Evaluation of gellan gum fluid gels as modified release oral liquids

Mohammed H Mahdi, Barbara R Conway and Alan M Smith*

Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

*Correspondence:
Dr. Alan M Smith
Tel.: +44-1484-472-350
Fax.: +44-1484-472-350
a.m.smith@hud.ac.uk

For Submission to:
International Journal of Pharmaceutics
Abstract

Oral liquids are often preferred for drug administration to patients for whom swallowing is difficult, however formulating modified release versions can be challenging. A potential route to achieve modified release in oral liquids is by using fluid (sheared) gels formed by introducing a shear field during gelation in gel-forming biopolymers. These fluid gels can act as pourable viscoelastic fluids but retain true gel micro/nano structure. Here, we have demonstrated that fluid gels have potential as paediatric oral liquids preventing release of ibuprofen in simulated gastric fluid. Subsequent release at pH 7.4 was affected by the duration of exposure and magnitude of acid pH with a linear relationship between onset of release and the preceding acidic exposure duration. Delayed release was a result of increasing gel stiffness, a consequence of the acidity of the initial release media and exposure time. A much faster release rate was measured when exposure time in acid was 10 min compared with 60 min. This study highlights the potential to design fluid gels that are tuned to have a specified stiffness at a particular pH and exposure time. This could enable the preparation oral liquids with modified release behaviour.
1. Introduction

There is an ever increasing demand for the development of age appropriate dosage forms, especially for paediatric patients and older adults who have difficulties in swallowing. This is most apparent in modified release formulations where the functional excipients responsible for controlling drug release can become ineffective due to manipulation prior to administration to children. Even over the counter antipyretic formulations have an increased risk of side effects in children. Worryingly, there are very few oral modified-release drug delivery platforms suitable for administration to paediatrics. Generally, for children and patients who find swallowing is difficult, syrup-based oral liquids are the preferred dosage form however formulating these dosage forms to have modified release properties can be challenging. Recently researchers have looked to develop such dosage forms using enteric coated micro-particles (Dalmoro et al., 2010) and ion exchange resins (Cuña et al., 2000) however these systems are often costly, suffer from poor mouth feel and are only suitable for use with specific drugs. There is therefore a real need for alternative formulations. A potential route to achieve modified release in oral liquids is by using polysaccharide solutions which undergo a sol gel transition on exposure to stomach acid. Indeed several authors have evaluated the oral sustained delivery of drugs such as theophylline, ambroxol, paracetamol and cimetidine in various in situ gelling polysaccharides which have included xyloglucan (Miyazaki et al., 2003; Itoh et al., 2008; Itoh et al., 2010), pectin (Itoh et al., 2008; Kubo et al., 2004; Miyazaki et al., 2005; Kubo et al., 2005), and sodium alginate (Itoh et al., 2010; Kubo et al., 2003). Although these systems have shown some promise as vehicles there are issues associated with their use such as leaching of water soluble drugs and lengthy gastric retention due to large bulk gel formation in situ (Kubo et al., 2003). These issues could potentially be overcome by using fluid gels.

Fluid gels (also referred to as sheared gels) can be defined as suspensions of gel particles prepared by introducing a shear field while gelation is occurring in biopolymer solutions. These fluid gels can be formulated so the bulk material acts as a pourable viscoelastic fluid whilst retaining a cross-
linked gel microstructure within the particles. The formation of these gelled particles has been previously described by a nucleation and growth mechanism, with the applied shear field limiting the molecular ordering to within individual gel particles by physically ensuring that the original formed gel nucleation sites remain separate from one another (Norton et al., 1999). Along with the bulk viscosity, the size and strength of these micron-sized, gelled particles can also be controlled by varying the concentration of polymer and shearing rate used during production (Gabriele et al 2009; Fernández Farrés et al., 2014). This creates an attractive opportunity to incorporate drugs into an acid-resistant fluid gel which could potentially delay release in the stomach.

