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FRICTION COEFFICIENT ESTIMATION USING AN UNSCENTED 
KALMAN FILTER 

Abstract 

The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high 
acceleration and braking performance of railway vehicles therefore monitoring this friction coefficient is 
important. Due to the difficulty in directly measuring the friction coefficient, the creep force or creepage, 
indirect methods using state observers are used more frequently. This paper presents an approach using an 
unscented Kalman filter to estimate the creep force and creepage and the friction coefficient from traction motor 
behaviours A scaled roller rig is designed and a series of experiments is carried out to evaluate the estimator 
performance.  

Keywords: Friction estimation, Kalman filter, Traction motor 

1. INTRODUCTION 
Relative motion between wheel and rail leads to the tangential forces at their interface. From early studies it was 
observed that the behaviour of a wheelset running on the rail could not be considered as a ‘‘pure rolling’’ 
motion. In fact, the evidence shows the motion is characterised by a ‘‘slow’’ sliding phenomena occurring at the 
contact, which is described as creepage. The forces arising from creepage are therefore indicated as creep forces 
and it determines the acceleration and braking performance of a railway vehicle. As the friction coefficient is a 
key factor determining the maximum creep force, good monitoring of the friction coefficient is very important in 
estimating the maximum creep force and maintaining a satisfactory acceleration and braking performance.  
To monitor the contact condition between the wheel and rail, direct methods which require the measurement of 
wheel-rail contact force and creepage are too difficult and expensive to implement in real life. Indirect methods, 
which rely on measurements that are easier to obtain and estimate the wheel-rail contact condition have shown 
their advantage and many different approaches have been proposed previously.  
Methods used in estimating the wheel-rail adhesion can be classified into two categories: lateral model based and 
torsional model based. 
The feasibility of using a Kalman filter in estimating low-adhesion conditions using vehicle lateral dynamic 
responses was explored in [1]. Two different Kalman filters were used in this research, the first one focused on 
estimating the creep coefficient directly but the result was not satisfactory; then another more complex Kalman 
filter was built aiming at estimating the creep force and detecting the change of creep coefficient by further 
analysis of the vehicle lateral responses. However, the proposed methods cannot give an accurate enough 
estimation neither of the creep coefficients nor the creep forces, thus the methods are only suitable when the 
change in the friction coefficient is large enough. 
An improved method to estimate wheel-rail creep forces was proposed in [2], where a more complex dynamic 
model was used to build the Kalman filter. In this method the effects of friction coefficient and track 
irregularities on the estimation results were analysed. The results showed that the estimation was only accurate 
when the friction coefficient was high and the track irregularity amplitude was low.  
A multi-filter method offering a more accurate estimation of the friction coefficient between the wheel and rail 
profile was shown in [3]. Multiple models of different friction coefficient of a single wheelset system were built 
to formulate the Kalman filters. This method judges the friction coefficient by comparing the root mean square 
of the estimating errors of these Kalman filters, but the accuracy was still not satisfactory and had the problem of 
having residuals too close to each other. Accuracy can be improved by increasing the number of filters but will 
result in an increase in computing time and still cannot avoid the problem of choosing from residuals of similar 
values. 
Besides using the lateral model of the vehicle, there has also been research focused on the torsional/longitudinal 
dynamics of the vehicle. 
Two algorithms were proposed in [4] to estimate the friction coefficient at the wheel-rail interface, but the 
estimation error was found to be large when sudden changes occurred. The EKF method was used in both of the 
algorithms as the longitudinal model was nonlinear. 
A combination of the Luenberger observer and integrator was developed to estimate creep force and identify the 
skidding (sliding) phenomenon between the wheel and roller and was validated through experiments on a scaled 
roller-rig [5]. In the research, the sliding phenomenon was identified based on the sudden and significant change 
of the estimated friction force. The skidding phenomenon was then more thoroughly studied with the 
implementation of the 2nd order Luenberger observer [6]. The interaction between the wheel-roller slip and the 
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torsional oscillations of the driving system was studied using spectrum analysis, showing that the creep force 
was influenced by low frequency harmonics. These two studies focused only on the skidding phenomena and did 
not analyse the creepage or friction coefficient.  
An unscented Kalman filter based estimator is proposed in this paper. The wheel-roller dynamics as well as the 
motor dynamics are both included in the filter. The wheel-roller creep force is calculated using the Polach 
formulation [7] to give a more accurate simulation than the heuristic nonlinear creep force model [8] used 
previously, especially in the case of large creepage. A creepage dependent friction coefficient is also introduced 
into the model. A 1/5 scaled roller rig has been built for this research and used to validate performance of the 
estimator. 

