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DYNAMICS OF A VEHICLE-TRACK COUPLING SYSTEM AT 
RAIL JOINT 

Ilaria Grossoni1, Simon Iwnicki1, Yann Bezin1 and Cencen Gong1 

Abstract 
The dynamic behavior at a rail joint is examined using a two-dimensional vehicle-track 
coupling model. The track system is described as a finite length beam resting on a double layer 
discrete viscous-elastic foundation. The vehicle is represented by a half car body and a single 
bogie. The influence of the number of track layers considered, the number of rail elements 
between two sleepers and the beam model type is investigated. Parametric studies both of the 
coupling model and the analytic formulae are carried out in order to understand the influence of 
the main track and vehicle parameters on the P1 and P2 peak forces. Finally, the results in terms 
of P2 force from the present model have been compared not only with measured values but also 
with other simulated and analytical solutions. An excellent agreement between simulated and 
measured values has been found and the variation with respect to analytical formulae has been 
quantified. 
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Introduction 

When a train runs over a joint, large dynamic impact forces are developed which lead to 

vibrations in the structures and a higher probability of component fatigue and damage. Thus, it 

is clear that rail joints can affect the maintenance costs, ride comfort and running security on a 

modern railway. 

Although there is currently a worldwide trend towards using continuously welded rails to 

minimize the wheel-rail impact forces rail joints are still common in some areas. For example, 

insulated rail joints are required for track electrical insulation to detect the train location and to 

isolate sections such as those near road crossings. 

Many studies have focused on the dynamic response of the railway track under moving 

vehicles. Some of these [1-3] only consider the track system as a beam on an elastic foundation

subjected to moving point loads. Although this approach is simple to implement, it is 

insufficient to fully model the dynamic behavior of the track and vehicle systems as it neglects 
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the wheel-rail contact aspects. Some other studies [4-7] take the coupling aspects into account, 

but only a few [8, 9] apply these aspects to model the dynamic behaviour with a rail joint. 

In this paper, a two-dimensional vehicle-track coupling model is established. The track system 

is described as a finite length beam supported on a two-layer discrete elastic foundation. The 

vehicle is represented using a half car body. These sub-systems are solved independently and 

coupled together through a Hertzian wheel-rail contact model [4], where the irregularity due to 

the rail joint is modelled as a second order polynomial. The influence of number of layers 

considered, the number of elements between two sleepers and the beam model is investigated. 

An extensive parametric study has been carried out through both the FE model established and 

the analytical formulae, through which it is possible to point out the differences using a 

predictive model and an analytical one. The main results have shown that the first impact force 

P1 is greatly influenced by the wheelset mass, the rail mass and the joint angle, whereas the 

second peak force P2 is largely affected by the wheelset mass, the rail-pad stiffness, the support 

stiffness and the joint angle. The parametric study from the analytic formulae demonstrates the 

robustness of the coupling model established. Finally, the results in terms of the P2 force from 

this model have been compared with measured data [8], another simulated model [8] and 

analytical solutions [10, 11]. An excellent agreement has been found with measured data and the 

simulated model. 

Modelling the vehicle-track coupling system 

The vehicle-track coupling model with a rail joint is shown in Figure 1. 
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Figure 1. Vehicle-track coupling model with a rail joint (Mc: car-body mass; Ks2: secondary suspension stiffness; 
Cs2: secondary suspension damping; Mt: bogie mass; Jt: bogie pitch moment of inertia; Ks1: primary suspension 
stiffness; Cs1: primary suspension damping; Mw: wheelset mass; Kc: contact stiffness; mr: rail mass per unit length; 
E: rail Young’s modulus; I: rail inertia; kr: rail-pad stiffness; cr: rail-pad damping; ms: sleeper mass; ks: support 
stiffness; cs: support damping). 

Fundamental assumptions 
The main assumptions are listed: 

1) Only vertical dynamic forces are considered. Due to the track symmetry, it is possible to 

consider a single rail in the calculation. 