Gellan gum is a biopolymer particularly suited for producing fluid gels for such applications. It is a microbial exopolysaccharide produced by *Sphingomonas elodea* (Doner et al., 1997; Dai et al. 2008) and consists of repeating tetrasaccharide units of glucose, glucuronic acid, glucose and rhamnose residues (Chandrasekaran et al., 1988). Gellan gum is an EU approved food additive (E418) that has been investigated by several groups for applications in pharmaceuticals (Deasy and Quigley, 1991; Carlfors et al., 1998) and as a biomaterial (Smith et al., 2007; Oliveira et al., 2010; Jahromi et al., 2011). At temperatures above 85 °C the gellan gum exists as a random coil, which forms helical structures upon cooling resulting in a “weak gel” formed by tenuous association of ridged ordered structures (Norton et al., 1984) rather than by stronger associations of junction zones present in normal polysaccharide gels (Rees et., al 1982). However, on addition of ions such as hydrogen, sodium, potassium and calcium true, self-supporting gels are formed. This occurs via a mechanism of aggregation of gellan double helices either by suppression of the negatively charged groups on the polymer with monovalent ions or by direct site binding of the helices with divalent cations (Grasdalen and Smidsrod, 1987; Sworn et al., 1995; Morris et al., 2012). The mechanical properties and gelation temperature can be controlled by salt concentration and species (Ogawa, 1996). The ability of gellan gum to form acid-insoluble gels renders it a particularly attractive candidate for developing oral bioresponsive drug delivery systems. Indeed, these have been investigated in the form of gastro-retentive controlled release (Babu et al., 2010), enteric release
Furthermore oral sustained delivery using gellan solutions (which formed acid gels in the stomach) has also been explored and bioavailability from the gels formed in situ was similar to that of a commercially available suspension (Kubo et al., 2003). Unlike tablet or capsule formulations, there is no standard technique for measuring the dissolution properties of oral liquids. Biopharmaceutical measurements of such formulations are usually performed using modified USP dissolution apparatus which can lead to high variability. This is a particularly important issue when designing medicines for children as extrapolating adult biopharmaceutical measurements is difficult due to the difference in gastrointestinal physiology in paediatric patients (Batchelor et al., 2013). Moreover, large variations in physiology within paediatric populations are also evident from birth through to adolescence (Bowles et al., 2010) which further complicates the design suitable biopharmaceutical methodologies.

In the present study gellan gum fluid gels loaded with ibuprofen, (a BCS Class II drug that is currently available as modified release tablets) were investigated as a modified release oral liquid. Fluid gel formulations were investigated over a range of pH and acid exposure times to evaluate how variations in gastric physiology may impact the mechanical properties of these physiologically responsive fluid gels and the consequential release behaviour.

2. Material and Methods

2.1. Materials

Low acyl gellan gum (Kelcogel™) was kindly donated by CP Kelco (USA). Ibuprofen powder (Ibuprofen 38) was obtained from BASF. All other materials were obtained from Sigma–Aldrich, Poole, UK.

2.2. Preparation of fluid gels
Fluid gels were prepared by adding low acyl gellan gum at concentrations from 0.1 to 1% w/w to deionised water at 85 °C while stirring. Once fully dissolved, the solutions were allowed to cool to ~60 °C then a paediatric dose of ibuprofen (20 mg/ml) was added and the pH was adjusted to 7.4 using 1 M NaOH. Solutions were then cooled further at 2 °C min⁻¹ whilst being sheared using Bohlin Gemini Nano HR rheometer at a shear rate of 500 s⁻¹. To evaluate the potential to vary the particle size during formulation, fluid gels were prepared with changes to the processing conditions. To investigate the effect of cooling rate, 0.75% w/w gellan gum fluid gels were prepared as described above at a fixed shear rate of 500 s⁻¹ with cooling rates of 0.5 °C min⁻¹, 2 °C min⁻¹ and 10 °C min⁻¹. Similarly, to investigate the effect of shear rate, 0.75% w/w gellan gum fluid gels were prepared at a fixed cooling rate of 2 °C min⁻¹ using shear rates of 100 s⁻¹, 500 s⁻¹ and 1000 s⁻¹.

2.3. Preparation of control formulations

2.3.1 Viscosity test controls

To ensure the fluid gel formulations had a suitable viscosity profile a marketed paediatric ibuprofen suspension was used as a standard comparison and referred to as C1.

2.3.2 Dissolution test controls

To ensure ibuprofen could be fully dissolved in the dissolution media (PBS pH 7.4) at the formulated dose following 20 min exposure to acid at pH 1.2 (and any delayed release was not an effect of the pKa of the ibuprofen), control solutions were prepared by adding drug (20 mg/ml) to deionized water at ~60 °C which were cooled to room temperature and the pH was adjusted to 7.4 using 1 M NaOH (referred to as C2).

To ensure the same grade of ibuprofen was used in all dissolution experiments formulations based upon standard ibuprofen suspensions were prepared as a control by adding 0.3% w/w xanthan gum and 0.2% w/w sorbitol to deionized water / glycerol 50:50 at 85°C while stirring (to prevent any interference with UV analysis no preservatives, colouring agents or flavours were added). Once
fully dissolved, the solution was allowed to cool to ~60 °C then a paediatric dose of ibuprofen (20 mg/ml) was added. The suspension was then cooled to room temperature and referred to as C3.

2.4. Viscosity measurements

Viscosity of all samples was determined taken at 25 °C using the Bohlin Gemini Nano HR rheometer using the 55 mm parallel plate geometry across shear rates ranging from 1 s⁻¹ - 1000 s⁻¹.

