss Federal Laboratories) demonstrated that the lifetime for lower stress 

is overestimated by the five different sets of creep models found from literature; moreover, these creep 

models do not depict the tertiary stage which is closely related with lifetime fracture [7]. Therefore, it is 

important to conduct a critical review on the creep deformation process and rupture mechanisms to firmly 

establish the foundation for the constitutive modelling work. At this current stage, the authors believe that 

for low alloy Cr-Mo steel there is a lack of clarity of the creep damage processes at different stress levels 

and stress states, as well as a lack of good understanding of the microstructure changes, particularly on the 

cavitation, during creep services for constitutive modelling work.   

mailto:1U1372662@hud.ac.uk
mailto:2Q.Xu2@hud.ac.uk
mailto:3Z.Lu@hud.ac.uk
mailto:Q.Xu2@hud.ac.uk


         This paper is an expanded version of the authors’ previous published work on a critical analysis of 

creep deformation and rupture under different stress level at various constant temperature of the low Cr-

Mo alloy, such as 2.25Cr-1Mo (T/P22) steel [8-10]. It contains further detailed analysis of cavity nucleation 

and growth experimental data, and the new failure criterion.  The paper is organized as follows: Section 1 

presents the introduction; Section 2 summarises the effect of stress level on lifetime, minimum creep strain 

rate, et al; Section 3 reports on an analysis of cavitation characteristics (such as typical cavity site, cavity 

shape, cavity nucleation density and rate, and cavity growth size and rate during its lifetime for low Cr-Mo 

alloy steel and its weldment, especially on Type IV failure) and the typical cavity nucleation and growth 

mechanisms;  Section 4 discusses the existing creep rupture criteria used for uni-axial specimens, and the 

proposal of grain boundary fraction area and the coupling of the micro-damage and macro creep 

deformation; Section 5 presents the summary of the preliminary results and discussions, as well as the key 

requirements for developing the new set of creep damage constitutive equations; and Section 7 draws the 

conclusion and raises the further work.  

2. Effect of Stress Level under Uni-axial Creep  

        The creep data to be analyzed for the creep damage and rupture processes were extracted from 

published literatures and research institutions’ laboratories (universities, companies and high temperature 

industries) [1, 11-14].  

2.1. Effect of the stress level on creep lifetime  

 

Fig. 1 Stress versus time to for T22 steel (tubes) [1] 

       Figure 1 clearly demonstrates the effect of stress level on the lifetime for the range of temperature 

tested (450 °C to 650 °C) Figure 1 also reflects that at higher stress levels the damage mechanism differs 

from the low stress levels. This observation firmly indicates that extrapolation from short-term (high stress 

level, ≥ 0.5𝜎𝑌 ) data to long-term (lower stress , 0.2𝜎𝑌 ~0.4𝜎𝑌 ) is highly questionable, no matter how 

convenient and attempting it is; a specific creep damage constitutive equation has to be developed according 

to the stress level in order to reflect the changing of damage mechanisms. This is also in agreement with 

the general observation of stress breakdown in creep modeling for other materials.  

Based on the experimental data of the stress versus time to the rupture, the mechanical relationship could 

be approximately assumed as: 

𝑇𝑓 ∝
1

𝜎
                                                                         (1) 

where 𝑇𝑓 is rupture time, and 𝜎 is external applied stress. 

2.2. Effect of the stress level on minimum creep rate [1, 11-13] 

       In view of the importance to obtain the relationship between the applied stress and the minimum creep 

rate, an analysis has been carried out on experimental data with a range of stress and temperature [1, 11-

13]. 



 

Fig. 2 The stress versus minimum creep rate relation for P22 steel (tubes) [13].  

         Figure 2 shows the effect of stress level on minimum creep rate of the alloy 2.25Cr-1Mo at the 

temperature range of 450℃-650℃ and stress range of 10MPa~400MPa [13].  

 

        Using the experimental data tested at 600℃ within the low stress level as the representative one for 

low stress level, it shows approximately a linear relation between the minimum creep strain rate and stress 

in log-log scale, it reveals that the power law may still applies under low stress level.  

