
University of Huddersfield Repository

Vallati, Mauro, Chrpa, Lukáš and Kitchin, Diane E.

ASAP: An Automatic Algorithm Selection Approach for Planning

Original Citation

Vallati, Mauro, Chrpa, Lukáš and Kitchin, Diane E. (2014) ASAP: An Automatic Algorithm
Selection Approach for Planning. International Journal on Artificial Intelligence Tools, 23 (6). p.
1460032. ISSN 0218-2130

This version is available at http://eprints.hud.ac.uk/id/eprint/22468/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

International Journal on Artificial Intelligence Tools

ASAP: AN AUTOMATIC ALGORITHM SELECTION APPROACH

FOR PLANNING

MAURO VALLATI

LUKÁŠ CHRPA

DIANE KITCHIN

PARK Research Group, School of Computing and Engineering, University of Huddersfield,
Queensgate

Huddersfield, HD1 3DH, United Kingdom

{n.surname}@hud.ac.uk

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Despite the advances made in the last decade in automated planning, no planner out-
performs all the others in every known benchmark domain. This observation motivates

the idea of selecting different planning algorithms for different domains. Moreover, the

planners’ performances are affected by the structure of the search space, which depends
on the encoding of the considered domain. In many domains, the performance of a plan-

ner can be improved by exploiting additional knowledge, for instance, in the form of

macro-operators or entanglements.
In this paper we propose ASAP, an automatic Algorithm Selection Approach for

Planning that: (i) for a given domain initially learns additional knowledge, in the form

of macro-operators and entanglements, which is used for creating different encodings
of the given planning domain and problems, and (ii) explores the 2 dimensional space

of available algorithms, defined as encodings–planners couples, and then (iii) selects the

most promising algorithm for optimising either the runtimes or the quality of the solution
plans.

Keywords: Automated Planning; Algorithm Selection; Learning for Planning.

1. Introduction

Although in the last decade the performance of domain-independent planners has

significantly improved, there is no planner that outperforms all others in every

benchmark domain. The performance of current planning systems is typically af-

fected by the structure of the search space, which depends on the planning domain

and its considered encoding. In many domains, the planning performance can be

improved by deriving and exploiting knowledge about the domain and problem

structure that is not explicitly given in the input formalisation, and that can be

used for optimising planners’ behaviour. Such knowledge can be then encoded in

the domain model which allows using standard planning engines. In other words,

the domain (and problem) model is reformulated [13].

1

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

2 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

These observations motivate the idea of extracting additional knowledge about

planning domains and automatically selecting the most promising planning algo-

rithm, exploiting such knowledge, for a given domain. The problem of algorithm

selection has been introduced by Rice in 1970s [28] hence this research area is not

very new. In planning, algorithm selection can help to overcome situations where

some algorithm does not work very well on some planning problems while some other

algorithm works well on them. The algorithm selection problem can also be viewed

as a decision at the meta-level [11]. Although this paper will present an algorithm

selection technique which selects an algorithm for a whole class of problems (in the

same domain), we are aware of works that study more specific algorithm selection.

One possibility is to select an algorithm for a single problem rather than a class of

problems [38]. Another interesting aspect of algorithm selection in planning is that

we might not be bounded by selecting one algorithm to solve the whole problem

but we might change the algorithm at some point during solving the problem [24].

In this paper we propose ASAP, an automatic algorithm selection approach for

planning that: (i) for a given domain initially learns additional knowledge, in the

form of macro-operators and entanglements (inner and outer), which is used for cre-

ating different encodings of the given planning domain and problems (i.e. planning

domain/problem reformulation); (ii) explores the 2 dimensional space encodings

(e)–planners (p); and then (iii) selects the best algorithm 〈e, p〉 for optimising the

runtimes (ASAPs) or the quality of the solution plans (ASAPq).

In the proposed approach, each algorithm has two dimensions: one dimension

is represented by different encodings of a given domain; the other is represented

by existing high-performance domain-independent planners. We decided to consider

each couple 〈e, p〉 as a different algorithm because the different knowledge carried in

the generated encodings, e, makes even the same planner p perform very differently.

We are not aware of other completely automated planning systems exploiting

a pure algorithm selection approach, in the sense that they automatically select

a single algorithm for solving a specific class of planning problems. If we include

the portfolio-based approach for planning, which can be considered as a superset

of the algorithm selection one, our approach is related to the work of Roberts and

Howe [20,32], PbP2 [15,16] and FastDownward Stone Soup [35], with some significant

differences.

The major difference between all the approaches above and ASAP is that we

made a domain-specific selection of a single algorithm, which is defined by a couple

encoding–planner. Moreover, the Roberts and Howe approaches select the planners

to exploit online, while we select the algorithm offline. Additionally, the knowl-

edge generated by the Roberts and Howe systems is domain-independent, while the

knowledge generated and exploited by ASAP is domain-specific.

PbP2 learns a domain-specific portfolio. It incorporates seven planners it can

choose from. It lets them learn macro-actions for the given domain, and runs up to

three best-performing ones in a round-robin fashion with learnt time slots. What

differentiates our approach from PbP2, is that (i) we generate new encodings of given

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 3

domains by looking for both macro-operators and entanglements, (ii) we explore the

two-dimensional algorithm space encodings–planners, and (iii) we select only one

algorithm to exploit on a domain.

FastDownward Stone Soup is a recent approach to selecting and combining a set of

forward-state planning techniques included in the well known domain-independent

planner FastDownward [17]. Their approach is domain-independent, thus it does not

extract any additional knowledge from the planning domains (e.g. macro-operators

or entanglements). It exploits a statical combination of several different planning

techniques for solving a single problem.

In the rest of the paper, first we give the necessary background on classical plan-

ning, problem reformulations and considered planning systems. Then we describe

the ASAP approach; we present and discuss the experimental results and finally; we

give conclusions.

2. Classical Planning

Classical planning deals with finding a (partially or totally ordered) sequence of

actions transforming the static, deterministic and fully observable environment

from some initial state to a desired goal state. In the classical representation

atoms are predicates. States are defined as sets of ground predicates. A planning

operator o = (name(o), pre(o), eff−(o), eff+(o)) is specified such that name(o) =

op name(x1, . . . , xk) (op name is an unique operator name and x1, . . . xk are vari-

able symbols (arguments) appearing in the operator), pre(o) is a set of predicates

representing operator’s precondition, eff−(o) and eff+(o) are sets of predicates rep-

resenting operator’s negative and positive effects. Actions are ground instances of

planning operators. An action a = (pre(a), eff−(a), eff+(a)) is applicable in a state

s if and only if pre(a) ⊆ s. Application of a in s (if possible) results in a state

(s \ eff−(a)) ∪ eff+(a).

A planning domain is specified via sets of predicates and planning operators. A

planning problem is specified via a planning domain, initial state and set of goal

atoms. A solution plan is a sequence of actions such that a consecutive application

of the actions in the plan (starting in the initial state) results in a state that satisfies

the goal.

3. Planning Problem Reformulations

Analogously to the possibility that a planning system can be implemented in many

different ways, so planning domains and problems can be also encoded in several

different ways. Typically, environment and action descriptions correspond with real

situations which produces useful outputs for agents (or robots) that they can easily

execute. On the other hand, sometimes such an encoding is not very efficient and

therefore some additional planner independent knowledge (e.g. macro-operators) is

often included to increase the efficiency of planning engines.

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

4 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

As a running example we use the well known BlocksWorld domain. It consists of

four operators: pickup(?x) refers to a situation when a robotic hand picks-up a block

?x from the table, putdown(?x) refers to a situation when a robotic hand puts-down

the block ?x it is holding to the table, unstack(?x,?y) refers to a situation when

a robotic hand unstacks a block ?x from ?y, and stack(?x,?y) refers to a situation

when a robotic hand stacks a block ?x to ?y.

