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ABSTRACT 

This article presents an accurate, efficient and stable algorithm to analyze the nonlinear vertical 

vehicle-structure interaction. The governing equilibrium equations of the vehicle and structure are 

complemented with additional constraint equations that relate the displacements of the vehicle with the 

corresponding displacements of the structure. These equations form a single system, with displacements 

and contact forces as unknowns, that is solved using an optimized block factorization algorithm. Due to 

the nonlinear nature of contact, an incremental formulation based on the Newton method is adopted. The 

vehicles, track and structure are modeled using finite elements to take into account all the significant 

deformations. The numerical example presented clearly demonstrates the accuracy and computational 

efficiency of the proposed method. 
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1 Introduction 

The development of efficient and robust algorithms that can accurately analyze the nonlinear 

vehicle-structure interaction is still an important issue, especially due to the increase of the 

corresponding operating speeds. 

A vehicle-structure interaction problem is considerably more complex than a typical structural 

dynamics problem due to the relative movement between the two subsystems and the  

 



 

associated constraint equations relating the vehicle and structure displacements. In a significant 

number of studies available in the literature about the vehicle-structure interaction, the structure 

and vehicles are modeled as rigid multibody systems [1, 2]. Other authors, such as Antolín et al. 

[3] and Tanabe et al. [4], proposed formulations that additionally take into account the 

deformation of the structure. Neves et al. [5] modeled the vehicles and structure using finite 

elements, thus considering the deformation of both systems. 

When the vehicle and structure are considered as a single system, the forces acting on the 

contact interface are internal forces. Since the vehicle moves relatively to the structure, to avoid 

calculating and assembling the element matrices at each time step Yang et al. [6] proposed a new 

contact element based on a condensation technique that eliminates the degrees of freedom at the 

contact interface. However, since the matrices of these elements depend on the position of the 

contact points, the global stiffness matrix is time-dependent and must be updated and factorized 

at each time step. This procedure may demand a considerable computational effort. 

When the vehicle and structure are treated as separate systems, two different approaches can 

be adopted: variational formulations that consider an additional term in the energy of the system 

can be used to impose the constraints [7], or the contact forces can be considered explicitly and 

treated as externally applied loads, being the equilibrium of all forces acting on the contact 

interface established directly. 

In the methods described in [8-11] the contact forces are considered explicitly but are not 

treated as unknowns of the governing equilibrium equations. An iterative procedure is used to 

ensure the coupling between the two subsystems. These methods may exhibit a slow rate of 

convergence, especially when unilateral contact is considered or a large number of contact points 

are required. To overcome these limitations, Neves et al. [5] developed an accurate, efficient and 

robust algorithm to analyze the vertical vehicle-structure interaction, referred to as the direct 



 

method, in which the governing equilibrium equations of the vehicle and structure are 

complemented with additional constraint equations that relate the displacements of the contact 

nodes of the vehicle with the corresponding nodal displacements of the structure, with no 

separation being allowed. These equations form a single system, with displacements and contact 

forces as unknowns, that is solved directly using an optimized block factorization algorithm. The 

Lagrange multiplier method and the direct method are equivalent and lead to identical systems of 

linear equations. The main advantage of the direct equilibrium of forces, when compared with the 

variational formulations, is a better understanding of the physical meaning of the contact forces, 

which is particularly important in complex problems such as the vehicle-structure interaction. 

In the present article a search algorithm is used to detect which elements are in contact, being 

the constraints imposed when contact occurs. The time integration is performed using the 

α method since it provides numerical dissipation in the higher modes while maintaining 

second-order accuracy [12]. The proposed methodology is implemented in MATLAB [13]. The 

vehicles and structure are modeled with ANSYS [14], being their structural matrices imported by 

MATLAB. 

2 Contact and target elements 

When studying the contact between two bodies, one conventionally has a contact surface, and 

the other a target surface (see Fig. 1). A two-dimensional node-to-segment contact element is 

used in the present formulation. 