𝑙𝑜𝑔𝜀𝑚̇𝑖𝑛 ∝ 𝑛 ∗ 𝑙𝑜𝑔𝜎                                                                       (2) 

        where, 𝜀𝑚̇𝑖𝑛  is minimum creep rate, σ is external stress. The value for n was found as 5.34x10-6 

(𝑀𝑃𝑎−1) for the above specific temperature. 

 

        From the above Fig. 2, it can also be seen that the gradient of the stress and minimum creep strain for 

intermediate and/or high stress levels increases.   

3. Cavitation Characteristics [15-29] 

        In order to obtain a precise understanding of the creep damage and rupture process, a critical analysis 

on the micro-structural changes and the cavity nucleation, growth and coalescence process under different 

stress levels was carried out and the results are presented below. It is well known that the final rupture life 

of such material operated at elevated temperature has been influenced by both of the micro-structural 

changes and development of cavities, however, large amount of experiments indicate that the dominant 

accumulated damage is caused by cavity development [15-29].  

3.1. Creep cavity site and cavity shape [15-29] 

        Under low stress, the distribution of the cavity was observed perpendicular (90°) to the external applied 

stress [15]; this has been confirmed in [16-21], which claimed that with a low applied uniaxial stress (50-

80MPa) specimens failure is resulted from the coalescence of discrete cavities on prior austenite grain 

boundaries which were oriented approximately to the tensile stress axis. Moreover, Kawashima stated that 

the cavity has also been seen at 45° to the tension stress [20]. The creep cavities have been observed to 

nucleate at carbides, second phase particles, a ridge, a triple point and inclusions along the grain boundaries 

[21]. For instance, the sulphide particles which are the primary nucleation sites in the overheated condition 

tend to nucleate cavities early in creep life [15-21]. The reports from EPRI indicated that the cavity 

preferred to nucleate at stress concentration point on grain boundaries under low stress level [22].  

 

 

Table 1 Effect of stress level and initial creep cavity shape [15-21]. 

Stress level Low stress (0.2~0.4𝜎𝑌) High stress (0.2~0.4𝜎𝑌) 

Typical cavity shape Spherical voids Circular voids 

 



        As Table 1 shows the typical initial creep cavity shape under different stress levels; the observation 

from literatures experiments found that at lower stresses, the shape of the cavity is spherical [15-24]; for 

the higher stress regime, the cavity shape normally presents as circular during most of the secondary creep 

stage [15-24] due to the influence of local stress concentration. 

3.2. The cavity nucleation and growth behavior under low stress level 

        The nucleation and growth of cavities process has been investigated from the literature [15-25].  At 

low stress, （0.2~0.4𝜎𝑌）the nucleation controlled constrained cavity growth is predominant mechanism 

[21-29]; furthermore, fracture behavior has been observed as intergranular rupture along the grain 

boundaries [15-28]; further analysis illustrates the creep failure is associated with brittle rupture behavior 

as the reduction of area is approximately less than 10% [1, 11-14, 21-28]. 
        Fig. 3 summarized the observation of cavitation which were reported in [15] by Dobrazanski and et 

al.  for 1Cr-0.5Mo alloy steel at 520-560℃ with low stress of 35-120MPa. These observations have been 

applied against the trend of typical creep stages by the authors, indicating the internal creep damage 

processes in low Cr-Mo alloy with time to fracture. Dobrazanski and his fellows [15-18] stated that for the 

creep evolution of low-alloy Cr-Mo steel, in the early stages (≤ less than and equal to 0.4 of time to 

rupture T/Tf) of creep damge development, individual voids are observed (at stage 1 in Fig. 1). His research 

reflects that under low stress level, for the 1Cr-0.5Mo, T/P23 and P92 steel start to nuclei at about 0.4~0.6 

𝑇𝑓[15-18]. Similar initial development of cavitation nucleation process has been seen at approximately 

0.25 𝑇𝑓 in the report form EPRI for 2.25Cr-1Mo steel of its creep fatigue specimens [30]. As further damage 

accumulates, the density of voids increases and the voids increases in size (at stage 2)[21-29]. Eventually, 

the density of voids is sufficient for cracks to form [21-29].         

