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Abstract 

 

This article presents a fixed-mesh approach to model convective-diffusive particle deposition onto 

surfaces. The deposition occurring at the depositing front is modeled as a first order reaction. The 

evolving depositing front is captured implicitly using the level-set method. Within the level-set 

formulation, the particle consumed during the deposition process is accounted for via a volumetric 

sink term in the species conservation equation for the particles. Fluid flow is modeled using the 

incompressible Navier-Stokes equations. The presented approach is implemented within the 

framework of a finite volume method. Validations are made against solutions of the total 

concentration approach for one- and two-dimensional depositions with and without convective 

effect. The presented approach is then employed to investigate deposition on single- and multi-tube 

arrays in a cross-flow configuration.  

 

Keywords: level-set, deposition, first order reaction 

 

1 Introduction 

 

The phenomena of deposition, either benign or malign, are encountered in many engineering 

applications. Examples include but are not limited to thin film production in semiconductor wafer 

manufacturing, coatings for various surface-finishing purposes and fouling in heat exchangers and 

pipelines. For deposition to be enhanced, controlled or prevented, an in-depth understanding of 

deposition process is important. Such an understanding can be derived experimentally. For example, 

detailed physical insights on deposition of asphaltene particles in capillary tubes are obtained from 

lab-scale experimental investigations via quantification of the growing asphaltene deposit layer [1, 

2]. However, for deposition processes involving small time and length scales, e.g. in thin film 

production and perhaps coatings, expansive high-resolution equipments are required to provide data 

with the time and length scales convincingly resolved. For fouling, the time scale can be large. 

Therefore, scaled experimental investigations are time consuming. Occasionally, extreme 

conditions, e.g. high pressure environment, and hazardous chemical materials are encountered. 

Experimental interrogations, if possible, then demand extreme cautiousness. In view of this, 

theoretical investigations, in particular numerical simulations, play an essential complementary role 

in understanding various deposition processes. It provides useful detailed insights and the ability to 

predict these processes. 

 

Central to all deposition processes is the dynamics of the evolving depositing front. Successful 

simulations of deposition processes require an accurate prediction of the moving depositing front. 

Based on the way the depositing front is handled, methods for predicting the movement of the 

depositing front can generally be categorized into two categories. These are the front-tracking and 

the front-capturing methods.  

 

The movement of the depositing front is tracked explicitly in front-tracking methods. For example 

in the moving mesh method [3, 4], the boundary of the mesh is used to represent the depositing 

front. The mesh deforms during the deposition process so that the boundary of the mesh always 

coincides with the moving depositing front. This approach offers superior accuracy both for the 

location of the depositing front and imposition of related boundary conditions. However, when the 

deformation of the mesh is large, remeshing is required to maintain numerical stability. Remeshing 

is not straight forward in the presence of topological changes. Extension of a moving mesh 

approach to three-dimensional problems is complicated and often difficult to implement 

numerically. 

 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 

 

3 

 

In front-capturing methods, the depositing front is no longer explicitly tracked but implicitly 

captured via an indicator function. As there is no explicit tracking required, a fixed-mesh can 

readily be used. Front-capturing methods include but are not limited to the total concentration 

approach, the VOF method and the level-set method. The total concentration approach [5, 6] was 

initially developed in the spirit of the enthalpy method [7, 8] for etching problems. The reacted 

concentration of the etchant, analogous to the latent heat content in the enthalpy method, captures 

the etch front implicitly. Recently, the total concentration approach was adapted to model 

deposition process via a new definition of the total concentration [9]. In this approach, the 

depositing front is captured implicitly by the concentration of the deposit. The approach was 

demonstrated for deposition problems in one- and two-dimensions.  

 

The VOF method [10] is often used to capture the interface between two immiscible fluids. In the 

work of [11, 12], the VOF method has been adapted to modeling deposition processes employed in 

semiconductor wafer manufacturing. The VOF method captures the depositing front implicitly via 

convection of the volume fraction of the reference phase by an underlying velocity field. During the 

calculation procedure, the depositing front must be reconstructed. This is one of the challenging 

aspects of employing the VOF method; particularly in three-dimensional problems.  

