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ABSTRACT

This article presents an accurate, efficient arablst algorithm to analyze the nonlinear vertical
vehicle-structure interaction. The governing edpilim equations of the vehicle and structure are
complemented with additional constraint equatidreg telate the displacements of the vehicle with th
corresponding displacements of the structure. Thegsations form a single system, with displacements
and contact forces as unknowns, that is solvedyusimoptimized block factorization algorithm. Dwe t
the nonlinear nature of contact, an incrementahfdation based on the Newton method is adopted. The
vehicles, track and structure are modeled usinigefielements to take into account all the significa
deformations. The numerical example presented lglelamonstrates the accuracy and computational

efficiency of the proposed method.
Keywords: Vehicle-structure interaction, Nonlineantact, Contact element, Dynamic analysis

1 Introduction

The development of efficient and robust algoriththist can accurately analyze the nonlinear
vehicle-structure interaction is still an importassue, especially due to the increase of the

corresponding operating speeds.

A vehicle-structure interaction problem is consaldy more complex than a typical structural

dynamics problem due to the relative movement betwéhe two subsystems and the
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associated constraint equations relating the velaod structure displacements. In a significant
number of studies available in the literature alibetvehicle-structure interaction, the structure
and vehicles are modeled as rigid multibody systdmg]. Other authors, such as Antolin et al.
[3] and Tanabe et al. [4], proposed formulationst tiadditionally take into account the

deformation of the structure. Neves et al. [5] ntedethe vehicles and structure using finite

elements, thus considering the deformation of sgttems.

When the vehicle and structure are considered siaghe system, the forces acting on the
contact interface are internal forces. Since thaoke moves relatively to the structure, to avoid
calculating and assembling the element matricegelt time step Yang et al. [6] proposed a new
contact element based on a condensation techrigqti@liminates the degrees of freedom at the
contact interface. However, since the matricesheéé¢ elements depend on the position of the
contact points, the global stiffness matrix is tidependent and must be updated and factorized

at each time step. This procedure may demand adevable computational effort.

When the vehicle and structure are treated as a&epsystems, two different approaches can
be adopted: variational formulations that consileadditional term in the energy of the system
can be used to impose the constraints [7], or tmtact forces can be considered explicitly and
treated as externally applied loads, being thelibguim of all forces acting on the contact

interface established directly.

In the methods described in [8-11] the contactdsrare considered explicitly but are not
treated as unknowns of the governing equilibriurnagigns. An iterative procedure is used to
ensure the coupling between the two subsystemsseTheethods may exhibit a slow rate of
convergence, especially when unilateral contacbrssidered or a large number of contact points
are required. To overcome these limitations, Netes. [5] developed an accurate, efficient and

robust algorithm to analyze the vertical vehiclessture interaction, referred to as the direct



method, in which the governing equilibrium equasioof the vehicle and structure are
complemented with additional constraint equatidret telate the displacements of the contact
nodes of the vehicle with the corresponding nodapldcements of the structure, with no
separation being allowed. These equations fornmglessystem, with displacements and contact
forces as unknowns, that is solved directly usimggtimized block factorization algorithm. The
Lagrange multiplier method and the direct methalegjuivalent and lead to identical systems of
linear equations. The main advantage of the deqatlibrium of forces, when compared with the
variational formulations, is a better understandhghe physical meaning of the contact forces,

which is particularly important in complex problesisch as the vehicle-structure interaction.

In the present article a search algorithm is usedktect which elements are in contact, being
the constraints imposed when contact occurs. Time ftintegration is performed using the
a method since it provides numerical dissipationtie higher modes while maintaining
second-order accuracy [12]. The proposed methogialgnplemented in MATLAB [13]. The
vehicles and structure are modeled with ANSYS [bé]ng their structural matrices imported by

MATLAB.

2 Contact and target elements

When studying the contact between two bodies, oneentionally has a contact surface, and
the other a target surface (see Fig. 1). A two-dsi@al node-to-segment contact element is

used in the present formulation.
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Fig. 1. Contact pair concept.

