H

University of
HUDDERSFIELD

University of Huddersfield Repository

Alviano, Mario and Faber, Wolfgang

Effectively Solving NP-SPEC Encodings by Translation to ASP
Original Citation

Alviano, Mario and Faber, Wolfgang (2015) Effectively Solving NP-SPEC Encodings by
Translation to ASP. Journal of Experimental and Theoretical Artificial Intelligence, 27 (5). pp. 577-
601. ISSN 0952-813X

This version is available at http://eprints.hud.ac.uk/id/eprint/22773/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

To appear in thdournal of Experimental & Theoretical Artificial Intelligee
Vol. 00, No. 00, Month 20XX, 1-24

Effectively Solving NP-SPEC Encodings by Translation to ASP

Mario Alvianag* and Wolfgang Fabér

aDepartment of Mathematics and Computer Science, Uniyes§iCalabria, Italy
bSchool of Computing and Engineering, University of Hudfield, UK
Email: mario@alviano.net, wf@wfaber.com

(Received 00 Month 20XX; final version received 00 Month 20XX

NP-SPEC is a language for specifying problems in NP in a declarative Degpite the fact that the
semantics of the language was given by referring to Datalog with ciraiptisn, which is very close
to ASP, so far the only existing implementations are by meanS@®@1.' PS¢ Prolog and via Boolean
satisfiability solvers. In this paper, we present translations from NFESRt& ASP, and provide an ex-
perimental evaluation of existing implementations and the proposed transl&@SP using various
ASP solvers. The results show that translating to ASP clearly has an gdgé¢he existing transla-
tion into SAT, which involves an intrinsic grounding process. We also atlgaieit might be useful to
incorporate certain language constructs of NP-SPEC into mainstream ASP

1. Introduction

NP-SPEC is a language that was proposed in (Cadoli, lanni, RalS8pbaerf, & Vasile, 2000;
Cadoli, Palopoli, Schaerf, & Vasile, 1999) in order to spggifoblems in the complexity class
NP in a simple, clear, and declarative way. The language iscbas Datalog with circumscrip-
tion, in which some predicates are circumscribed, whiletare not and are thus “left open”.
In particular, the idea at the basis of NP-SPEC is to provide a t@wstecucts, callednetafacts

for specifying the search space of an NP problem, that igellagions to guess in order to solve
instances of the problem. The simplest metafact in NP-SPEC istaggaess a subset of a rela-
tion, but more sophisticated metafacts are also availalge¢ss, for example, a permutation or
a partitioning of the extension of a predicate. Actuallg semantics of these practical constructs
is defined by means of reductions to the metafact for guesssnpset of a relation.

The original software system supporting NP-SPEC was describ@hitoli et al., 2000) and
was written in theZC'L! PS¢ Constraint Programming System, based on Prolog. A second soft-
ware system, SPEC2SATwas proposed in (Cadoli, Mancini, & Patrizi, 2006), whiehwrites
NP-SPEC into propositional formulas for testing satisfiabilltye system has also been tested
quite extensively in (Cadoli & Schaerf, 2005), also for salg@roblems taken from CSPLIB,
with promising results.

Interestingly, to our knowledge so far no attempt has beedena translate NP-SPEC into
Answer Set Programming (ASP), which is very similar in spirit @t&log with Circumscription,
and thus a good candidate as a transformation target. Mereseveral efficient ASP software
systems are available, which should guarantee good peafaren A crucial advantage of ASP
versus propositional satisfiability is the fact that NP-SPEC leratdescriptions are in general
not propositional, and therefore a reduction from NP-SPEC to S#Ttb include an implicit

Preliminary versions of this work have been presented at ASP2012 and RCRA 2013.
Lhttp://www.dis.uniromal.it/cadoli/research/projects INP-SPEC/code/SPEC2SAT/

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

instantiation (or grounding) step. Also ASP allows for vatés, and ASP systems indeed pro-
vide optimized grounding procedures, which include manyaaded techniques from database
theory (such as indexing, join-ordering, etc). This takeshbrden of instantiating in a smart

way from the NP-SPEC translation when using ASP systems.

In this paper we provide a translation from NP-SPEC into ASP, udififigrent language con-
structs. Our translation into ASP, together with the origBREC2ASP rewriting, can be used to
compare two different frameworks commonly used for solngblems in the complexity class
NP. In particular, the aim of these translations is to immatgeneral purpose solutions, rather
than specialized algorithms and data structures. It tuubthat ASP has a clear advantage in this
respect thanks to its more comfortable modeling capapéitgn if we will also point out that
more involved and specialized rewritings into SAT may resultery efficient performance. We
show the correctness of the translation in a proof sketathdéstuss properties and limitations
of the translation. We also provide a prototype impleménat

We then report on an extensive experimental analysis, wharporates all previous bench-
marks used for NP-SPEC, and also introduces new problem donzkies from ASP Com-
petitions. For the latter we have created NP-SPEC encodingarhafuaranteed to work with
the system SPEC2SAT, which poses a number of limitations on thEREC input. For these
domains we have created instances of increasing difficutticlnclearly showcase the compu-
tational advantages that a translation into ASP can providerns out that this is quite inde-
pendent of the choice of SAT solver, as the bottleneck occefigré the invocation of the SAT
solver in the tool chain. The explanation is that translaitmSAT need to include an implicit
grounding, while this is delegated to ASP systems in the katina to ASP.

We will also highlight a drawback that is shared by the ramgss into SAT and ASP, which
originates from the definition of the semantics of some metafaf NP-SPEC. For example, in
order to encode the guess of a partition of a relation insets,k different, fresh constants are
introduced by the considered rewritings. It turns out thase identifiers are artificial and hence
not really important for solving the input problem. Neveiss, all current ASP instantiators as
well as SPEC2SAT have to materializalifferent identifiers for each tuple in the domain rela-
tion, which also means that the performance of the subségobfing phase will be affected by
the presence of obvious symmetries in the instantiatedranoglt is therefore our opinion that
ASP may gain in terms of both practical expressivity and efficyeif constructs like partition
would be introduced in the language and supported natiwebolvers.

The remainder of the paper is structured as follows: in SeQiave review the language
NP-SPEC and give a very brief account of ASP. In Section 3 we prohielenain ingredients
for translations from NP-SPEC to ASP, and discuss propertiegations, and correctness. In
Section 4 we report on the experimental results. Finally, irni&e& we draw our conclusions.

2. Preliminaries

This section introduces sufficient background regarding wWwelanguages studied in this pa-
per, namely NP-SPEC and ASP. In particular, syntax and semarfttbe dwo languages are
presented together with a few simple examples that will lelpnderstand the similarities and
differences of the two framewaorks. Special attention isgikiere to the constructs used in NP-
SPEC to specify nondeterministic guesses, which are refesrashietafacts

2.1. NP-SPEC

We first provide a brief definition of NP-SPEC programs. For detaitsrefer to (Cadoli et al.,
2000). We also note that a few minor details in the input lagguof SPEC2SAT (in which the
publicly available examples are written) are differentnfravhat is described in (Cadoli et al.,

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

2000).
An NP-SPEC program consists of two main sectforge section calledATABASE and
one calledSPECIFICATION, each of which is preceded by the respective keyword.

2.1.1. DATABASE

The database section defines extensional predicates oonslaind (interpreted) constants. Ex-
tensional predicates are defined by writing

p= {t17"'7tn};

wherep is a predicate symbol and eaghs a tuple with matching arity. For unary predicates,
each tuple is simply an integer or a constant symbol; foy ajieater than 1, it is a comma-
separated sequence of integers or constant symbols ethd@oparentheses. Unary extensions
that are ranges of integers can also be abbreviatediig wheren andm are integers or inter-
preted constants. Constant definitions are writteti-as; wherei is an integer.

Example 1: The following defines the predicateége representing a graph with six nodes and
nine edges, and a constantepresenting the number of nodes.