 

In the level-set method [13], the deposition front is captured by the level-set function. Convection 

of the level-set function by the velocity of the depositing front captures implicitly the motion of the 

depositing front. Early attempts of applying the level-set method for deposition process were made 

for applications in the semiconductor industries [14-16]. In these pioneering works, if desired both 

deposition and etching can be accounted for within a unified framework. Demonstrations were 

made for cases where velocity of the depositing front is given in various explicit forms. The level-

set method has the inherit advantages of automatic handling of topological changes and the ease of 

extension to three-dimensional problems.  

 

Depending on the deposition process, there can be more than one type of particles involved. The 

term “particles” is used loosely in this article to refer to solid particles, ionic species or other to-be-

deposited materials. For example, in modeling deposition of asphaltene onto the walls of petroleum 

wells or pipelines, only asphaltene particles, though of various sizes, need to be accounted for 

[17,18]. However, two types of particles, i.e. accelerator and cupric particles, are considered in a 

typical electrodeposition [19]. This is a more sophisticated deposition process where the accelerator 

particles, the cupric particles and the applied electric current interact to produce the copper deposit 

layer. 

 

The particles involved in a deposition process can be transported onto the substrate surfaces via 

very different mechanisms. For example, charged particles can be accelerated by an applied electric 

field onto a substrate surface in a near vacuum environment. This type of particle transport is in the 

ballistic regime [20]. On the other hand, convective-diffusive particle transport occurs when the 

particles is carried by a flowing fluid. Deposition problems involving diffusive particle transport 

were considered in the works of [19, 21-23] within the framework of a level-set method. The 

diffusion equation describing particle transport must then be solved for the distribution of the 

particle concentration. The velocity of the depositing front is then derived from the particle 

concentration. In the work of [23], the level-set method is coupled with the immersed interface 

method to obtain a more accurate solution of the diffusion equation. More general deposition 

problems require a consideration of convective-diffusive particle transport [24,25]. Other than the 

above Eulerian approach, Lagrangian approach for particle transport is also pursued. Generally, the 

trajectories of a large number of discrete particles are computed with each individual particle treated 

separately [26]. It requires a large number of particles to establish statistically meaningful results. 
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For small scale problem, a non-continuum treatment of particle transport, e.g. the molecular 

dynamic approach [1], is sometimes more desirable. 

 

The deposition process occurring at the depositing front can either be of a physical or chemical 

origin. For example in a physical vapor deposition process, gas particles solidify on surfaces to 

form the deposit layer [27]. In a chemical vapor deposition process, gas particles react or 

decompose on surfaces to produce the deposit layer [28]. The deposition flux at the deposition front 

has to be modeled based on these mechanisms. Varied though the types of mechanisms, the 

condition at the depositing front frequently appears in the form of a generalized third type of 

boundary condition. Examples include asphaltene particle deposition (modeled as first order 

reaction) [17], SiO2 deposition [21] and copper electrodeposition [19, 23, 24]. Therefore, from a 

modeling point of view, the simplest first order reaction would be sufficiently representative of a 

general deposition process. It is worth pointing out that this boundary condition is incorporated as 

an additional volumetric particle sink localized at the depositing front [19, 24]. With this, the 

implementation of the boundary condition explicitly on a moving front is circumvented. To model 

particle deposition in Lagrangian particle transport approach, the concept of critical size and 

sticking probability [29] are often employed with where particles are probabilistically assumed 

deposited once their distance from the wall is less than the critical length. There are of course 

empirical models for specific type of particle deposition processes [30]. Applications of these 

empirical models need appropriate adaptation. 

 

Interestingly and to the best knowledge of the authors, deposition process of a single species of 

particles modeled as a first order reaction under the framework of a level-set method has not been 

investigated. The present article intends to fill in this gap. This article presents a level-set method 

for deposition of a single species of particle onto surfaces. The deposition occurring at the 

depositing front is modeled as a first order reaction. The particles are driven by convective-diffusive 

transport. The results obtained serve to understand the more complicated deposition processes.  