2. TEST RIG DESIGN 
A 1/5 scaled roller rig has been designed to simulate railway vehicle behaviour. The rig includes a bogie with 
two wheelsets and two pairs of rollers underneath. As this research project is focused on the traction behaviour, 
each of the wheelsets is powered by an AC induction motor through a pair of spur gears, as shown in Figure 1. 
The traction motor adopts the axle-hung arrangement [9], connected to the wheel axle by two bearing blocks. 
The anti-pitch arm is designed to reduce the pitch movement of the motor against the wheelset frame. 4 rubber 
mounts are used as the primary suspensions between the wheelset frame and the bogie frame.  

 

Figure 1 Bogie assembly 
The roller axles are rigidly connected to the roller frame with bearing blocks at each end. The diameters of the 
wheel and roller are 200mm and 400mm, respectively. A large roller diameter is chosen to reduce the de-
crowning effect described in [10]. The wheel profile is a 1/5 scaled UK P8 worn profile. The roller profile is a 
1/5 scaled BS 113a profile with no cant. 
As shown in Figure 2, two permanent magnet DC motors, which are used as generators, are connected to the 
roller axles and to provide traction load to the system. Rheostats are connected to the DC motors to provide 
various torque values. Two sets of timing belt pulleys are used to increase to the speed at the DC motor and the 
effective transmission ratio is 17.64. 
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Figure 2 Roller frame design 

The AC motors are powered by two inverters with an indirect field oriented control scheme [11], which is 
commonly used in railway vehicle traction. The stator voltage, current and speed signals of the AC motors are 
measured by the built in sensor of the inverter. The rotating speed of the wheel and roller are measured using 
incremental encoders. The output current signals of the DC generators are measured with hall-effect sensors. A 
Labview program is coded to process all the measured signals and give control commands to the inverters. 

3. TRACTION SYSTEM MODELLING 

3.1 Dynamics of the traction system 

Figure 3 represents the torsional dynamic diagram of the roller rig. As the two wheelsets have no interaction 
when only the torsional behaviour is considered, only 1 pair of wheels and rollers is considered in the model.  

 
Figure 3 Block diagram of the simulated system 

Hence the dynamic equations are given as: 
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where Jeqv=Jmotor+Jwheel/i2, ωmotor, ωwheel and ωroller are the rotating speed of the motor, wheel and roller, Jmotor, 
Jwheel and Jroller, are the rotating inertia of the motor, wheel and roller, Te is the Electric torque of the motor. TLoad 
is the traction load applied on the roller axle. Fγ is the longitudinal creep force at the wheel – roller interface. i is 
the transmission ratio of the gear set. 