DATABASE
n = 6;

edge = {(1,2),(3,1),(2,3),(6,2), (5,6), (4,5), (3,5), (1,4), (4, 1) };

2.1.2. SPECIFICATION

The SPECIFICATION section consists of two parts: a search space declarattba simatified
Datalog program. The search space declaration serves as @nddefinition for “guessed”
predicates and must be one or more of thetafactsSubset(d,p), Permutation(d,p),
Partition(d, p,n), andIntFunc(d, p, n..m), which we will describe below.

Subset (d, p). This is the basic construct to which all following searchcspdeclaration
constructs are reduced in the semantic definition in (Cadal.e2000). Hered is adomain
definition which is either an extensional predicate, a rangm, or a Cartesian product-(<),
union (), intersection £), or difference {) of two domains. Symbap is a predicate identifier
and the intended meaning is that the extensiom @din be any subset of the domain definition’s
extension, thus giving rise to nondeterminism or a “guess”.

Example 2: Together with the code of Example 1, the following specificatill represent all
subgraphs (including the original graph) as extensionsedipatesubgraph.

SPECIFICATION
Subset(edge, subgraph).

Per mut at i on(d, p). Concerning this construad, is again a domain definition, angis a
predicate identifier whose extension has the same cardirzalithat ofd. In particular, every
tuple of the extension of contains a distinct tuple of the extensiondfand an additional
argument associating a unique integer between 1 and thmabig of the extension od (say,

2SPEC2SAT also has a third, apparently undocumented sectiled s EARCH, which seems to define only output features and
which we will not describe here.

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

¢), thereby defining a permutation. The extensiong dhus define bijective functions from
extensions ofl to {1..c}.

Example 3: Together with the code of Example 1, the following specificatill represent all
enumerations of edges.

SPECIFICATION
Permutation(edge, edgeorder).

One extension aofdgeorder that reflects the ordering of the edges as written in Example 1 is
edgeorder(1,2,1), edgeorder(3, 1, 2), edgeorder(2, 3, 3)

1,2,1 3,1,2 2,3,3),
edgeorder(6, 2,4), edgeorder(5, 6, 5), edgeorder(4, 5, 6),
edgeorder(3, 5, 7), edgeorder(1,4, 8), edgeorder(4,1,9).

Partition(d, p, n). Also in this case will have one argument more thah In this case,
extensions op will define functions from tuples of the extension @fo {0..n — 1}, thereby
definingn (possibly empty) partitions.

Example 4: Together with the code of Example 1, the following specifiaatidll represent all
possible pairs of graphs that partition the input graph.

SPECIFICATION
Partition(edge, partition, 2).

One extension gbartition that has the first four edges in the first partition (i.e., partiD) and
the last five edges in the second partition (i.e., partitipwduld be

partition(1, 2,0), partition(3, 1, 0), partition(2, 3, 0),
partition(6, 2, 0), partition(5, 6, 1), partition(4, 5, 1),
partition(3, 5, 1), partition(1, 4, 1), partition(4, 1, 1).

I nt Func(d, p, n.. m . Again,p will have one argument more thanHere, extensions qf
will define functions from tuples of the extensiondfo {n..m}.

Example 5: The following specification is equivalent to the one in Example 4

SPECIFICATION
IntFunc(edge, partition, 0..1).

Stratified Datalog Program. The stratified Datalog program is a collection of rules

h<—— by, ..., by, NOT byy1, ..., NOT b,,.
where each, by, ..., b, are atoms. These atoms can be of the fpfm, ..., tx) wherep is a
predicate symbol with ariti and allt; are constants, variables, or arithmetic expressions fdrme
over these. The predicates can be built-in predicates, (<, >, >=, <=, ! =), in which case

the atoms are written using infix notation. The atoms can alsadggeegate atoms involving
COUNT, SUM, MIN, MAX, written as for exampl8UM(p(x, -, Y),Z : n..m) where:x spec-
ifies the argument to be aggregated over; variables that drghaoed with other rule literals
are local (as a special case the anonymous varidlaed represent the arguments that are not
fixed; variables that are shared with other rule literals amsiered fixed in the aggregation;

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

and variableZ will contain the valuation of the aggregate, which must béerranger..m. The
atomh can also be the special atdail that must not be used otherwise. This atom will always
be interpreted as false, allowing for the specification aégnity constraints. The: —— string
represents rule implication.

The rules must be stratified in the traditional sense (see fample (Apt, Blair, & Walker,
1988; Van Gelder, 1988)), meaning that there cannot bes&ruthrough negation. Also aggre-
gates must occur in a stratified way (see for example (FabéfeRiecone, Dell’Armi, & lelpa,
2008)), meaning that there cannot be recursion througheggtgs. One can add comments,
written in C++ style (using/ * x/ or //).

Example 6: As an example, consider the well-known Hamiltonian Cyclebpem. The NP-
SPEC distribution contains an example program for an examplghgr

DATABASE

n = 6; //no. of nodes

edge = {(17 2)7 (37 1)a (27 3)? (67 2)7 (5a 6)7 (47 5)7 (37 5)7 (17 4)? (47 1)}7
SPECIFICATION

Permutation({1..n}, path).

fail < — — path(X,P), path(Y,P + 1), NOT edge(X,Y).

fail < — — path(X,n), path(Y, 1), NOT edge(X,Y).

The DATABASE section contains an encoding of the example graph by meatie dfinary
predicateedge and defines a constantfor representing the number of nodes of that graph. Im-
plicitly it is assumed that the nodes are labeled by intefyers 1 to n. The SPECIFICATION
section then first guesses a permutation of the nodes and éndies the Hamiltonian Cycle
condition by means of integrity constraints, one explgitihe linear order of the permutation
identifiers, and another one to close the cycle from the lastpition identifier to the first one.

The semantics of NP-SPEC programs is provided in (Cadoli et &Q)28y means of Datalog
with Circumscription DATALOG “"E%). The syntax of this formalism consists of (positive)
Datalog rules, and may also contain integrity constraintsch are written as rules containing
the predicatéail in rule heads. The semantics is provided by mear{$’of?)-minimal models.
For two Herbrand modeld?, N of a DATALOG “/% program,M <p.o N holds for two sets
of predicates? and (@ if and only if (i) predicates i) have the same extension M and N
and (ii) for each predicate € P, the extension of in M is a subset (possibly not proper) of the
extension ofp in N. A Herbrand modelM of a DATALOG “"R¢ program is(P; Q)-minimal
if there is no Herbrand modeV of the program such thal’ <p.o M andM £p.o N. This
definition guarantees that only some predicates (thoge)iare minimized. That means that
among all models only those which are minimal with respeqgirelicates inP are accepted.
For NP-SPEC, predicates that are defined by means of metafactewilthe se). Moreover,
among these only those which make the special syrfablolalse are considered and referred to
as answers.

An NP-SPEC program is then transformedd TALOG “¢ as follows:

EachDATABASE expressiop = {ti, ..., ty} is transformed to facts(t;) - - - p(tn), €ach
expressiop = {n..m} to factsp(n) - - - p(m). Constant declarations suchas: i are expanded
on the fly.

ConcerningSPECIFICATION expressions, foSubset(d, p) the domaind is material-
ized into a relationd; moreover, facts{out,(ti,...,tn) | (t1,...,tn) € H™ \ d}, where
n is the arity ofd and p, and H is the Herbrand universe, and an integrity constraint
fail : — p(Xy,...,Xy),outp(Xy,...,X,) are introduced. All other metafacts are reduced to
the basic metafaciubset plus some rules. For the metafd@trmutation(d, p), the metafact
Subset(d >< {1..m}, p) (m the cardinality of the extension d is translated as noted earlier,

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

and in addition the following rules are created:

pl(Xy,...,Xy) : — p(Xy,..., Xy, Z).

fail Z—d(Xl,...,Xn),Copl(Xl,...,Xn).

fail : — p(X1,.... X0, Y),p(X1,..., X0, 2),Y! = Z.
fail Z—p(Xh...,Xn,A),p(Yl,... Yn,A),X1! :Yl.

fail : — p(Xy,..., Xn, A),p(Y1,..., Yo, A), X! = Yy

wherecop,; represents the complementaf and will be defined later.
For the metafacPartition(d, p, k), the metafacBubset(d >< {0..k — 1}, p) is translated as
noted earlier, together with the following rules:

pl(Xl,...,Xn) :—p(Xl,...,Xn,Z).
fail :—d(Xl,...,Xn),COpl(Xl,...,Xn).
fail : — p(X1,..., X0, Y), p(X1,..., X0, 2),Y! = Z.

