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Abstract: 

In many industrial applications where fretting damage is observed in the contact (e.g. rotor/blade, electrical 

contacts, assembly joint, axe/wheel, clutch) the external loadings or geometry design cannot be changed. 

Therefore, the surface preparation and finishing process become essential to control and reduce the damage 

caused by fretting. In this paper, the authors present the experimental study of the initial surface roughness and 

machining process influence on fretting conditions in both partial and full sliding regimes. Surfaces prepared by 

milling and smooth abrasive polishing processes have been analysed. The influence of roughness on sliding 

behaviour and analysis of friction have been reported. Also, the contact pressure influence and qualitative 

analysis of fretting wear scar have been presented. 

 

Keywords: Fretting map, Surface roughness, Sliding regime, Texturation. 

 

Nomenclature: 

δ - displacement (µm), 

δ
* - displacement amplitude (µm), 

δt - sliding transition displacement amplitude (µm), 

∆δ - incremental step of displacement amplitude (µm), 

P - normal force (N), 

Q - tangential force (N), 

Q* - tangential force amplitude (N), 

po - maximum Hertzian’s contact pressure (MPa), 

a – Hertzian’s contact radius (µm), 

N - number of fretting cycles, 

∆N - number of fretting cycles between the incremental steps of displacement, 

Sq - 3D surface root mean square (RMS) roughness (µm), 

Sa - 3D surface average roughness (µm), 

Sz - 3D surface peak-to-valley average maximum height (µm), 

St - 3D surface peak-to-valley maximum peak height (µm), 

µ - coefficient of friction Q*/P, 
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PS - partial slip (sliding condition regime), 

FS - full sliding (sliding condition regime), 

µt - coefficient of friction at the transition PS/FS, 

µstab - stabilised coefficient of friction in FS regime, 

σY(0.2%) - yeld stress (MPa), 

σUTS - ultimate tensile stress (MPa), 

E- elastic modulus (GPa), 

 

1 Introduction 

Fretting phenomenon is considered as a special damage process related to wear and cracking. Fretting occurs in 

the contact between two bodies subjected to the normal load and sliding induced by external cyclic forces or 

vibration. Depending on the relative displacement at the interface, Partial Slip or Full Sliding condition can be 

observed in the contact. In PS situation, the central zone of the contact, remains in stick condition, without the 

relative displacement and the external zone of contact is subjected to sliding (Fig. 1). In the FS condition, the 

entire area of contact is subjected to sliding (Fig. 1). Therefore, the fretting damage mode depends on sliding 

conditions, leading to cracking under PS and wear under FS condition [1]. Fretting is a dynamical process where 

sliding conditions and surface morphology of contacting materials can vary with time. In many industrial 

applications, it is not possible to control the fretting degradation process. Therefore, the initial design of such 

elements is the only way to prevent or to reduce the fretting phenomenon and surface damage. If it is not 

possible to modify the contact loading to reduce fretting degradation, the initial roughness could be optimised. 

Dulias et all. noted strong influence of surface roughness on sliding conditions [2]. However, relation between 

surface morphology and friction behaviour has been mainly studied in the mono-directional sliding [3] or in the 

FS conditions in order to evaluate the influence of roughness on wear behaviour [4]. In this paper, focus will be 

given on small amplitude, fretting sliding conditions. Under fretting and especially in the PS condition not much 

work has been published. Wong et all. [5] have reported influence of roughness on ceramics under mixed and 

hydrodynamic lubrication, a decreasing friction coefficient has been found for smoother surfaces. For aluminium 

alloy under dry fretting contact conditions Proudhon et all. [6] have noted influence of roughness where the 

rough surface tends to decrease the coefficient of friction at transition from PS to FS.  
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Fig. 1: Typical fretting damage observed under Partial Slip and Full Slip conditions [7]. 

 

To illustrate the transition between PS and FS the relationship between contact loading conditions (normal load, 

displacement amplitude, tangential load) and the sliding conditions (Partial Slip, Full Sliding) have to be 

considered. This relationship and observed damage phenomenon (cracking in PS and wear in FS) can be 

illustrated on the so-called Fretting Maps (FM). Firstly introduced by Vingsbo [8] the FM can present the 

running conditions (Running Conditions Fretting Map, RCFM, Fig. 2a) and material response (Material 

Response Fretting Map, MRFM, Fig. 2b). 
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Fig. 2 Fretting maps: a) RCFM, b) MRFM, (AISI 1034, cylinder/plane configuration, R=40mm, normalised by 

cylinder axial contact length, N/mm) [9]. 