 

The remaining of the article is divided into five sections. The deposition problem is described in 

Section 2. This problem is then formulated within the framework of the level-set method in Section 

3. The solution procedure is given in Section 4. In Section 5, validations and results are presented 

and discussed. Finally, a few concluding remarks are given. 

 

 

2 Problem Descriptions  

 

 
Figure 1: Domain of interest for deposition. 

 

Figure 1 shows a schematic of the domain of interest  . It consists of a fluid region   and a 

deposit region  , i.e.    tt   . These two regions are separated by the depositing front 

 t . Within the fluid region, there exists a suspension of solid particles. These particles gradually 

deposit onto the depositing front. As a result of the deposition, the depositing front evolves with a 

velocity of iu


 and the deposit region grows.  

 

 deposit –(t)         

 fluid +(t)    

 (t)    in̂  
iu

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3 Mathematical Formulation 

 

3.1 Capturing the Depositing Front 

The depositing front is embedded into a level-set function [13], mathematically defined as   

 

 

 























tx

tx

tx

d

d







 if

 if

 if

,

,0

,

  (1) 

where d  is the shortest distance from the depositing front. Under such a representation, the 

depositing front is given by 0 . Convection of the level-set function under an appropriate 

velocity field captures implicitly the movement of the depositing front. This appropriate velocity 

field extiu ,


 is derived from iu


 (which is only available at the depositing front) by extending it off 

the depositing front with the following property maintained.  

 txuu iexti 


,,  (2) 

The extension can be constructed in such a way that extiu ,


 is constant along the curve normal to the 

depositing front. This can be easily achieved using the approach suggested by [31] as  

  



xnS

t


,0ˆ 


 (3) 

where   can be any component of extiu ,


. In Eq. (3), the unit normal vector n̂  and the signum 

function  S  are given respectively by 








n̂  (4a) 

 

0 if

0 if

0 if

,1

,0

,1



























S  (4b) 

With extiu ,


 properly constructed, the movement of the depositing front can then be captured as 





xu

t
exti


,0, 


 (5) 

To maintain   as a distance function, i.e. 1 , after the convection of   via Eq. (5),   is set to 

the steady-state solution of Eqs. (6) [32]. 

   



xsign

t


,01


 (6a) 

where t is a pseudo time for   and  sign  is given by [33] as 

  
 222 x

sign








  (6b) 

and is subjected to the following initial condition. 

   xx


  0,   (6c) 

 

3.2 Particle Transport 
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Figure 2: Deposition of particles onto  t  in the control volume V .   

 

The deposition process is modeled as a first order reaction with the deposition flux expressed as 

 txnCkuq iDiD 


,ˆ  (7) 

where D , Dk , C  and in̂  are the density of the deposit, the deposition reaction rate, the particle 

concentration and unit normal vector pointing into the fluid region respectively. If the deposition 

process is instead modeled as a higher order reaction, Eq. (7) needs to be modified. However, the 

formulation outlined below can account for a higher order reaction easily by including some minor 

modifications. Rearrangement of Eq. (7) gives the velocity of the depositing front as 

 tx
nCk

u
D

iD
i 


,

ˆ


 (8) 

Within the control volume (CV) V  (Fig. 2), the rate of particle consumed during the deposition 

process at the depositing front can be evaluated as 

 

 

 
 

 

 




























V D

h

t Dh

t iiD

t iC

dVCk

dCdSk

dSnnCk

dSnqS




0

lim
0

ˆˆ

ˆ


 (9) 

where the Dirac delta function is defined as 

 
  






 


otherwise

20 if

,0

,
2

/cos1 



  (10) 

Note that Eq. (9) has been converted from a surface integral into a volume integral. Since there is no 

particle within the deposit region, the distribution of    used in the conversion has been shifted 

towards the fluid region following the approach of [34]. With this conversion, Eq. (9) can be 

employed to model the deposition process occurring at the depositing front via a localized 

volumetric particle sink concentrated around  t  in the conservation equation governing the 

particle transport within the domain  . This conservation equation can then be written as 

      



xkCCDCu

t

C 
,  (11) 

where u


 and D  are velocity of the fluid and diffusion coefficient respectively. The diffusion 

coefficient D  can be expressed conveniently using   as  

 









0 if

0 if

,

,0






D
D  (12) 

The last term in Eq. (11), derived in the spirit of Eq. (9), accounts for the particle consumed during 

the deposition process. In the solution of Eq. (11), the following initial and boundary conditions 

apply. 