Finally, for IntFunc(d, p, i..j), the metafacbubset(d >< {i..j}, p) is translated as noted ear-
lier, together with the same additional rules asRartition(d, p, k).

All NP-SPEC rules are directly translated infol TALOG “'%¢ rules, replacing occurrences
of NOT p by co, (p being a predicate). For any predicat@with arity n) occurring negatively in
a rule (and for auxiliaryp1 predicates introduced by the translation of metafacts)fdhowing
rules are generated:

def,(X1,...,Xpn) : — p(Xy,...,Xp).
def,(X1,...,Xpn) : —cop(Xq,..., Xy).
fail : — p(Xi,...,Xn),cop(Xq, ..., Xp).

What is missing is a device that ensures thagt, becomes true for all tuples of the Herbrand
universe. In (Cadoli et al., 2000), this is done by means oéatficted clause,” a concise univer-
sal constraint. In order to simplify issues, we will only sarer Herbrand models which contain
all atomsdef, (t1, ..., ty) such thatlef,, has a defining rule in the translationjs its arity, and
(t1,...,tn) € H™.

The semantics of an NP-SPEC program is then provided by #h€))-minimal Herbrand
models of the thus obtainddA TALOG ¢ program (with the restriction of Herbrand models
mentioned in the previous paragraph), wh@reontains all predicates defined by metafacts and
all predicates of the formo,, in the translated program, adticontains all other predicates. Let
us denote the semantics of an NP-SPEC prodiany PQMM (IT). More formally:

Definition1: Let IT be an NP-SPEC program, afi be its translation intd)ATALOG ¢,
Moreover, letpred(I1") denote the predicates occurringlih,

Q@ := {p | Subset(d, p) occurs inll} U
{p | Permutation(d, p) occurs inll} U
{p | Partition(d, p, k) occurs inll} U
{p | IntFunc(d, p,i..j) occurs inll} U
{cop | cop € pred(Il')}

P :=pred(Il') \ Q.

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

The semantics dfl is defined as the following set of Herbrand models:

PQMM (I1) := {M | M is a(P; Q)-minimal Herbrand model dfl’}.

2.2. ASP

Concerning ASP, we only give a very brief overview, detailsyrba found in works such as
(Baral, 2003; Gebser et al., 2011; Leone et al., 2006). An A8Bram consists of rules

LiVv---VLg : — Body

where thel,; are literals containing variables and constarffssibly containing strong nega-
tion) andBody, which is a conjunction of literals, that may also contaiiitdns, aggregates and
default negation. Rules without heads act like integritpsteaints. The semantics is based on
the Gelfond-Lifschitz reduct (Gelfond & Lifschitz, 1991) aatso guarantees minimality of the
answer sets. We denote the set of answer sets of an ASP probbgml S (I1). More formally:

Definition2: Let IT be an ASP program, andbe an Herbrand interpretation. Letound(I1)
denote the ground version Hf, obtained by replacing variables in all possible ways. Thece
of IT with respect tal, denoted’, is obtained fromyround(II) by removing all ground rules
whose body is false with respect fo! is an answer set dfl if 7 is a model oflT and there is
noJ C I such that/ is an answer set dii. The semantics dil is then defined as the following
set of Herbrand models:

AS(IT) := {M | M is an answer set di }.

Example 7: As an example, consider the Hamiltonian Cycle problem asthirce from above.
An ASP encoding similar to the NP-SPEC program seen earlier wald b

#const n = 6.
edge(1,2). edge(3,1). edge(2, 3). edge(6, 2). edge(5, 6).
edge(4,5). edge(3,5). edge(1,4). edge(4, 1).

d(1..n).
path(X, 1) Vpath(X, 2) Vpath(X, 3) Vpath(X, 4) Vpath(X, 5) Vpath(X, 6) : — d(X).
: — path(X, A), path(Y,A) Xl=Y
: — path(X, P), path(Y,Z), not edge(X,Y), Z=P + 1.
(X

: — path(X, n), path(Y, 1), not edge(X,Y).

This program is usable for gringo with clasp, using thehift option (transforming the
disjunctive rule into several nondisjunctive ones), an&/Dle can observe that the extensional
definition is rewritten into a number of facts and that the tamisdefinition also just changes
syntax. As for the permutation statement, here we first usediqated representing the domain
definition, and then a disjunctive rule and an integrity caaist. The disjunctive rule states that
each tuple in the domain definition must be assigned one ofuimars 1 to 6, and the integrity
constraint enforces the bijection, that is, no differemtiés of the domain definition must be
assigned the same number. The final two integrity constraistsligect translations from the
NP-SPEC program. The only difference is the arithmetic expreskat has been moved outside
the fact in order to conform to DLV’s syntax (gringo would @lsave accepted the immediate
translation from the NP-SPEC program).

3Many modern ASP systems also allow for function symbols, but &re not needed here.

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

3. Translation from NP-SPEC to ASP

We now report how the various constructs of NP-SPEC programs edrabslated into ASP.
We start with theDATABASE section constructs. An extensional declaration of the form
p = {t1,...,t,} will be translated to factg(t;)---p(tn), and one of the fornp = {n..m}
will be translated to factg(n) - - - p(m). Constant declarations such as- i, instead, will be
managed in-memory by replacing all occurrences wfth i.

Now for the main task, translating tis@ECIFICATION constructs. Any composed domain
definition is associated with a fresh extensional predidats follows:

o for the Cartesian produgt >< q, the following set of facts is created:

{d(Xl, R 7Xi+j) | p(X15-- %) A Q(Xig1,--- ,Xi+j)},

wherei and;j are the arities op andq, respectively;
o for the unionp + q, the following set of facts is created:

{d(x1,...,x5) | p(X1,. -, x5) Va(xg, ..., xi) }s

wherei is the arity of bothp andq;
o for the intersectiom * q, the following set of facts is created:

{d(Xl, . ,Xi) ’ p(Xl, S ,Xi) /\q(Xl7 e ,Xi)},

wherei is the arity of bothp andq; and
o for the differencep — g, the following set of facts is created:

{d(X17 s)Xi) | p(xlv s 7Xi) N ﬁ'q(Xla s aXi)})

wherei is the arity of bothp andq, and—.q(x1,...,x;) is true if and only if the fact
q(x1,...,x;) is not part of the translation.

For nested domain definitions, we just repeat this procesgsiely using fresh symbols in
each recursive step. In the following we will assume that d@iondefinitions have been treated
in this way and that the top-level predicate of the transfats d and has arity.

We then look at metafacts. The simplest ongiidset(d, p), for which we produce

p(Xq,. .., Xn) V—p(Xy,...,Xy) : —d(Xq,...,Xy). QD
For the metafacPermutation(d, p), we will create

p(Xl,...,Xn,l)\/...\/p(Xl,...,Xn,C) Z—d(Xl,...,Xn).
L= p(Xl,...,XH,A),p(Yl,...,Yn,A),Xl! :Yl. (2)

=Xy, Xy A)p(Yr, o Y A) X! =Y.

wheren is the arity ofd andc is the cardinality ofd. The first rule specifies intuitively that
for each tuple irl one ofp(Xy, ..., Xy, 1) - - p(Xy,..., Xy, c) should hold, and by minimality
exactly one of these will hold. The integrity constraintsweeghat no different numbers will be
associated to the same tuple.