 

 

Fig. 3 Typical damage micro-structural from [15] has been associated with the typical curve, reflecting 

the dominant creep damage processes (cavitation) with typical creep curve for low Cr-Mo alloy steel at 

lower stress (0.2~0.4 𝝈𝒀). 

        Initiation behaviour about the development of cavity has included 5 different processes: cavity 

nucleation, growth, and coalesce, micro-cracks growth and macro-cracks growth processes; these five 

process has been summarized associated with time to rupture in Table 2; As Table 2 shows the majority of 

life span is involved with the cavity nucleation from about 0.2𝑇𝑓 to 0.7𝑇𝑓 (stage 1), which takes about more 

than 50% of the total lifetime; nevertheless, the finial rupture process has only taken account about less 

than 30% of life to rupture (stage 3) [15-18], indicating that the assumption (all the void is nuclei at: 𝑇0 =
0) is not suitable for  low Cr-Mo alloy at lower stresses to develop a physical base set of creep damage 

constitutive equations.    



Table 2 Initiation time for the development of cavitation process [15-18, 30] 

 Initiation behaviour at 

time to rupture: T/𝑇𝑓 
0-0.2  0.2-0.4  0.4-0.6  0.6-0.8  0.8-1  

(1) cavity nucleation  
≥0.25/0.2

6 
0.4~0.6   

(2) cavity growth   
0.38~0.5

6 
  

(3) cavity coalesce   ≥0.4   

(4) micro-crack growth    ≥0.78/0.85  

(5) macro-crack growth    ≥0.7 0.96~1 

 

        Longsdale and Flewitt reported that under lower stresses (55.6, 60.6 and 70.6 MPa, at 600℃) for 

2.25Cr-1Mo steel, the cavity nucleation rate of accumulation increases monotonically with time and at a 

given time was greatest for the largest applied stress [23, 25]; the density of the cavity observed on the 

grain surfaces increased continuously throughout the creep life [23, 25]; its cavity growth rate is slightly 

increased with the accumulation of time [23, 25].  

        All in all, under the low stress level, the failure is a brittle manner which was controlled by 

intergranular cavitation; the dominant process of creep damage accumulation which leads to eventually 

rupture is creep cavitation development, which is controlled by the continuous cavity nucleation and 

constrained cavity growth mechanism.  

3.2.1. Cavity nucleation rate induced stress dependence under low stress level 

       Needham [21], by examine the smooth specimens, found the cavity nucleation rate strongly depends 

on the stress rather than on creep strain; the relative contributions of the principal, maximum and equivalent 

stresses to the creep on the nucleation rate, 𝑁̇ and cavity growth rate, 𝑅̇ in two Cr-Mo steels. He found that 

it is the principal tensile stress, σ1, which controls the nucleation rate. He [21, 22] suggested that the 

functional relationship for cavity nucleation rate (Eq. 1), cavity growth rate (Eq. 2), and the rupture lifetime 

for 2.25Cr-1Mo steel and 1Cr-0.5Mo steel are inversely related to maximum principal stress, σ1, by a power 

law, under lower stresses; the power law index number has been presented in Table 3 for these two Grades.   

Under low stress level, σ1 controls the nucleation rate according to: 

𝑁̇ = 𝜎1
𝑛                                                                       (3) 

Under low stress level, σ1 controls the nucleation growth rate according to: 

𝑅̇ = 𝜎1
𝑚                                                                      (4) 

Where n and m present as power law stress index summarised in Table 3. 

Table 3 Summary of stress index for power law behavior under the low stress [21].  

Under low stresses (0.2-0.4 Yield stress) MPa 

Depends on maximum principal stress Cavity nucleation rate Cavity growth rate Rupture lifetime 

Power law stress index(n, m) 5-7 3.5-4.5 4.8 

        This is simply illustrate that the influence of stress on cavity density, without reference to absolute 

cavity level. It is apparent that the relative cavity density is dependent upon the stress level. The 

proportionality of the cavity density to stress sometimes holds until very close to final failure [21-29]. This 

phenomenon shows the cavity nucleation occurs through out of the lifetime. The experimental observation 

shows that the continuous formation of cavities throughout life fraction is stress dependence [21-29].The 

predominance of the principal tensile stress was also found by Dyson and McLean [31] who carried out 

tests on Nimonic 80A in tension and torsion. The Von-mises stress, 𝜎𝑒, is usually less important expect at 

high stresses in 2.25Cr-1Mo steel where Needham finds 𝑁̇ ∝ 𝜎1
4𝜎𝑒

4 [21].  