2.5. Microscopy

Fluid gel samples were imaged using an optical microscope (Keyence VHX digital microscope RZ x 250- x2500 real zoom lens in high dynamic range). Samples were prepared for imaging by dispersing the fluid gel samples in 10 ml of 50 mM CaCl₂. The suspension was then centrifuged at 13000 rpm and the pellet was then examined under the microscope. CaCl₂ was used as the diluent during the processing of the sample prevent aggregation of the gel particles during the centrifugation step.

2.6. Dissolution studies

A modified USP I apparatus (baskets at a stirring rate of 100 rpm) was used to study in vitro drug release. Each formulation (5 ml) was placed into dialysis tubing (12500 MWCO) then submerged (within the baskets) in small volume vessels containing 200 ml dissolution media at pH values of 1.2, 2, 3, 4, 5, and 7.4 for 20 min. The media were subsequently changed to pH 7.4 phosphate buffered saline (sodium chloride 137 mM, potassium chloride 2.7 mM, disodium hydrogen phosphate 10 mM and potassium dihydrogen phosphate 2.0 mM). All buffers used were prepared at the same ionic strength and pH 7.4 was used to represent the highest pH the formulations may encounter during intestinal transit (terminal ilium). To understand how release in simulated intestinal conditions was affected by residence time in acidic media, samples were also exposed to pH 1.2 and pH 2 environments for time periods increasing from 5 min to 120 min before changing the media to pH 7.4 and recording the subsequent onset of release. Ibuprofen standards were
prepared at concentrations ranging from 10-1000 µg/ml and measured using UV spectrophotometer at a wavelength of 254 nm to generate calibration curves which were plotted for all pH values. The concentration of ibuprofen released from the sample was determined from the corresponding calibration curves. All experiments were carried out in triplicate.

2.7. Rheological Measurements

The following rheological measurements were performed to investigate how gel stiffness changes during the in vitro dissolution tests and therefore enable correlation of stiffness (G’) to drug release. To understand how elastic modus (G’) was affected by residence time in acidic media, 5 ml of the formulation was placed into a dialysis tube (12500 MWCO) then submerged in 200 ml 0.1 M HCl at pH 1.2 for time periods increasing from 5 to 120 min before loading the sample on the rheometer. To study the impact the change of dissolution media (to PBS pH 7.4) has on the stiffness of the gel following exposure to acid, another set of samples was also exposed to pH 1.2 for 10 and 60 min (batch A and B respectively). The medium was then changed to pH 7.4 for a period of time from 30 to 600 min for batch A and 60 to 1200 min for batch B, prior to loading on the rheometer.

Rheological measurements were carried out using a Bohlin Gemini Nano HR rheometer. Oscillation mode was used to determine viscoelasticity of the gel. Mechanical spectra were obtained by taking measurements of the elastic (storage) modulus (G’), viscous (loss) modulus (G’’) and complex dynamic viscosity (η*). The measurements were recorded at 10 rad/s angular frequency and 0.5% strain using a 55 mm parallel-plate geometry with a 0.5 mm gap. The strain amplitude chosen was within the linear viscoelastic region of the samples. All measurements were taken at 37 °C.

2.8. Statistical analysis

Statistical significance (P < 0.05) between test groups was determined by one-way analysis of variance (ANOVA) and Tukey post-hoc test using Primer of Biostatistics version 4.
3. Results

3.1. Rheological Measurements

Using a rheometer, the formation of fluid gels can be characterised during manufacture alongside real-time measurements of the characteristic changes in viscosity that occur during formation. Figure 1 shows the relative viscosity vs temperature of a 0.1%, 0.375%, 0.5% 0.75% and 1% w/w gellan gum fluid gel during manufacture. As the temperature is decreased there is an increase in viscosity that occurs at the onset of gelation of the gellan, a maximal viscosity is then reached which is the temperature beyond which no further particles are formed (T_{max}), followed by a plateau in viscosity as the formed particles are smoothed. The results indicate that the viscosity of fluid gel is concentration dependant; onset of gelation increases from ~40 °C for 0.1% gellan gum to ~45 °C for 1% gellan gum. Furthermore, the final viscosity (at 500 s$^{-1}$ and 20 °C) of the fluid gels increases with increasing concentration from ~0.01 Pas for 0.1% w/w gellan gum up to ~0.1 Pas for 1% w/w gellan gum. To evaluate the potential of gellan gum fluid gels as a modified oral liquid, samples were tested and compared with a proprietary ibuprofen suspension. The viscosity profiles of gellan gum fluid gel formulations (0.1-1 % w/w) are shown in figure 2A and have a shear thinning viscosity profile. The 0.75% fluid gel sample exhibited a viscosity profile that was most similar to that of a standard ibuprofen paediatric suspension. In addition the yield stress was sufficient to allow inversion of the fluid gel sample without any flow however following mild shaking of the sample it is easily poured on a dispensing spoon as illustrated in figure 3 (Supplementary Video 1). This formulation was therefore used in further investigations. Dynamic small deformation oscillatory measurements of G' and G'' (Fig 2B) highlight the viscoelasticity of the 0.75% w/w fluid gel with G' slightly greater than G'' across a range of frequencies; this is typical ‘weak gel’ rheological behaviour. Figure 3 shows the effect of cooling rate on the viscosity during formation of a 0.75% w/w fluid gel at a fixed shear rate of 500 s$^{-1}$ (Fig 4A) and the effect of shear rate at a fixed
cooling rate of 2 °C/min (Fig 4B). The viscosity of the fluid gels during formation increased with increasing cooling rates and viscosity decreased when shear rate was increased.