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

The remaining metafacts are actually much simpler to trémsda the bijection criterion does
not have to be checke®artition(d, p, k) is translated as follows:

p(X1, .., X0, 0) V... Vp(Xy,... . Xp, k—1) 1 —d(Xy,...,Xy). (3)
wheren is the arity ofd. Similarly, IntFunc(d, p,i..j) is translated as follows:
p(Xq, ., Xp,) Vo VDX, e, Xy) r = d(X e, X)), 4)

What remains are the Datalog rules of tiBEECIFICATION section. Essentially, each
Head < —— Body is directly translated intdlead’ : — Body’, with only minor differences.
If Head is fail, thenHead’ is empty, otherwise it will be exactly the same. The diffeebe-
tweenBody andBody’ is due to different syntax for arithmetics, aggregates araltd safety
requirements. Concerning arithmetics, gringo can acdepist the same syntax as NP-SPEC
with only minor differences#abs instead otibs, #pow instead of), while DLV is much more
restrictive. DLV currently does not support negative iriegand it does not provide constructs
corresponding t6 . Moreover, arithmetic expressions may not be nested in Didgmams, but
this limitation can be overcome by flattening the expressions

Concerning aggregates, DLV and gringo support similaraynihich is a little bit different
from the one used in NP-SPEC but rather straightforward to revadgtording to the following
schema: Arguments marked with asterisks are first replacddfeish variables; these are the
arguments on which the aggregation function is applied.rdjpam COUNT, exactly one as-
terisk may appear in each aggregate. Hence, an aggregatép(«, ., Y),Z : n..m) is written
as

#sum{X : p(X, ., Y)} =7, d(2)

whereX is a fresh variable and is a fresh predicate defined by fadi@) - - - d(m). Aggregates
MIN andMAX are rewritten similarly, whil&COUNT (p(x, _, %, Y),Z : n..m) is written as

#Count{Xl,Xg : p(Xl, - XQ,Y)} = Z, d(Z)

A more difficult problem presents the safety conditions ecdgdrby the ASP systems. NP-
SPEC has a fairly lax safety criterion, while for instance DLYuiees each variable to occur in
a positive, non-builtin body literal, and also gringo hagmailar criterion. This mismatch can be
overcome by introducing appropriate domain predicateswiezded, we omit the details for
clarity and will assume in the following that only safe NP-SPE@sare used.

Given an NP-SPEC prograhh, we denote byT* the translation to ASP.

Theorem 3.1: For an NP-SPEC progranil, there is a one-to-one correspondence between
PQMM(IT) and AS(IT*).

3.1. Proof of Theorem 3.1

Throughout this section, |&f be an NPSPEC program, afidbe theDATALOG ¢ program
associated withl. We first prove that eachP; Q)-minimal model oflI’ can be mapped into an
answer set of[*. In particular, we provide the mapping function in the nesfiition. We then
we show that the output of the mapping is a modelléf and that it is also minimal for the
associated reduct.

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

Definition3: Let M € PQMM (II). We define

M* = (M \ {outy(t) | outy(t) € M}
\ {cop(t) [cop(t) € M}
\ {def,(t) | defy(t) € M}
\ 1) [pEs)emy
U {—p(t) | —p is a predicate idl*, p(t) ¢ M}.

Lemma 3.2: Let M € PQMM (IT). M* is a model of I*.

Proof. For translations of NP-SPEC rules, this holds because anyyeolkidy literals and head
atoms inIl’ are true inM if and only if they are true in\/*. Any negative literaNOT a(t) in
IT" is true inM if and only if co,(t) € M anda(t) ¢ M, thereforea(t) ¢ M* andnot a(t) is
true in M*. For constraints, this holds becaudsg ¢ M.

For translations of NP-SPEC metafacts, we provide detailed aartatbelow.

e ForSubset(d, p), the associated rule (1) is satisfied becausebeys the excluding mid-
dle law. In particular, sincd/ satisfiesSubset(d, p), if p(t) € M thend(t) € M, which
in turn impliesp(t) € M*. On the other hand, for eact{t) € M such thap(t) ¢ M,
M* contains—p(t).

e ForPermutation(d, p) we observe that for each tuplén d there is exactly ong(t, s) in
M and M* such thats € [1..m] wherem is the cardinality of the extension df Hence
the disjunctive rule in (2) is satisfied. Moreover, the caastss in (2) are equal to the
DATALOG “'EC constraints ifll’ and thus also satisfied.

e ForPartition(d, p, k) we observe that for each tuplen d there is exactly one(t,s) in
M andM* such thats € [0..k — 1], hence rule (3) idl* is satisfied.

e Similarly, for IntFunc(d, p, k) for each tuple in d there is exactly ong(t,s) in M and

M* such thats € [i..5], hence rule (4) inI* is satisfied.
O
Theorem 3.3: Let M € PQMM (II). M* is an answer set dff*.

Proof. By the previous lemma, it remains to show thidt is also a minimal model of the reduct
(IT*)™”, Assume by contradiction that thereNs C M* such thatV is a model of I1*)*", and
consider interpretation

N':=M\ (M*\ N)
\ {p1(t) | plis a predicate iAl’, p(t) € (M*\ N)}.

Our aim is to show thal’ is a model ofiI, which would contradict/ € PQMM (11) because
N'<pgo M andM £p.o N'.We start by observing that rules (fii*)*" modeling metafacts
are such that all predicates associated with metafactsthaveame extension iV and M*.
Indeed, this is true by construction 8f* becausé\/ is a (P; Q)-minimal Herbrand model of
IT" by assumption, and therefore each ground instance of andisje rules in (1)—(4) is satisfied
either because of a false body literal, or because wfiguetrue head atom. The remaining
predicates are defined by Datalog rules, which have a oned@aresponding intd’. We can
thus conclude tha¥’ is a model offl, i.e., a contradiction. O

We now provide the mapping on the other direction, i.e., @tion associating any answer set
of IT* with a (P; @)-minimal model oflI".

10

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

Definition4: Let A € AS(II*). We define

A° = (A \ {—p(t) | —pis a predicate ifil*})

|
) | Subset(d,p) € I, t € HIPl d(t) ¢ A}

U {outp(t

U {outy(t,s) | Permutation(d,p) € T, t € Hl4 s € [1..c(d)],d(t) ¢ A}
U {out,(t,s) | Partition(d, p, k) € I',t € HI s € [1..k],d(t) & A}

U {out,(t,s) | IntFunc(d, p,i..j) € I, t € A s € [i..5],d(t) ¢ A}
UA{pL(t) | p(t,s) € A}

U {cop(t) | p occurs negated ifi’, t € HPl, p(t) ¢ A}

wherec(d) is the cardinality of the extension df
Theorem 3.4: Let A € AS(IT*). ThenA°® € PQMM (II).

Proof. A° is an Herbrand model dfi’ by construction. Assume by contradiction that there is
another Herbrand modét of II’ such thatB <p.o A° andA°® £p.o B. It can be shown that

B := A\ (A°\ B)
is @ model of(IT*)4 such thatB’ C A, which is a contradiction. Indeed, predicates defined by
metafacts have the same extensiomihand in B by assumption. The same observation also
applies to predicates of the foren, (t), which means that the interpretation of negative literals
is fixed in (IT*)4. The remaining predicates are defined by Datalog rul&E jand have one-to-
one counterparts iii*. Each rule of this kind whose body is true with respect to bittand B

is such that the head is true with respect to héthand B as well. Therefore, the corresponding
rule inII* is such that the head is true with respectXo which completes our proof. O]

3.2. Alternative trandations

In this section we provide a brief description of an altemgatranslation using aggregates and
choice rules. We start with the metaf&etbset(d, p), which can be translated as follows:

{p(Xy,...,Xy) : d(Xq,...,Xp)}- (5)

Concerning the metafaBermutation(d, p), the disjunctive rule can be replaced by the follow-
ing choice rule:

Hp(Xy,..., Xy, L)l s — d(Xq, ..., Xy). (6)
while then integrity constraints can be replaced by just one using areggte:
i — #Heount{Xy, ..., X, : p(Xy, ..., Xy, A)} > 1, p(o,. .., A). (7)
For the metafacPartition(d, p, k), the following choice rule can be used
Hp(Xq,..., Xy, 0.k = 1)} — d(Xyq, ..., Xy). (8)
while the metafacintFunc(d, p, i..j) can be transformed into

H{p(Xy,.. ., X, i) s — d(Xq, ..., Xa). 9)

11

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

DATABASE
n = 10;
manAssignsScore = {(1,1,2), (1,2,1), ...}
womanAssignsScore = {(1,1,2), (1,2,2), ...}

SPECIFICATION
IntFunc({1..n}, match, 1..n).

fail <-- match(M1,W), match(M,wW), M <> ML1.
fail <-- match(M,W1), manAssignsScore(M,W,Smw), W1 <> W,
manAssignsScore(M,W1,Smwl), Smw > Smwl,

match(M1,W), womanAssignsScore(W,M,Swm),
womanAssignsScore(W,M1,Swm1), Swm >= Swml.