3.2 Dynamics of the AC traction motor 

The electric torque of the motor Te is a function of the motor stator current and rotor flux components, as shown 
in[11]: 
 0.75 ( ) /e p m r s r s rT n L I I Lα β β αψ ψ= −  (3-4) 
While Iαs, Iβs, ψαs and ψβs can be worked out using the equations listed in Equation (3-5) to (3-8).  
 s m m

s r s r r s r s

R L L1-σ 1( + )
σL σt σL L t σL L σLs s r r r s

d I I U
dt α α α β αψ ω ψ= − + + +  (3-5) 

 s m m

s r s r s r r s

R L L1-σ 1( + )
σL σt σL L σL L t σLs s r r r s

d I I U
dt β β α β βω ψ ψ= − − + +  (3-6) 

 m

r r

L 1
t tr s r r r

d I
dt α α α βψ ψ ω ψ= − −  (3-7) 

 m

r r

L 1
t tr s r r r

d I
dt β β α βψ ω ψ ψ= + −  (3-8) 
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m

s r

L
σ=1-

L L
 and r

r
r

L
t =

R
, Iαs and Iβs, are the stator current at α and β phase at the motor, Uαs and Uβs are 

the stator voltage at α and β phase at the motor, ψαr and ψβr are the rotor flux at α and β phase at the motor. Ls, 
Lr and Lm are the stator, rotor and mutual inductance of the motor. Rs and Rr are the stator and rotor resistance of 
the motor. np is the pairs of poles of the motor.  

3.3 Wheel roller creep force 

In this research, Fγ is modelled based on the equations developed by Polach [7, 12]. In this method, the creep 
force is calculated by: 
 N A

s2
A

2F k ε( arctan(k ))
π 1+(k ε)

Fγ
µ

ε= +  (3-9) 

and for the case of the longitudinal force: 
 11

N

GπabC
4F

ε γ
µ

=  (3-10) 

kA and kS are the reduction factors regarding to the different conditions between the wheel and rail (roller) 
surface. kA is related to the area of adhesion, kS is related to the area of slip and kS ≤kA ≤1. 
µ is the traction coefficient. FN is the normal force between the wheel and roller. G is the modulus of rigidity of 
the wheel and roller material. a and b are the semi-axis length of the contact patch. C11 is the Kalker coefficient 
which can be found in [13]. γ is the creepage between the wheel and roller. 
In this model, it is considered that the traction coefficient depends on the slip velocity V and friction coefficient, 
which is expressed by the following equation [12]: 
 B

0 ((1 D) D)Ve γµ µ −= − +  (3-11) 
 roller wheel0.5(R R )roller wheelV ω ω= +  (3-12) 
The creep curves with different friction coefficient are plotted in Figure 4 and the optimum creepages (γopt) 
which achieve maximum creep forces are also marked.  
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Figure 4 Creepage-creep force curves with different friction coefficients 

In this simulation case, the normal force is 2kN and the forward speed is 10m/s. The values of B, D, kA and kS 
under different friction coefficient are listed in Table 1. 

Table 1 Parameters of Polach model under different friction coefficients [1] 
Parameter Dry Wet Low Very Low 
kA 1.00 1.00 1.00 1.00 
kS 0.40 0.40 0.40 0.40 
µ0 0.55 0.30 0.06 0.03 
B 0.40 0.40 0.40 0.40 
D 0.60 0.20 0.20 0.10 

3.4 Dynamcis of the DC generator 

The traction load is provided by the DC generator, and the load torque can be changed by varying its external 
resistance. The equivalent circuit of the DC generator is shown in Figure 5, where Ra is the armature resistance 
and RL is the load resistance. Ea is the generated back emf (electromotive force). ωdc is the rotating speed of the 
DC generator. 

 

Figure 5 Equivalent circuit of the Permanent Magnet DC Generator 
The following equations are used to model the DC generator: 
 a dcE kφω=  (3-13) 
 a

a
a L

E
I

R R
=

+
 (3-14) 

 2
a

dc a dc
a L a L

kE
T k I k

R R R R
φ

φ φ ω= = =
+ +

 (3-15) 

where kφ is the magnetic constant of the DC generator. 
Considering the pulley belt transmission between the DC generator and the roller axle, TLoad=17.64Tdc. 
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4. STATE OBSERVER  
A general scheme of a Kalman filter based estimation system is shown in Figure 6. The Kalman filter is 
constructed based on the dynamic relationship which describes the monitored system and estimates state 
variables of the monitored system using its inputs and measurements. 
For nonlinear systems, the extended Kalman filter (EKF) is one of the most popular methods. It linearizes the 
estimated system with Taylor expansion, which is simple and fast but can also introduce large errors when the 
system is highly nonlinear. To proceed accurate estimation of the highly nonlinear systems, the unscented 
Kalman filter (UKF) was first proposed by Julier et al in [14], and has shown its advantage over EKF[15, 16]. 