The direct method [5] introduces additional vargabin the system to impose the contact
conditions, whereas in the penalty method no aoithii variables are required. Increasing values
of the penalty parameter lead to more accuratdisogj but the coefficient matrix might become
ill-conditioned. In railway engineering the numbei contact points is usually small when
compared with the total size of the problem. F@s thason, the use of the direct method leads to

a small additional computational cost but has theaatage of avoiding ill-conditioned systems.

In the formulation proposed in [5] the contact domist equations are imposed using the
direct method, with no separation being allowedhkn present formulation a search algorithm is
used to detect which elements are in contact, b@gonstraints imposed when contact occurs.
Since in the present formulation only the frictiesd contact is considered, the constraint
equations are purely geometrical and relate thplatisments of the contact node with the

displacements of the corresponding target element.

Figure 2 shows the two-dimensional node-to-segnoentact element implemented in the
present formulation and the local coordinate sysfém,, &) of the contact pair. Thé& axis
always points towards the contact node, beingwiteelements separated by an initial gaghe
forces acting at the contact interface are denbteH and the superscripts CE and TE indicate

contact and target elements, respectively.
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Fig. 2. Node-to-segment contact element: (a) foares(b) displacements at the contact interface.

According to Newton’s third law, the forces actiagthe contact interface must be of equal

magnitude and opposite direction, i.e.,
XCE +XTE =0 (1)
The displacement vector of an arbitrary point iirél by two translationsy, andV, , and a
rotation 553 about the?; axis. Since this type of contact element negldedangential forces and
moments transmitted across the contact interfagecontact constraint equations only relate the
displacementv, of the contact node with the corresponding dispteent of the auxiliary
pointk. Each constraint equation is defined in the lecardinate system of the contact pair and
comprises the non-penetration condition for themadrdirection. These equations are given by
VE-VE>—g+r (2)
wherer are the irregularities between the contact andetaelements. The gaps are always

positive and a positive irregularity implies anrease of the distance between the contact and

target elements (see Fig. 2).



3 Equations of motion

Force equilibrium

Thea method is an implicit time integration scheme tisagenerally accurate and stable [12].
Assuming that the applied loads are deformatiorepeesident and that the nodal point forces
corresponding to the internal element stresses depend nonlinearly on the nodal point
displacements, the equations of motion of the Velstructure system given in [5] may be

rewritten in the form

M & +C1+a)a™ —a & +{@+a)R™ ~a R =(1+0) F* ¢ F' 3)
where M is the mass matrixC is the viscous damping matribR are the nodal forces
corresponding to the internal element stresSemge the externally applied nodal loads arate
the nodal displacements. The supersctiptisdt+ At indicate the previous and current time steps,

respectively.

To solve Eg. (3) let thé& type degrees of freedom (d.o.f.) represent the fredal d.o.f.,
whose values are unknown, and let Ehgype d.o.f. represent the prescribed nodal dwhgse
values are known. Thus, the load vector can beesspd as

F. =P, +D& X +D[, X™ 4)

Fo =P, +DS5 X +D, X +S (5)
whereP corresponds to the externally applied nodal loglkigse values are known aBdre the
support reactions, whose values are unknown. Eathx relates the contact forces, defined in
the local coordinate system of the respective abrgair, with the nodal forces defined in the

global coordinate system (see Fig. 2).

Substituting Eq. (1) into Egs. (4) and (5) leads to

Fe =P +Dgy X (6)



Fo =P, +Dy X+S (7)

where
X=X (8)
Dex =Dix —Dix ©)
D,, =D& -Dpy (10)

Substituting Egs. (6) and (7) into Eq. (3), andifianing intoF andP type d.o.f., gives

M Mg at':+At .\ Ck Crp (1+a) atF+At iy atF +(1+a) RtF+At ., RtF
Mee M |[85% ] [Cor Cor a | A, Ry |7 RY

t+At t+At t+At t t t (11)
_(l+a) P +Dg X s Pe +Dgy X
- PLAL | DALyt | gt+it PL+DL X! +S
P PX P PX
Transferring the unknowns to the left-hand sidel$ci@
M 855+ (1+a)Cppe &7 + 1+ a)REY — (14 a) DA X' = F¢ (12)
and
St+At = —P;+At _ DtP-;(At Xt+At
P Mo 8% M 85O 8 Oy a4 RY® (13)
a t t t t -t -t t
+m S +Pp +Dpy X' =Cp & —Cpp 85 _RP]
where
Fr =(l+a)Pt™ —aPt —a Dy, X' =M, 45 (14)
_(1+a)CFP ch +a[CFF ar +Cpp atP]"'a R:
Incremental formulation for nonlinear analysis
Since the present problem is nonlinear, Eq. (1B3usitten in the form
\jl(at;m,XHm) -0 (15)