Figure 1. Encoding of stable marriage

In order to show the equivalence of the alternative trarmsiatwith the first translation intro-
duced in this section, we observe that the rewritten prograrehead-cycle-fre¢Ben-Eliyahu
& Dechter, 1994). For such programs disjunction can be akweid by means of a procedure
known asshift (Eiter, Fink, & Woltran, 2007), which essentially replacesisjuhctive rule of
the form:
a1 V.- Va,:— body.
into n rules of the form:

a; » — body, not ay, ..., not a;—1, not Aj+1, ..., not an,.

one for each € [1..n]. According to the ASP Core 2 standard (Calimeri, lanni, & Ric2014),
the rules above defines the semantics of a choice rule of the for

{ai; -5 an} : — body.

from which we derive the equivalence of (1) and (5). Similattiy semantics of a choice rule of
the form:

Hag; -+ 5 antu: — body.
is defined by the following rules:

{ag; -+ 5 an} : — body.
s = < #count{ay; -5 an} < u.

from which we derive the equivalence of (2) and (6)—(7), (&) &), and (4) and (9).

4. Experiments
We have created a prototype implementation of the transfhom described in Section 3, which

is available athttp://archives.alviano.net/npspec2asp/ . It is written in C++
usingbison andflex , and called NPSPEC2ASP. The implementation does only rudimentary

12

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

DATABASE
edge = {(0,6), (0,3), (0,4), (1,5), ...};
node = {1, 0, 3, 2, 5, 4, 7, 6, 9, 8};
num_edges = 42;

SPECIFICATION
IntFunc(node, value, 0..num_edges).

edge_value(X,Y,V1-V2) <-- edge(X,Y), value(X,V1), value (Y,V2), V1 >= V2.
edge_value(X,Y,V2-V1) <-- edge(X,Y), value(X,V1), value (Y,\V2), V2 > V1.

fail <-- value(X,N), value(Y,N), X<Y.

fail <-- edge_value(X,Y,N1), edge value(X,Y,N2), N1 != N2

A
'

fail
fail

- edge_value(X1,Y1,N), edge value(X2,Y2,N), X1 != X2.
- edge_value(X1,Y1,N), edge value(X2,Y2,N), Y1 I= Y2.

A}
'

Figure 2. Encoding of graceful graphs

correctness checks of the program and is focused on gergei&dP programs for correct NP-
SPEC input. It generates either the disjunctive rules or th&elrales described in Section 3.
For the experiments, the transformation useddarmutation produced the integrity constraint
with the counting aggregate. We used this implementatidegbthe viability of our approach,
in particular assessing the efficiency of the proposed riagrinto ASP with respect to the
previously available transformation into SAT.

4.1. Benchmark settings

In the benchmark we included several instances availabl@NP-SPEC site. More specif-
ically, we considered two sets of instances, namelyntiscellaneaand csplib2npspedench-
marks. Even if these instances have been conceived for démamg the expressivity of the
language rather than for assessing the efficiency of an éwalitdurned out that even for these
comparatively small instances there are quite marked pedioce differences.

We also considered benchmarks from the 3rd and 4th ASP Caiopst{Calimerietal., 2011;
Alviano et al., 2013). In particular, we testedttle filling, graceful graphsHamiltonian cycle
andstable marriageFor these domains we generated instances smaller in sindlibse used
for the competitions. This is motivated by a compromise wethalb in order to test SPEC2SAT.
In fact, it seems that SPEC2SAT does not support recursive wibgsh often requires to write
encodings that are intrinsically inefficient. Just to makexample, the encoding of Hamiltonian
cycle available on the web site of SPEC2SAT and reported in Exaéngleesses a permutation
of the nodes on the input graphs. The search space has thud sideeren is the number of
nodes in the input graph. A more efficient encoding insteaddvguess a subset of the edges,
thus defining a significantly smaller search space of &tzewherem is the number of edges.
The other tested encodings are reported in Figures 1-3. Weveltbat the encodings of stable
marriage and graceful graphs use the metdiadtunc, while the encoding of bottle filling uses
Subset and aggregates.

The experiment was executed on an Intel Xeon CPU X3430 2.40Gthz4nGB of central
memory, running Debian 7.2 with kernel Linux 3.2.0-4-amdgmory was limited to 3 GB
and time to 600 seconds. The tool NPSPEC2ASP was compiled with & #he other tools
involved in the experiment are SPEC2SAT 1.1 (Cadoli & Schaerf5pGatz 215.2 (Li, 1999),

13

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

DATABASE
rows = 6;
cols = 6;

xsucc = {(0,1), (1,2), (2,3), (3,4), (4,5}
ysucc = {(0,1), (1,2), (2,3), (3,4), (4,5)}
xvalue = {(1,2), (2,1), (3,3), (4,2), (5,0)};
yvalue = {(1,1), (2,0), (3,3), (4,2), (5,2)}
bottle = {(1,1,4), (2,3,2), (2,2,2), (2,3,3), ...};
bottle_position = {(1,4), (3,2), (2,2), (3,3), ..}

SPECIFICATION
Subset(bottle_position, filled).

fail <-- xvalue(Y,V), COUNT(filled(*,Y),C:0..cals), C <> V.
fail <-- yvalue(X,V), COUNT(filled(X, *),C:0..rows), C <> V.

fail <-- bottle(B,X1,Y1), bottle(B,X2,Y2), ysucc(Y1,Y2)

filled(X1,Y1), NOT filled(X2,Y2).
fail < bottle(B,X1,Y), bottle(B,X2,Y), filled(X1,Y), N OT filled(X2,Y), X1 <> X2.

Figure 3. Encoding of bottle filling

minisat 2.2 (Bn & Sorensson, 2003), gringo 3.0.5Gebser, Schaub, & Thiele, 2007), clasp
2.1.5 (Gebser, Kaufmann, Neumann, & Schaub, 2007), cmo3qBierler & Maratea, 2004),
DLV 2012-12-17 (Alviano et al., 2011), and wasp 1.0 (Doddralg 2011).

In our experiments, we first measured the running time redubbg SPEC2SAT and
NPSPEC2ASP to rewrite the input specification into SAT and ASP, résplc Then, for
each SAT encoding produced by SPEC2SAT, we ran three SAT solvargelynaatz, min-
isat and clasp, to obtain one solution if one exists. For ezcthese executions we mea-
sured the time to obtain the solution or the assertion thaerexists, thus the sum of the
running times of SPEC2SAT and of the SAT solvers. Moreover, folheaSP encoding
produced by NPSPEC2ASP, we ran two instantiators, namely gringoDdV (with op-
tion -instantiate). Actually, for DLV we also tested a slightly different vésa produc-
ing ground programs in numeric format, i.e., DEMhttps://www.mat.unical.it/
ricca/wasp/), and for gringo and the associated solvers we also testedethriting into
choice rules. For each of these runs we measured the timegddqa compute the ground ASP
program, thus the sum of the running times of NPSPEC2ASP and afdtantiator. Finally, for
each ground ASP program, we computed one solution by usisg,aaodels, DLV and wasp,
and measured the overall time required by the tool-chaintieomiscellanea and csplib2npspec
benchmarks we have also measured the sizes of the instahf@imulas and programs. For
SPEC2SAT, we report the number of clauses in the produced formndl#he number of propo-
sitional variables occurring in it. For DLV and gringo we ogpthe number of ground rules
produced and the number of ground atoms occurring in thenreTiba slight difference in the
statistics provided by DLV and gringo: DLV does not countuyrd atoms (and facts) that were
already found to be true; to be more comparable, we addedutinber of facts for DLV.