3.2.2. Cavity density induced strain dependence under low stress level 

        As has been summarised in the previous section, it is agreed that cavity nucleation generally starts 

early and continues over an appreciable fracture of creep life. Quantitative measurements of the cavity 

nucleation rate have been made by counting the number densities of observable cavities at various fractions 

of the lifetime. These counts are usually made at cavity sizes of 0.5 to 1𝜇𝑚, whereas cavity nuclei are much 



smaller, say, 20nm.Therefore the apparent nucleation kinetics may be distorted by cavity growth. Dyson 

[21] , however, points out small cavities tend to grow rapidly and therefore the counting of cavities having 

a size of 0.5 𝜇𝑚 reflects the kinetics of cavity nucleation sufficiently accurately in many practical cases.  

        Dyson [31] further noticed, a common result of many experimental studies is that the number of 

cavities, N, per unit grain boundary area increases approximately in proportion to creep strain with a factor 

of proportionality which, to a first approximation, is independent of stress.  Likewise, Evans [24, 32] quotes 

a few other papers containing information on the increase in cavity number with strain. This observation 

can be expressed as: 

𝑁 = 𝛼 ′𝜀                                                                      (5) 

       where N is the cavities per unit grain boundary area α′ is an empirical factor of proportionality having 

the physical dimensions [m-2], and 𝜀  is creep strain; for austenized 2.25Cr-1Mo steel at 1300℃, α′ =
4X1012𝑚−2; other low Cr-Mo alloy steel’s empirical factor, such as, 1Cr1Mo0.25V steel austenized at 

1300℃ (α′ = 4X1010𝑚−2) and 0.5Cr0.5Mo0.25V (α′ = 1.5X1012𝑚−2) could be find in [24]. 

3.3. Cavity nucleation rate and cavity growth rates under high stress level 

       At high stress（ > 0.5 𝜎𝑌）, the plasticity-controlled cavity growth mechanism is predominant, and 

there is an increasing rupture strain with the increasing creep strain rate [15-18, 21-24, 33-34]. Under this 

stress level, the creep rupture occurs based on wedge-type micro-crack which formed at a triple grain 

junction and those cracks grow will lead to local grain-boundary separation [33-34]. Furthermore, failure 

occurs relatively quicker and is accompanied by elongation deformation, at this stress level [33-34]. The 

speed of plastic strain increasing rapidly after the external loading is applied. In this condition, the fracture 

is based on the transgranular cavities [33-35]. Further study shows the creep failure is associated with 

ductility because the specimens presented the reduction area is around ¾ of the cross section under high 

strength condition [35]. 

        Creep deformation and rupture have been studied in 2.25Cr-1Mo steel over the range 100-210MPa 

(MN m-2) at 565℃ [21-28].  Kawashima and et al. reported that for this steel the creep ruptures lifetime 

dependences on the cavity nucleation rate and cavity growth size [20]. Creep damage accumulates by the 

initiation and growth of extensive cavitation at the prior austenite grain boundaries. Cavity formation 

predominates during the initial transient and individual cavities appear to nucleate on grain boundary 

carbides. Quantitative analysis of the cavitation kinetics in relation to the creep deformation processes 

suggests that cavity growth is directly related to deformation occurring at the grain boundaries. It is inferred 

that the cavity growth is limited by the local creep process occurring at the grain boundaries.  

Table 4 The cavity growth rate versus stress in low Cr-Mo alloy, under high stress [20] 

cavity growth rate( m/s) stress (Mpa) 

3.16228E-14 117.5 

5.62341E-14 127.5 

7.49894E-14 145 

1.77828E-13 160 

3.16228E-13 170 

1.77828E-12 190 

3.16228E-12 225 

As Table 4 shows the growth rate increases with the increase of the applied stresses under higher stresses 

[20]. These results indicate that the cavity growth behavior is associated with the creep diffusion growth 

mechanism.3.3.1. Cavity nucleation rate induced stress dependence under high stress level 

        Under high stress level, Needham [21-22] claimed that the functional relationship for cavity nucleation 

rate, cavity growth rate, and the rupture lifetime for 2.25Cr-1Mo steel and 1Cr-0.5Mo steel are inversely 

related to maximum principal stress, 𝜎1 , and and equivalent stress, 𝜎𝑒 , by a power law, under higher 

stresses; the power law index number is presented in Table 5 for these two grades. 