3.1. Macro-operators

A macro-operator encapsulates a sequence of (primitive) planning operators and

can be represented as an ordinary planning operator. In BlocksWorld, it may be

observed that instances of the operator unstack(?x ?y) are followed by instances of

the operator putdown(?x). Hence, it is reasonable to assemble these operators into

a macro-operator unstack-putdown(?x ?y). Formally speaking, a macro-operator oi,j
is constructed by assembling planning operators oi and oj (in that order) in the

following way:

• pre(oi,j) = pre(oi) ∪ (pre(oj) \ eff+(oi))

• eff−(oi,j) = (eff−(oi) \ eff+(oj)) ∪ eff−(oj)

• eff+(oi,j) = (eff+(oi) \ eff−(oj)) ∪ eff+(oj)

Clearly, oi must not delete any predicate required by oj , otherwise corresponding

instances of oi and oj cannot be applied consecutively. Longer macro-operators,

i.e., those encapsulating longer sequences of original planning operators can be

constructed by this approach iteratively.

Macro-operators can be thus understood as ‘short-cuts’ in the state space, which

in some cases can speed up plan generation considerably [4, 27]. This property

can be useful since by exploiting them it is possible to reach the goals in fewer

steps. However, the number of instances of macro-operators is often higher than

the number of instances of the original operators, because they usually have more

arguments deriving from the arguments of the operators that are encapsulated.

This increases the branching factor in the search space, which can slow down the

planning process and, moreover, increase the memory consumption. Therefore, it is

important that benefits of macro-operators outweigh their drawbacks. This problem

is known as the utility problem [26].

Macro-operators, since they are encoded in the same way as ‘normal’ planning

operators, can be added into planning domains and reformulated domains can be

passed to any planning engine. Therefore, macro-operators are thoroughly stud-

ied [4,8,27]. For ASAP we used Chrpa’s macro-operator learning approach [8]. This

approach learns macro-operators from training plans by considering both adjacent

actions, and non-adjacent actions which can be made adjacent by permutating the

training plans (clearly the permutations considered must preserve the soundness

of the plan). Macro-operators are generated according to several criteria such as

whether instances of one operator frequently follows (or precedes) instances of the

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 5

other operator, and whether the number of the macro-operator’s arguments is small.

To raise the efficiency of the planning process the approach also removes some prim-

itive operators replaced by newly generated macro-operators. In our example, when

the new macro-operator unstack-putdown(?x ?y) is created, then it may be observed

that the primitive operator putdown(?x) is useless (unless an initial state consists

of a situation where the robotic hand holds some block). Although in general this

approach is incomplete (we might lose solvability of some problems), it has been

demonstrated empirically that this approach works well [8].

3.2. Entanglements

Entanglements [6] are relations between planning operators and atoms (predicates).

Entanglements aim to capture the causal relationships characteristic for a given

class of planning problems which in many cases enable a reduction of the branching

factor in the state space. There are two kinds of entanglements, outer and inner

entanglements.

Outer entanglements [7] are relations between planning operators and initial or

goal atoms (predicates) which refers to situations where to solve a given planning

problem we need only such instances of operators where instances of a certain

predicate in an operator’s precondition or positive (add) effects respectively are

present in the initial state or goal situation respectively. In BlocksWorld, it can be

observed that unstacking blocks only occurs from their initial positions. In this case

an ‘entanglement by init’ will capture that if an atom on(a b) is to be achieved for

a corresponding instance of operator unstack(?x ?y) (unstack(a b)), then the atom

is an initial atom. Similarly, it may be observed that stacking blocks only occurs to

their goal positions. Then, an ‘entanglement by goal’ will capture that atom on(b a)

achieved by a corresponding instance of operator stack(?x ?y) (stack(b a)) is a goal

atom.

Encoding outer entanglements is done by introducing supplementary static pred-

icates having the same arguments as predicates involved in the outer entanglement

relations. Instances of these static predicates that correspond to instances of orig-

inal predicates in the initial or goal state, are added to the initial state. These

supplementary static predicates are added into preconditions of operators involved

in the outer entanglement relations, so they allow only such operators’ instances

that follow conditions of outer entanglements. For detail, see [6].

Inner entanglements [6] are relations between pairs of planning operators and

predicates which refer to situations where one operator is an exclusive ‘achiever’ or

‘consumer’ of a predicate to or from another operator. In the BlocksWorld it may

be observed that operator pickup(?x) achieves predicate holding(?x) exclusively for

operator stack(?x,?y) (and not for operator putdown(?x)), i.e., pickup(?x) is ‘entan-

gled by succeeding’ stack(?x,?y) with holding(?x). Similarly, it may be observed that

predicate holding(?x) for operator putdown(?x) is exclusively achieved by operator

unstack(?x ?y) (and not by operator pickup(?x)), i.e., putdown(?x) is ‘entangled by

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

6 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

preceding’ unstack(?x ?y) with holding(?x).

Encoding inner entanglements into planning domains and problems must ensure

‘achiever’ and ‘requirer’ exclusivity given by these inner entanglements. It is done

by using specific predicates, ‘locks’, which prevent executing certain instances of

operators in some stage of the planning process. An instance of an operator hav-

ing a ‘lock’ in its precondition cannot be executed after executing an instance of

another operator (‘locker’) having a ‘lock’ in its negative effects until an instance

of some other operator (‘releaser’) having a ‘lock’ in its positive effects has been

executed. For example, a situation where pickup(?x) is ‘entangled by succeeding’

stack(?x,?y) with holding(?x) is modelled such that pickup(?x) is a ‘locker’ for

putdown(?x) and stack(?x,?y) is a ‘releaser’ for putdown(?x). For details, see [6].

Entanglements are extracted from training plans, solutions of simpler planning

problems, by checking whether for each operator/pair of operators and related pred-

icates the entanglement conditions are satisfied in all the training plans. Since train-

ing plans may consist of ‘flaws’ (e.g. redundant actions) some error rate (often up

to 10%) is allowed. Introducing error rate might result in detecting incorrect entan-

glements even for the training problems. Hence, the extracted entanglements are

cross-validated on the (reformulated) training problems. This approach, however,

does not guarantee completeness since even if extracted entanglements are valid

for all the training problems, they might be invalid for some other problems in the

same domain. In spite of this, it has been empirically shown that it does not happen

(or happens very rarely) if the structure of the training problems is similar to the

structure of testing ones [6].

Entanglements, as mentioned before, aim to reduce the branching factor in the

search space by eliminating unpromising instances of planning operators or search

alternatives. This has clearly a positive influence on the planning process. How-

ever, introducing supplementary predicates, especially those for encoding inner en-

tanglements, may introduce overheads. Eliminating of some actions or search al-

ternative might act adversarially against some planning techniques, for instance,

delete-relaxed heuristics [19].

4. Integrated Planners

In this section, we give a brief description of each of the high performance domain-

independent planners that are currently incorporated in ASAP. Much more detailed

information are available from the referred papers.

Such systems were selected due to their good performances in International

Planning Competitions (IPC) and the different techniques that they exploit.

Metric-FF [18] extends the main ideas used in FF [19]. The FF’s search strategy

is a variation of hill-climbing over the space of the world states, and in FF the

goal distance is estimated by solving a relaxed task for each successor world state.

Compared to the first version of FF, Metric-FF is enhanced with goal orderings

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 7

pruning technique and with the ordering knowledge provided by the goal agenda.

SatPlan [23] computes plans by encoding the planning problems into SAT problems

that are then solved by a generic SAT solver. It first estimates an initial bound

k on the length (or horizon) of the plan, then it encodes the planning problem

with horizon equal to k into a CNF formula, and finally uses an incorporated SAT

solver to solve the CNF formula. If the formula is satisfiable, the solution to the

SAT problem is translated into a plan, otherwise, SatPlan generates another CNF

using the current planning horizon increased by one (i.e. k + 1), and so on. In

this work, SatPlan exploited the Precosat [1] SAT solver and the SAT-MAX-PLAN

encoding [34], which is used for translating a planning problem into a SAT formula.