 

In PS condition where displacement is limited to external zone of contact (Fig. 1) surface roughness can 

influence local sliding condition, and generate local plastic deformation at contacting surface peaks. This lead to 

change in sliding behaviour and can cause uncontrolled damage. Therefore, better understanding of the surface 

roughness influence on fretting sliding phenomenon have a great interest for practical applications. This paper 

present the experimental results of initial surface roughness influence on fretting sliding conditions, to illustrate 
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this relationship fretting map concept have been used. Reported fretting map curves, plotted for surfaces with 

different initial roughness, demonstrate their influence on friction behaviour. 

 

2 Experimental procedure 

Fretting tests have been curried out using classical sphere/plane configuration, where the radius of sphere was 

50 mm. Specific fretting device has been rigidly mounted on the universal fatigue machine [10]. Schematic 

diagram of fretting test equipment is presented in the Fig. 3. 
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Fig. 3: Schematic diagram of fretting test device in sphere/plane configuration. 

 

During the test, applied normal force P has been kept constant, sinusoidal displacement has been successively 

increased (see section 2.2). The normal force P, tangential force Q and relative displacement δ have been 

recorded. All experiments have been performed at displacement frequency of 20 Hz. Before the tests, all 

specimens have been cleaned in acetone and ethanol. Tests have been performed in ambient labolatory 

conditions at the temperature ~23ºC, and the relative humidity between 40 and 45%.  

 

2.1 Studied materials 

One of the industrial applications where fretting problem is occurring is contact between the axe and wheel of 

the train. In this application, the important plastic deformation have been observed due to fitting process. 

Authors inspired by this application, have selected similar low carbon alloy AISI 1034 for the plane material. In 

order to reduce the plastic deformation in the contact, the AISI 52100 material has been used for the sphere 
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counterbody. Chemical composition and the mechanical properties of the studied materials are listed in the Table 

1 and Table 2 respectively. 

 

Table 1: Chemical composition of tested materials. 

Materials  C Mn Cr Ni Ti Cu Si P S Mo V 

AISI 1034 

(plane) 

max 

(%) 
0.38 1.2 0.3 0.3 - 0.3 0.5 0.02 0.02 0.08 0.06 

5210 

(sphere) 

max 

(%) 
1.0 0.3 1.5 0.4 1.0 1.0 0.2 0.02 0.02 0.1 0.3 

 

Table 2: Mechanical properties of tested materials. 

Materials E (GPa) Poisson ratio ν σY(0.2%) (MPa) σUTS (MPa) 

AISI 1034 (plane) 200 0.3 350 600 

52100 (sphere) 210 0.3 1700 2000 

 

2.2 Incremental displacement method 

In PS condition, sliding displacement and dissipated in the interface energy (represented by hysteresis on graph 

Q=f(δ) so-called "fretting loop") are relatively low. Damage in the PS is usually limited to the external sliding 

zone of the contact. In FS condition, displacement amplitude and therefore energy dissipated at the contact are 

much higher. Sliding can be observed in all area of contact and high rate of wear damage occurs at interface. In 

order to prevent or reduce wear damage it is essential to know the sliding behaviour and transition between PS 

and FS (Fig. 4). 
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Fig. 4: Schematic diagram of transition between PS / FS and corresponding fretting loops. 

 

To analyse this contact sliding behaviour in PS and in FS conditions, the incremental displacement method [11] 

has been applied. This method consist in successive increase of displacement amplitude from very small in PS to 

large displacement in FS conditions. The test start at displacement amplitude of δ*=1 µm and after each 1000 of 
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cycles the amplitude is increased by ∆δ
*=0.2 µm. The graphical representation of test method is presented in Fig. 

5. The test duration is usually 200 000 cycles, hence the transition from PS to FS sliding conditions can be 

measured. Relevant parameters such as coefficient of friction (COF) at the transition PS/FS (µt), relative contact 

sliding δ*  (calculated from fretting loop, as amplitude of sliding at Q=0 N, see Fig. 4) and COF in FS conditions 

(µstab) have been calculated. Note that µstab correspond to the stabilized value of COF represented by the mean 

value of COF from the last 5000 of cycles, where µstab is expressed by: 






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
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Fig. 5: Illustration of incremental displacement test method. 