4.2. Benchmarksfrom the NP-SPEC site

Experimental results concerning th@scellaneaand csplib2npspedenchmarks are reported
in Table 1, where the time required by NPSPEC2ASP has been omitzii$e it is always
below the measurement accuracy. On the other hand, theteettme of SPEC2SAT is higher,

4We did not use gringo 4, as it is still preliminary and at the théesting did not provide some of the functionality of gringdn
our case the-shift option that we used in the benchmarks.

14

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

sometimes by several orders of magnitude, with a peagadombRulerfor which SPEC2SAT
did not terminate on the allotted time. In fact, SPEC2SAT hastaprde a ground SAT instance
to pass to a SAT solver, while NPSPEC2ASP outputs a non-ground A$Papmoln fact, it is
more meaningful to compare SPEC2SAT to NPSPEC2ASP plus the ASP iastaii obtain
a ground ASP program. Columns gringo and “DLV inst” reporsthémes, which are however
always less than those of SPEC2SAT. However, we would like totmaihthat this is just a
rough comparison, as SPEC2SAT obviously performs a differemipadation (with different
output) than NPSPEC2SAT plus an ASP instantiator. For a similaoreare do not provide a
comparison between SAT and propositional ASP solvers: theseras even start from different
input.

In Table 2 it can be seen that also the number of ground rutedupged by the ASP systems
is usually smaller than the number of clauses produced by SPEC28én if often the num-
ber of ground atoms exceeds the number of propositionahbi@s. These numbers are to be
compared with the same caveat as the timings: one should &e afithe fact that one figure
refers to propositional formulas, the other to logic pragnaing rules, so they are not directly
comparable.

Concerning the computation of one solution from each graapetification, all considered
SAT and ASP solvers are fast in almost all tests. Among the ¢xcepare satz foproteinFold-
ing, which exceeds the allotted time, and DLV jobShopSchedulingvhose execution lasted
around 94 seconds. A hard instancalignterval, for which only satz, DLV and DLV +wasp
terminated in the allotted time. All other solvers, inclugligringo+clasp and gringo+cmodels,
exceeded the allotted time, even if the NPSPEC2ASP rewritinglanthstantiation by gringo
is produced in less time than the output of SPEC2SAT. This instesnag outlier in our ex-
periments and we conjecture that it is due to an “unlucky 'cimethe heuristics adopted by
minisat, clasp and cmodels. In almost all other instanceNPSPEC2ASP toolchains compute
solutions in less than 1 second, while SPEC2SAT toolchainsdilpicequire several seconds,
see in particulafangford, lowAutocorrelationand magicSquareFor this last instance we also
measured a timeout for gringo+cmodels. The size of the pnogimoduced by the ASP instan-
tiators is always smaller than the size of the formulas pceduby SPEC2SAT, sometimes by
orders of magnitude, even if the number of ground atoms @fkeeeds the number of proposi-
tional variables. A major cause for the difference in sizpesgy to be aggregates in the problem
specification, which are supported natively by ASP systenisgowire expensive rewritings for
SPEC2SAT.

4.3. Benchmarksfrom the 3rd and 4th ASP Competitions

Figures 4-8 reports the average execution times measurdtidasther benchmarks in our
experiment. For three of these benchmarks we also testedwnigten translations for co-

Table 1. Running times on thaiscellaneandcsplib2npspebenchmarks

SPEC2SAT NPSPEC2ASP
Instance SPEC2SAT +satz +minisat +clasp) DLV DLV DL_/ DLV gringo gringo gringe-
alone inst inst +wasp +clasp cmodels
allinterval 1.14 44.16 267.14 >600 0.00 0.90 0.00 0.10 0.00 >600 >600
bacp 5.25 5.20 5.19 5.21] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bibd 3.33 3.41 3.34 3.35] 0.00 0.00 0.00 0.00 0.00 0.00 0.21L
carSequencing 7.61 15.02 7.65 7.61 1.36 1.36 0.90 1.02 0.10 0.10 1.09
factoring 5.15 8.00 5.20 5.95(0.22 0.45 0.33 0.43 0.00 1.01 14.19
golombRuler >600 >600 >600 >600 | 58.29 58.84 37.45 41.44 7.49 9.51 16.21
jobShopScheduling 36.57 37.82 36.89 37.33 3.19 90.73 1.93 3.84 0.22 1.12 4.72
langford 9.65 10.65 9.80 10.19 0.00 0.79 0.00 0.61 0.00 0.00 16.13
lowAutocorrelation 19.24 20.04 19.29 19.57 N/A* N/A* N/A* N/A* 0.00 0.00 0.00
magicSquare 10.34 10.57 10.39 10.34 0.10 18.87 0.10 1.18 0.00 0.04 >600
proteinFolding 113.44 >600 114.11 115.08| N/A* N/A* N/A* N/A* 0.91 2.19 7.20
socialGolfer 6.20 6.37 6.23 6.17| 0.00 0.10 0.10 0.10 0.00 0.00 0.0B
sudoku 2.52 2.53 2.53 253 0.10 0.10 0.10 0.20 0.00 0.00 0.0p

* The instance contains negative integers.

15

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

pris (http://bach.istc.kobe-u.ac.jp/copris/), a state-of-the-art CSP-to-SAT
grounder (Tamura, Taga, Kitagawa, & Banbara, 2009), usoth minisat and clasp as SAT
solver backends. Copris was included in order to providedaa ihow modern CSP-to-SAT
techniques fare with respect to SPEC2SAT. However, there are soucial differences be-
tween the language accepted by copris and NP-SPEC, most imihottenapparent absence
of language features supporting inductive definitions inrisofprovided by Datalog rules in
NP-SPEC; techniques introduced in (Pelov & Ternovska, 2005;8vakVittocx, Denecker, &

Bruynooghe, 2008) may be used for this purpose, but are aathifective of this paper). On the
other hand, SPEC2SAT also does not support recursive prediefitétidns in the NP-SPEC
input (but NPSPEC2ASP does). Plots of copris do not include Scalav® compilation time.

In the graphs, instances are sorted by size and systems éamaumn up to the first timeout.
In the figures, graphs on top report grounding times, whileigding+solving times are shown
below. A few comments on these graphs are reported below.

Figure 4 reports the result for stable marriage and Figure Setffior graceful graphs, both
of whose encodings do not include aggregates. Concernengrtiunding, gringo and DLV are
significantly more efficient than SPEC2SAT, with gringo performixggter than DLV in grace-
ful graphs. As for the solving, we first observe that the te§&d solvers solved the Boolean
formulas produced by SPEC2SAT in less than 1 second. Hence, oyacison of the solving
times is mainly focused on the different ASP solvers. In tleispect, for stable marriage we
note that both clasp and cmodels are in general faster omttwimg using choice rules. For
graceful graphs, DLV solved only the first 5 instance sizesleathe other systems performed
significantly better. For this benchmark we also observetti@aperformance of cmodels does
not improve with the encoding using choice rules, while glaas a different behavior. Con-
cerning copris, we note that it outperforms other systemgraoeful graphs, while the opposite
happens for stable marriage.