3.2 Effect of gellan gum concentration

Microscopy images in figure 5 reveal particle sizes of fluid gel are highly dependent on concentration. At 0.1% gellan the particles were in the region of 1-5 μm and were generally spherical in shape (Fig. 5A). As the concentrations increased to 0.5% the particles had a larger, binomial size distribution with a population of micron sized particles (similar to 0.1% w/w) and a population and a population in the region of 10-20 μm (Fig. 5B). At 0.75% w/w the particles appear less polydisperse than at 0.5% and more spherical with the majority of the population in the region of 20 μm (Fig. 5C). When the concentration is increased further to 1% the particles were much larger and irregular in shape (Fig. 5D).

3.3 Effect of cooling rate and shear rate

Figure 6 shows the effect of increasing cooling rates on the particle size of 0.75% w/w at fixed shear rate of 500 s⁻¹ (Fig 6A-C) and the effect of increasing shear rates on the particle size of same concentration of gellan at fixed cooling rate of 2 °C/min (Fig 6D-F). These micrographs indicate that a smaller particle size can be obtained by decreasing cooling rate and increasing the shear rate when forming the fluid gels.

3.3 Dissolution behaviour

To investigate the effects of exposure to low pH for the fluid gels a 5 ml sample of each was dispensed into 0.1M HCl at pH 1.2. A proprietary ibuprofen suspension (C1) was also used for comparison. The proprietary formulation formed a cloudy dispersion in the acid which is attributed to the poor solubility of ibuprofen at low pH. The gellan fluid gel on the other hand formed an acid gel with the ibuprofen remaining associated with the gellan. This remained as large aggregated gel
pieces for over 6 hours. This was supported by dissolution experiments which showed no ibuprofen
was released at pH 1.2 (results not shown) and in Figure 7 where ibuprofen crystals can be seen to
remain entrapped within the fluid gel particles.

Figure 8 illustrates the in vitro release of ibuprofen from different gellan gum fluid gel
concentrations ranging from (0.0 % (ibuprofen alone) to 0.75% w/w) determined at pH 1.2 then the
release media was changed after 20 minutes to PBS pH 7.4. The results show that there was a small
quantity of ibuprofen released in acidic media for the gels containing lower concentrations of gellan
and control formulations (C2 and C3). At 0.75% w/w however, there was no release in acid medium
and subsequent release was retarded in PBS for 30 min.

To account for the wide variation in stomach pH found in paediatric patients, release characteristics
were determined in vitro at different pH values (1.2, 2, 3, 4, 5 and 7.4) then the release medium was
changed after 20 minutes to PBS pH 7.4. Figure 9 highlights that the release of ibuprofen from the
gellan gum fluid gel was strongly affected by pH of the dissolution media. There was no significant
difference (p > 0.05) in release between samples initially immersed in pH 7.4, pH 5 and pH 4. At
pH 3 however, subsequent release of ibuprofen was retarded. The retardation of release became
progressively more pronounced as the pH was dropped further, to the point where exposure to pH
1.2 for just 20 min delayed the onset of drug release for a further 60 min when transferred to pH
7.4. The duration of exposure to acidic pH was shown to dramatically affect the lag time to onset of
release following transfer to pH 7.4. Figure 10 illustrates the linear relationship between onset of
release in pH 7.4 and the preceding exposure time at pH 1.2 and pH 2. The onset of release in pH
7.4 was shown to be dramatically affected by the acidity of the initial dissolution medium taking
almost 3 hours after exposure to pH 1.2 (for 2 hours) compared with 30 minutes to onset of release
following exposure to pH 2 (for 2 hours). This lag time was shown to be dependent on gel stiffness.