 
Figure 6. Block diagram for the system estimation using Kalman filter. 

The performances of using EKF and UKF to monitor AC motors are compared in [17] To improve the 
estimation results, an unscented Kalman filter is then proposed, which avoids any linearization by utilizing a 
deterministic sampling approach (the unscented transformation) to calculating the state predictions and 
covariances. In the unscented transformation (UT), a series of sigma points are chosen based on a square root 
decomposition of the prior covariance, then these points are propagated through the true nonlinearity of the 
system, which generates the weighted mean and covariance. The differences between EKF and UKF are shown 
in Figure 7. 
The UT calculates the statistics of a random variable which undergoes a nonlinear transformation. In the case 
that the state variables x (dimension p) has mean x  and covariance Px and a set of sigma points Σ, whose 
associate weights Σ=[i=0,1,…, p: x(i), W(i)] are taken. The weights W(i) must follow the condition [15]: 
 2

( )

0

1
p

i

i=

=∑W  (4-1) 

Given these sigma points, statistics of z can be calculated. First a matrix χ of 2p+1 sigma vectors χ i is formed 
according to the following equations [16]. 
 0 x=X=  (4-2) 
 ( ( ) )i x ix p Pλ= + +X= , 1,....,i p=  (4-3) 

 ( ( ) )i x ix p Pλ= − +X= , 1,...., 2i p p= +  (4-4) 

 (0) / ( )m pλ λ= +W  (4-5) 

 (0) 2/ ( ) (1 )m pλ λ α β= + + − +W  (4-6) 

 ( ) ( ) 1 / 2( )i i
c m p λ= = +W W  (4-7) 

where λ=α2(p+κ)-p is a scaling parameter. α determines the spread of the sigma points around x  and is usually 
set to a small positive value (e.g., le-3). κ is a secondary scaling parameter which is usually set to 0, and β is 
used to incorporate prior knowledge of the distribution of x (for Gaussian distributions, β=2 is optimal). 
( ( ) )x ip Pλ+  is the ith row of the matrix square root. 
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Figure 7 Comparison between UKF and EKF [18] 

These sigma vectors are propagated through the nonlinear function: 
 ( )( )i

i mg=Z X , 1,...., 2i p=  (4-8) 

The mean and covariance for z are approximated using a weighted sample mean and covariance of the posterior 
sigma points: 
 2

( )

0

p
i

m i
i

z
=

= ∑W Z  
(4-9) 

 2
( )

0

{ }{ }
p

i T
z c i i

i

P z z
=

= − −∑W Z Z  
(4-10) 

The cross covariance matrix is: 
 2

( )
, | 1 , | 1

0

ˆ ˆ( )( )
k k

p
i T

x z c i k k k i k k k
i

P x z− −
− −

=

= − −∑W X Z  
(4-11) 

Then the normal Kalman filter algorithm can be applied as follows [18]: 
 2

( )
1 | 1

0

ˆ
p

m
k i k k

i

x−
+ −

=

= ∑W X  (4-12) 

 2
( )

, | 1 , | 1
0

ˆ ˆ( )( )
p

i T
k c i k k k i k k k

i

P x x− − −
− −

=

= − −∑W X X  
(4-13) 

 1
k k kk x z yK P P−=  (4-14) 

 ˆ ˆ ˆ( )k k k k kx x K z z− −= + −  (4-15) 

 
k

T
k k k z kP P K P K−= −  (4-16) 

For the simulated roller rig system, the state equation and measurement equation are given as: 
Need some more consideration in the equationssssssss 
 