2) The track system is modelled through a two-layer discretely supported ballast track 

model. A finite straight track without imperfections is considered. The number of beam 

elements considered is 90, because in this way it is possible to avoid the overlapping 

between the increasing static load during the transient time and the dynamic forces due 

to the rail joint. 

3) A half car body is considered for the vehicle model. All the masses are assumed to be 

concentrated at the centre of gravity of the corresponding element. The two wheelsets 

masses and profiles are assumed to be the same. 

4) The non-linear Hertzian contact model is used to couple the vehicle and track models. It 

is assumed also that there is one contact point at each wheel.  

5) An iterative scheme has been used in order to solve the coupling problem. 
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Modelling the track system 
A finite element (FE) analysis is developed approximating the deformation within an element 

using nodal values of displacement and rotation. The third order Hermitian interpolation is 

assumed to be valid in this study. 

The Euler-Bernoulli mass, stiffness and damping matrices of the generic i-th element are 

reported in Appendix 1. 

The moving force is characterized by a constant value of speed V. Thus the simple formula for 

the uniform linear motion has been used. 

Modelling the vehicle system 
The model used here consists of half car supported by a bogie through the secondary suspension 

and a bogie supported by two half wheelsets through the primary suspension. All the bodies are 

assumed to be rigid.  

The vehicle mass, stiffness and damping matrices are reported in Appendix 2. 

Modelling the irregularity 
A quadratic function can be used to describe the deformed shape of the rail, as highlighted from 

the comparison with the measurements shown in [12]. 

It has been assumed that at the start and final point of the joint the first derivate of the function 

is equal to zero. 

In Figure 2 the idealised form of the joint used in the model is presented. 

 

Figure 2. The joint idealised form used in the model (irr(x): irregularity value at point x) [10]. The dotted lines are 
the geometrical constructions for the calculation of the effective length.  
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The quadratic function describing the irregularity irr(x) can be established as 

irr(x)=
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Where D is the maximum depth of rail joint and L the effective length of the rail joint. In 

particular, the length of rail joint L is defined as the sum of horizontal projection of the 

tangential lines which start from the dip bottom and have the inclination equal to, respectively, 

α1 and α2. 

Results 

In order to solve the coupling system, the parameters used are reported in [13]. 

The response in terms of wheel-rail contact force versus time is shown in Figure 3.  

 
Figure 3. Wheel-rail contact force versus time: leading and trailing wheels. 
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In Figure 4 the displacement and the acceleration of the central node and in central sleeper (45th 

sleeper) are presented. The two peaks are due to the passage of each of the two wheelsets, which 

occurs respectively at 0.56 and 0.63 seconds. Due to the energy connection between the leading 

and the trailing wheelset, the second peaks in all the physical quantities shown, including the 

wheel-rail contact force and the rail acceleration, are larger than the first ones.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. (a) Rail displacement at the central node versus time; (b) Rail acceleration at the central node versus time; 
(c) Mid-sleeper displacement versus time; (d) Mid-sleeper acceleration versus time. 

In Figure 5 the comparison between models (i.e. two- and three-layer model) and different beam 

types (i.e. Euler-Bernoulli and Timoshenko beam) both in time domain and frequency domain is 

presented. 
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Figure 5(a) shows that the first peak value is the same passing from 2-layer to 3-layer model, 

whereas the shape is not conserved. This is because the foundation stiffness has not been 

changed accordingly. 

Adding a layer which represents the ballast mass affects the results as the larger inertia leads to 

a shift of the two characteristic peaks in the frequency domain (Figure 5(b)).  

 
(a) 

 
(b) 

Figure 5. Comparison between models (two and three layers) and different beam types (Euler-Bernoulli and 
Timoshenko beam) in (a) time domain and (b) frequency domain (central sleeper). 
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In Figure 6 the comparison in terms of number of elements in a sleeper bay is shown. The 

model used for that is the two-layer discretely supported ballast track with Euler-Bernoulli 

beam. As expected, the more elements that are considered, the more stable the results and less 

oscillations are presented. It is worth noticing that when the number of elements more than 4 the 

differences are negligible, also in terms of maximum peak force. 