Mp [31] is a SAT-based planner that, differently from SatPlan, exploits an extremely

compact SAT representation of the planning problem and an integrated SAT solver.

Mp generates different SAT formulae, corresponding to different horizons. Such

formulae are then solved in parallel, through a finely tuned scheduling technique,

by the integrated solver. As soon as a formula is satisfied, all the process is stopped

and the current solution plan is provided.

Lama-11 [29, 30] translates the PDDL problem specification into a multi-valued

state variable representation (“SAS+”) and searches for a plan in the space of the

world states using a heuristic derived from the causal graph, a particular graph

representing the causal dependencies of SAS+ variables. Its core feature is the use

of a pseudo-heuristic derived from landmarks, propositions that must be true in

every solution of a planning task. Moreover, a weighted A∗ search is used with

iteratively decreasing weights, so that the planner continues to search for plans of

better quality.

LPG [14] uses stochastic local search in a space of partial plans represented through

linear action graphs, which are variants of the very well known planning graph [2].

The search steps are certain graph modifications transforming an action graph into

another one. LPG is an incremental planner that exploits restarts and noise for

improving the quality of solutions found.

SGPlan [5] exploits a partition-and-resolve strategy to partition the mutual-exclusion

constraints of a planning problem by its subgoals into subproblems. The subprob-

lems are then individually solved using Metric-FF. All the subproblems solutions

are then merged in order to solve the original planning problem; the violated global

constraints are iteratively resolved while merging solutions.

Probe [25] implements a dual search architecture for planning that is based on the

idea of probes: single action sequences computed without search from a given state

that can quickly go deep into the state space, terminating either in the goal or in

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

8 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

failure. It is a complete standard greedy best first search planner using the additive

heuristic [3] with a single change: when a state is selected for expansion, it first

launches a “probe” from the state to the goal. If the probe reaches the goal, the

problem is solved and the solution is returned. Otherwise, the states expanded by

probe are added to the open list, and control returns to the main loop.

5. The Proposed Approach

It is well known that different planning engines might have very different perfor-

mance, and none of the existing planning engines outperforms the rest in all the

(existing) domains. The same can be said about different domain encodings, since

they have their advantages and peculiarities (as discussed before). The rationale

behind ASAP is to select the best couple - planner, encoding - for each domain in

order to (nearly) maximally exploit advantages of both.

The learning phase of ASAP is composed of four steps: (i) extraction of macro-

operators and removal of useless primitive operators, (ii) detection of entanglements

and encoding them into new planning domains/problems, (iii) generation of all the

algorithms as couples 〈e, p〉, (iv) measurement of the performances of the available

algorithms, and (v) selection of the most promising algorithm for solving the testing

instances.

Macro-operators and entanglements are extracted using the approach described,

respectively, in [8] and [6] on plans generated by Metric-FF, exploiting the origi-

nal domain encodings, on training problems. Through these techniques ASAP is

able to generate at most four new encodings per domain: Macros, which includes

macro-operators and excludes some original operators; Inner, which includes inner

entanglements; Outer, which includes outer entanglements; Both, which considers

both inner and outer entanglements. The maximum number of algorithms per do-

main is 35, which arises from 7 included planners that can be used with 5 different

encodings.

The current version of ASAP runs the available algorithms on training problems.

The performances are measured in terms of CPU time required for solving each

training instance, number of actions of the solutions found, and the number of

solved problems. The performances of each algorithm 〈e, p〉 are then compared in

order to select the most promising one to execute on testing problems. ASAP has

two different versions: ASAPs which selects the algorithms for optimising runtimes,

and ASAPq which optimises the quality of the plans (in classical STRIPS planning

the quality is measured by plan length, i.e., shorter better).

For selecting the most promising algorithm in terms of runtime, ASAPs uses

the time IPC score. It is a value, firstly introduced in IPC-6 [12], which considers

runtimes and number of solved problems together. It is very useful because it syn-

thesises different aspects of planners’ performance in a single value, that can then

be compared through different planners. ASAPs selects the couple which achieved

the best IPC score on the learning problems; if more algorithms achieved the same

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 9

Table 1. For every domain, the couple selected by ASAPs and
ASAPq, and the total number of available algorithms.

Domain ASAPs ASAPq Total

Barman 〈Outer,SGPlan〉 〈Original,SGPlan〉 35
BlocksWorld 〈Both,FF〉 〈Both,FF〉 35
Depots 〈Outer,FF〉 〈Both, LPG〉 35

Gripper 〈Outer,SGPlan〉 〈Outer,Mp〉 14
Gold Miner 〈Macro,FF〉 〈Both, SatPlan〉 35
Matching-BW 〈Macro, LPG〉 〈Outer, LPG〉 35

Parking 〈Original,FF〉 〈Inner, Lama〉 21
Rovers 〈Macro, LPG〉 〈Macro, Lama〉 21
Satellite 〈Outer, LPG〉 〈Outer, LPG〉 21

Spanner 〈Outer,Mp〉 〈Original, LPG〉 14
TPP 〈Both, LPG〉 〈Outer, Lama〉 35

score some secondary criteria are used. These criteria include the number of solved

problems, the number of problems in which the couple has been the fastest and the

mean CPU time on solved problems.

The method used by ASAPq is similar, but it is considering the quality of plans

(in terms of number of actions) instead of the CPU times. For the incremental

plannersa, i.e. LPG and Lama, the best solution found within the CPU time limit is

considered.

The time and quality IPC score are determined as defined for IPC-7 [10]. The

time score of an algorithm A for a planning problem P is defined as Score(A, P),

which is 0 if P is unsolved, and 1/(1 + log10(TP (A)/T ∗
P)) otherwise, where T ∗

P

is the lowest measured CPU time to solve P and TP (A) denotes the CPU time

required by A to solve problem P . Higher values of the speed score indicate better

performance. The quality score is defined as Score(A, P), which is 0 if P is unsolved,

and Q∗
P /Q(AP) otherwise (Q∗

P ≤ Q(AP) for any A). Quality is measured in terms

of number of actions. The IPC score on a set of problems is given by the sum of the

scores achieved on each considered problem.

6. Experimental Analysis

In this section, we present the results of a large experimental study examining the

effectiveness of the knowledge generated and exploited by ASAP under the form of

selected algorithms 〈e, p〉.

6.1. Experimental Setup

We considered problem instances from 11 well-known benchmark domains used

in the learning tracks of International Planning Competitions: Barman (IPC7),

BlocksWorld (IPC-7), Depots (IPC-7), Gripper (IPC-7), Gold-miner (IPC-6),

aAn incremental planner produces a sequence of solutions with increasing plan quality which are
generated with increasing CPU times.

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

10 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

Matching-BW (IPC-6), Parking (IPC-6/7), Rovers (IPC-7), Satellite (IPC-7), Span-

ner (IPC-7) and TPP (IPC-7). These domains were selected because they are suit-

able for reformulations. Some domains used in learning tracks are not suitable for

extracting additional knowledge in the form of macros or entanglements since they

have a very small number of operators (1 or 2). In other domains, since Metric-FF

was not able to solve any training problem, ASAP was not able to derive any type of

knowledge. In such domains, the comparison would be only between basic solvers,

which is not the focus of this paper.

For each domain, we used the existing 30 benchmark problems as testing in-

stances. As training problems we used 30 training problems from those provided

by organisers, whenever available; otherwise we generated circa 30 instances (easier

than the ones used for testing the approach) through available random generators.