5. EVALUATION OF THE ESTIMATOR 

5.1. Overview of the estimator system 

The blocks from Figure 6 can be further specified to suit the design of the estimator for the roller rig, in which 
case the monitored system is the roller rig and the estimator is the unscented Kalman filter. The inputs of the 
roller rig are the voltage and current of the traction motor; the measurements are the speed of the wheel and 
roller, as well as the output current of the DC generator. With all the inputs and measurements, the creep force 
and friction coefficient at the wheel-roller surface can then be estimated.  
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Figure 8. Block diagram for the system estimation using Kalman filter. 

To summarize, the unscented Kalman filter is configured as: 
 1k k k= A ++x x w  (4-1) 
 k k kH= +z x v  (4-2) 
where the state and measurement variables are: 
 

0, , , , , , , , , , , ,
T

s s r r motor s s roller dcI I U U F Iα β α β α β γψ ψ ω γ ω µ µ =  x  (5-3) 

 , , , , , ,
T

s s motor s s roller dcI I U U Iα β α βω ω =  z  (5-4) 

The system and measurement noise wk and vk are chosen as: 
• wk=[1e-3,1e-3,1e-3,1e-3,1e-3,1e-3,1e-3,1e-1,1e-1,1e-1,1e-1,1e-1,1e-3] 
• vk=[1e-2,1e-2,1e-2,1e-2,1e-2,1e-2,1e-2] 

where the state matrix A and measurement matrix H are determined by system dynamic equations (3-1) to 
(3-16). As the dynamic equations are nonlinear, both A and H are worked out using numerical methods. 

5.2. Estimation results 

In the experiment, the two motors are given the same speed command as shown in (5-1). The motor speed 
command ωmotor

* changes every 5 seconds from 20 rad/s to 30 rad/s to create higher creepage.  
 

*

20 5s
30 5s 10s
20 10s 15s

(rad/s) 30 15s 20s
20 20s 25s
30 25s 30s
20 30

motor

t
t
t
t
t
t
s t

ω

<
 ≤ <
 ≤ <


= ≤ <
 ≤ <

≤ <
 ≤

 
(5-5) 

First the base condition with no contaminants between the wheel and roller surfaces is tested and the estimations 
of the creep force, creepage and friction coefficient are shown in Figure 8. In case 0, the DC generator is not 
connected and the external resistance of the generator decreases from case 1 to case4. The resistance values for 
each case are listed in Table 2. 

Table 2 Load resistance values of the DC generator 
 Base Water Oil 
Case 0 Infinite Infinite Infinite 
Case 1 3Ω 4.5Ω 7Ω 
Case 2 1.5Ω 3Ω 4.5Ω 
Case 3 1Ω 1.5Ω 3Ω 
Case 4 0Ω 1Ω 1.5Ω 
The difference in the traction load can be found in the plot (a), the output current of the DC generator decreases 
with the resistance. For each load case, Idc follows the changes of the roller speed as indicated in equation (3-16). 
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The creepage and creep force estimations in plot (b) and (c) also show that the creepage and creep force also 
increase while the traction load is larger.  
The friction coefficient estimation in plot (d) shows that the result for case 0 is very low and cannot be true when 
the wheel and roller surfaces are dry. This estimation error is possibly caused by the fact that the traction load is 
negligible in case 0, as shown in plot (a), thus the effect of friction coefficient on the creep force is not 
significant. Therefore the estimator is not reliable when there is no traction load.  
For case 1 to 4 the estimated µ0 oscillates around 0.28, which is reasonable for the experiment case. However, in 
cases 1 to 3, the oscillations of the estimated µ0 are quite significant and have a similar frequency to the creepage 
and creep force results. When the creepage increases to a much larger value in case 4, the estimated µ0 is much 
more stable. 
Therefore, the results in Figure 8 prove that the estimator is able to provide acceptable performance under 
enough traction load and the estimation error reduces while the traction load increases.  