For bottle filling we tested an encoding including aggregatée result for this benchmark
is reported in Figures 6 and 7. Satisfiable and unsatisfiablenitestaare shown in different
graphs in this case. Concerning the grounding, we obseram agclear advantage of gringo
and DLV over SPEC2SAT. In fact, SPEC2SAT runs into time out for satisfialstances of size
25 and unsatisfiable instances of size 24. Moreover, we hawvd@point out that the output of
SPEC2SAT is always an unsatisfiable Boolean formula for thessatest, which appears to be
due to a bug in the instantiation of aggregates. Hence, éosdtving phase we only tested ASP
solvers. DLV can solve only the smallest instances, up tsguf size 10-11. Wasp instead can
solve instances up to grids of size 19, and cmodels solvéeaioss of size 22. The performance
of cmodels improves on the rewriting based on choice rules.fivally point out that clasp
outperforms all other systems in this benchmark, solvihteated instances in a few tenths of a

Table 2. Instance sizes of th@iscellaneandcsplib2npspebenchmarks

NPSPEC2ASP

Instance SPEC2SAT DLV DLV® gringo
Clauses Variables Rules Atoms Rules Atoms Rules Atoms
allinterval 21,737 761 9,239 1,639 9239 1639 9,961 1,601
bacp 39,531 1,518 314 316 322 392 436 360
bibd 31,843 4,424 2,684 2,047 2705 2404 4,091 2,279
carSequencing 39,875 786| 33,398 219 33428 303 33,506 218
golombRuler N/A** N/A** | 653,593 96| 653,610 96| 1,149,561 105
jobShopScheduling 209,495 1,980| 156,107 2,052| 156,287 2,232| 158,087 2,089
langford 130,518 7299 3,736 793 3574 1054 4,015 803
lowAutocorrelation | 186,407 5,952 N/A* N/A* N/A* N/A* 2,339 1,041
magicSquare 38,564 1,975 5458 872 5773 1085 18,445 14,513
proteinFolding 735,721 669 N/A* N/A* N/A* N/A* 520,107 347
socialGolfer 21,600 1,424| 11,097 441 11105 561 11,321 442
sudoku 33,825 1,458| 24,777 2,545 25,962 2545 25,263 1,736

* The instance contains negative integers.
** The system did not terminate in 30 minutes.

16

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

Stable marriage - grounding

600 T I I
gringo —+—
dlv
500 |- divw —k— | |
gringo (choice) ——
spec2sat
copris
0 400 =
)]
£
)
_5 300 =
451
O
Q
X
w200 - .
100 - =
E e S S ooy g e s e
10 15 20 25 30 35 40
Size (number of couples)
Stable marriage - grounding+solving
600 I I I
gringo+clasp —+—
gringo+cmodels
500 div. —X— ||
divw+wasp —H—
gringo+clasp (choice)
gringo+cmodels (choice)
—~ 400 spec2sat+satz —@— |
2 spec2sat+minisat — 4
g spec2sat+clasp — A —
s copris+minisat ——
s 300 copris+clasp =
=
=]
O
Q
x
w200 =
100

Size (number of couples)

Figure 4. Average running time on stable marriage

17

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence

jetai

Execution time (s)

Execution time (s)

40

Graceful graphs - grounding
500 T I I
gringo —+—
450 +— dlv —
divw —k—
400 + gringo (choice) ——— |
spec2sat
350 |- copris |
300 =
250 s
200 + -
150 - =
100 - s
50 a -
T s e ST
0 DR e ‘ ‘
10 15 20 25 30 35
Size (number of nodes)
Graceful graphs - grounding+solving
600 T T I

500

400® |

200

100

{wam)
/
/
/

/
/
/
/
/

gringo+clasp —+—

gringo+cmodels
dlv —%—
divw+wasp —H—
+

/gringo+clasp (choice)
/gringo+c
)l

dels (choice)
spec2sat+satz
ec2sat+minisat —4&—
spec2sat+clasp — A —
copris+minisat ——
copris+clasp

Size (number of nodes)

Figure 5. Average running time on graceful graphs

18

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

Bottle filling (sat instances) - grounding

500 I T
gringo —+—
450 + dlv
dlivw —XK—
400 - gringo (choice) ——
spec2sat
350
v
o 300
£
)
.S 250
5
g 200
X
L
150 -
100
50
OE—F—8 &Rk Pk — kKK
5 10 15 20
Size (number of rows and columns)
Bottle filling (sat instances) - grounding+solving
600 i I
gringo+clasp —+—
gringo+cmodels
divw+wasp —f—
gringo+clasp (choice)
gringo+cmodels (choice)
0 400 -
(]
£
.5 300
)
o
@ n
X
w200 - \
100 - /O
0 />$< o e ’_/Z
5 10 15 20

Size (number of rows and columns)

Figure 6. Average running time on satisfiable bottle filling

19

October 9, 2014 Journal of Experimental & Theoretical Arigfidntelligence jetai

Bottle filling (unsat instances) - grounding

500 I T
gringo —+—
450 + dlv
dlivw —XK—
400 - gringo (choice) ——
spec2sat
350
)
o 300
£
)
.S 250
5
g 200
X
L
150 -
100
50
0lE—F—F R PRk — PR —IK
5 10 15 20
Size (number of rows and columns)
Bottle filling (unsat instances) - grounding+solving
600 I I T
gringo+clasp —+—
gringo+cmodels
divw+wasp —— n
gringo+clasp (choice)
gringo+cmodels (choice) D]
E 400 -
v
£
.5 300
B |
> |
O |
v |
x |
w200 -
.
100 |- Lo/
Lo o W
0 =
5 10 15 20

Size (number of rows and columns)

Figure 7. Average running time on unsatisfiable bottle filling

20

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

Execution time (s)

Execution time (s)

Hamiltonian cycle - grounding

10 I \ \
gringo —+—
dlv
divw —kK—
8 L gringo (choice) —— .
spec2sat
copris
6 L -
4L _
2 L _

Size (number of nodes)

Hamiltonian cycle - grounding+solving

600 I I T T \
gringo+clasp
gringo+cmodels
500 dlv :

dlvw+wasp
gringo+clasp (choice)
gringo+cmodels (choice)
400 - spec2sat+satz
spec2sat+minisat
spec2sat+clasp
copris+minisat
300 - copris+clasp

200

100

Size (number of nodes)

Figure 8. Average running time on Hamiltonian cycle

21

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

second.

The last benchmark we considered is Hamiltonian cycle, whesdt is reported in Figure 8.
We observe that in this case the grounding phase is easy eraestill showing a sensible
advantage of ASP grounders over SPEC2SAT. For the solving phasete¢hat among the
systems without learning, DLV performs better than satzjevmong the other systems we
observe that clasp, cmodels and wasp solved instances uw nodes, and the same holds
for minisat on the output of SPEC2SAT. We also remark that clagpiwgeneral faster than
cmodels and wasp, and its performance is even better onvhiiing based on choice rules. In
fact, on the encoding with choice rules, clasp solved ircsgamp to 26 nodes. A similar result
has been obtained by clasp on the output of SPEC2SAT, with rutinieg often smaller than
those obtained on the output of NPSPEC2ASP. Concerning coprispteghat it is in general
faster than other systems, solving instances up to 28 nodes.

5. Conclusion

In this paper we have presented a transformation of NP-SPECamsgnto ASP. The transla-
tion is modular and not complex at all, allowing for very efict transformations. Compared to
the previously available transformation into Booleans§atbility, there are a number of crucial
differences: While our transformation is from a formalisithwariables into another formalism
with variables, Boolean satisfiability of course does naivalior object variables. Therefore any
transformation to that language has to do an implicit irt&#on. It is obvious that instantia-
tion can be very costly, and thus using sophisticated itistéon methods is usually of utmost
importance. However, optimization methods for instaidiatare often quite involved and not
easy to implement, and therefore adopting them in a tramsfton is detrimental. After all,
the appeal of transformations are usually their simpliaitygl the possibility to re-use existing
software after the transformation.

Our transformation method does just that; by not instantait is possible to re-use exist-
ing instantiators inside ASP systems, many of which use goiphisticated techniques like join
ordering heuristics, dynamic indexing and many more. We Ipawvided a prototype implemen-
tation that showcases this advantage. Already on rathdtexaanples that were used previously
for evaluating NP-SPEC implementations a considerable adyamfour method can be ob-
served. This impression is confirmed by more systematic exjeeits involving domains from
ASP competitions reformulated for NP-SPEC. For these domaingperfermed a scalability
analysis that clearly show a better asymptotic behaviotHertool chain involving ASP than
the tool chain involving SAT. This finding is independent of tleacrete ASP and SAT systems
considered. However, the experiments also clearly higblgerformance differences for ASP
systems.