A runtime cutoff of 900 CPU seconds (15 minutes, as in the learning tracks of

IPC) was used for both learning and testing runs. All the experiments were run on

3.0 Ghz machine CPU with 2GB of RAM.

6.2. Results on Selected Domains

Table 1 shows, for every domain, the algorithm selected by ASAPs and ASAPq,

and the total number of available algorithms. It is interesting to note that the

selected domains encodings changes frequently through benchmark domains. On

the other hand, the planners most frequently included in the couples selected by

ASAPs are Metric-FF and LPG. On the contrary, for optimising the quality, almost

all the planners have been selected. The total number of available algorithms can

be smaller than 35 in the case that macro-operators or some type of entanglements

were not found.

Figure 1 shows results for a two-dimensional comparison, in terms of runtimes,

done on the testing problems of Depots. In the top chart we are comparing the

CPU times of all the algorithms sharing the same encoding (e) of the selected one,

but exploiting different planners. SatPlan is not shown since it does not solve any

testing problem. In the bottom chart we are comparing the algorithms sharing the

same planner (p) but with different encodings. The impact of both the dimensions

considered by the proposed approach is significant in terms of CPU time, and we

experimentally observed that it is significant also in terms of quality of the solutions

found.

For understanding the usefulness of the knowledge extracted under the form of

domain encodings, for verifying the hypothesis that no single planner outperforms

all the others in every considered benchmark domain, and for verifying that ASAP

effectively selects the most promising algorithm for each selected domain, we have

compared ASAP with the best performing basic planner for each considered domain.

The best basic planner is exploiting the original domain formulation, and has been

selected according to the IPC score achieved on the testing problems. The results

of this experiment are shown in Table 2. The first interesting result is that both

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 11

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

DepotsSeconds

Metric-FF
LPG

LAMA
Probe

Mp
SGPlan

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

DepotsSeconds

Outer
Original
Macros

Inner
Both

Fig. 1. CPU time (log. scale) of the selected couple with respect to the couples exploiting the

same encoding (upper plot) and couples exploiting the same planner (lower plot) on benchmark

problems of Depots domain. Note that the X-axes denote the problem number.

ASAPs and ASAPq have significantly better performance in terms of IPC score and

number of solved problems, while considering all the selected domains together.

While analysing the results for every single domain, ASAPs is almost always better

than the best basic planner. In Parking the performance are exactly the same,

ASAPs selected exactly FF and the original domain as the algorithm to exploit.

Only in Barman and Spanner, the performance of ASAPs are worse than those of

the best basic planner. In both the domains, this is due to the different behaviour of

selected algorithms on training and testing instances. In Spanner, Mp is extremely

quick on training instances, but on large testing problems it runs out of memory.

In Barman, outer entanglements showed to be useful on smaller training problems,

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

12 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

Table 2. Time/quality IPC score (max score 30 per domain)
and percentages of problems solved by ASAP and the best ba-

sic planner for the selected domains. BW, Gold-m and M-BW
stand respectively for BlocksWorld, Gold-miner and Match-

ing-BW.

Domain BestS Time IPC % Solved
ASAPs BestS ASAPs BestS

Barman SGPlan 23.1 28.1 100.0 100.0

BW Probe 30.0 5.8 100.0 66.7

Depots Probe 30.0 8.7 100.0 100.0

Gripper LPG 30.0 5.0 100.0 33.3

Gold-m Mp 30.0 16.5 100.0 100.0

M-BW Lama 30.0 8.7 100.0 80.0

Parking FF 5.0 5.0 16.7 16.7

Rovers LPG 28.0 22.0 93.3 93.3

Satellite LPG 29.0 27.8 96.7 100.0

Spanner LPG 10.6 25.6 36.7 100.0

TPP Lama 20.0 3.4 66.7 33.3

All above 265.7 156.6 82.7 74.8

Domain BestQ Quality IPC % Solved
ASAPq BestQ ASAPq BestQ

Barman SGPlan 30.0 30.0 100.0 100.0

BW Probe 29.5 18.1 100.0 66.7

Depots Probe 30.0 26.2 100.0 100.0

Gripper LPG 30.0 8.3 100.0 33.3

Gold-m LPG 30.0 29.9 100.0 100.0

M-BW SatPlan 26.4 20.4 90.0 73.3

Parking FF 3.8 4.6 13.3 16.7

Rovers LPG 29.3 26.1 100.0 90.0

Satellite LPG 28.8 29.7 96.7 100.0

Spanner LPG 30.0 30.0 100.0 100.0

TPP Lama 30.0 9.1 100.0 33.3

All above 297.8 232.4 90.9 73.9

but their usefulness has not been confirmed on the testing set.

ASAPq is worse in two of the selected domains; in Parking and in Satellite, mainly

due to the smaller number of problems solved by the selected algorithms. Another

interesting result that we can derive from Table 2 is that every considered planner

achieves the best Time/Quality IPC score on at least one considered domain, and

that the single best planner of a domain is usually different than the one included in

the couple selected by ASAP. This means that entanglements and macro-operators

have a very significant impact on the planners’ performance, and that the impact

varies notably from planner to planner.

In order to understand the accuracy of the algorithm selection, we compared the

performance of the three best algorithms. In Tables 3 and 4 we present the results of

this comparison, in terms of time and quality IPC score, that has been done on the

benchmark problems of the selected domains. The performances are shown in terms

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 13

Table 3. Time IPC score (max score 30 per domain), average CPU time/plan
quality and percentages of problems solved by the first 3 couples with respect to

the IPC score, for the selected domains. The * indicates the algorithm selected
by ASAPs/ASAPq.

Optimising runtimes

Domain Algorithm IPC Mean CPU % Solved

Barman
〈Original,SGPlan〉 28.1 – 100.0
〈Outer,SGPlan〉* 23.1 – 100.0

〈Outer, Lama〉 0.0 – 0.0

BlocksWorld
〈Both,FF〉* 30.0 1.3 100.0
〈Outer,Probe〉 20.6 3.8 100.0
〈Outer, LPG〉 19.8 8.1 100.0

Depots

〈Outer,FF〉* 28.2 0.5 100.0

〈Outer, LPG〉 21.4 0.9 100.0

〈Both, LPG〉 21.2 1.1 100.0

Gripper

〈Outer,Mp〉 30.0 8.0 100.0

〈Outer,SGPlan〉* 26.7 11.0 100.0
〈Outer, LPG〉 23.9 15.3 100.0

Gold-miner
〈Macro,FF〉* 29.9 0.02 100.0
〈Outer,FF〉 21.8 0.08 100.0

〈Inner,FF〉 18.8 0.1 100.0

Matching-BW
〈Macro, LPG〉* 24.6 1.9 100.0
〈Both, LPG〉 21.6 5.4 96.7

〈Macro,FF〉 17.0 42.6 76.7

Parking

〈Original,FF〉* 4.6 376.9 16.7

〈Inner, Lama〉 2.6 659.8 13.3
〈Original,Probe〉 2.5 308.7 10.0

Rovers
〈Macro, LPG〉* 28.0 45.6 93.3
〈Original, LPG〉 22.0 92.9 93.3

〈Outer, LPG〉 15.1 261.6 86.7

Satellite

〈Outer, LPG〉* 23.8 75.9 96.7

〈Original, LPG〉 22.1 92.4 100.0
〈Macro, LPG〉 17.8 85.1 66.7

Spanner
〈Original, LPG〉 25.6 100.4 100.0
〈Outer, LPG〉 24.6 70.4 100.0

〈Outer,Mp〉* 10.6 17.3 36.7

TPP
〈Outer, LPG〉 23.2 34.2 100.0
〈Both, LPG〉* 20.0 14.7 66.7
〈Outer,Probe〉 19.9 61.3 100.0

of IPC score, average CPU time (quality) and solved problems. The * indicates

the algorithm selected by ASAP. The mean CPU time/quality are calculated on

instances solved by all the three best algorithms of the given domain. We would

remark that ASAP selects the most promising algorithm on the basis of the results

achieved on the learning problems, while in Tables 3 and 4 the comparison is made

by ordering the algorithms on the results that they achieved on the testing instances.