 

Figure 9 Estimation result for the base condition 
The performance of the estimator under water and oil contamination has been studied. Water was sprayed evenly 
onto the wheel and roller surfaces and 5 tests with different DC generator external resistances as listed in Table 2 
are carried out. Then the wheel and roller surfaces are cleaned and tried thoroughly before oil was sprayed onto 
the wheel and roller surfaces and repeat the same tests as in the base and water contamination conditions.  
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Figure 10 Estimation results for the water contamination condition 

 

Figure 11 Estimation results for the oil contamination condition 
Figure 9 and Figure 10 show the output values of the UKF under water and oil contamination respectively. In 
plot (a) of Figure 9 and Figure 10, Idc increases from case 0 to case 3. In case 4, the wheel and roller reaches full 
slip thus the roller speed does not increases with the AC motor speed, which explains why the pattern of Idc for 
case 4 is different from those of other cases.  
In plot (d) of Figure 9 and Figure 10, it is clear that the estimated µ0 values for each case have the same pattern 
as the creep force, which means that a higher traction load will result in a higher friction estimation. This trend is 
also seen in Figure 11, which plots the average values of the estimated µ0 for all the tested cases. This problem is 
most possibly because that the friction coefficient is very sensitive to the sensor resolution and sample frequency. 
The inaccuracy of the creep force model can also lead to estimation errors as well. The noise matrices for the 
system and measurements are also very important to retain the estimator reliability. 
Despite the estimation errors discussed above, the average µ0 estimation under water and oil contaminations still 
remains around 0.08 and 0.04, respectively.  
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Figure 12 Average friction estimation results. 

The creepage – creep force curves for the base, water and oil contamination conditions are shown in Figure 12. 
The creepage and creep force points have been curve fitted with the Polach creep force model. The identified 
friction coefficients for these three conditions are: µbase=0.28, µwater=0.08 and µoil=0.04. The identified µ0 from 
curve fitting are close to the results in Figure 11. This good agreement between these two methods proves that 
the unscented Kalman filter can provide acceptable real time estimation of the wheel – roller friction condition. 

 
Figure 13 Average friction coefficient 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, an unscented Kalman filter (UKF) based estimator is developed to monitor the friction coefficient 
at the wheel – roller interface of a scaled railway roller rig in real time. Measurements without contamination 
and with applied water and oil have been made to evaluate the performance of the estimator. A large range of 
creepage is covered by varying the traction load. 
The estimator is shown to provide accurate friction estimation under different conditions in real time, but the 
following problems still remain: 

• The estimated friction coefficient is not reliable when the traction load is very small. 
• The estimated friction coefficient is also influenced by the traction load but at higher values still 

remains in an acceptable range. 
These problems are most possibly caused by the inaccuracy of the measurements and the system dynamic model. 
In future work, sensors with better resolution; a high sampling rate of the data acquisition system will be 
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employed to achieve better estimations. It is also important to develop a better method to tune the UKF, which 
may also improve the estimation accuracy and stability. Several adaptive tuning algorithms have been proposed 
and these methods will be studied and employed in the future work. 
The roller rig will also be upgraded to carry out more complex experiments. The upgrades include:  

• Actuators that can apply different contaminations to the wheel – roller interface in a more controlled 
manner will be implemented so that the friction condition can be changed during the experiment at a 
certain time point. In this way, the responding time of the estimator can be evaluated. 

• Similarly, better control of the DC generator will be implemented so that the traction load can be 
changed during the experiment at a certain time point. In this way, the estimator performance under 
varying traction load can also be studied. 

REFERENCES 
[1] G. Charles and R. Goodall, "Low Adhesion Estimation," in The Institution of 

Engineering and Technology International Conference on Railway Condition 
Monitoring., Birmingham, UK, 2006, pp. 96-101. 