where y is the residual force vector, given by



\Il(atF+At,xt+At)= Fr—M . at;m _ (1+a)CFF atF+At _(1+a)RtF+At + (1+a) DtFJ;(At At (16)
The nodal velocities and accelerations depend @mdidal displacements and, for this reason,
are not independent unknowns. In thmethod the velocity and acceleration at the ctirtiere

step are approximated with

AU = L(awm _ at)_'_(l_lJ al +At (1_LJ 4! a7
Bt B 2p
U0 = iz (at+At _ at)_i at _(i _]J 4! (18)
BA JZA 2p

where f and y are parameters that control the stability and aguof the method.

An iterative scheme based on the Newton method iflbked to solve Eq. (15). Assuming

that the solution at théh iteration has been previously evaluated andewtighg second and

t+,

higher order terms, the Taylor series ip)rabout(aF At ,X”A“) is given by

‘I’(at;m i Xt+At,i+l) — \I’(at;m,i Xt )+ I 0 t\|+lAt ] (atF+At i atF+At,i )
_a ar (at;m,i’xwm,i)
) (29)
0 Y +Ati+1 _ Ny t+AL
+ [a )(t-‘—At (atF+At,i ’Xt+At,i )_ (Xt } 1 Xt ) )

Substituting Egs. (16) to (18) into Eq. (19), arsswaning that the residual force vector at

iterationi+1 fulfils the condition given by Eqg. (15), leads t

+Ati +ALi 1 IR
wlages, xoe ){_W M e 'mﬂﬁcw _(1+Ot)laa“'Zt
F

THALi+1 _ S t+AL
I

+ (1+ a) DtFJ;(At,i (xt+At,i+1 _ xt+At,i): 0
Equation (20) can be rewritten as
KFF AaiF+1 _ (1+ a) DtFJ;(At,i AX = ‘V(at';At,i ’ NG ) (21)

whereK . is the current effective stiffness matrix defirsd



— 1 y oR
Ko =—— M +(1+a) - Cr +(1+a)| —== (22)
FF ,B At2 FF ﬁ At FF F) atF At -
and
Aal;l — atF+At i+l _ a’;;At,i (23)
Axi+1 — Xt+At i+l _Xt+At,i (24)
In matrix notation, Eq. (21) can be expressed as
a n Aai+l +Ati +Ati
[K e Drx ] LXL} = ‘V(atF X ) (25)
being
Dex =—(1+a) DL (26)

After the evaluation of the solution at iterationl, the current residual force vector is

calculated using Eq. (16). The iteration schemeicoas until the condition

H‘I’(aﬁm,iﬂ Xt+At,i+l)
= )

t+t
[P

‘ <& (27)

is fulfilled, being £ a specified tolerance.

4 Contact constraint equations

When contact occurs, the non-penetration condgigan by Eq. (2) is fulfilled if

CE

vE—VE =—g+r (28)
If a contact node is not in contact with any targ&ment, the corresponding constraint
equation is not considered.
The displacements of the contact nodes (see Faye2jiven by

VCE - H():(E a.t':-l-At,i+1 +H()_‘,(E atl:At (29)



where each transformation matkktransforms the displacements of the contact n&des the
global coordinate system to the local coordinattesy of the contact pair. The displacements of
the auxiliary points of the target elements aregiby

Ve = HIE i HIE o (30)
where each transformation matrkk relates the nodal displacements of the target exiésn
defined in the global coordinate system, with tisplcements of the auxiliary points defined in

the local coordinate system of each contact pair.