Concerning the planners included in ASAP, all of them appear at least once. We

can then derive that all the planners are able to efficiently exploit, at least on one

domain, the knowledge extracted under the form of different encodings.

Considering the runtime optimisation, the planner that appears most frequently

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

14 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

Table 4. Quality IPC score (max score 30 per domain), average CPU time/plan
quality and percentages of problems solved by the first 3 couples with respect to

the IPC score, for the selected domains. The * indicates the algorithm selected
by ASAPs/ASAPq.

Optimising Quality

Domain Algorithm IPC Mean Qual % Solved

Barman
〈Original,SGPlan〉* 30.0 – 100.0
〈Outer, SGPlan〉 27.4 – 100.0

〈Outer, Lama〉 0.0 – 0.0

BlocksWorld
〈Both,FF〉* 29.5 231.5 100.0
〈Outer, LPG〉 28.3 243.0 100.0
〈Outer,Probe〉 27.5 248.7 100.0

Depots

〈Outer, LPG〉 29.4 120.3 100.0

〈Both, LPG〉* 29.2 120.9 100.0

〈Both,Probe〉 27.7 127.1 100.0

Gripper

〈Outer,Mp〉* 30.0 566.8 100.0

〈Outer, LPG〉 28.6 593.8 100.0
〈Outer, SGPlan〉 25.8 659.9 100.0

Gold-miner
〈Both,SatPlan〉* 30.0 23.4 100.0
〈Macro, Lama〉 30.0 23.4 100.0

〈Macro, LPG〉 30.0 23.4 100.0

Matching-BW
〈Outer,SatPlan〉 26.4 57.2 93.3
〈Both,SatPlan〉 26.4 57.2 93.3

〈Outer, LPG〉* 25.8 61.1 90.0

Parking

〈Original,FF〉 4.6 78.0 16.7

〈Inner, Lama〉* 3.8 82.0 13.3
〈Inner,FF〉 2.9 74.5 10.0

Rovers
〈Macro, Lama〉* 27.5 674.3 100.0
〈Macro, LPG〉 23.7 669.0 93.3

〈Outer, Lama〉 21.5 657.1 83.3

Satellite

〈Original, LPG〉 29.7 675.5 100.0

〈Outer, LPG〉* 28.8 673.1 96.7
〈Original, SGPlan〉 13.7 742.5 50.0

Spanner
〈Outer, LPG〉 30.0 266.0 100.0
〈Original, LPG〉* 30.0 266.0 100.0

〈Original,Mp〉 11.0 266.0 36.7

TPP
〈Outer, Lama〉* 27.1 422.1 100.0
〈Both, Lama〉 21.0 387.1 73.3
〈Outer,Probe〉 19.7 570.4 100.0

in Table 3 is LPG, followed by Metric-FF, Probe and SGPlan. Thus, we can derive

that LPG and Metric-FF are the planners that better exploit macro-operators and

entanglements for improving runtime. This is quite surprising if we consider that

LPG and Metric-FF are the oldest planners included in ASAP, and that they appeared

(in particular FF) more rarely in Table 2. One could argue that, since the plans

found by Metric-FF were used for reformulating the domains, the fact that Metric-FF

performs well while exploiting entanglements or macro-operators, is not surprising.

From this perspective, it is worth noting that LPG is the planner which is able to

better exploit this additional knowledge, and that the plans found by Metric-FF

were used due to their good quality and to the relatively low CPU time required

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 15

for finding them. If we focus on the best algorithms for optimising quality of the

solutions, the planner which appears most frequently in Table 4 is again LPG, but

in this case it is followed by Lama-11. While LPG is often the best basic solver

with regard to the plan quality, as shown in Table 2, Lama is the best one only in

TPP. It seems then reasonable to deduce that the impact of macro-operators and

entanglements is strong on the performance of Lama.

From the point of view of the encodings of the domains, there are no significant

differences between runtime and quality, the Outer entanglements appear most fre-

quently in Tables 3 and 4. The less useful encodings are the Inner entanglements,

that rarely allowed algorithms considering them to achieve good results.

In terms of runtimes, ASAPs usually selects the best algorithm, which performs

significantly better than the second and the third ones. In three domains, Barman,

TPP and Gripper, ASAPs selected the second one. It is worth noting that in Gripper

domain the performance of the best performing algorithm is similar to the ones of the

second. On training problems, their performance were still very close, but the second

one had slightly better results. In TPP, the selected algorithm is solving 20 testing

problems out of 30. In all of them it is the fastest planner (quality score is exactly

20.0). Interestingly, on the remaining 10 problems, LPG crashed due to memory

errors. We believe that this is a bug in the planner and that, without this bug, the

algorithm selected by ASAPs would be the best one also in that domain. Finally,

in Barman we already discussed the different behaviour of SGPlan on training and

testing instances. ASAPs selected the third algorithm only in Spanner: the selected

algorithm is fast, but it run out of memory on large instances.

In terms of quality, ASAPq selects the best algorithm in seven domains; in De-

pots, Parking and Satellite the selected couple is the second one, in Matching-BW

the third one. On the other hand, the three best couples usually achieve similar

quality score results, this behaviour is quite different between quality and runtimes.

It should be noted that in Spanner, because of the structure of the domain, all the

valid plan solutions have the same number of actions.

The results shown in Tables 3 and 4 indicate that the approach used for selecting

the most promising algorithm, even if not very sophisticated, usually scales well

with increasing problem instance size. The couples selected on training instances,

easier than testing ones, are achieving very good results also on significantly harder

testing instances. The main noticed issue is related to the memory usage of planner,

that heavily depend on the planning approach exploited by the system and that is

unpredictable on unseen problems.

6.3. Impact of Reformulation

ASAP exploits two different reformulation approaches, namely macros and entangle-

ments. Thus, it would be interesting to understand how such reformulations affect

the overall performance of ASAP. It should be noted that considering different refor-

mulations has also an impact on the learning process, since the number of algorithms

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

16 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

Table 5. For every domain, the Time/Quality score achieved by allow-
ing ASAP to select only couples that include the original domain model

(Original), original and macros (Macros), and all the possible encodings
(All).

Time score Quality score

Domain Original Macro All Original Macro All

Barman 28.1 28.1 23.1 30.0 30.0 30.0
Bw 5.6 5.6 30.0 18.1 14.7 29.5

Depots 4.4 4.4 30.0 9.0 9.0 30.0

Gripper 17.7 17.7 29.5 8.3 8.3 30.0
GoldM 15.9 30.0 30.0 28.6 30.0 30.0

MatchBw 9.2 30.0 30.0 21.6 21.9 27.7
Parking 5.0 5.0 5.0 4.9 4.9 3.8

Rovers 22.0 28.0 28.0 23.0 29.9 29.9

Satellite 22.1 17.8 23.8 29.9 29.9 28.9
Spanner 27.1 27.1 26.9 30.0 30.0 30.0
TPP 0.0 15.6 20.0 9.1 0.0 30.0

Total 157.1 209.3 276.2 212.2 208.5 299.7

is increased and, moreover, their performance might become harder to predict.

In order to understand the impact of the reformulation techniques, we performed

the following experiment. We considered three different sets of 〈e, p〉 algorithms: (i)

e includes only original domain models; (ii) e includes also models enhanced with

macros; (iii) e includes all the possible reformulations, i.e. original models, macros

and entanglements. ASAP selected, for each set of algorithms, the most promising

one, according to the performance on the training problems. Table 5 shows the

performance of the corresponding selected algorithms on the testing instances. As

expected, considering all the possible reformulation usually leads to better results,

for both quality and CPU-time. In terms of speed, it seems that both macros and

entanglements have a significant impact on the performance. In many domains, con-

sidering also macros give an interesting speed-up to ASAPs. On the other hand, it

should be noted that in some domains, considering more formulations can lead to

worse performance. This is due to the fact that training problems are easier than

testing ones, therefore the exploitation of knowledge can have a different impact on

planners performance. Moreover, exploiting macros can lead to an increase of mem-

ory usage, due to the fact that the branching factor in the search space increases.