Initial Condition 

 fluid  

+(t) 

 (t)      

   

dSniˆ  

h  

deposit 

–(t) 

 V 
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 
 









0 if

0 if

,

,0
0,





xC
xC

o



 (13a) 

Boundary conditions 

   xCtxC B


, , 1x


 and 0t  (13b) 

   xFntxCD B


 ˆ, , 2x


 and 0t  (13c) 

where 21   and  21 . 

 

During the movement of the depositing front via the convection of   through Eq. (5), some of the 

particles in the immediate adjacence of the depositing front are trapped in the deposit region. If left 

untreated, the amount of trapped particles in the growing deposit region increases with time. To 

alleviate this problem, the trapped particles will be redistributed evenly to all other CVs of the fluid 

region. At the end of each time step, the amount of trapped particles is calculated as  

  


 VHCCtrapped 1  (14a) 

where the Heaviside function  H  is defined as 

 












































 if

 if

 if

,1

,sin
2

1

2

,0

H  (14b) 

Then, for all the CVs of the fluid region, the following correction is made to C  such that 

 





VH

C
CC

trapped


 (14c) 

To complete the procedure, the concentration of the particles C  for all the CVs in the deposit 

region is set to 0C . 

 

3.3 Fluid Transport 

 

The particles can be carried by a flowing fluid. To model the convection effect, the incompressible 

forms of the continuity and the Navier-Stokes equations are employed for the whole domain  .  

 xu


,0  (15) 

 
     




xuupuu

t

u T 


,


 (16) 

where   and   are the fluid density and viscosity respectively. The deposit is modeled as an 

extremely viscous fluid, i.e. a solid. This is easily achievable in the present formulation with the 

following definition of the viscosity. 

 









0 if

0 if

,

,






  (17) 

For the velocity, the boundary condition can be a combination of (1) inlet velocity, (2) outflow 

boundary and (3) no slip. 

 

 

4 Numerical Method 

 

The conservation equations (Eqs. 11, 15 and 16) can be written in the form of a generic transient 

convection-diffusion equation. This generic equation is solved using the finite volume method [35, 

36] on a staggered mesh arrangement. Scalar variables are defined at the node of the CVs. The 
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staggered velocity components are defined at the surface of the CVs. The combined convection-

diffusion effect is modeled using the Power Law. A fully implicit scheme is used for time 

integration. The velocity-pressure coupling of the Navier-Stokes equations is handled with the 

SIMPLER algorithm. 

 

To capture the evolving depositing front accurately, the level-set method requires higher order 

numerical schemes. The evolution of the level-set function (Eq. 5) and its redistancing (Eq. 6) are 

spatially discretized with WENO5 [37] and integrated using TVD-RK2 [38]. These schemes are 

computationally intensive. To reduce the computational effort, the level-set method is implemented 

in a narrow-band procedure [33] where the level-set function is solved only within a band of certain 

thickness from the interface. This reduces one order of computational effort. 

 

4.1 Solution Algorithm 

 

The overall solution procedure for the presented method can be summarized as follows: 

(1) Specify the initial conditions (i.e. 0t ) of  u


, p ,   and C .  

(2) Advance the time step to tt  . 

(3) Solve Eqs. (15) and (16) for 
tt

u



 and 

tt
p


. 

(4) Solve Eq. (11) for 
tt

C


. 

(5) Calculate 
ttiu




 from Eq. (8) and then 

ttextiu
,


 from Eqs. (3) and (4). 

(6) Solve Eq. (5) for 
tt 

  and perform redistancing using Eq. (6). 

(7) Repeat steps (3) to (6) until the solution converges. 

(8) Perform particle redistribution via Eq. (14). 

(9) Repeat steps (2) to (8) for all time steps. 