 

 

Fig. 1. Contact pair concept. 

The direct method [5] introduces additional variables in the system to impose the contact 

conditions, whereas in the penalty method no additional variables are required. Increasing values 

of the penalty parameter lead to more accurate solutions, but the coefficient matrix might become 

ill-conditioned. In railway engineering the number of contact points is usually small when 

compared with the total size of the problem. For this reason, the use of the direct method leads to 

a small additional computational cost but has the advantage of avoiding ill-conditioned systems. 

In the formulation proposed in [5] the contact constraint equations are imposed using the 

direct method, with no separation being allowed. In the present formulation a search algorithm is 

used to detect which elements are in contact, being the constraints imposed when contact occurs. 

Since in the present formulation only the frictionless contact is considered, the constraint 

equations are purely geometrical and relate the displacements of the contact node with the 

displacements of the corresponding target element.  

Figure 2 shows the two-dimensional node-to-segment contact element implemented in the 

present formulation and the local coordinate system (ξ1, ξ2, ξ3) of the contact pair. The ξ2 axis 

always points towards the contact node, being the two elements separated by an initial gap g. The 

forces acting at the contact interface are denoted by X and the superscripts CE and TE indicate 

contact and target elements, respectively. 

Target
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Fig. 2. Node-to-segment contact element: (a) forces and (b) displacements at the contact interface. 

According to Newton’s third law, the forces acting at the contact interface must be of equal 

magnitude and opposite direction, i.e., 

 0XX =+ TECE  (1) 

The displacement vector of an arbitrary point is defined by two translations, 
1ξv  and 

2ξv , and a 

rotation 
3ξθ  about the ξ3 axis. Since this type of contact element neglects the tangential forces and 

moments transmitted across the contact interface, the contact constraint equations only relate the 

displacement 
2ξv  of the contact node with the corresponding displacement of the auxiliary 

point k. Each constraint equation is defined in the local coordinate system of the contact pair and 

comprises the non-penetration condition for the normal direction. These equations are given by 

 rgvv +−≥− TECE  (2) 

where r are the irregularities between the contact and target elements. The gaps are always 

positive and a positive irregularity implies an increase of the distance between the contact and 

target elements (see Fig. 2). 
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3 Equations of motion 

Force equilibrium 

The α method is an implicit time integration scheme that is generally accurate and stable [12]. 

Assuming that the applied loads are deformation-independent and that the nodal point forces 

corresponding to the internal element stresses may depend nonlinearly on the nodal point 

displacements, the equations of motion of the vehicle-structure system given in [5] may be 

rewritten in the form 

 ( )[ ] ( ) ( ) ttttttttttt αααααα FFRRaaCaM −+=−++−++ ∆+∆+∆+∆+ 111 &&&&  (3) 

where M is the mass matrix, C is the viscous damping matrix, R are the nodal forces 

corresponding to the internal element stresses, F are the externally applied nodal loads and a are 

the nodal displacements. The superscripts t and t+∆t indicate the previous and current time steps, 

respectively. 

To solve Eq. (3) let the F type degrees of freedom (d.o.f.) represent the free nodal d.o.f., 

whose values are unknown, and let the P type d.o.f. represent the prescribed nodal d.o.f., whose 

values are known. Thus, the load vector can be expressed as 

 TETE
FX

CECE
FXFF XDXDPF ++=  (4) 

 SXDXDPF +++= TETE
PX

CECE
PXPP  (5) 

where P corresponds to the externally applied nodal loads whose values are known and S are the 

support reactions, whose values are unknown. Each matrix D relates the contact forces, defined in 

the local coordinate system of the respective contact pair, with the nodal forces defined in the 

global coordinate system (see Fig. 2). 