Thus, it happens that some planners quickly run out of memory on larger instances.

This makes harder to predict the performance of algorithms on testing problems

and, therefore, can lead to inefficient algorithm selection.

Exploiting macros can eventually decrease the quality of the solutions found.

This is due to the fact that macros are sequences of operators, executed as a single

one, that allows the planner to reach the goal in fewer search steps. Therefore,

shorter plans that involve single actions might not be considered. Mainly for this

reason, ASAPq is usually not exploiting macros, and its performance on the “Macro”

set are similar to those achieved while using only original domain models. On the

other hand, the impact of entanglements on quality score is remarkable.

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 17

Table 6. Quality score and the % of solved testing problems
of ASAP trained on 10, 20 and 30 problems. Only domains in

which the selected algorithm changes, across the different training
processes, are considered. ∗ indicates that the score is the same,

but the selected algorithm is different.

Quality Score Solved
Domain 5 15 30 5 15 30

Bw 28.7 29.8 28.7 100.0 100.0 100.0
Depots 29.4 29.2 29.4 100.0 100.0 100.0

Gripper 28.6 30.0 30.0 100.0 100.0 100.0
GoldM 30.0∗ 30.0 30.0 100.0 100.0 100.0

MatchBw 21.6 26.1 26.1 83.3 90.0 90.0

Parking 0.0 4.6 3.8 0.0 16.7 13.3
Rovers 21.5 27.5 27.5 83.3 100.0 100.0

Satellite 29.7 29.7 28.8 100.0 100.0 96.7
TPP 3.9 0.0 29.9 13.3 0.0 100.0

Total 193.4 206.9 234.2 75.6 78.5 88.9

6.4. Importance of the Number of Training Problems

In order to understand if small sets of training problems can be sufficient to select

the best performing algorithm for test problems that are larger than the training

ones, we have compared the performance of ASAP trained using the default number

of 30 training problems, and using half and one-sixth of these training problems. The

range of the problem size is the same for each of the three sets of training problems.

The results of this analysis are in Table 6. Of course, the lower the number of training

problems is, the cheaper the training of ASAP is. On the other hand, the algorithm

selected using few training problems can sometime be much less performant than

the one selected by considering larger training sets. In particular, we observed that

ASAPs is always selecting the same algorithm, regardless to the number of training

problems considered. This clearly indicates that in the considered domains there

is always a single algorithm which is always, or almost always, achieving the best

performance on the training problems. Interestingly, this is not true for ASAPq:

selecting the most promising algorithm for optimising plans quality appears to be

more complex. In several domains, namely Matching-bw, Parking, Rovers and TPP,

training only on 5 problems can lead to remarkable performance worsening. On the

other domains, the performance are similar. Generally speaking, Table 6 confirms

that using a larger number of training problems is helpful for selecting the most

promising algorithms.

6.5. ASAP versus PbP2

To evaluate the effectiveness of our approach against the state-of-the-art of learning-

based planners, we compared ASAP with PbP2. It is the winner of the learning track

of the last IPC, the IPC-7, which was held in 2011. For this comparison we used

exactly the same benchmark domains and problems that were used for the IPC-7.

PbP2 exploited the same knowledge that it used for the competition, while ASAP

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

18 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

Table 7. Time/quality IPC score (max score 30 per domain), average
CPU time/plan quality and percentages of problems solved by ASAP
and PbP2 for the selected domains. BW stands for BlocksWorld.

Domain Time IPC Mean CPU % Solved
ASAPs PbP2s ASAPs PbP2s ASAPs PbP2s

Barman 11.0 30.0 72.9 2.0 100.0 100.0

BW 30.0 16.4 1.3 9.9 100.0 100.0

Depots 30.0 8.8 0.5 76.7 100.0 86.7

Gripper 30.0 24.7 11.0 18.3 100.0 100.0

Parking 3.6 8.0 455.3 172.8 16.7 26.7

Rovers 19.8 26.2 58.4 18.5 93.3 90.0

Satellite 22.9 30.0 71.1 28.3 96.7 100.0

Spanner 10.1 30.0 17.3 7.0 36.7 100.0

TPP 20.0 16.5 14.7 113.8 66.7 83.3

All 177.4 190.6 – – 78.9 87.0

Domain Quality IPC Mean Quality % Solved

ASAPq PbP2q ASAPq PbP2q ASAPq PbP2q

Barman 29.8 29.9 452.8 449.3 100.0 100.0

BW 29.9 25.7 231.5 269.9 100.0 100.0

Depots 30.0 19.2 118.1 163.8 100.0 86.7

Gripper 30.0 28.9 566.8 588.7 100.0 100.0

Parking 3.7 5.0 82.0 68.0 13.3 20.0

Rovers 27.4 27.3 693.9 708.4 100.0 100.0

Satellite 26.8 28.2 790.8 784.3 96.7 100.0

Spanner 30.0 30.0 326.0 326.0 100.0 100.0

TPP 29.5 13.4 343.3 370.1 100.0 50.0

All 237.1 207.6 – – 90.0 84.0

was trained on 30 problems, easier than the testing ones, that were generated by

using the problem generators provided by the organisers.

Table 7 shows performance in terms of time/quality IPC score, mean CPU time

(quality) and percentage of solved problems on benchmark problems of the selected

domains. The mean CPU time/quality are calculated on instances solved by both

the approaches. The mean on all the domains is not indicated because, given the

great variability of both CPU time and plan quality across the domains, it is not

informative. The results indicate that ASAP performs better than PbP2 in terms

of quality of the solution plans, but it achieves slightly worse results in terms of

runtimes. ASAPs is significantly faster than PbP2s in four of the selected domains.

In particular, ASAPs is significantly faster (more than 2 orders of magnitude) in

Depots, where the entanglements give a great speedup. We noticed that ASAPs is

significantly slower than PbP2s in Barman and Spanner. In these domains, as dis-

cussed in previous sections, our approach selected algorithms with good performance

on training problems, that are not confirmed on testing ones.

Given the fact that some planners (LPG, Metric-FF, Lama and SGPlan) that are

included in the ASAP system are also included in PbP2, it is interesting to analyse

the domains in which PbP2 selected as a member of the portfolio the planner selected

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 19

in the algorithm of ASAP. In Barman, both ASAPs and PbP2s are exploiting SGPlan,

but PbP2s was able to extract some macro-operators that improve the performance

of the planner in that domain. PbP2s configured a portfolio composed of only LPG

(without macros) in Rovers, Satellite and Spanner domains. In Rovers and Satellite,

ASAPs also selected an algorithm which included LPG, while in Spanner Mp was

preferred. In all of them PbP2s is faster than ASAPs. It should be noted that in

those domains PbP2s exploits a domain-specific configuration of the parameters of

LPG, obtained by [37], while ASAPs runs the default configuration of LPG. Since the

use of reformulated problems is useful for LPG in such domains (this can be derived

by comparing Tables 2, 3 and 4), and considering that PbP2s did not include macros

in the corresponding portfolios, we believe that the results achieved in Rovers and

Satellite are due to the speedup allowed by the tuned configuration of LPG. On

the other hand, in BlocksWorld, Depots and TPP ASAPs selected algorithms which

include Metric-FF and LPG, that are available in PbP2s but are not selected; in

these domains the performance improvement given by the entanglements is very

significant.

In terms of quality of the solution plans, ASAPq achieved better results in five

of the selected domains. In two domains, namely TPP and Depots, ASAPq has

significantly better results than PbP2q. We also noticed that, counterintuitively, in

Rovers, the macros are helpful for improving the quality of the solution plans.