 

 

5 Results and Discussions 

 

For the ease of discussions, the following dimensionless parameters are used in the remainder of the 

article. These are the dimensionless particle concentration, Peclet, Damkohler and Reynolds 

numbers defined respectively as 

D

o
o

C
C


*  (18) 

D

Lu
Pe o  (19) 

D

Lk
Da D

D   (20) 



 LuoRe  (21) 

where L  and ou  are the characteristic length and velocity respectively. The dimensionless time, 

coordinates and concentration are given respectively by 

L

tu
t o*  (22) 

L

x
x *  (23a) 
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L

y
y *  (23b) 

D

C
C


*  (24) 

In the case when there is no fluid flow, the characteristic velocity is redefined as LDuo /  and 

therefore the Peclet number reduces to 1Pe . 

 

5.1 Validations 

 

5.1.1 Deposition in a One-Dimensional Semi-Infinite Domain 

 

Figure 3a shows a schematic of a deposition process in a one-dimensional semi-infinite domain. At 

0* t , the particle concentration in the fluid region is uniformly set to *
oC  and the depositing front 

is located at 0* x . As there is not fluid flow involved, diffusion is the sole mechanism of 

transporting the particles. During the deposition process, particles are deposited onto the depositing 

front resulting in the movement of the depositing front. For a given 0* t , the depositing front is 

located at ** x  after an additional deposit layer of thickness *  formed on the existing 

depositing front. Since particles are consumed in the process, the particle concentration decreases. 

The initial and boundary conditions correspond to this problem are 

Initial condition: 
**
oCC   for  *0 x  (25a) 

Boundary conditions: 

0
*






x

C
 for 0* x  (25b) 

**
 CC  for *x  (25c) 

 

Figure 3b shows the effect of DDa  on the thickness of the deposit layer. For these cases, the initial 

particle concentration is set to 5.0* oC . Although not shown here, these are grid independent 

solutions. To enforce the boundary condition of Eq. (25c), solutions were obtained for 5* x  and 

10. These solutions are identical. Therefore, 5* x  is sufficient numerically to represent a semi-

infinite domain. Generally, *  grows faster with a larger DDa . Superimposed in the same figure 

are the solutions from [9] using the total concentration (TC) approach. The present solutions (LS) 

are in good agreement with those of [9]. 
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(a)  

 
(b) 

Figure 3: One-dimensional deposition, (a) domain of interest and (b) effect of DDa  with 5.0* C . 

 

 

5.1.2 Deposition in a Two-Dimensional Square Enclosure 

 

Figure 4a shows a two-dimensional square enclosure containing a uniform suspension of particles. 

Driven solely by diffusion, these particles deposit gradually on the four walls. Due to symmetry, the 

lower left quarter of the enclosure is modeled with the following initial and boundary conditions.  

Initial condition: 
**
oCC   for 10 *  x  and 10 *  y  (26a) 

Boundary conditions: 

0
*






x

C
 for 1 ,0* x  (26b) 

0
*






y

C
 for 1 ,0* y  (26c) 

For this validation exercise, 5.0* oC . Figures 4b and 4c show the solutions for the case of 

1DDa  and 10 respectively. The presented grid independent solution is obtained using a mesh of 

160160 CVs with 
3* 100.5 t . Superimposed onto these figures are the solutions obtained 

using the TC approach. The present predictions are in good agreement with those of the TC 

approach.  

(ii) 0* t  

*
  

in̂

Co 

fluid 

 deposit 

*x  

*
oC  

*C  (current 

concentration) 

(initial 
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During the deposition process, the particles in the regions near the corners of the enclosure are 

deposited to both the horizontal and vertical segments of the depositing front. More particles in 

these regions are consumed generally. Therefore, the concentration of the particle is generally lower 

in these regions. For the case of 1DDa , deposition is slow compared to diffusion. Diffusion is 

able to replenish the particles consumed at the depositing front near the corners of the enclosure. A 

more uniform particle distribution along the depositing front can then be achieved. As a result, the 

deposit layers on the walls grow more uniformly. However, for the case of 10DDa , deposition is 

much faster than diffusion. The particles consumed in the regions near the corners of the enclosure 

cannot be replenished in time by the sole mechanism of diffusion. The regions near the corners of 

the enclosure have comparatively much lower particle concentration. In fact the depositing front 

near the corners of the enclosure does not move much after the initial stage of the deposition 

process, forming a crevice-like feature near the corners of the enclosures.   
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(b) 

*
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(c) 

Figure 4: Deposition in a two-dimensional square enclosure with 5.0* oC , (a) domain of interest, 

(b) 1DDa  and (c) 10DDa . 