Figure 11 shows onset of release time rises exponentially with increase in G', which in turn is
dependent on exposure time to pH 1.2 as highlighted in figure 12. Interestingly, when the fluid gel
was transferred to PBS pH 7.4 following 10 minutes in pH 1.2 medium, the gel stiffness continued
to increase, albeit at a slower rate, until a plateau was reached (following 90 minutes in pH 7.4) where G’ is approximately 1200 Pa. When the gel was exposed to pH 1.2 for 60 minutes the stiffness was almost an order of magnitude greater than after 10 minutes exposure. However following transfer to PBS pH 7.4 the stiffness gradually decreased over a period of 180 minutes to the plateau where G’ is approximately 1200 Pa. The relationship between gel stiffness and release in pH 7.4 is highlighted in figure 13. Following 60 minutes exposure to 0.1 M HCl the gel stiffness was 8000 Pa which gradually decreased on transfer to PBS. No released drug was detected until the stiffness of the gel had reduced to ~2000 Pa (which took 2 hours), following which zero order release 0.15 mg/min was apparent (Fig. 13A). When the sample was exposed to pH 1.2 for 10 minutes, the gel stiffness was only ~600 Pa and gradually increased to ~1300 Pa on transfer to PBS pH 7.4. In this system the zero order drug release occurred within 40 minutes and at an increased rate of 0.44 mg/min (Fig. 13B). After this time, the gel disintegrated and was no longer included in this study. These results highlight that increased gel stiffness can reduce the release rate.

4. Discussion

The use of fluid gels as a platform technology for pharmaceutical formulations has great potential due to the tuneable mechanical properties and their ease of manufacture. It has been previously shown that fluid gels can be prepared with many different biopolymers including gelatin (de Carvalho and Djabourov, 1997), agarose (Norton et al., 1998), κ-carrageenan (Garrec and Norton, 2012; Gabriele et al., 2009) and gellan gum (Sworn et al., 1995). Most of these investigations have been focused towards applications in foods to improve stability and improve texture. Here we have investigated the potential of gellan gum fluid gels as a modified release oral drug delivery system. The preparation of fluid gels is a simple process, producing gelled particles that are dispersed in an un-gelled medium. Production using a rheometer allows the cooling rate and the shear rate to be accurately controlled and the characteristic change in viscosity monitored (the process however, is easily carried out on a larger scale using application of shear). When the gellan gum fluid gels were
formed containing ibuprofen, the onset of ordering increased with increasing gellan concentration (Fig 1) which can be explained by the consequential increase in concentration of the counterions to the charged group of the polymer promoting aggregation (Morris et al 2012). Interestingly, this onset of ordering occurs at a slightly lower temperature that has been previously reported for gellan gum fluid gels without a drug load (Sworn et al., 1995). This is thought to be due to the competitive inhibition by the negatively charged ibuprofen binding some of the Na$^+$ ions (introduced during pH adjustment with NaOH) reducing the overall ionic strength of the bulk, consequently reducing the viscosity and gelation temperature. Once manufactured, the bulk fluid gels containing ibuprofen showed shear thinning behaviour similar to that of a proprietary paediatric oral ibuprofen suspension with the 0.75% w/w fluid gel having the closest match (Fig 2). However, at very low shear rates the viscosity was sufficient for the preparation to be inverted without any steady state flow as illustrated in figure 3 (Supplementary Video 1). This is due to the weak gel properties of the ibuprofen gellan fluid gel (Fig 2B) which are thought to be a result of particle-particle interactions (Garrec et al., 2013).

Oral liquid formulations with relatively high values of zero shear viscosity that rapidly shear thin to enable dispensing would be greatly beneficial by suspending the drug more efficiently during product storage while not impacting on the ease of administration. Furthermore, producing oral liquid formulations with modified release properties would provide an alternative dosage form for paediatric patients in particular. The physical properties of gellan gum fluid gels can be tuned by simply changing the concentration of the polymer or by the rate of cooling and/or shear rate during fluid gel formation (Fig 4). This has previously been demonstrated in food based applications with agarose and carrageenan fluid gels (Norton et al 1998; Gabriele et al 2009). This allows the particle size to be controlled as shown in figures 5 and 6. Gellan gum has previously shown promise as a sustained release oral liquid which gels in situ (Miyazaki et al., 1999). In this study we present a gellan gum oral liquid which was formulated to have a physically cross-linked microstructure prior to exposure to an acidic gastric environment. The weak acid gel contains pre-gelled particles and
ungelled gellan effectively immobilising the pre-gelled particles. This system was shown to prevent
the dispersion of ibuprofen in the gastric fluid as occurred with a proprietary oral liquid and the
drug remained associated with the gellan gum for over 6 hours at pH 1.2. A problem often
associated with hydrogel drug delivery systems is drug leaching through the pores of the gel. In this
system however, the poor solubility of ibuprofen resulted in precipitation within the gel when
exposed to 0.1M HCl pH 1.2, illustrated by the opaque nature of the gel with the precipitated drug
particles remaining entrapped within gel particles as illustrated in figure 7.