The portfolios configured by PbP2q on the IPC-7 domains are usually composed

of either 2 or 3 different planners. It could happen that all the included planners

are useful, or that just a subset of them is actually exploited for finding solution

plans on testing problems; it is unclear what the real contribution of each planner

is to the portfolio. For this reason a comparison between the planners selected by

PbP2q and ASAPq is not possible. Only in the Spanner domain PbP2q exploits a

portfolio that is composed of a single planner, LPG, without macros. ASAPq selects

an algorithm which is composed of LPG and the original domain encoding, which

leads the systems to achieve exactly the same results. In the Barman, Depots,

Parking, Rovers, Satellite and TPP, the planner included in the algorithm selected

by ASAPq is present in the portfolio configured by PbP2q. Finally, in BlocksWorld

ASAPq is selecting Metric-FF, which is considered in PbP2q but not included in

the portfolio, and in Gripper our approach is selecting a planner, Mp, which is not

considered by PbP2q.

7. Discussion

As the results shown in the previous section indicated, an accurate selection of

a single algorithm allows ASAP to achieve better results than the portfolio-based

planning system PbP2 in terms of plan quality, and to be very close to PbP2 in

terms of CPU time. We believe that a domain-specific portfolio can be completely

exploited when the different planners can run in pure parallel, so when several cores

are available. In case a single core is available, using different planners together can

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

20 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

 1

 10

 100

 1000

 5 10 15 20 25 30

Satellite
Seconds

Selected
Oracle

Fig. 2. CPU time (log. scale) of the selected couple w.r.t. the Oracle on benchmark problems of

Satellite domain.

slow down the performance of the best one on the given domain.

The algorithms selected by ASAP have shown very good performance on testing

problems. As indicated by the results shown in Tables 3 and 4, there is very little

space for further improvements in terms of CPU time. However, in Matching-BW

and Satellite domains the selected algorithms still achieved the best results in total

in comparison to the others, but for some problems the results of the selected

couple were significantly worse. For instance, as depicted in Figure 2, we observed

that in Satellite domain about 40% of testing problems could be solved significantly

faster by a different algorithm 〈Macros, LPG〉 then the selected one 〈Outer, LPG〉. It

indicates that we need to somehow classify problems even within the same domain.

An initial idea assumes that each class of the problem has a different algorithm

assigned to it which provides the best results. In the learning stage, we can identify

which couple works best on a particular problem and hence we might determine

classes of problems (the number of classes is equal to the number of algorithms

which were best on at least one problem). However, it might happen that some

classes will be small (containing only a few problems) or very similar which may

prevent identification of their characteristic properties. Therefore, a reasonable way

for mitigating such an issue is in moving problems from ‘small’ classes to larger ones

where the corresponding couple is closest to the best. However, an efficient classifier

for planning problems has not been developed yet.

Interestingly, the need for classification seems to be restricted to runtime opti-

mization. By analysing the performance of algorithms, we observed that in terms

of plan quality, usually the couple that achieves the best result is finding the best

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 21

solution for all, or almost all, the testing problems. In the Matching-BW domain

the best algorithm is outperformed by a different one only on three problems out

of the 30 considered.

Regarding the exploitation of the knowledge extracted in the form of macro-

operators and entanglements, we noticed that Metric-FF and LPG are the ones that,

in terms of runtimes, exploited it more efficiently. Considering the results shown

in Table 2, in BlocksWorld, Depots, Gold-miner and Matching-BW, Metric-FF and

LPG are not the best planners; but while exploiting the additional knowledge, they

outperform the others, as shown in Tables 3 and 4. Also in terms of quality, the

impact of the additional knowledge extracted in the form of new encodings is sig-

nificant. This is surprising if we consider that macro-operators and entanglements

are designed especially for improving the performance of planners in terms of time

needed for finding a satisficing solution. A very interesting example of this behaviour

is given by Lama in the domain TPP, in which the exploitation of entanglements,

either Both or Outer, lets the planner improve its performance by more than the

60%; all the plans found by Lama and the original domain encoding have lower

quality.

The results also showed that using different encodings than the original one

usually improves the performance of the planners. This demonstrates the impor-

tance of reformulation techniques in planning, which was one of the goals of this

work, although a particular reformulation technique might not lead to performance

improvement in some domains and for some planners. Therefore, in our empirical

study we did not consider some of domains (e.g. nPuzzle), where no knowledge

could be extracted, so ASAP just selects the best planner for the original domain

encoding.

We are also aware of other possibilities of extracting domain knowledge. Besides

other techniques for extracting macros such as Macro-FF [4] and Wizard [27], an

interesting possibility is combining macros and entanglements. An ad-hoc approach

where macros and outer entanglements has been discussed in [9] and has shown

some promising results.

Finally, we notice that since the current learning phase of ASAP requires running

all the available algorithms, namely every planner for every encoding (35 in the

current version), the time spent for the learning phase could be high. In the worst

case, all the algorithms fail on all the training problems, it requires about 260 hours.

The empirical evaluation presented in Section 6.4, shows that for selecting the most

promising algorithm, in terms of runtime, usually a very small number of training

problems is needed, at least on the considered benchmark domains. On the other

hand, this is not true while optimising for plan quality. Results show in Table 6

confirms that the algorithm selection performed by ASAPq is more accurate when

based on the results collected across a larger number of training problems. Therefore,

it seems reasonable to use, while optimising plan quality, some sort of heuristic which

can prune unpromising couples before or at an early stage of the learning phase.

A simple approach may be based on an ‘incremental pruning’ strategy, i.e., solve

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

22 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

a part of the training problems with all the couples, after that remove the worst

ones and continue solving another part of the training problems with the remaining

couples, then prune the worst and so on. A more sophisticated approach could be

based on exploiting knowledge we have about planners and/or encodings.

8. Conclusion and Future Work

In this paper we have presented ASAP, an automatic algorithm selection approach

for planning. ASAP is based on the idea of extracting additional knowledge from a

domain, in the form of macro-operators and entanglements, combining such knowl-

edge with existing planning systems for generating new algorithms, and selecting

the most promising algorithm for solving problems from the given domain. ASAP

has two different versions: ASAPs which selects the most promising algorithm for

optimising runtimes, and ASAPq which optimises the quality of the solution plans.

An experimental analysis conducted on a total of 11 well-known benchmark

domains and that involved a large number of planning problems, has shown that

(i) the impact of the considered dimensions on the performances of the algorithms

is significant, (ii) the technique used for selecting the most promising algorithm

to exploit on testing problems is very accurate, (iii) ASAPs is competitive with the

state-of-the-art of learning-based planning systems, PbP2s, in terms of runtime, (iv)

ASAPq outperformed PbP2q in terms of quality of solution plans.

Future work includes further experimental analysis, in particular for understand-

ing if learning-based approaches exploiting domain-specific portfolios would always

be outperformed by accurate and efficient automatic algorithm selection based plan-

ners, while sharing the same planners and the same additional knowledge, on single

core machines. A specific experimental analysis is also needed for having a better

understanding of the impact of problems reformulation on the different planning

systems; a system for predicting this impact would lead to a great reduction of the

learning time needed for selecting the algorithm to use for a specific domain. More-

over, we are interested in combining the approach used for reformulating planning

problems with existing techniques for generating macro-operators (e.g., Wizard [27],

Macro-FF [4]). Another direction for further research is investigating the extraction

and exploitation of additional knowledge in the form of parameters configuration

of the domain independent highly parameterised included planners. Such optimisa-

tion, exploited also in PbP2 and ParLPG [16, 37], has shown to provide significant

performance improvements.

We noticed that the major limitation of ASAP is that, in its current version, it

is heavily dependent on Metric-FF. The solutions found by this planner on a small

set of training problems are analysed for extracting additional knowledge. It could

happens that Metric-FF is not able to solve any non-trivial training problem. To

avoid this situation, we are planning to extend the techniques used for extracting

macro-operators [8] and entanglements [6] in order to exploit plans produced by

different planners. This could also lead to the derivation of more specific additional

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 23

knowledge that, potentially, could further increase planner performance.