 

2.3 Surface morphologies 

Plane specimens have been machined into rectangular bars and the specific machining process has been applied 

on one of the surfaces in order to produce the morphologies with wide range of roughness values. After that, bars 

have been cut into small rectangular prisms (10x10x14 mm), hence, identical surface morphologies have been 

obtained on several specimens, moreover fretting traces are small and at least three tests can be curried out on 

the same specimen. 

Any machining process has two main purposes: first is to obtain required shape and second is to obtain the 

functional surface by finishing process. However, there are no simple rules relating the manufacturing process, 

surface topography and specific properties of assembled interfaces [12, 13]. In this study two different 

machining processes have been used, milling and abrasive polishing, in order to analyse wide range of surface 

roughness parameters such as Sa (surface average roughness), Sq (surface root mean square roughness), Sz 

(surface peak-to-valley average maximum height), St - (surface peak-to-valley maximum peak height) and Rmr 

(Relative material ratio of roughness profile). Manufactured surfaces present mono-directional, highly 

anisotropic textures orthogonally oriented to the sliding direction. Textured surfaces obtained by milling process 

are presented in Fig. 6. They have been machined with the same tool but with different machining parameters. 

Nevertheless, milling process can introduce residuals stress into the machined surface therefore, the plane 



Published in Tribology International 2010 Vol. 43, Issues 8 (2010) p. 1500-1507 http://dx.doi.org/10.1016/j.triboint.2010.02.010  

7 

specimens have been tempered in 250ºC during 2 hours, in order to reduce the subsurface stresses after the 

machining process. 
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Fig. 6: 3D morphology images of initial surface roughness on plane specimens, prepared by milling process. 

 

For smooth surfaces (Surf. 4-7) prepared by abrasive polishing process different grids of sand paper have been 

used, from 240 for rough (Surf.4) up to 4000 grid paper for mirror-polished surface (Surf.7). Morphologies of 

these surfaces are presented in Fig. 7. 
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Fig. 7: 3D morphology images of initial surface roughness on plane specimens, prepared by abrasive polishing. 

 

There are many different optical or tactile techniques, devoted to surface topography measurements. Suitable 

selection of these techniques depends mainly on horizontal (x,y) and vertical (z) resolution. Most tactile 

techniques are time-consuming [14]. In this study, the interferometric 3D profilometer (Veeco) has been used to 

measure and analyze the tested surfaces. Summary of surface machining processes and the most common surface 

roughness parameters is presented in Table 3. 
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Table 3: Parameters of initial surface roughness and machining processes. 

Plane 

Reference 
Surface Preparation Sa (µm) Sq (µm) Sz (µm) St (µm) 

Rmr (%) 

1 µm under the 

highest peak 

Surf. 1 milling-cutting 4.15 5.11 35.05 39.54 1.68 

Surf. 2 milling-cutting 4.15 5.10 30.76 32.6 2.87 

Surf. 3 milling-cutting 3.66 4.31 27.56 29.35 4.52 

Surf. 4 polishing-abrasion (240) 1.52 2.00 27.00 39.09 5.51 

Surf. 5 polishing-abrasion (800) 0.32 0.45 6.41 8.41 8.67 

Surf. 6 
polishing-abrasion 

(1200) 
0.28 0.40 5.78 6.52 88.9 

Surf. 7 
polishing-abrasion 

(4000) 
0.09 0.11 1.02 1.29 100 

 

3 Results and discussion 

In present paper the experimental analysis of surface roughness influence on Fretting Map (FM) has been 

performed. Seven different surface morphologies have been tested, three were prepared by milling (Surf.1-3) and 

four prepared by abrasive polishing process (Surf.4-7). Therefore analysed range of surface roughness value is 

from Sz=1 µm to Sz=35 µm. To illustrate the roughness influence by using FM several values of contact 

pressures have been analysed. The following maximum Hertzian’s contact pressure values have been selected 

po=500, 700, 900 and 1000 MPa where the initial Hertzian’s radius contacts were a=350, 490, 630 and 700 µm 

respectively. Application of such pressures results in local plastic deformation but only in the central part of the 

contact (Fig. 1, Fig. 12 and Fig. 13) on plane specimens. However, plastic deformation can be partially 

accumulated by the rough surface asperities, as it was explained in detail in the paper [15]. In PS plastically 

deformed central zone of contact remains in stick condition and have less influence on friction behaviour and 

fretting wear damage process. 

