Ma, Minhua

The Imitation Game in Games--Distinguishing NPC from Human Player

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/23211/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
The Imitation Game in Games
Distinguishing NPC from Human Player

Prof. Minhua Eunice Ma
Professor of Computer Games Technology
Digital Design Studio, Glasgow School of Art
University of Glasgow
Outline

- Background: about DDS
- Conversation-based vs. game-based Turing test
- Loebner Prize vs. BotPrize
- Turing test in board games (chess)
- Turing test in video games (UT2004)
- Player modelling and mimic player types
- The goal of game AI
- When the goals merge, a reversed Turing test in SpyParty
What do we do?

Ultra High Resolution Laser Scanning
3D Digital Modeling
Computer Animation
Full Body Motion Capture
Ambisonic Sound
Software/App Development
HCI: haptics, gesture recognition
Virtual Reality and virtual environments
SGs for Healthcare / education / heritage
Conversation-based vs. Game-based Turing Test

Conversation-based Turing Test

• Imitate human communication (ie. response to interrogation)

• Areas involved
 - NLP
 - Knowledge representation
 - Information retrieval
 - Reasoning

• Conversations are virtually unlimited (unless topics are restricted)

• Engaging with one human interrogator (1 to 1)

• Single-tasking

• Computer tactics:
 - Artificial stupidity, e.g. deliberately introduce common typos
 - Add personality
Game-based Turing test

• Imitate human behaviours in complex gameplay, e.g. weapon choice, actions, motion (in 3D environment) and manipulation of virtual objects (e.g. weapons). More closely related to robotics than conversation-based Turing test

• Areas involved
 • Player modelling
 • Decision making
 • Path finding, motion planning (in 3D space)
 • Reasoning and planning
 • Voice synthesizing
 • NLP
 • Perception (inc. object recognition)
 • Social intelligence
 • Conversational behaviour
Game-based Turing Test

- Less challenging: Limited by the gaming platform, e.g. actions available, will be interesting to carry out Turing test in MMORPG genre
- More challenging: engaging with multiple opponents/teammates (1 to many)
- Multitasking: often in chaotic combat
- Computer tactics
 - Artificial stupidity, e.g. emulating human irrational behaviours
 “People tend to tenaciously pursue specific opponents without regard for optimality. When humans have a grudge, they’ll chase after an enemy even when it’s not in their interests. We can mimic that behaviour.”
 - Add personality (player modelling)
BotPrize

• Participants create NPCs for UT 2004 (a FPS game) that can fool opponents (judges) into thinking it is a human player
• In BotPrize 2012 two teams have passed the human-like play barrier
• Computer gets a rating higher than the ratings of the real humans?
BotPrize 2012 results

The following table summarizes the results of the BotPrize 2012 competition, showing the humanness percentage for both NPCs and human players.

NPCs

<table>
<thead>
<tr>
<th>bot name</th>
<th>humanness %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MirrorBot</td>
<td>52.2 %</td>
</tr>
<tr>
<td>UT^2</td>
<td>51.9 %</td>
</tr>
<tr>
<td>ICE-CIG2012</td>
<td>36.0 %</td>
</tr>
<tr>
<td>NeuroBot</td>
<td>26.1 %</td>
</tr>
<tr>
<td>GladiatorBot</td>
<td>21.7 %</td>
</tr>
<tr>
<td>AmisBot</td>
<td>16.0 %</td>
</tr>
<tr>
<td>average</td>
<td>34.2 %</td>
</tr>
<tr>
<td>Epic bots</td>
<td>37.8%</td>
</tr>
</tbody>
</table>

Human Players

<table>
<thead>
<tr>
<th>player name</th>
<th>humanness %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samaneh Rastegari</td>
<td>53.3 %</td>
</tr>
<tr>
<td>Craig Speelman</td>
<td>52.2 %</td>
</tr>
<tr>
<td>John Weise</td>
<td>30.8 %</td>
</tr>
<tr>
<td>Chris Holme</td>
<td>26.3 %</td>
</tr>
<tr>
<td>average</td>
<td>41.4 %</td>
</tr>
</tbody>
</table>

Only judgements made by human judges are counted.

13 September 2013

CultureTECH / Loebner Prize
Derry, N Ireland
However, not all games involve humanoid character

- How about game-based Turing test in board game or casual games platform?
- The limitation by the platform of 3D video games is removed
- Computer players are virtually unbeatable by humans in chess, poker, and many other games
 - Deep Blue vs. Garry Kasparov (1997)
- Many fans and chess lovers plays online matches, but who are we playing with?
- Has computer passed the Turing Test in these games?
No. The purpose of game AI is

• Not to create *unbeatable* games
• but to create *indistinguishable* computer players (NPCs / bots)
The Turing Test and Chess

• Chess can revealing much more about human beings and their behavior, through the symbolism of the game and the way we play
• It cannot reveal a lot about a bot if not the accuracy of the programmers & software
• So the Turing Test challenge in chess platform is more on player modelling and mimic a specific type of players’ behaviour
DISC Personality Model

Gwaredd Mountain, Technical Director for Climax

13 September 2013

CultureTECH / Loebner Prize
Derry, N Ireland
Bartle player models

- Richard Bartle gives a well used profiling system based on a set of game-scenario questions
- Classifies players into four types
 - Explorer, Achiever, Socialiser, Killer
Mimic the specific player type of human judge (player)

• *Mimic the body language of those you are conversing with, so that you can get closer to them in a non-verbal fashion.* If someone is gesturing a lot, you can join in, while if a person is more reserved, you shouldn't gesture too wildly.

• Build up a model of players through player observation
 - Monitor what human players are doing in the game
 - See what they are doing
 - *Understand* why they're doing it

• Mimic their player type. e.g. be a socialiser if the human player is a socialiser.
Game-based Turing test

- Shifting of the goal

Game-defined goals or self-defined goals

- Pursuing/killing enemies
- Level up
- Advance character
- Access new content
- Better weapons/outfit
- Higher place on the League table

Game-based Turing test

- Mimic human behaviours, even act irrationally
Reverse Turing Test

- A formal reverse Turing test follows the same format as a Turing test. Human subjects attempt to imitate the conversational style of a computer program such as ELIZA.
SpyParty – a reverse Turing Test in video game

- NPCs imitating human behaviors
- Human imitating NPCs
- Sniper vs. spy
 - Spy - avoid detection from the sniper, who has a full view of the party
 - Sniper - distinguish the spy and kill him
Summary

- Conversation-based vs. game-based Turing test
- Loebner Prize vs. BotPrize
- Turing test in board games (chess)
- Turing test in video games (UT2004)
- Player modelling and mimic player types
- The goal of game AI
- When the goals merge, a reversed Turing test in SpyParty
Further information

www.gsa.ac.uk/dds

DDS Facebook
http://facebook.com/digitaldesignstudio

Follow us on Twitter @ddsgsa

m.ma@gsa.ac.uk

13 September 2013

CultureTECH / Loebner Prize
Derry, N Ireland