 

 

5.1.3 Deposition in Two-Dimensional Channel with Flowing Fluid 

 

A fluid carrying particles in the form of suspension flows into a two-dimensional channel as shown 

in Fig. 5a. The dimensionless length and height of the channel are 3 and 1 units. Initially, there is no 

deposit in the channel. As the fluid flows, the particles deposit onto the walls of the channel, 

forming deposit layers. Since the deposit is impermeable, it changes the flow field. The flow field 

and the concentration field are therefore coupled together. Making use of the symmetry of the 

problem, solution was computed only for the lower half of the domain. In the definition of Re  and 

Pe , the characteristic length and characteristic velocity are the height of the channel and the inlet 

velocity respectively. The following initial and boundary conditions apply. 

 

Initial conditions: 

0 *


u , 0* C  for 30 *  x  and 5.00 *  y  (27a) 

Boundary conditions: 

At the inlet ( 0* x ) 

1 * u , 0 * v , 
        otherwise,

5.025.0,

0

**
* 








yC

C o  (27b) 

At the outlet ( 3* x ) 

0
*

*






x

u
, 0 * v , 0

*

*






x

C
 (27c) 

At the wall ( 0* y ) 

0 *


u , 0
*

*






y

C
  (27d) 

At the symmetric plane ( 5.0* y ) 
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0
*

*






y

u
, 0* v , 0

*

*






y

C
 (27e) 

The evolution of the depositing front for the case of 1Re  , 1.0* oC  15Pe  and 10DDa  

predicted by the present approach is shown in Fig. 5b. This is the grid independent solution 

obtained on a mesh of 40240 CVs with 3* 105 t . This case was also investigated by [9]  

and the solution is superimposed. The two solutions agree well with each other. The dimensionless 

deposition flux (defined as )/(*
oDDD Ckqq   where Dq  is the amount of deposit formed over a 

unit area of the wall) along the channel at different time is shown in Fig. 5c. Generally, *
Dq  is much 

higher near the inlet as a result of a higher particle concentration. The deposit layer near the inlet 

grows faster and is therefore thickest. The concentration of the particle decreases downstream as 

particles are deposited along the flow. The thickness of the deposit layer then decreases along the 

channel.  
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(b)  
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(c) 

Figure 5: Deposition on the walls of a two-dimensional channel with flowing fluid, (a) domain of 

interest, (b) evolution of the depositing front and (c) dimensionless deposition flux for 1Re  , 

1.0* oC  15Pe  and 10DDa . 

 

5.2 Case Studies 

 

5.2.1 Cross-Flow Deposition on a Single-Tube Array 

 

 
Figure 6: Cross-flow deposition on a single-tube array. 

 

Figure 6 shows a cross-flow through a single-tube array. The flowing fluid carries a suspension of 

particles. These particles gradually deposit onto the surface of the tubes. Deposit layers form on the 

surface of the tubes. Given the symmetries of the problem, only the region within the dotted box 

needs to be modeled. This portion of the figure is enlarged. The tube located at  5.0,75.0  has a 

radius of 2.0R . The following initial and boundary conditions apply.  