To develop a modified release oral liquid designed particularly for children it is vitally important to
take into account paediatric gastrointestinal physiology when designing *in vitro* biopharmaceutical
tests. Variables such as stomach acid volume, gastric pH and small intestinal transit time, which are
important for drug release, are well documented (Bowles et al., 2010). For example, in paediatric
patients the age at which gastric acid secretion reaches adult values is often quoted as 6 months,
however in reality the pH remains variable and the time that intragastric pH is maintained below pH
2 increases as a function of age. Nagita et al. (1996) reported that gastric acidity rapidly increased
from infancy to 3 years of age and then slowly increased and attained adult levels (< pH 2 for 65%
of a 24 h period) by adolescence (age 14). In vitro release data shown in figure 8 reveal that even at
concentrations as low as 0.1%, gellan fluid gels have the ability to retard the release of ibuprofen
following 20 minutes exposure to 0.1 M HCl pH 1.2 compared with the control formulations (C2
and C3). There is however, still some ibuprofen (approximately 5%) released while exposed to pH
1.2. Increasing gellan concentration further slows release and at 0.75%, no ibuprofen was measured
during acid exposure. Moreover, when the medium was changed to pH 7.4, there was a lag time of a
further 30 minutes before onset of release.

The effects of varying acidic pH on the subsequent release of ibuprofen from the 0.75% gellan gum
fluid gel following transfer to pH 7.4 was also evaluated. It was found that the release of ibuprofen
from a 0.75% gellan gum fluid gel was strongly affected by the pH of the dissolution media (Fig.
There was no significant difference in release between samples that were initially exposed to pH 4, pH 5, and pH 7.4. However, as the pH was decreased below the pKₐ of the carboxyl group of the gellan gum (~3.4), an acid gel was formed, preventing the dissolution of the gel, thus retarding ibuprofen release. This lag time became progressively more pronounced as the pH was dropped further and the acid gel strengthened; exposure to pH 1.2 for just 20 min prevented the onset of release for a further 60 min following transfer to pH 7.4. Moreover, there was a linear relationship between onset of release in pH 7.4 and the preceding exposure time at pH 1.2 for up to 120 min (Fig. 10). A linear relationship was also found following exposure to pH 2 although the effect was substantially less pronounced. This was thought to be due to fewer H⁺ ions present at pH 2 compared with pH 1.2. This will result in formation of a weaker acid gel with an associated increase in hydration and dissolution of the ibuprofen when transferred to pH 7.4. Indeed, the stiffness of the gel had an exponential relationship with onset of release in pH 7.4 media (Fig. 11). Furthermore the stiffness of the gellan was dependent on the duration of exposure to acidic pH which has also recently been reported by Bradbeer et al. (2014). Interestingly, regardless of the duration of acid exposure, the stiffness of gellan fluid gels eventually plateaued at approximately 1200 Pa when transferred to pH 7.4 (Fig. 12). Subsequently, the gel stiffness as a function of exposure time relates to in vitro release. When the gel was exposed to pH 1.2 for 60 min, G’ was approximately 8000 Pa and release was retarded, probably due to the time required for ion exchange to occur between the H⁺ cross-linked gel and the phosphate buffer. This exchange gradually reduces the gel strength until drug release is enabled. Moreover, the diffusion of the phosphate buffer into the gel also increases the solubility of the ibuprofen by increasing the pH within the gel. This is thought to have facilitated drug diffusion into the surrounding release medium increasing release rate as highlighted, with a much faster release rate of 0.44 mg/min when the exposure time in acid was only 10 min compared with 0.15 mg/min following 60 min exposure (Fig. 13). This dependence on acidic residence time and the strength of acidic pH may be problematic in determining reproducible pharmacokinetics between patients where gastro intestinal physiology can vary. Therefore strategies
to overcome this issue would need to be addressed if such a carrier was to be used in clinical
practice. However, by understanding the three way relationship between acid exposure time, gel
stiffness and onset of release, there is potential for controlling release behaviour by tuning the fluid
gels to have a specified stiffness at a particular pH and duration of exposure. Furthermore,
producing formulations using this relatively simple method is particularly attractive and by careful
design of processing parameters, the microgel particles’ size, shape, viscoelasticity and behaviour in
physiological fluids can be manipulated to suit the application. This could open the door to multiple
applications of fluid gel systems in pharmaceutical technology in addition to use as modified release
oral liquids.