On the other hand, increasing the number of elements leads to an increasing of computational 

costs. As an example, the running times required1 in each case and the maximum forces are 

presented in Table 1. 

Table 1. Comparison between different models in terms of running time required and maximum force. 

N. elements 1 2 3 4 5 6 7 
Running time (s) 75.5 199.9 400.8 728.21 1223.7 1917.3 2315.1 
Maximum force 

(kN) 375.1 389.7 387.7 385.8 384.7 383.7 383.0 

 
Figure 6. Wheel-rail contact force depending on the number of elements between two sleepers (two-layer model; 
Euler-Bernoulli beam). 

                                                      

1 The PC used for the simulation is an Intel(R) Core(TM) i7-3770 with 16GB RAM.  
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Analysing Figure 3, it is also possible to recognize two peak forces, frequently called P1 and P2 

forces.  

The P1 force is a high frequency peak force (approximately 500-1000 Hz) characterized by a 

high magnitude approximately five times higher than the unsprung static load [10]. It is 

associated mainly to the battering of the unsprung mass on the rail-end and is absorbed mainly 

by the rail and sleeper inertias. In the example shown in Figure 2, the force peak occurs 0.3 ms 

after crossing the joint, which is within the typical range between 0.25 ms and 0.5 ms [10]. 

The P2 force, which occurs several milliseconds after the impact, is a medium frequency force 

(approximately 30-100 Hz) and its peak is lower than the P1, around three times higher than the 

static force [10]. Contrary to the P1 force, the P2 force depends on the rail bending resilience 

and it is transmitted to the ballast, producing an acceleration of deterioration of the whole track 

system, in particular ballast settlement. The dynamic force transmitted depends principally on 

the unsprung masses, while the other primary and secondary suspended masses are well isolated 

to such short duration peak loads. This is the reason why vehicle designers are striving to reduce 

unsprung masses as much as possible. 

The P1 and P2 forces can be determined in the first approximation as in equations (1) and (2) 

[10] 

P1=P0+2αV�
KHme

1+ me
mu

 (1) 

P2=P0+2αV∙ �1-
ctπ

4kt(mt + mu)
� ∙�

1

1+ mt
mu

∙ ktmu (2) 

Where P0 is the static wheel load (N), 2α the total joint angle (rad), V the travelling speed (m/s), 

KH the linearized Hertzian contact stiffness (N/m) as defined in [10], mu the vehicle unsprung 

mass (kg), me the effective track mass (kg) and mt, kt and ct the equivalent track system 

parameters defined in [10]. 

The UK standard GM/TT0088 states that “vehicles shall be able to run over the normal range of 

vertical track irregularities at normal operating speeds without generating excessive vertical 
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loads and stresses in the rails and track” [11]. There is a limit only for the P2 force, which 

cannot exceed a total value of 322 kN per wheel at the maximum operative speed. This limit is 

made because this force is directly transmitted to the ballast, as said previously. In particular, an 

analytical formula has been proposed in equation (3) by [11] 

P2=Q+Az ∙ Vm ∙ M∙C∙K (3) 

Where Q is the maximum static wheel load (N), Az the total angle of vertical ramp 

discontinuity, fixed to 0.02 rad, Vm the maximum normal operating speed (m/s), Mv the 

effective vertical unsprung mass per wheel (kg), M, C and K parameters reported in [11]. As 

pointed out in [14], “although the concept of effective unsprung mass is simple, its accurate 

evaluation is not always straightforward”. 

Parametric study of the FE model 
Numerical examples are shown and the effects of some parameters are investigated. The 

parameters of track, vehicle and joint models which have been used in the simulation are 

reported in Table 2. 

Table 2. Parameters used in the simulation. 