Initial conditions: 

0 *


u , 0* C  for 5.10 *  x  and 5.00 *  y  (28a) 

Boundary conditions: 

At the inlet ( 0* x ) 

1 * u , 0 * v , 
**
oCC   (28b) 

At the outlet ( 5.1* x ) 

0
*

*






x

u
, 0 * v , 0

*

*






x

C
 (28c) 

At the lower and upper symmetric boundaries ( 5.0,0* y ) 
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0
*

*






y

u
, 0 * v , 0

*

*






y

C
 (28d) 

 

The evolution of the depositing front for the case of 1Re  , 1.0* oC , 15Pe  and 10DDa  is 

shown in Fig. 7. Shown in the first plot of Fig. 7 is the depositing front at 0* t , 2, 4, 6 and 8 

obtained from two different meshes, i.e. a mesh of 40120 CVs with 10.0* t  and a mesh of 

80240 CVs with 05.0* t . Examination of Fig. 7 clearly indicates that grid independent 

solution can be obtained on a mesh of 40120 CVs with 10.0* t . The evolution of both the 

depositing front and the corresponding flow field is sequentially shown in the remaining plots of 

Fig. 7. To avoid overcrowding the figure, not every velocity vector is plotted. Only one vector in 

every five in the x -direction and one in every two in the y -direction are plotted. The flowing fluid 

carries particles towards the frontal surface of the tube (inlet-facing). Given the rich particle 

concentration and a high reaction rate ( 10DDa ), most of these particles deposit onto the frontal 

surface of the tube. Some of the remaining particles of course are carried by flow downstream along 

the surface of the tube and deposit onto the rear surface of the tube (outlet-facing). With this, it is 

expected that a much thinner deposit layer formed at the rear surface of the tube. The deposit layer 

almost blocks the entire domain at 8* t . 

 

The evolution of the depositing front for a case of lower DDa  is shown in Fig. 8. For this particular 

case of 1DDa , although the particle concentration at the frontal surface of the tube is high, most 

of these particles do not deposit because of the low reaction rate. Instead, these particles will remain 

there or be carried by the flowing fluid downstream. In fact, the reaction rate is so slow that 

deposition is not much affected by the particle concentration. The deposition rate at the frontal and 

rear surfaces of the tube is almost identical. As a result, a deposit layer of almost uniform thickness 

formed around the tube.    

 

The effect of Pe  can be investigated via a comparison of Figs. 7 and 9. In Fig. 9, Pe  is lowered to 

5 but with 1Re  , 1.0* oC  and 10DDa  maintained. A lower Pe  suggests a stronger diffusion 

transport of the particles. After particles are consumed at the depositing front, the region near the 

depositing front would have a lower particle concentration. A concentration gradient is then 

established. A stronger diffusion drives more particles towards the depositing front to replenish the 

consumed particles. Consequently, the particle concentration at the depositing front is higher 

leading to a faster deposition process.  
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Figure 7: Deposition on single-tube array for the case of 1Re  , 1.0* oC , 15Pe  and 10DDa . 
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Figure 8: Deposition on single-tube array for the case of 1Re  , 1.0* oC , 15Pe  and 1DDa . 
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Figure 9: Deposition on single-tube array for the case of 1Re  , 1.0* oC , 5Pe  and 10DDa . 

 

5.2.2 Cross-Flow Deposition on a Multi-Tube Array 

 

 
Figure 10: Cross-flow deposition on a multi-tube array. 

 

A configuration similar to that of Fig. 6 but with a multi-tube array is considered. Depicted in Fig. 

10 is the new staggered tube arrangement. There are now three tubes in each row. The tubes are 

labeled sequentially from A (upstream) to F (downstream). Tubes A, B, C, D, E and F are located 

respectively at  5.0,5.0 ,  0,8.0 ,  5.0,1.1 ,  0,4.1 ,  5.0,7.1  and  0,0.2 . The radii of these tubes 

are identical, i.e. 2.0R . The initial and boundary conditions of Eq. (28) are enforced.  
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The first plot of Fig. 11 shows the grid independent test conducted for the case of 1Re  , 1.0* oC , 

15Pe  and 10DDa . Judging from this plot, a mesh of 40200 CVs with 10.0* t  is 

sufficient to fully resolve the features of the solution. The depositing front is depicted together with 

the corresponding flow field in the remaining plots of Fig. 11. Again, the velocity vectors are 

selectively plotted to avoid overcrowding the figure. For all tubes, a thicker deposit layer formed on 

the frontal surface is generally observed. Among these tubes, the thickest deposit layer forms on 

tube A. This is expected as tube A nearest to the inlet where the flowing fluid carries with it the 

highest possible particle concentration. As particles deposit on tubes located along the streamwise 

direction, the particle concentration generally decreases along the streamwise direction. When the 

flowing fluid reaches tube F, it has the lowest particle concentration. Therefore, the thinnest deposit 

layer forms on tube F.  