5. Conclusion

In this study we have demonstrated that fluid gels have the potential to be formulated with a similar
viscosity profile to that of a marketed paediatric oral liquid with a yield stress sufficient that the
sample can be inverted without any immediate flow but shear thins sufficiently by shaking, to be
poured onto a dispensing spoon. Furthermore, we have shown that it is possible to modify the
release of ibuprofen from gellan gum fluid gels, providing a simple and effective technology in
formulating modified release oral liquids. The release behaviour of ibuprofen from gellan gum fluid
gels in a simulated intestinal pH environment was dependent on the stiffness of the gel following
exposure to simulated gastric pH media. The stiffness, and hence drug release, could be controlled
with exposure time and acidity of the simulated gastric pH environment. This work highlights the
potential application of gellan gum fluid gels as modified release oral liquids while at the same
time, illustrates the importance of understanding how subtle differences in patient physiology could
impact on drug release from such formulations. A realization of this is very important especially
when designing medicines for paediatrics.
Acknowledgements

The authors would like to thank the University of Huddersfield for funding the PhD studies of Mohammed Mahdi and Professor Ian Norton and Dr Fotis Spyropoulos of the University of Birmingham for their helpful discussions.

References

Deasy, P.B., Quigley, K.J., 1991. Rheological evaluation of deacetylated gellan gum (Gelrite®) for pharmaceutical use. International Journal of Pharmaceutics 73, 117-123

In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients. Drug Development Industrial Pharmacy 36, 449-455

Figure Captions

Figure 1 Viscosity of gellan gum during fluid gel formation (cooling at 2°C /min at a shear rate of 500 s\(^{-1}\)) for 0.1% (filled diamonds) 0.375 % (open squares) 0.5% (open circles) 0.75% (filled triangles) and 1% (black crosses) w/v gellan gum loaded with 20 mg/ml ibuprofen.

Figure 2 A) Viscosity vs. shear rate at 25°C for 0.1% (filled diamonds) 0.375 % (open squares) 0.5% (open circles) 0.75% (filled triangles) and 1% (black crosses) w/v gellan gum loaded with 20 mg/ml ibuprofen. Black line indicates a proprietary ibuprofen paediatric suspension. B) Mechanical spectrum (0.5% strain; 37 °C) of a 0.75% Gellan Gum fluid gel loaded with 20 mg/ml ibuprofen showing variation of G’ (filled squares), G” (open squares) and η* (filled triangles) with angular frequency.
Figure 3 Images illustrating the shear thinning behaviour of an ibuprofen loaded fluid gel sample with the ability to invert without any flow.

Figure 4 Viscosity of 0.75% w/v gellan gum loaded with 20 mg/ml ibuprofen during fluid gel formation using A) different cooling rates; 10 °C/min (open circles), 2 °C/min (filled diamonds), 0.5 °C/min (open triangles) at a shear rate of 500 s⁻¹ and B) different shear rates cooling at 2 °C/min; 1000 s⁻¹ (open diamonds), 500 s⁻¹ (filled diamonds), 100 s⁻¹ (black crosses).

Figure 5 Light microscopy images of gellan gum fluid gels prepared at different concentrations loaded with 20mg/ml ibuprofen A) 0.1% w/v B) 0.5 % w/v C) 0.75 % w/v D) 1 % w/v.

Figure 6 Light microscopy images of 0.75% w/v gellan gum loaded with 20 mg/ml ibuprofen prepared at a shear rate of 500 s⁻¹ using different cooling rates (A-C) A) 0.5 °C/min B) 2°C/min C) 10 °C/min and different shear rates cooling at 2 °C/min (D-F); D)100 s⁻¹ E) 500 s⁻¹ F) 1000 s⁻¹

Figure 7 Light microscopy images of gellan gum fluid showing crystallised ibuprofen entrapped within gel particles
Figure 8 Cumulative % release of ibuprofen from fluid gels prepared at different concentrations of gellan gum compared with a standard ibuprofen suspension. Dotted line indicates the point the media was changed from 0.1 M HCl at pH 1.2 to PBS at pH 7.4. Values are represented as mean ± SD (n=3).

Figure 9 Cumulative % release of ibuprofen from 0.75% w/v gellan gum fluid gel loaded with 20 mg/ml ibuprofen exposed to different acidic pH values for a period of 20 minutes. Dotted line indicates the point the media was changed to PBS at pH 7.4. Values are represented as mean ± SD (n=3).

Figure 10 Relationship between onset of release at pH 7.4 and preceding exposure time in simulated gastric fluid at pH 1.2 (filled diamonds) and pH 2 (open diamonds).

Figure 11 Exponential relationship between the onset of release in SIF pH 7.4 as a function of gel stiffness (G’).