 Track model Vehicle model Joint model 

Pa
ra

m
et

er
s Travelling speed S Travelling speed S Travelling speed S 

Rail mass per unit length m� r Wheelset mass Mw Affected length L 
Rail-pad stiffness kr Bogie mass Mt Total joint angle 2α 
Support stiffness ks Car body mass Mc  
Total joint angle 2α Total joint angle 2α  

In the following, only the most relevant graphs are reported.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. The variation of P1 (bold lines) and P2 (normal lines) forces with (a) rail-pad stiffness; (b) support 
stiffness; (c) wheelset mass; (d) joint shape fixing the total joint angle to 25 mrad (Case 1: joint depth equal to 1 mm 
and effective length equal to 0.25 m; Case 2: joint depth equal to 2 mm and effective length equal to 0.5 m; Case 4: 
joint depth equal to 4 mm and effective length equal to 1 m; Case 4: joint depth equal to 6 mm and effective length 
equal to 1.5 m). 

From Figure 7(a), it is found that the trends of P1 and P2 forces with the rail-pad stiffness are 

different. In the case of P1 force, there is a first constant trend for low stiffness values (10-100 

MPa) and then a linearly increasing trend for higher stiffness (500-1000 MPa). The slope 

increases with increasing speed. In case of P2 force, instead, there is a relatively rapid 

increasing trend for low stiffness values (10-100 MPa) and then a relatively slower increasing 

trend for higher stiffness (500-1000 MPa) with a slope significantly lower than the first part. 
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Regarding the support stiffness (Figure 7(b)), it can be found that the P1 trend is relatively 

constant while the P2 grows more than linearly. The average slope increases with increasing 

travelling speed. This means that decreasing the ballast stiffness has little effect on the P1 force, 

whereas it can reduce the P2 force. 

As shown in Figure 7(c), the impact of the wheelset mass is very large in both cases. In 

particular, the P1 force trend is asymptotic, that is the change of wheelset mass plays a limited 

role in that impact force for values greater than 600-800 kg. The P2 force increases 

proportionally with the wheelset mass, with the average slope increasing with increasing 

travelling speed. 

Finally, from Figure 7(d) it can be deduced that both the impact forces are different in case of 

different effective length, even if the joint angle is fixed to 25 mrad. Thus, the dynamic response 

in terms of wheel-rail contact forces is closely related to the actual shape of the rail joint under 

loading. This conclusion is against the formulae proposed by the UK researchers in equations 

(1) and (2), according to which the forces are constant for constant value of total dip angle.  

Parametric study of the analytical model 
A parametric study has been performed also using the analytic models in equations (2) and (3) 

from [10] and [11] respectively. 

For the former model, the parameters used in the simulations are six: the travelling speed V, the 

foundation stiffness kt, the joint angle αt, the rail section properties (mass per unit length m and 

inertia I) and the unsprung mass Mu. For the latter model, on the contrary, the parameters used 

are three: the travelling speed V, the maximum static wheel load and the unsprung mass Mu. In 

fact, in this case all the other parameters regarding the track properties, both rail and support, 

are fixed equal to typical values. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Variation of P2 force with (a) rail mass (m); (b) unsprung mass (Mu); (c) foundation stiffness (kt); (d) joint 
angle (αt) using equation (2) varying the travelling speed (V). The dashed line represents the P2 force limit according 
to [11]. 

From Figure 8(a) it can be found that there is a relatively rapid increasing trend for smaller 

profiles (50-60 kg/m) and then a relatively slower increasing trend for bigger profiles (60-320 

kg/m) with a slope significantly lower than the first part. Finally, increasing the rail profiles 

beyond values around 320kg/m leads to a decrease of the peak force. 

All figures show that there is an increasing impact of the unsprung mass on the P2 force with 

increasing the travelling speed. This trend is the same found with the FE model (Figure 7(c)). 

Figure 8(b) show that the unsprung mass has a strong influence on the P2 peak force. 