In order to optimize and to reduce the number of individual tests as well as to estimate the level of confidence of 

the reported results, the statistical approach of Design of Experiment (DOE) [16] has been applied. By using 

DOE the number of test needed for 4 pressures level and 7 surface morphologies can be reduced from 28 to 16, 

however for practical reasons additional repeated tests have been performed in order to estimate experimental 

incertitude limits which has been found to be at level of 8%. All 7 prepared surfaces have been tested for 

pressure level po=1000 MPa. 

 

3.1 Friction analysis 

The incremental displacement method used in the present study is an efficient way to provide complete overview 

of friction behaviour in the PS and FS conditions, through the single experimental test. As presented in Fig. 5, 

successively increased displacement amplitude permits to establish the transition between PS and FS conditions. 

For sphere/plane contact configuration, this transition corresponds to the maximum value of COF (µt) [17]. After 
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transition, all surface contact area is subjected to sliding. Wear process and creation of debris (third body) lead to 

decrease the COF in FS condition, until stabilized state (µstab). 

In the Fig. 8 the evolution of COF is plotted as a function of sliding distance amplitude. It can be noted that the 

initial surface roughness have strong influence on sliding behaviour and the COF at the transition (µt). For the 

smooth surface (Surf.7) the value of µt is 1.05 which is 25% higher then for the rough surface (Surf.1), where 

µt=0.75. Results of experimental analysis are listed in Table 4. The relevant surface roughness parameters, 

corresponding to tested surfaces can be found in Table 3. 
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Fig. 8: Identification of sliding transition parameters, depending on surface roughness from incremental 

displacement method tests. 

 

Table 4: Results of frictional and sliding parameters obtained by incremental displacement method (number of 

tests optimised by Design Of Experiment method). 

Test number 

Hertzian’s 

contact 

pressure 

[MPa] 

Specimen Reference δt [um] µt µstab. 

1 500 Surf. 1 milling-cutting 0.9 0.63 0.5 

2 500 Surf. 3 milling-cutting 0.7 0.65 0.49 

3 500 Surf. 4 polishing-abrasion (240) 0.4 0.703 0.52 

4 500 Surf. 7 polishing-abrasion (4000) 0.6 0.816 0.577 

5 700 Surf. 1 milling-cutting 1.2 0.71 0.66 

6 700 Surf. 3 milling-cutting 1.3 0.73 0.65 

7 700 Surf. 4 polishing-abrasion (240) 1.1 0.78 0.69 

8 700 Surf. 4 polishing-abrasion (240) 1.3 0.79 0.66 

9 700 Surf. 4 polishing-abrasion (240) 1.2 0.74 0.65 

10 700 Surf. 7 polishing-abrasion (4000) 1.3 0.76 0.71 

11 900 Surf. 1 milling-cutting 1.5 0.69 0.6 

12 900 Surf. 3 milling-cutting 1.9 0.79 0.62 

13 900 Surf. 4 polishing-abrasion (240) 2.7 0.77 0.71 
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14 900 Surf. 7 polishing-abrasion (4000) 2.8 0.91 0.74 

15 1000 Surf. 1 milling-cutting 2.4 0.75 0.73 

16 1000 Surf. 2 milling-cutting 3.0 0.81 0.79 

17 1000 Surf. 3 milling-cutting 2.9 0.82 0.81 

18 1000 Surf. 4 polishing-abrasion (240) 3.6 0.91 0.71 

19 1000 Surf. 5 polishing-abrasion (800) 3.7 0.90 0.73 

20 1000 Surf. 6 polishing-abrasion (1200) 3.4 0.89 0.75 

21 1000 Surf. 7 polishing-abrasion (4000) 5.2 1.05 0.77 

 

3.2 Influence of roughness on fretting sliding (Fretting Maps) 

Experimental analysis has been performed in the range of maximum Hertzian’s contact pressure (po=500 - 1000 

MPa), that allows to establish the Running Condition Fretting Map (Fig. 9) and two sliding regimes, PS and FS 

can be defined. It has been observed that amplitude of sliding distance at the transition between PS and FS is 

increasing with the normal load applied to contact. The significant influence of initial roughness on the transition 

can be noted for higher values of contact loading. For instance at contact pressure of po=1000 MPa, amplitude of 

sliding distance increases from 2.4 to 5.2 µm for Surf.1 and Surf.7 respectively. However, for lower contact 

loading the differences are much smaller, and for contact pressure of po=500 MPa the inverse situation can be 

observed, where the sliding amplitude at transition is bigger for rough surface (Surf. 1). To better understand this 

phenomenon additional investigation has to be performed in the range of lower contact loadings. 
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Fig. 9: Running Conditions Fretting Map (RCFM) for sphere/plane contact configuration and different initial 

surfaces roughness values. 