Substituting Egs. (29) and (30) into Eq. (28) ysld

HXF AL+ —g+r _H><P at;m 31)
where
HXF = H?(E _H;EF (32)
Hye :H%—H;i (33)

Substituting Eqg. (23) into Eg. (31) leads to
H, A&t =-g+r—H, a® -H, a™ (34)
Multiplying Eq. (34) by—(1+a) gives
Hye 0a =g (35)
where
Hye =(L+a)Hye (36)

and

g :_(1+a) (—g+r —Hyp at;m —Hye atFJrAt'i) (37)



5 Contact algorithm

The incremental formulation of the equations of iowtof the vehicle-structure system,
presented in Section 3, is applicable to eithezdmor nonlinear analyses. These equations and
the contact constraints presented in Section 4 farcomplete system whose unknowns are
incremental nodal displacements and contact foegsgations (25) and (35) can be expressed in
matrix form leading to the following system of etjaas

|:KFF Dex } |:AaiF+l:| _ |:‘Il(a';:+At,i X )} a8)
Hx 0 ||AX™ g

Using Betti's theorem, it can be demonstrated thatmatrix in Eq. (38) is symmetric. Due to

space limitations the corresponding proof is nespnted here.

The efficiency of the algorithm used for solving thystem of equations is critical. The present
methodology uses an efficient and stable blockofazation algorithm proposed in [5] that takes
into account the specific properties of each blatknely, symmetry, positive definiteness and

bandwidth. The Cholesky factorization is also inmpésted, since for large systems of equations

it is generally more efficient than tHeD L' factorization [16].

A brief summary of the nonlinear dynamic analysgodathm is presented in Table 1.



Tablel
Summary of the nonlinear dynamic analysis algorithm

FactorizeK .. and calculatd. ,, (see [5]).

Start the time integration loop € 0).

Calculate the external load vectBF™" .

Assume the following predicts for the acceleratics and contact forcs;
a) atF+At - 0

b) Xt+At - Xt

Calculate the initial displacements and velocities:

a)al™ =al +al At+(V2- B)aL At

pya™ =al +(1-y)al At

5. Start the Newton iteration loop € 0).

6. Check the contact status using (2) and calculatematricesD andH for the existing
constraints.

P wn E

7. Evaluate the residual force vec at;m‘i,X“A“i)using Eq. (16).

8. Check the convergence criteria (s a specified tolerance):
a) if ||\|1||/HP;+At ‘ < &£, convergence achieved; continue to next time (stiep 3)

b) if || /HP;*At

9. If required, update the effective stiffness matrsing Eq. (22).

‘ > g, convergence not achieved; continue to step 9

10.  Solve the system of equatior38) using the block factorization solver ([5]) to obtain
Aalt and AX™,

11, Update the displacements, velocities, acations and contact forct
a) aIF+At,i+1 - atF+At,i +AaiF+1

st

b at+At,i+1:L gLt _ gt )4 1_1 al +At 1_L E

) F ﬂAt( F F) ﬁ F Zﬁ F

L R B
Bt Bt 28

d) xt+At,i+l - xt+At,i +Axi+l
12, Increment the iteration counteand continue to step 6.




6 Numerical example

In order to validate the accuracy and efficiencytlod proposed methodology a numerical
example consisting of two simply supported sparigested to four moving sprung masses is
presented. The results calculated using the dinethod are compared with those obtained with
the commercial software ANSYS [14]. In the analysesformed with ANSYS the Lagrange

multiplier method is used.

The structure represented in Fig. 3 consists of $imoply supported spans modeled with
two-dimensional beam elements and subjected to feowving sprung masses (only two are
shown). Each span is modeled with 50 finite elemedthe geometrical and mechanical
properties of the system are the following: lengtheach spanL =20m, Young's modulus
E =25GPaq, Poisson's ratio = 0.2, cross-sectional areA =6 m?, moment of inertial =3m?*,
mass per unit lengthm=30t/m, suspended massM, =30t and spring stiffness
k, =156550kN /m. The distance between each sprung masd #20m. The fundamental

frequency of the simply supported beams is 6.1 itk the natural frequency of the spring-mass

systemis 11.5 Hz.

Fig. 3. Two simply supported spans subjected tet @fsmoving sprung masses.