As shown in Figure 8(c), the influence of the support stiffness is very large. The increasing 

trend is reasonably linear in case of low speeds (60-80 km/h) and the slope rises with increasing 



Journal of Rail and Rapid Transit 0(0) 

14 

speed. In case of higher speeds (120-160 km/h), on the contrary, the growth is more than linear, 

as found in Figure 7(b). 

Finally, from Figure 8(d) it can be deduced that the joint angle plays an important role for the 

impact force level, as expected. The variation of the P2 force is linear and the average slope 

increases with increasing speed. 

 
(a) 

 
(b) 

Figure 9. Variation of P2 force with (a) unsprung mass (Mu); (b) maximum static wheel load (Load) using equation 
(3) varying the travelling speed (V). The dashed line represents the P2 force limit according to [11]. 

As found from Figure 8(b), the variation of the impact force with the unspung mass is linear and 

the slope increases with increasing speed (Figure 9(a)). 

Figure 9(b) shows that there is a linear increasing of the P2 force with the static load, as 

expected from equation (3). 

To conclude, it is worth remarking that the FE model established reproduces the same trends 

found applying the well-known analytic formulae in equations (2) and (3) (Figure 8 and Figure 

9) and also allows other important factors to be taken into account with a relative low running 

time cost (Table 1). 

Comparison 
The present FE model has been compared with the above analytical models and reference from 

the literature. The analysis reported in [8] has been used based on measurements for two 

different Chinese freight vehicles. The main characteristics of two different freight vehicles, 

C62A and C75, are reported in [8]. 
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In Figure 10 the comparison between the results in terms of P2 force in case of C62A and C75 

freight vehicles with increasing travelling speed is shown. In particular, for each travelling 

speed and each vehicle type five different values of the peak force are considered: measured 

data [8], simulated value [8], two different analytic solutions [10, 11] and the present model. 

 
Figure 10. Comparison between the results in terms of P2 force in case of C62A and C75 freight vehicles. 

Figure 10 shows that in this case the analytic formula in [10] overestimates the peak force 

whereas the one in [11] underestimates it. This can be explained remembering that in the latter 

case the track parameters, including the mass, stiffness and damping properties, are fixed. 

It is noticeable that the results are close to each other, particularly the measured data, simulated 

values and the present model. The percentage differences between the present model and 

measured data or simulated values are reported in Table 3. 

Table 3. Percentage differences between the present model and measured data [8] or simulated values [8]. 

Travelling speed [km/h] C62A C75 
 Measured 

data (%) 
Simulated 
values (%) 

Measured 
data (%) 

Simulated 
values (%) 

30 4.5 3.2 3.2 0.8 
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60 3.7 10.9 2.2 1.6 
80 6.5 4.4 3.7 0.6 

Conclusions 

The primary objective of this study was to investigate the characteristics of vertical dynamic 

response at a rail joint using a comprehensive FE model of vehicle-track coupling system. The 

two dimensional model employed has been established by merging iteratively three elementary 

models, which are the track model, the vehicle model and the contact model. This strategy was 

proven efficient to obtain the numerical solution in time domain. In order to achieve a 

reasonable model size which is compatible to the available computing facility, several 

assumptions have been made in the rail joint model, track model and boundary conditions.  

The wheel-rail impact mechanism can be explained through the stiffness discontinuity of the 

joint structure. At impact, two peak contact forces develop. The main characteristics, such as the 

frequency and the magnitude, are quite different. It has been demonstrated that the lower 

magnitude force is the force that actually causes the track degradation because its characteristic 

frequencies match with the track frequencies. 

Through a series of sensitivity studies of several parameters, it has been shown that the dynamic 

response can be largely improved by optimised design parameters. The parametric simulations 

have shown that the first impact force P1 is greatly influenced by the wheelset mass, the rail 

mass and the joint angle, whereas the second peak force P2 is affected by the wheelset mass, the 

rail-pad stiffness, the support stiffness and the joint angle. The model has outlined that the 

impact forces depends on the actual shape of the rail joint. Therefore, great reductions of peak 

forces values can be obtained through an appropriate joint design. 