 

Analysis of initial roughness influence on friction behaviour has been presented in Fig. 10. The significant 

increase in COF at transition PS/FS can be observed for smoother surfaces prepared by abrasive polishing (Fig. 

10a). COF in the FS conditions remain quasi-constant within analyzed range of initial roughness (Sz=1 - 35 µm). 

This phenomenon can be explained by following hypothesis: in FS condition, entire area of contact is subjected 

to sliding and therefore to wear degradation process, which will affect the surface roughness and sliding 
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condition. Initial roughness will be changed or removed under FS condition, therefore initial roughness influence 

is limited to PS condition. 

Analysis of sliding amplitude at transition PS/FS (δ
*
t) demonstrate decrease of δ*

t as a function of initial 

roughness (Sz). In order to prevent or delay the transition PS/FS, smoother surface finishing is required. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
roughness parameter S z , µm

(surface peak-to-valley av. max. height)

u
t

ut

ustab

cuttingabrasion

polishing milling

0 10 20 30 40
roughness parameter S z , µm

(surface peak-to-valley av. max. height)

0

1

2

3

4

5

6

7

8

9

10

am
pl

itu
de

 o
f s

lid
in

g 
di

st
an

ce
 
δ
* 

,µ
m

 

δ*
t

cuttingabrasion

polishing milling

0 10 20 30 40
roughness parameter S z , µm

(surface peak-to-valley av. max. height)

0

1

2

3

4

5

6

7

8

9

10

am
pl

itu
de

 o
f s

lid
in

g 
di

st
an

ce
 
δ
* 

,µ
m

 

δ*
t

cuttingabrasion

polishing milling

a) b)
 

Fig. 10: Analysis of initial roughness influence Sz on a) COF (µt, µstab) , b) sliding amplitude at transition PS/FS 

(δ*
t), for sphere/plane configuration at Hertzian’s contact pressure po=1000 MPa. 

 

3.3 Influence of contact pressure 

Analysis of normal load influence has been curried out in the range of Hertzian’s pressure from po=500 to 

1000 MPa. From the analysis of roughness and contact pressure presented in Fig. 11, it can be noted that for 

smooth surfaces and higher contact pressure, higher values of COF at the transition (µt) can be observed. This 

phenomenon can be explained by the following hypothesis: for the specimen with smaller roughness (Surf.7), 

local area of the contact between sphere and plane specimens is bigger than for the specimen with higher 

roughness (Surf. 1). It is confirmed by analysis of relative material ratio curve that describes the percentage of 

material which is traversed by a cut at a certain level located with respect to the highest point on the profile 

(1 µm under highest peak). This approach is known as the Abbott-Firestone curve. For smooth surface (Surf. 6) 

relative material ratio of profile is Rmr=88.9 % while for rough profile (Surf. 1) Rmr=1.68 % (Table 3). During 

the test incrementally increasing amplitude of displacement provokes the transition from PS to FS, this transition 

corresponds to relative sliding and plastic deformation in the entire contact [18] as it has been pointed out 

previously. Therefore, during the transition between PS/FS, for specimens with small surface roughness (bigger 

local contact area) the value of the tangential force due to local plastic deformation, will be higher than for the 

specimens with high surface roughness, were the effective contact area is smaller (Fig. 11). 
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Fig. 11: Influence of initial roughness and contact pressure on friction behaviour (µt ,µstab). 

 

For all tested surfaces, increase of COF at the transition as well as in the FS conditions can be observed (Fig. 