Figure 12 Effect of time exposed to pH 1.2 on gel stiffness (G’) and subsequent stiffness on transfer to pH 7.4. The red line (filled diamonds) indicates the stiffness of the gel when exposed to pH 1.2 (0.5% strain; 37 °C at 10rad s⁻¹). The green dashed line (open triangles) represents the stiffness of the gel in PBS at pH 7.4 following 10 min exposure to pH 1.2. The blue dashed line (filled squares) represents the stiffness of the gel in PBS at pH 7.4 following 60 min exposure to pH 1.2.
Figure 13 Cumulative % release (primary vertical axis) and gel stiffness (G') (secondary vertical axis) versus time following A) 60 min exposure to pH 1.2 and B) 10 min exposure to pH 1.2.

Viscosity of gellan gum during fluid gel formation (cooling at 2 °C/min at a shear rate of 500 s⁻¹) for 0.1% (filled diamonds), 0.375% (open squares), 0.5% (open circles), 0.75% (filled triangles) and 1% (black crosses) w/v gellan gum loaded with 20 mg/ml ibuprofen.
Fig. 2.
(A) Viscosity vs. shear rate at 25 °C for 0.1% (filled diamonds), 0.375% (open squares), 0.5% (open circles), 0.75% (filled triangles) and 1% (black crosses) w/v gellan gum loaded with 20 mg/ml ibuprofen. Black line indicates a proprietary ibuprofen paediatric suspension. (B) Mechanical spectrum (0.5% strain; 37 °C) of a 0.75% gellan gum fluid gel loaded with 20 mg/ml ibuprofen showing variation of G' (filled squares), G'' (open squares) and η^* (filled triangles) with angular frequency.

Fig. 3.
Images illustrating the shear thinning behaviour of an ibuprofen loaded fluid gel sample with the ability to invert without any flow.

Fig. 4.
Viscosity of 0.75% w/v gellan gum loaded with 20 mg/ml ibuprofen during fluid gel formation using (A) different cooling rates; 10 °C/min (open circles), 2 °C/min (filled diamonds), 0.5 °C/min (open triangles) at a shear rate of 500 s⁻¹ and (B) different shear rates cooling at 2 °C/min; 1000 s⁻¹ (open diamonds), 500 s⁻¹ (filled diamonds), 100 s⁻¹ (black crosses).

Fig. 5.

Light microscopy images of gellan gum fluid gels prepared at different concentrations loaded with 20 mg/ml ibuprofen (A) 0.1% w/v, (B) 0.5% w/v, (C) 0.75% w/v and (D) 1% w/v.
Fig. 6.
Light microscopy images of 0.75% w/v gellan gum loaded with 20 mg/ml ibuprofen prepared at a shear rate of 500 s$^{-1}$ using different cooling rates (A–C), (A) 0.5 °C/min, (B) 2 °C/min, (C) 10 °C/min and different shear rates cooling at 2 °C/min (D–F), (D) 100 s$^{-1}$, (E) 500 s$^{-1}$ and (F) 1000 s$^{-1}$.

Fig. 7.
Light microscopy images of gellan gum fluid showing crystallised ibuprofen entrapped within gel particles.
Fig. 8.
Cumulative % release of ibuprofen from fluid gels prepared at different concentrations of gellan gum compared with a standard ibuprofen suspension. Dotted line indicates the point the media was changed from 0.1 M HCl at pH 1.2 to PBS at pH 7.4. Values are represented as mean ± SD ($n = 3$).

Fig. 9.
Cumulative % release of ibuprofen from 0.75% w/v gellan gum fluid gel loaded with 20 mg/ml ibuprofen exposed to different acidic pH values for a period of 20 min. Dotted line indicates the point the media was changed to PBS at pH 7.4. Values are represented as mean ± SD ($n = 3$).
Fig. 10.
Relationship between onset of release at pH 7.4 and preceding exposure time in simulated gastric fluid at pH 1.2 (filled diamonds) and pH 2 (open diamonds).

Fig. 11.
Exponential relationship between the onset of release in SIF pH 7.4 as a function of gel stiffness (G').
Fig. 12.
Effect of time exposed to pH 1.2 on gel stiffness (G') and subsequent stiffness on transfer to pH 7.4. The red line (filled diamonds) indicates the stiffness of the gel when exposed to pH 1.2 (0.5% strain; 37 °C at 10 rad s⁻¹). The green dashed line (open triangles) represents the stiffness of the gel in PBS at pH 7.4 following 10 min exposure to pH 1.2. The blue dashed line (filled squares) represents the stiffness of the gel in PBS at pH 7.4 following 60 min exposure to pH 1.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13.
Cumulative % release (primary vertical axis) and gel stiffness (G') (secondary vertical axis) vs. time following (A) 60 min exposure to pH 1.2 and (B) 10 min exposure to pH 1.2.