Under low stress level, σ1 and 𝜎𝑒 controls the nucleation rate according to: 

𝑁̇ = 𝜎1
𝑎𝜎𝑒

𝑏                                                                          (6) 

Under low stress level, σ1  and 𝜎𝑒 controls the nucleation growth rate according to: 



𝑅̇ = 𝜎1
𝑎𝜎𝑒

𝑏                                                                          (7) 

where a and b present as power law stress index summarised in Table 5. 

Table 5 Summary of stress index for power law behaviour the under high stress [21] 

Under intermediate and high stresses (>0.5 Yield stress) MPa 

depends on maximum principal stress and 

equivalent stress 

Cavity nucleation 

rate 

cavity growth 

rate 

rupture 

lifetime 

power law stress index (a, b) 3.5~5 3.5~5 3.5~5 

3.4. The cavity nucleation and growth at Type IV weldment zone 

        Literature reveals that Type IV failure is a worldwide problem in power generation systems operating 

at high temperature; such rupture behavior in the weldment has been seen in low alloys such as: ½CrMoV, 

1CrMoV, 2CrMo, 1CrMo and 2.25Cr1Mo or in high alloys such as, P91and P92 [36-37]. 

        At lower stresses, Type IV zone is constrained by the stronger base and weld metal; the models show 

that damage accumulation is enhanced by multi-axial stress states; however, Smiths [37] suggest the 

damage on Type IV zone occurs by grain boundary sliding, and damage accumulation is governed by the 

Von-Mises equivalent stress. The microscopic observation of creep damage on low Cr-Mo alloy steel 

weldment has been focused on the distribution of the cavitation density number since the typical Type IV 

failure has been found at grain boundaries [36-38]. Also grain boundary creep cavitation is found in coarse-

grained HAZ regions. It also occurs in the intercritical region at the edge of the HAZ, and in the weld, itself. 

        Cylindrical cross-weld specimens tested at stress range of 80~162MPa and temperature regime from 

560℃ to 600℃ [37] indicated that the tested specimens all failed with a low ductility manner in the 

intercritically transformed region of HAZ which is Type IV failure despite of different heat treatment 

histories. In all these cases, fracture was a consequence of creep cavity nucleation and growth in the 

intercritically transformed region of the HAZ which developed into micro/macro-cracking and failure. 

Intergranunlar creep damage typically observed in the intercritically transformed region of the HAZ. And 

the advanced micro-crack development is apparent along with large amounts of grain boundary creep 

cavitation. The fact that eventual failure usually occurred in the fine grain region is apparently because the 

cavitation there, was so profuse that propagation of a major crack was faster than in the coarse grain region. 

High level of constraint present with these test-pieces results in creep cavitation and micro-cracking being 

developed in all regions of HAZ [36-38].  

        Smith and et al. and Walker [36-37] found that in the cross-weld specimens the creep cavitation 

occurred across the net section, the numbers of cavities per unit area were quantified as a function of 

fractions of rupture life. This phenomenon occurs is because of at uni-axial tension specimens the stress 

concentrated at the net section in the middle part which cause the cavity density increasing. The cavity 

density and size distribution for various life fractions has been observed by using SEM at 600-640℃, in the 

specimens of cross weld [36]. 

Table 6 Experimental data of cavity per unit area, mm2, summarized with during rupture time [36].  

Time to rupture: T/𝑇𝑓  0-0.2   0.2-0.4  0.4-0.6  0.6-0.8  0.8-1  

Cavity per unit area, mm2 (16-

36MPa, 600, 620,640℃) 

800 200-1800 900-1900 1300-1400 2400-2600 

Cavity per unit area, mm2 (48-

80MPa, 600, 620,640℃) 

 400-1000 700-1600 1400-2300 4260 

Cavity size (𝜇𝑚) 0~0.1 ≥0.1 ≥0.1 0.1~10  Not 

addressed 

  

        As Table 6 shows that cavity numbers are more pronounced when at the low stress level for life 

fractions less than about 0.7 𝑇𝑓 [36-37]. The experiments data shown in Table 6 indicate that at the low 

stress range of 16-36MPa, from 0.2-0.7 𝑇𝑓, the cavity number increasing rapidly from about 200-1300 mm2. 