Substituting Eq. (1) into Eqs. (4) and (5) leads to 

 XDPF FXFF +=  (6) 



 

 SXDPF ++= PXPP  (7) 

where 

 CEXX =  (8) 

 TE
FX

CE
FXFX DDD −=  (9) 

 TE
PX

CE
PXPX DDD −=  (10) 

Substituting Eqs. (6) and (7) into Eq. (3), and partitioning into F and P type d.o.f., gives 
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Transferring the unknowns to the left-hand side leads to 
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where 
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Incremental formulation for nonlinear analysis 

Since the present problem is nonlinear, Eq. (12) is rewritten in the form 

 ( ) 0Xaψ =∆+∆+ tttt
F ,  (15) 

where ψ  is the residual force vector, given by 
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FFF
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FFFF

tttt
F ααα ∆+∆+∆+∆+∆+∆+∆+ +++−+−−= XDRaCaMFXaψ 111, &&&  (16) 

The nodal velocities and accelerations depend on the nodal displacements and, for this reason, 

are not independent unknowns. In the α method the velocity and acceleration at the current time 

step are approximated with 
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where β  and γ  are parameters that control the stability and accuracy of the method. 

An iterative scheme based on the Newton method [15] is used to solve Eq. (15). Assuming 

that the solution at the ith iteration has been previously evaluated and neglecting second and 

higher order terms, the Taylor series for ψ  about ( )ittitt
F

,, , ∆+∆+ Xa  is given by 
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Substituting Eqs. (16) to (18) into Eq. (19), and assuming that the residual force vector at 

iteration i+1 fulfils the condition given by Eq. (15), leads to 
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Equation (20) can be rewritten as 

 ( ) ( )ittitt
F

iitt
FX

i
FFF α ,,1,1 ,1 ∆+∆++∆++ =∆+−∆ XaψXDaK  (21) 

where FFK  is the current effective stiffness matrix defined by 
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 ittitti ,1,1 ∆++∆++ −=∆ XXX  (24) 

In matrix notation, Eq. (21) can be expressed as 
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being 

 ( ) itt
FXFX α ,1 ∆++−= DD  (26) 

After the evaluation of the solution at iteration i+1, the current residual force vector is 

calculated using Eq. (16). The iteration scheme continues until the condition 
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+∆++∆+

tt
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is fulfilled, being ε  a specified tolerance. 

4 Contact constraint equations 

When contact occurs, the non-penetration condition given by Eq. (2) is fulfilled if 

 rgvv +−=− TECE  (28) 

If a contact node is not in contact with any target element, the corresponding constraint 

equation is not considered. 

The displacements of the contact nodes (see Fig. 2) are given by 

 tt
P

CE
XP

itt
F

CE
XF

CE ∆++∆+ += aHaHv 1,  (29) 



 

where each transformation matrix H transforms the displacements of the contact nodes from the 

global coordinate system to the local coordinate system of the contact pair. The displacements of 

the auxiliary points of the target elements are given by 

 tt
P

TE
XP

itt
F

TE
XF

TE ∆++∆+ += aHaHv 1,  (30) 

where each transformation matrix H relates the nodal displacements of the target elements, 

defined in the global coordinate system, with the displacements of the auxiliary points defined in 

the local coordinate system of each contact pair. 

Substituting Eqs. (29) and (30) into Eq. (28) yields 

 tt
PXP

itt
FXF

∆++∆+ −+−= aHrgaH 1,  (31) 

where 

 TE
XF

CE
XFXF HHH −=  (32) 

 TE
XP

CE
XPXP HHH −=  (33) 

Substituting Eq. (23) into Eq. (31) leads to 
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i
FXF

,1 ∆+∆++ −−+−=∆ aHaHrgaH  (34) 

Multiplying Eq. (34) by ( )α+− 1  gives 

 gaH =∆ +1i
FXF  (35) 

where 

 ( ) XFXF α HH +−= 1  (36) 

and 

 ( ) ( )itt
FXF

tt
PXPα ,1 ∆+∆+ −−+−+−= aHaHrgg  (37) 



 

5 Contact algorithm 

The incremental formulation of the equations of motion of the vehicle-structure system, 

presented in Section 3, is applicable to either linear or nonlinear analyses. These equations and 

the contact constraints presented in Section 4 form a complete system whose unknowns are 

incremental nodal displacements and contact forces. Equations (25) and (35) can be expressed in 

matrix form leading to the following system of equations 
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 (38) 

Using Betti’s theorem, it can be demonstrated that the matrix in Eq. (38) is symmetric. Due to 

space limitations the corresponding proof is not presented here. 