[2] C. P. Ward, R. M. Goodall, and R. Dixon, "Creep force estimation at the wheel-rail 
interface," presented at the 22nd International Symposium on Dynamics of Vehicles 
on Roads and Tracks (IAVSD2011 Symposium Proceedings), Manchester, UK, 2011. 

[3] T. Mei and I. Hussain, "Detection of wheel-rail conditions for improved traction 
control," in The 4th International Conference on Railway Traction Systems 
(RTS2010), University of Birmingham, UK 2010, , pp. 1-6. 

[4] P. Gáspár, Z. Szabó, and J. Bokor, "Observer based estimation of the wheel-rail 
friction coefficient," in IEEE International Conference on Control Applications, 
Munich, Germany, 2006, pp. 1043-1048. 

[5] M. Covino, M. L. Grassi, and E. Pagano, "Traction electric drives: an indirect 
identification method of friction forces," in IEEE International Electric Machines and 
Drives Conference Record., Milwaukee, USA, 1997, pp. TA2/5.1-TA2/5.3. 

[6] R. Rizzo and D. Iannuzzi, "Indirect friction force identification for application in 
traction electric drives," Mathematics and computers in simulation, vol. 60, pp. 379-
387, 2002. 

[7] O. Polach, "A fast wheel-rail forces calculation computer code," Vehicle System 
Dynamics, vol. 33, pp. 728-739, 2000. 

[8] Z. Shen, J. Hedrick, and J. E. M. o. T. Design, "A comparison of alternative creep 
force models for rail vehicle dynamic analysis," Vehicle System Dynamics, vol. 12, pp. 
79-83, 1983. 

[9] M. Lata, "The modern wheelset drive system and possibilities of modelling the torsion 
dynamics," Transport, vol. 23, pp. 172-181, 2008/01/01 2008. 

[10] P. Allen and S. D. Iwnicki, "The critical speed of a railway vehicle on a roller rig," 
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and 
Rapid Transit, vol. 215, p. 55, 2001. 

[11] B. K. Bose, Modern power electronics and AC drives: Prentice Hall PTR, 1986. 
[12] O. Polach, "Creep forces in simulations of traction vehicles running on adhesion 

limit," Wear, vol. 258, pp. 992-1000, 2005. 
[13] J. Kalker, "Wheel-rail rolling contact theory," Wear, vol. 144, pp. 243-261, 1991. 
[14] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, "A new approach for filtering 

nonlinear systems," in Proceedings of the American Control Conference, Seattle, 
Washington USA, 1995, pp. 1628-1632. 

[15] S. J. Julier and J. K. Uhlmann, "Unscented filtering and nonlinear estimation," 
Proceedings of the IEEE, vol. 92, pp. 401-422, 2004. 

[16] E. A. Wan and R. van der Merwe, "The unscented Kalman filter for nonlinear 
estimation," in Adaptive Systems for Signal Processing, Communications and Control 
Symposium, Lake Louise, Alberta, Canada, 2000, pp. 153-158. 



14 
 

[17] L. Jie and Z. Yanru, "Comparison of three Kalman filters for speed estimation of 
induction machines," in Industry Applications Conference, Fourtieth IAS Annual 
Meeting, Hong Kong, 2005, pp. 1792-1797 Vol. 3. 

[18] R. van der Merwe and E. A. Wan, "The square-root unscented Kalman filter for state 
and parameter-estimation," in Proceedings of IEEE International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP '01), Salt Lake City, Utah, USA, 
2001, pp. 3461-3464 vol.6. 

 
 


	The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high acceleration and braking performance of railway vehicles therefore monitoring this friction coefficient is important. Due to the difficulty in di...
	1. Introduction
	2. test rig design
	3. Traction system modelling
	3.1 Dynamics of the traction system
	3.2 Dynamics of the AC traction motor
	3.3 Wheel roller creep force
	3.4 Dynamcis of the DC generator

	4. State observer
	5. Evaluation of the estimator
	5.1. Overview of the estimator system
	5.2. Estimation results

	6. ConclusionS and future work
	ReferenceS