Similar results has been seen in the specimens tested under 48-80MPa，from 0.2 𝑇𝑓 to 0.7 𝑇𝑓 the cavity 

density (cavities per unit area, N, mm2) increasing dramatically from about 400 to 2000 mm2, and then this 

number rising from 2300 to 4260 mm2, at 0.7 𝑇𝑓 to 1 𝑇𝑓 [36-37]. Furthermore, as has been summarised in 



Table 6, the cavity growth appears to be only dominant at life fractions close to approximately 70%; this 

observation illustrates that the cavity growth to larger cavity sizes did not occur until much later in life [36-

37]. The average of the cavity size growth becomes noticeable when it grows to approximately the same 

size as the grain boundary and the micro-crack, for about 10 𝜇𝑚 at around 0.7 𝑇𝑓[36 − 37]; these results 

suggested that there is a process of continuous nucleation and rapid growth to a stable cavity area of about 

2𝜇𝑚2 at low stresses and low life fractions.  

        The overall aim to analyse the experimental review was to obtain a better scientific understanding of 

the results that leads to Type IV cavity accumulation and failure in low Cr-Mo alloy steel weld [36-37, 39]. 

At low stress more cavities are presented at low life fractions (0.5 𝑻𝒇) than at high stress. For majority of 

the life of the specimens the peak cavity area was about 2𝝁𝒎𝟐[36-37]. Studies of the cavities using SEM 

did not reveal a large population of small sub-micron cavities. It appears that the growth from nucleation 

size to an optically visible size was rapid [36-37]. This would be expected if high local (grain boundary) 

stress concentrations were present at the nucleation site. 

4.  Creep Rupture Criterion under uni-axial State 

4.1. Summary of the existing creep rupture criterion  

        Table 7 summarizes the different creep rupture criteria which have been applied in creep damage 

constitutive equations for low alloy; nevertheless, the majority of these creep rupture criteria do not 

necessarily have good physical meanings reflecting the real creep rupture and rupture mechanism [40]. 

However, with the results summarized in the paper in terms of cavity nucleation, growth and coalesce, 

illustrating that the percentage of boundary area fraction may suitable for the creep rupture criterion under 

uni-axial stress state, at low stress level due to the creep rupture mechanism is suggested as continuous 

cavitation nucleation and constrained cavity growth mechanism, which has dominant influence on the 

accumulation of the damage leads to the final rupture behavior.   

Table 7  Summery of existing failure criterion for low Cr-Mo alloy creep damage constitutive equations 

under uni-axial stress [40-50].  

Creep models used for low Cr-Mo alloy  Originated from year Failure criterion 

Kachanov [41] 1958 Critical damage D = 1 

KR (Kachanov Robatnov) [42] 1969 Critical damage 𝜔𝑐 

Lemaitre [43] 1985 Critical damage 𝐷𝑐 

Lai [44] 1989 

Critical reduction in load-

bearing area=A (addressed as 

63%) 

Piques [45] 1989 𝑓 = porosity 

KRH (Kachanov–Robatnov-Hayhurst) [46] 1995 Critical damage 𝜔𝑐 

Dyson and McLean [47] 2000 
Critical strain at failure 𝜀𝑓 =

5% 

Qiang Xu [4] 2000 Critical damage 𝜔𝑐 

Michel [48] 2004 limit load ‖𝑃⃗ 𝐿(𝜎0)‖ 

Lmaitre and Desmorat [49] 2004 Critical damage 𝐷𝑐 

Pétry and Lindet [50] 2009 
𝑡𝑅 = 𝑀𝑖𝑛{(𝜀 = 10%), 𝑡(𝐷

= 𝐷𝑐)} 
Whittaker and Wilshire [51] 2012 Limited activity energy: 𝑄𝐶

∗  

4.2. Creep rupture criterion--grain boundary area fraction  

        It is recognized that the presence of grain boundary creep cavities reduces the tensile load 

bearing cross section area of the specimens; furthermore, large amounts of cavitation damage on 

grain boundary may introduce plastic instability. In other cases, in particular in the overheated Cr-