The efficiency of the algorithm used for solving the system of equations is critical. The present 

methodology uses an efficient and stable block factorization algorithm proposed in [5] that takes 

into account the specific properties of each block, namely, symmetry, positive definiteness and 

bandwidth. The Cholesky factorization is also implemented, since for large systems of equations 

it is generally more efficient than the TLDL  factorization [16]. 

A brief summary of the nonlinear dynamic analysis algorithm is presented in Table 1. 

 
  



 

Table 1 
Summary of the nonlinear dynamic analysis algorithm. 

1. Factorize FFK  and calculate 21L  (see [5]). 
2. Start the time integration loop ( 0=t ). 
3. Calculate the external load vector tt ∆+P . 

4. Assume the following predictors for the accelerations and contact forces: 

a) 0a =∆+ tt
F&&  

b) ttt XX =∆+  
Calculate the initial displacements and velocities: 
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5. Start the Newton iteration loop ( 0=i ). 

6. Check the contact status using Eq. (2) and calculate matrices D and H for the existing 
constraints. 

7. Evaluate the residual force vector ( )ittitt
F

,, , ∆+∆+ Xaψ using Eq. (16). 

8. Check the convergence criteria (ε  is a specified tolerance): 

a) if ε≤∆+ tt
FPψ , convergence achieved; continue to next time step (step 3) 

b) if ε>∆+ tt
FPψ , convergence not achieved; continue to step 9 

9.  If required, update the effective stiffness matrix using Eq. (22). 

10.  Solve the system of equations (38) using the block factorization solver (see [5]) to obtain 
1+∆ i

Fa  and 1+∆ iX . 

11. Update the displacements, velocities, accelerations and contact forces: 
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12. Increment the iteration counter i and continue to step 6. 

 
  



 

6 Numerical example 

In order to validate the accuracy and efficiency of the proposed methodology a numerical 

example consisting of two simply supported spans subjected to four moving sprung masses is 

presented. The results calculated using the direct method are compared with those obtained with 

the commercial software ANSYS [14]. In the analysis performed with ANSYS the Lagrange 

multiplier method is used. 

The structure represented in Fig. 3 consists of two simply supported spans modeled with 

two-dimensional beam elements and subjected to four moving sprung masses (only two are 

shown). Each span is modeled with 50 finite elements. The geometrical and mechanical 

properties of the system are the following: length of each span m20=L , Young's modulus 

GPa25=E , Poisson's ratio 2.0=ν , cross-sectional area 2m6=A , moment of inertia 4m3=I , 

mass per unit length m/t30=m , suspended mass t30=vM  and spring stiffness 

m/kN550156=vk . The distance between each sprung mass is m 20=d . The fundamental 

frequency of the simply supported beams is 6.1 Hz and the natural frequency of the spring-mass 

system is 11.5 Hz. 

 

Fig. 3. Two simply supported spans subjected to a set of moving sprung masses. 

The sprung masses move at a constant speed s/m115=v . The time step is s001.0=∆t  and 

the total number of time steps is 900. The vertical accelerations at the midpoint of the first span 
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are plotted in Fig. 4a for 0=α , 25.0=β  and 5.0=γ , and in Fig. 4b for 1.0−=α , 0.3025=β  

and 6.0=γ . 

 

(a) 

 

(b) 

Fig. 4. Vertical acceleration at the midpoint of the first span considering (a) 0=α  and (b) 1.0−=α . 