11). The analyse of plastic deformation in the interface can help in understanding this tendency. The plasticity 

threshold for AISI 1034 alloy is σY(0.2%)=350 MPa, therefore for the studied pressures the plastic deformation 

takes place in the plane counter body. The extension of contact due to plastic deformation in the central zone of 

contact, tends to increase value of COF at the transition PS/FS (µt) and under FS condition (µstab) due to larger 

area of contact and therefore higher number of local peaks deformed during sliding. Once again it can be noted 

that the initial surface roughness value have strong influence on COF at the transition (µt) and especially for 

higher values of pressure (po=1000 MPa) where roughness increase COF at the transition PS/FS, µt (Fig. 11). 

 

3.4 Fretting wear scars analysis 

In incremental displacement method (section 2.2) number of cycles in PS is different for each test. Therefore, 

wear of material observed in FS condition is depending on the sliding history in PS regime. PS period will be 

longer if transition PS/FS is observed for larger value of sliding amplitude at transition. Number of cycles in FS 

is also different for each test, that is why the direct comparison and quantitative wear analysis are not possible. 

Hence, the wear analysis is limited to the qualitative description only. In Fig. 12 and Fig. 13 fretting wear scars 

and 3D morphologies are presented. High deformation of fretting wear scars and plastically displaced material 

can be observed in both cases. Under dry friction conditions, where value of COF is high, the amount of energy 

dissipated at the interface, is important. Analysis of the scar morphology indicates degradation of the surface by 

wear process in the central zone and plastic deformations in the external zone [18]. Scar morphologies have 

directional character conforming to fretting sliding direction.  
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Fig. 12: SEM observations and 3D morphology of wear scar at milled surface (Surf.2). 

 

On plane specimens, the central zone where the material has been removed due to wear process and the external 

zone where friction marks and plastic deformations can be observed are characterized by different surface 

roughness. For central zone Sa=2.7 µm and for external zone Sa=1.66 µm. It can be noted that in the central zone 

where the contact pressure is higher the wear rate is also higher and as a result U shape crater has been created in 

the plane specimen. From 3D morphology, wear volume and plastically deformed volume of material can be 

measured. The volume of plastically deformed external zone in case of rough surface (Surf.1), where the plastic 

deformation was the most important, is about 11% of the volume removed by wear. Hence, the dominant mode 

of degradation of the surface is the wear process and the plastic deformation in the contact plays the secondary 

role. On sphere specimens, observed fretting wear scars have been characterised by very low degradation in 

comparison with plane specimens. 

However, additional investigation curried out in FS regime only is needed to analyse roughness influence on 

wear rate observed under fretting condition. Also, the role of plasticity should be further investigated, for 

instance by an elasto-plastic Finit Elements Analysis. 

 

 



Published in Tribology International 2010 Vol. 43, Issues 8 (2010) p. 1500-1507 http://dx.doi.org/10.1016/j.triboint.2010.02.010  

14 

sliding direction

µm

19

-60

-82

-40

-20

0

 

Fig. 13: SEM observations and 3D morphology of wear scar at polished surface (Surf.7). 

 

Experimental results presented in this study attempt to establish the new approach to the fretting friction and 

sliding problems analysis. The authors attempt to demonstrate the influence of surface roughness and surface 

finishing process on friction behaviour under fretting conditions. Increase of coefficient of friction at the 

transition between partial slip and gross lip regime has been reported (Fig. 10a). 

 

4 Conclusions 

Significant influence of initial surface roughness on coefficient of friction (COF) at the transition between Partial 

Slip (PS) and Full Sliding (FS) has been reported. The selection of manufacturing process is essential for final 

application of assembled joints subjected to the fretting loading conditions. The following conclusions can be 

drawn from the presented experimental study: 

- The initial roughness and therefore topographical parameters, and machining process have a strong 

influence on the COF (µt) at the transition between PS and FS, for lower values of surface roughness 

increase of COF can be observed (Fig. 8 and Fig. 10a), 

- For all tested surface morphologies COF at the transition µt is higher than µstab, for the abrasive polished 

surfaces the differences are greater (Fig. 10a), 

- For the polished surfaces one can observe strong influence of initial surface roughness value on the (µt) 

while (µstab) remains quite stable (Fig. 10a), 

- Sliding amplitude δ*
t (Fig. 9), COF µt (Fig. 11a) and µstab (Fig. 11b) are increasing as a function of 

maximum Hertzian’s contact pressure, 

- The two zones of different degradation mode can be distinguished in contact area: central zone of wear 

damage and external zone of the friction and plastic deformation (Fig. 12 and Fig. 13). 
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