Finally, we are considering including different algorithm selection techniques in

ASAP. The current one is mainly based on IPC score, which considers performance

and number of solved problems together. The exploitation of more sophisticated

score systems could improve the selection accuracy. Alternative selection techniques

could be based, for instance, on the well-known PAR10 score, or on statistical

analysis. Moreover, the problem of selecting the best couple can also be seen as

an automatic configuration problem, by adding to existing planners a parameter

for selecting the encoding of a domain. In this way we can reuse the well-known

techniques of algorithm configuration (e.g., [21, 22]) for finding a good domain-

specific configuration, which also considers the encoding.

Acknowledgments

The authors would like to acknowledge the use of the University of Huddersfield

Queensgate Grid in carrying out this work.

References

1. A. Biere, P{re,ic}oSAT@SC’09 In SAT Competition, 2009.
2. A. L. Blum and M. L. Furst, “Fast Planning Through Planning Graph Analysis”,

Artificial Intelligence, 90:281–300, 1997.
3. B. Bonet and H. Geffner, “Planning as heuristic search”, Artificial Intelligence 129:5–

33, 2001.
4. A. Botea, M. Enzenberger, M. Müller and J. Schaeffer, “Macro-FF: Improving AI plan-

ning with automatically learned macro-operators”, Journal of Artificial Intelligence Re-
search (JAIR) 24:581–621, 2005.

5. Y. Chen, B. W. Wah and C. W. Hsu, “Temporal planning using subgoal partitioning
and resolution in SGPlan”, Journal of Artificial Intelligence Research (JAIR) 26:323–
369, 2006.

6. L. Chrpa and T. L. McCluskey, “On exploiting structures of classical planning problems:
Generalizing entanglements”, In Proc. of the 20th European Conference on Artificial
Intelligence (ECAI), 240–245, 2012.

7. L. Chrpa and R. Barták, ‘Reformulating planning problems by eliminating unpromising
actions’, in Proceedings of SARA 2009, pp. 50–57, (2009).

8. L. Chrpa, “Generation of macro-operators via investigation of action dependencies in
plans”, Knowledge Engineering Review 25(3):281–297, 2010.

9. L. Chrpa, “Combining learning techniques for classical planning: Macro-operators and
entanglements”, In Proceedings of ICTAI, volume 2, 79–86, 2010.

10. A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. Linares, S. Sanner and S. Yoon, “A
survey of the seventh international planning competition”, AI Magazine 33:83–88, 2012.

11. M. T. Cox, “Metacognition in computation: A selected research review”, Artificial
Intelligence. 169 (2), 104-141. 2005

12. A. Fern, R. Khardon and P. Tadepalli, “The first learning track of the international
planning competition”, Machine Learning 84:81–107, 2011.

13. E. Fink, “Changes of Problem Representation: Theory and Experiments”, Springer,
2002.

14. A. Gerevini, A. Saetti and I. Serina, “Planning through stochastic local search and

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

24 Mauro Vallati, Lukáš Chrpa, Diane Kitchin

temporal action graphs”, Journal of Artificial Intelligence Research (JAIR) 20:239–290,
2003.

15. A. Gerevini, A. Saetti and M. Vallati, “An automatically configurable portfolio-based
planner with macro-actions: PbP”, In Proc. of the 19th International Conference on
Automated Planning and Scheduling (ICAPS), 19–23, 2009.

16. A. Gerevini, A. Saetti and M. Vallati, “PbP2: Automatic configuration of a portfolio-
based multiplanner”, In Booklet of the 7th International Planning Competition. 2011.

17. M. Helmert, “The Fast Downward planning system”, Journal of Artificial Intelligence
Research (JAIR) 26:191–246, 2006.

18. J. Hoffmann, “The Metric-FF planning system: Translating “ignoring delete lists” to
numeric state variables”, Journal of Artificial Intelligence Research (JAIR) 20:291–341,
2003.

19. J. Hoffmann and B. Nebel, “The FF planning system: Fast Plan Generation Through
Heuristic Search”, Journal of Artificial Intelligence Research (JAIR) 14:253–302, 2001.

20. A. Howe, E. Dahlman, C. Hansen, A. vonMayrhauser and M. Scheetz, “Exploiting
competitive planner performance”, In Proc. of the 5th European Conference on Planning
(ECP), 62–72, 1999.

21. F. Hutter, H.H. Hoos, K. Leyton-Brown, “Sequential Model-Based Optimization for
General Algorithm Configuration”, In Proceedings of the conference on Learning and
Intelligent OptimizatioN (LION 5), 507–523, 2011.

22. F. Hutter, H.H. Hoos, K. Leyton-Brown and T. Stützle, “ParamILS: An automatic
algorithm configuration framework”, Journal of Artificial Intelligence Research (JAIR)
36:267–306, 2009.

23. H. Kautz, B. Selman and J. Hoffmann, “SatPlan: Planning as satisfiability”, In Ab-
stract Booklet of the 5th International Planning Competition, 2006.

24. M. G. Lagoudakis, M. L. Littman and R. Parr, “Selecting the right algorithm”, In
Proceedings of the 2001 AAAI Fall Symposium Series: Using Uncertainty within Com-
putation, AAAI Press, Menlo Park, CA, 2001.

25. N. Lipovetzky and H. Geffner, “Searching for plans with carefully designed probes”,
In Proc. of the 21st International Conference on Automated Planning and Scheduling
(ICAPS), 2011.

26. S. Minton, “Quantitative Results Concerning the Utility of Explanation-Based Learn-
ing”, In Proc. of the 7th National Conference on Artificial Intelligence (AAAI), 564–569,
1988.

27. M. A. H. Newton, J. Levine, M. Fox and D. Long, “Learning macro-actions for ar-
bitrary planners and domains”, In Proc. of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 256–263, 2007.

28. J.R. Rice, “The algorithm selection problem”, Advances in Computers 15:65118. 1976
29. S. Richter and M. Westphal, “The LAMA planner: Guiding cost-based anytime plan-

ning with landmarks”, Journal of Artificial Intelligence Research (JAIR) 39:127–177,
2010.

30. S. Richter, M. Westphal and M. Helmert, “Lama 2008 and 2011”, In Booklet of the
7th International Planning Competition, 2011.

31. J. Rintanen, “Engineering efficient planners with SAT”, In Proc. of the 20th European
Conference on Artificial Intelligence (ECAI), 684–689, 2012.

32. M. Roberts and A. Howe, “Learned models of performance for many planners”, In
Proc. of the ICAPS-07 Workshop of AI Planning and Learning (PAL), 2007.

33. M. Roberts and A. Howe, “Learning from planner performance”, Artificial Intelligence
173(56):536–561, 2009.

34. A. Sideris and Y. Dimopoulos, 2010. Constraint Propagation in Propositional Plan-

November 25, 2014 14:36 WSPC/INSTRUCTION FILE VCK

An Automatic Algorithm Selection Approach for Planning 25

ning. In Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS-10).

35. J. Seipp, M. Braun, J. Garimort and M. Helmert, “Learning portfolios of automatically
tuned planners”, In Proc. of the 22nd International Conference on Automated Planning
and Scheduling (ICAPS), 2012.

36. K. Talamadupula, J. Benton, P. W. Schermerhorn, S. Kambhampati and M. Scheutz,
“Integrating a Closed World Planner with an Open World Robot: A Case Study.” In pro-
ceeding of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010),
Atlanta, Georgia. 2010.

37. M. Vallati, C. Fawcett, A. Gerevini, H. Hoos and A. Saetti, “Automatic Generation
of Efficient Domain-Specific Planners from Generic Parametrized Planners”, In Proc. of
the Sixth Annual Symposium on Combinatorial Search (SoCS), 2013.

38. M.M. Veloso, and P. Stone, “FLECS: Planning with a Flexible Commitment Strategy.”
Journal of Artificial Intelligence Research, 3:25-52. 1995.