A nonzero value of the α parameter is useful for controlling the spurious participation of the 

higher modes shown in Fig. 4a. Hence, the analyses presented in the remainder of this section are 

performed using 1.0−=α . 
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The vertical displacements and accelerations at the midpoint of the first span, obtained with 

both the direct method and ANSYS, are plotted in Figs. 5 and 6. The vertical displacements of 

the first and fourth sprung masses are compared in Fig. 7. The results obtained with the direct 

method and ANSYS show an excellent agreement. The slight differences observed in Fig. 6 may 

be due to the fact that the contact elements available in ANSYS use linear displacement 

interpolation functions and the contact elements presented in this paper use cubic functions. 

 

Fig. 5. Vertical displacement at the midpoint of the first span. 

 

Fig. 6. Vertical acceleration at the midpoint of the first span. 
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(a) 

 

(b) 

Fig. 7. Vertical displacement of the (a) first and (b) fourth sprung masses. 

Finally, the contact forces of the first and fourth sprung masses are plotted in Fig. 8. The 

results obtained with the direct method perfectly match the corresponding ANSYS solutions 

obtained using the classical Lagrange multiplier method. The first sprung mass is in contact with 

the beam during the analysis period, since the motion of the beam is not large enough to cause a 

separation. However, as can be observed in Fig. 8 b), a null contact force in the fourth sprung 
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mass indicates the occurrence of a separation. Therefore, it can be concluded that the proposed 

methodology is capable of accurately modeling the contact and separation between two bodies. 

 

(a) 

 

(b) 

Fig. 8. Normal contact force of the (a) first and (b) fourth sprung masses. 

In order to assess the computational efficiency of the algorithm the two simply supported 
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Fig. 9. This model has 69658  unconstrained d.o.f. and a square cross section of width 

b = 2.45 m, in correspondence with the geometrical properties of the previous beams. 

 

Fig. 9. Two simply supported spans modeled with 3D solid elements. 

The vertical displacement at the midpoint of the first span is plotted in Fig. 10, while the 

vertical displacement of the fourth sprung mass is shown in Fig. 11. The contact force of the 

fourth sprung mass is depicted in Fig. 12. Once more the results obtained with the proposed 

methodology show a good agreement with the corresponding ANSYS solutions. 

 

Fig. 10. Vertical displacement at the midpoint of the first span. 
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Fig. 11. Vertical displacement of the fourth sprung mass. 

 

Fig. 12. Normal contact force of the fourth sprung mass. 

All the calculations have been performed using a workstation with an Intel Xeon E5620 dual 

core processor running at 2.40 GHz. For a more accurate comparison, the calculations in ANSYS 

and MATLAB have been performed using a single execution thread. In the 900 time steps, a total 

of 1026 iterations have been performed with a maximum of 2 iterations in the time steps that 

require a change in the contact status. A convergence tolerance of 610−=ε  is used (see 

Section 0). The elapsed time is s 62316  using ANSYS and 261 s using the direct method with the 

optimized block factorization algorithm, which is about 64 times faster. 
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7 Conclusions 

An accurate, efficient and robust method for analyzing the nonlinear vehicle-structure 

interaction is presented. The direct method is used to formulate the governing equilibrium 

equations and impose the constraint equations that relate the displacements of the contact node 

with the displacements of the corresponding target element. The accuracy of the method has been 

confirmed using a numerical example, in which the results obtained with the direct method and 

ANSYS show an excellent agreement. 

The proposed method uses an optimized block factorization algorithm to solve the system of 

linear equations. The performed numerical analyses demonstrate the efficiency of the developed 

algorithm, since the calculations performed using the direct method are 64 times faster than the 

calculations performed with ANSYS. 

Since in the present method the tangential creep forces acting at the interface are not 

considered, the lateral vehicle-structure interaction cannot be taken into account. To determine 

these forces, the material and geometric properties of the wheel and rail, and also the relative 

velocity between the two bodies at the contact point have to be considered. The extension of the 

present method to three-dimensional contact problems is under development and will be 

presented in a forthcoming publication. 
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