Mo steels studied by Cane [27-28], the cavity density saturates at some fraction of the lifetime 

with a saturation value, which increases with stress as 𝑵𝒔𝒂𝒕 ∝ 𝝈𝟏.𝟑. As has been stated that the 

largest creep density was about 40,000mm2 [36-37], and the average grain size is about 5𝝁𝒎 

therefore, the largest fraction of cavited grain boundaries in the Type IV narrows zone was about 

1 %  [36]. In type 304 stainless steel, the cavity density also tends to saturate to a stress-dependent 



maximum value [36]. This actual creep damage failure mechanism should be considered as one of 

the failure criteria in the constitutive modeling work.    
5. Result and Discussion  

        Based on the review of experimental data and the microstructure observation under varying stress 

ranges, summary of the analysis on quantitative of literatures experimental shows the following conclusions  

1) the rupture behavior at low stress level is of intergranular  brittle manner; 

2) the relationship between the 𝜀̇ and 𝜎 is approximately linear behavior at low stress level; 

This relationship indicate that the cavity growth contributes less to the increase of creep strain during 

the tertiary stage , in comparison that of power law regime. 

3) the cavity normally starts nucleation at about 0.2 of the rupture lifetime and its density continuous to 

grow till about 0.7 of the rupture lifetime; 

4) the cavity growth is constrained diffusive mechanism which has been observed from 0.7 of the rupture 

lifetime; 

5) the stress level has great influence on the cavity nucleation rate; 

6) cavity size growth had a relatively minor inflation on the overall failure time. 

 

The new set of creep damage constitutive equation to be developed should satisfy the following 

requirements and should be able to: 

(1) represent the transition between lower-shelf intergranular rupture and upper-shelf ductile-transgruanlar 

rupture as a function of temperature, strain rate, and stress; 

(2) depict the mechanistic relationship between minimum stress rate and applied stress, such as equation 

2: 

𝑙𝑜𝑔𝜀𝑚̇𝑖𝑛 ∝ 𝑛 ∗ 𝑙𝑜𝑔𝜎 
 

(3) express the mechanistic relationship between applied stress versus time to rupture, such as suggested 

by Equation 2: 

𝑇𝑓 ∝
1

𝜎
 

(4) reflect the dominated deformation and rupture mechanism should be continuous cavity nucleation an

d constrained diffusion cavity growth under low stress level, 0.2–0.4 𝜎𝑌; 

(5) show, under lower stresses, the uni-axial rupture criterion is amalgamated with the fraction area of ca

vity on the grain boundaries; 

(6) reflect the cavity nucleation and growth rate is strongly dependent upon the maximum principal stress, 

under low stress, such as suggested by Equation 3 and 4; 

𝑁̇ = 𝜎1
𝑛 

𝑅̇ = 𝜎1
𝑚 

(7) reflect the cavity nucleation and growth rate is strongly dependent upon both of the maximum principal 

stress and the equivalent stress, under high level, such as suggested by Equation 6 and 7; 

𝑁̇ = 𝜎1
𝑎𝜎𝑒

𝑏 

𝑅̇ = 𝜎1
𝑎𝜎𝑒

𝑏 

        The most important part in the cavity nucleation and growth rate model is the exponential factor, which 

makes the nucleation rate a very sharply increasing function of the stress 𝜎. The rupture lifetime could be 

predicted from knowledge of the nucleation rate determined under uni-axial tensile.   

6. Conclusion 

A critical review of the stress level influence on large quantities of experiments, in terms of cavitation 

development, creep strain rate and creep rupture lifetime, indicating that the creep damage evolution turns 

to be a brittle manner at low stress level; thus, the creep rupture criterion at low stress level should take the 

cavity development grain boundary fracture into account. Further work will focus on 1) to develop the 

cavitation kinetic equation, and cavity growth equation, and 2) to design the coupling between the micro 

cavitation and macro creep deformation and rupture.  
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