The parametric study from the analytical formulae has pointed out that the FE model established 

in this study can reproduce the same trends and also allows other important factors to be taken 

into account with a relative low running time cost. 

Finally, the results in terms of P2 force from the present model have been compared not only 

with measured values but also with both simulated and analytical solutions. An excellent 

agreement between values has been found, with a maximum percentage difference of 10%. 
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Appendix 1 
In order to establish the mass matrix for the generic i-th element, it is necessary to integrate the 

vibrational kinetic energy expressing the squared speed of rail displacement at the point x in 

terms of nodal displacements thought the Hermitian interpolation. Therefore 
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[m]i=
m� rl
420

∙ �

156 22l 54 -13l
22l 4l2 13l -3l2
54 13l 156 -22l

-13l -3l2 -22l 4l2
�  

Where m� r is the rail mass per unit length (kg/m) and l the element length (m). 

The stiffness matrix of the generic i-th element is formed by two contributions, i.e. the 

contribution from the rail [k]i
r and the contribution from the rail-pad [k]i

rp. Similarly to the 

previous case, the first part is calculated integrating the bending strain energy and expressing 

the rail displacement in terms of nodal displacement. The second part, on the contrary, is 

concentrated. 

Thus  

[k]i=[k]i
r+[k]i

rp=
EI
l3

∙ �

12 6l -12 6l
6l 4l2 -6l 2l2

-12 -6l 12 -6l
6l 2l2 -6l 4l2

�+ kr ∙ �

1 0 0 0
0 0 0 0
0 0 1 -0
0 0 0 0

�  

Where EI is the beam uniform flexural rigidity (N/m), l the element length (m) and kr the rail-

pad stiffness (N/m). 

Finally, the damping matrix of the generic i-th element depends only on the concentrated 

contribution of the railpad 

[c]i=cr ∙ �

1 0 0 0
0 0 0 0
0 0 1 -0
0 0 0 0

�  

Where cr is the rail-pad dmping (N·s/m). 

Appendix 2 
The mass, damping and stiffness matrices are established imposing the vertical and rotational 

equilibrium of the bodies, which are the car body, the bogie and the wheelsets 
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[M]=

⎣
⎢
⎢
⎢
⎡
Mc 0 0 0 0
0 Mt 0 0 0
0 0 Jt 0 0
0 0 0 Mw 0
0 0 0 0 Mw⎦

⎥
⎥
⎥
⎤

  

[C]=

⎣
⎢
⎢
⎢
⎡
Cs2 −Cs2 0 0 0
−Cs2 Cs2 + 2Cs1 0 −Cs1 −Cs1

0 0 Cs1lt
2 −Cs1lt Cs1lt

0 −Cs1 −Cs1lt Cs1 0
0 −Cs1 Cs1lt 0 Cs1 ⎦

⎥
⎥
⎥
⎤

  

[K]=

⎣
⎢
⎢
⎢
⎡

Ks2 −Ks2 0 0 0
−Ks2 Ks2 + 2Ks1 0 −Ks1 −Ks1

0 0 Ks1lt
2 −Ks1lt Ks1lt

0 −Ks1 −Ks1lt Ks1 0
0 −Ks1 Ks1lt 0 Ks1 ⎦

⎥
⎥
⎥
⎤

  

Where Mc is the car body mass (kg), Mt the bogie mass (kg), Jt the bogie pitch moment (kg·m2), 

Mw the wheelset mass (kg), Cs1 the primary suspension damping (N·s/m), Cs2 the secondary 

suspension damping (N·s/m), lt the distance between the centre of the bogie and the centre of 

the wheelset (m), Ks1 the primary suspension stiffness (N/m) and Ks2 the secondary suspension 

stiffness (N/m). 
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