 

The Damkoler number DDa  is reduced to 1 for the case plotted in Fig. 12. For a smaller DDa , it is 

the reaction rate that control the deposition process. The particles do not deposit easily even if they 

are in contact with the depositing front. Most of these particles will remain there or be carried 

downstream. Therefore, the location of the tube becomes less important, although the thickness of 

the deposit layer formed on tubes upstream tended to be slightly thicker. On each tube, the thickness 

of the deposit is reasonably uniform. The case of a lower Pe  of 5 is shown in Fig. 13. For reasons 

explained in the preceding section, a stronger diffusion results in a faster deposition process. With 

most of the particles consumed in the deposition on the tubes upstream, the thickness of particle 

layer formed on both tubes E and F is extremely thin. 
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Figure 11: Deposition on multi-tube array for the case of 1Re  , 1.0* oC , 15Pe  and 10DDa . 

 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 

 

21 

 

 

Figure 12: Deposition on multi-tube array for the case of 1Re  , 1.0* oC , 15Pe  and 1DDa . 
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Figure 13: Deposition on multi-tube array for the case of 1Re  , 1.0* oC , 5Pe  and 10DDa . 

 

6 Conclusions 

 

The present article presents a level-set approach for modeling convective-diffusive particle 

deposition processes. Deposition occurring at the depositing front is modeled as a first order 

reaction. The particle consumed during the deposition process is incorporated as a volumetric sink 

term in the species conservation equation. Fluid flow is modeled using the incompressible Navier-

Stokes equations. The presented approach is implemented and validated against solutions of the 

total concentration approach. It was then used to investigate deposition on single- and multi-tube 

array in a cross-flow configuration.  
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Nomenclature 

C  particle concentration 
*C  dimensionless particle concentration 
*
oC  dimensionless initial particle concentration 

trappedC  amount of trapped particles in the deposit region 

d  normal distance from the interface 

dS  elemental surface area 

dV  elemental volume 

D  diffusion coefficient 

DDa  Damkoler number 

h  thickness of the CV in Fig. 2 

H  modified Heaviside function 

Dk  reaction rate for deposition 

L  characteristic length 

n̂  unit normal vector 

in̂  unit normal vector at the depositing front  

p  pressure 

Pe  Peclet number  

q


 deposition flux 

Dq  deposition flux per unit wall area 

ou  characteristic velocity 

u  velocity component in the x -direction 
*u  dimensionless velocity component in the *x -direction 

u


 fluid velocity 

iu


 velocity of the depositing front 

extiu ,


 velocity extended from iu


  

x


 position vector 

R  radius of tube 

Re  Reynolds number 

 sign  Sign function  

S  signum function 

CS  rate of particle consumed during deposition 

t  time 

t  pseudo-time 
*t  dimensionless time 
*x , 

*y  dimensionless Cartesian coordinate 

x , y  Cartesian coordinate 

v  velocity component in y -direction 

*v  dimensionless velocity component in 
*y -direction 

V  control volume 

 

  modified Dirac delta function  
*  dimensionless deposit thickness 

 ,  level-set function 
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  component of extiu ,


 

  viscosity of fluid 

  density of fluid  

D  density of the deposit 

  depositing front 

  domain of interest 

   fluid region 

  deposit region 
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Figure 11: Deposition on multi-tube array for the case of 1Re  , 1.0* oC , 15Pe  and 10DDa . 

Figure 12: Deposition on multi-tube array for the case of 1Re  , 1.0* oC , 15Pe  and 1DDa . 

Figure 13: Deposition on multi-tube array for the case of 1Re  , 1.0* oC , 5Pe  and 10DDa . 

 