There is a second aspect of our work, which regards ASP. As caedrein Section 3, the
translation ofPermutation either gives rise to possibly many integrity constraint®oe with
an aggregate. In any case, all current ASP instantiatorsnailerialize all associations between
tuples of the domain definition and the permutation identifieven if the identifiers are not
really important for solving the problem. This means thatéhare obvious symmetries in the
instantiated program. There exist proposals for symmegghiing in ASP (e.g. (Drescher, Tif-
rea, & Walsh, 2011)), but they typically employ automorphidetection. We argue that in cases
like this, a statement likBRermutation, Partition, or IntFunc would make sense as a language
addition for ASP solvers, which could exploit the fact that germutation identifiers introduce
a particular known symmetry pattern that does not have teebected by any external tool.

22

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

Acknowledgements

Supported by Regione Calabria and EU under POR Calabria FESR 20@7&thin the PIA
project of DLVSYSTEM s.r.l., and by National Group for Scientific riGoutation (GNCS-
INDAM).

References

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Doda€., lanni, G., ... Xiao, G. (2013).
The fourth answer set programming competition: Preliminaport. In P. Cabalar &
T. C. Son (Eds.)12th international conference on logic programming and monotonic
reasoning (Ipnmr 2013)Vol. 8148, pp. 42-53). Springer Berlin/Heidelberg.

Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., & Teira, G. (2011). The disjunctive
datalog system DLV. In G. Gottlob (EdDatalog 2.0(Vol. 6702, pp. 282—301). Springer
Berlin/Heidelberg.

Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a Theory Declarative Knowledge.
In J. Minker (Ed.),Foundations of Deductive Databases and Logic Programn{pm
89-148). Washington DC: Morgan Kaufmann Publishers, Inc.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative ProSlelving
Cambridge University Press.

Ben-Eliyahu, R., & Dechter, R. (1994). Propositional Semanfios Disjunctive Logic Pro-
grams.Annals of Mathematics and Atrtificial Intelligence2, 53-87.

Cadoli, M., lanni, G., Palopoli, L., Schaerf, A., & Vasile, 2Q00). An Executable Specification
Language for Solving all the Problems in NEomputer Language26(2/4), 165-195.

Cadoli, M., Mancini, T., & Patrizi, F. (2006). SAT as an effieetsolving technology for con-
straint problems. In F. Esposito, Z. W. Ras, D. Malerba, & G. Sanoe(Eds.) Founda-
tions of intelligent systems, 16th international sympasiismis 2006, bari, italy, septem-
ber 27-29, 2006, proceedingsol. 4203, pp. 540-549). Springer.

Cadoli, M., Palopoli, L., Schaerf, A., & Vasile, D. (1999). NP-SPE® executable specifi-
cation language for solving all problems in NP. Pmoceedings of the first international
workshop on practical aspects of declarative languaies. 1551, pp. 16—-30). Springer.

Cadoli, M., & Schaerf, A. (2005). Compiling problem specifioas into SAT. Artificial
Intelligence 162(1-2), 89—-120.

Calimeri, F., lanni, G., & Ricca, F. (2014). The third open\aes set programming com-
petition. TPLP, 14(1), 117-135. Retrieved fromttp://dx.doi.org/10.1017/
S1471068412000105 doi:

Calimeri, F., lanni, G., Ricca, F., Alviano, M., Bria, A., @#ano, G., ... Veltri, P. (2011). The
third answer set programming competition: Preliminary repbthe system competition
track. In J. Delgrande & W. Faber (Edsl1th international conference on logic pro-
gramming and nonmonotonic reasoning (Ipnmr 20Q0\0)I. 6645, p. 388-403). Springer
Berlin/Heidelberg. Retrieved fromttp://dx.doi.org/10.1007/978-3-642
-20895-9 46

Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F., & &mi, M. (2011). The birth
of a WASP: Preliminary report on a new ASP solver. In F. Fioravdadi.), 26th italian
conference on computational logic (cilc 201(3pl. 810, pp. 99-113). Sun SITE Central
Europe. Retrieved frorttp://ceur-ws.org/Vol-810/paper-106.pdf

Drescher, C., Tifrea, O., & Walsh, T. (2011). Symmetry-birgkanswer set solving.Al
Communications24(2), 177-194.

Eén, N., & Srensson, N. (2003). An extensible SAT-solverSkat(pp. 502-518).

23

October 9, 2014

Journal of Experimental & Theoretical Arigfidntelligence jetai

Eiter, T., Fink, M., & Woltran, S. (2007). Semantical Charadations and Complexity of
Equivalences in Stable Logic Programmidg-M Transactions on Computational Logic
8(3), 1-53.

Faber, W., Pfeifer, G., Leone, N., DellArmi, T., & lelpa, G.Q@8). Design and implementation
of aggregate functions in the dlv syster8(5-6), 545-580. doi:

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Sdhau, & Schneider, M. T. (2011).
Potassco: The potsdam answer set solving collect®dinCommunications24(2), 107—
124.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (20074,dgy). Conflict-driven answer
set solving. InTwentieth International Joint Conference on Artificial Iigeence (IJCAI-
07) (pp. 386—392). Morgan Kaufmann Publishers.

Gebser, M., Schaub, T., & Thiele, S. (2007, May). Gringo : A neaugider for answer set
programming. In C. Baral, G. Brewka, & J. Schlipf (Edd.pgic Programming and
Nonmonotonic Reasoning — 9th International Conference, LPNNMR/ol. 4483, pp.
266-271). Tempe, Arizona: Springer Verlag. doi:

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Lisg°Programs and Disjunctive
DatabasesNew Generation Computing, 365-385.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., P&tj,& Scarcello, F. (2006, July).
The DLV System for Knowledge Representation and ReasoriigM Transactions on
Computational Logic7(3), 499-562.

Li, C. M. (1999). A constraint-based approach to narrow dettees for satisfiabilitylnforma-
tion Processing Letterg1(2), 75-80.

Lierler, Y., & Maratea, M. (2004, January). Cmodels-2: SAB®@Answer Set Solver Enhanced
to Non-tight Programs. In V. Lifschitz & I. Niem&l(Eds.) Proceedings of the 7th Inter-
national Conference on Logic Programming and Non-MonotoniasRring (LPNMR-7)
(\Vol. 2923, pp. 346—350). Springer.

Marién, M., Wittocx, J., Denecker, M., & Bruynooghe, M. (2008). T3W): satisfiability
of propositional logic extended with inductive definitionth H. K. Buning & X. Zhao
(Eds.), Theory and applications of satisfiability testing - SAT 2008th international
conference, SAT 2008, guangzhou, china, may 12-15, 2008e¢uinggVol. 4996, pp.
211-224). Springer. Retrieved framitp://dx.doi.org/10.1007/978-3-540
-79719-7 20 doi:

Minker, J. (Ed.). (1988)Foundations of Deductive Databases and Logic Programmiiigsh-
ington DC: Morgan Kaufmann Publishers, Inc.

Pelov, N., & Ternovska, E. (2005). Reducing inductive definigido propositional satisfiabil-
ity. In M. Gabbrielli & G. Gupta (Eds.)l.ogic programming, 21st international confer-
ence, ICLP 2005, sitges, spain, october 2-5, 2005, procgsdifol. 3668, pp. 221-234).
Springer. Retrieved frorttp://dx.doi.org/10.1007/11562931 _18 doi:

Tamura, N., Taga, A., Kitagawa, S., & Banbara, M. (2009). Ciingpfinite linear csp into sat.
Constraints 14(2), 254-272.

Van Gelder, A. (1988). Negation as Failure Using Tight Datitns for General Logic Programs.
In J. Minker (Ed.),Foundations of Deductive Databases and Logic Programn{pm
1149-1176). Washington DC: Morgan Kaufmann Publishers, Inc

24