The sprung masses move at a constant speeddl5 m/s. The time step iAt = 0001s and

the total number of time steps is 900. The vertgzalelerations at the midpoint of the first span



are plotted in Fig. 4a foor =0, =025 and y =05, and in Fig. 4b fore =-0.1, £=0.3025
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Fig. 4. Vertical acceleration at the midpoint cé first span considering (@ =0 and (b)a =-0.1.

A nonzero value of the parameter is useful for controlling the spurioastigipation of the
higher modes shown in Fig. 4a. Hence, the analys=sented in the remainder of this section are

performed usingr = -0.1.



The vertical displacements and accelerations atridpoint of the first span, obtained with
both the direct method and ANSYS, are plotted igsF5 and 6. The vertical displacements of
the first and fourth sprung masses are comparddgn7. The results obtained with the direct
method and ANSYS show an excellent agreement. Iigiie dlifferences observed in Fig. 6 may
be due to the fact that the contact elements dlailan ANSYS use linear displacement

interpolation functions and the contact elemen¢gs@nted in this paper use cubic functions.
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Fig. 5. Vertical displacement at the midpoint of first span.
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Fig. 6. Vertical acceleration at the midpoint o first span.
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Fig. 7. Vertical displacement of the (a) first gbjl fourth sprung masses.

Finally, the contact forces of the first and fougprung masses are plotted in Fig. 8. The
results obtained with the direct method perfectlgteh the corresponding ANSYS solutions
obtained using the classical Lagrange multipliethoé. The first sprung mass is in contact with
the beam during the analysis period, since theanaif the beam is not large enough to cause a

separation. However, as can be observed in Fig, 8 hull contact force in the fourth sprung



mass indicates the occurrence of a separationefdrer it can be concluded that the proposed

methodology is capable of accurately modeling theact and separation between two bodies.
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Fig. 8. Normal contact force of the (a) first ail fourth sprung masses.

In order to assess the computational efficiencyhef algorithm the two simply supported

spans are now modeled wit6000 eight-node solid element2%80x10x10), as shown in



Fig. 9. This model has58696 unconstrained d.o.f. and a square cross sectionvidth

b =2.45 m, in correspondence with the geometriogpgrties of the previous beams.

Fig. 9. Two simply supported spans modeled withs8d elements.

The vertical displacement at the midpoint of thstfspan is plotted in Fig. 10, while the
vertical displacement of the fourth sprung masshiswn in Fig. 11. The contact force of the
fourth sprung mass is depicted in Fig. 12. Onceentbe results obtained with the proposed

methodology show a good agreement with the correipg ANSY'S solutions.
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Fig. 10. Vertical displacement at the midpointtaf first span.
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Fig. 11. Vertical displacement of the fourth sprungss.
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Fig. 12. Normal contact force of the fourth sprumgss.

All the calculations have been performed using akatation with an Intel Xeon E5620 dual
core processor running at 2.40 GHz. For a morerategomparison, the calculations in ANSYS
and MATLAB have been performed using a single ekentthread. In the 900 time steps, a total

of 1026 iterations have been performed with a marmof 2 iterations in the time steps that

require a change in the contact status. A convemydnlerance ofe =10° is used (see

Section 0). The elapsed timeli6623s using ANSYS and 261 s using the direct method ieh

optimized block factorization algorithm, which isaut 64 times faster.



7 Conclusions

An accurate, efficient and robust method for analyzthe nonlinear vehicle-structure
interaction is presented. The direct method is umedormulate the governing equilibrium
equations and impose the constraint equationsréfete the displacements of the contact node
with the displacements of the corresponding taefgnent. The accuracy of the method has been
confirmed using a numerical example, in which tésufts obtained with the direct method and

ANSYS show an excellent agreement.

The proposed method uses an optimized block faetioon algorithm to solve the system of
linear equations. The performed numerical analgsgsonstrate the efficiency of the developed
algorithm, since the calculations performed usimg direct method are 64 times faster than the

calculations performed with ANSYS.

Since in the present method the tangential creepedoacting at the interface are not
considered, the lateral vehicle-structure intecacttannot be taken into account. To determine
these forces, the material and geometric propedigbe wheel and rail, and also the relative
velocity between the two bodies at the contact tpo&ive to be considered. The extension of the
present method to three-dimensional contact problesnunder development and will be

presented in a forthcoming publication.
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