

University of Huddersfield Repository

Barlow, Roger

CP violation: Recent results from BaBar

Original Citation

Barlow, Roger (2014) CP violation: Recent results from BaBar. In: SUSY2014: The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions, 21 - 26 July 2014, Manchester, UK.

This version is available at http://eprints.hud.ac.uk/id/eprint/21275/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CP violation: Recent Results from BABAR Presented at SUSY2014

Roger Barlow representing the BaBar collaboration

Huddersfield University

25th July 2014

A brief history of CP violation

in particle physics

Discovery 1964

Fitch and Cronin (PRL 13:138, 1964; Nobel Prize 1980)

Small effect (0.3%) for s quark: $K_L^0 o \pi^+\pi^-$

Nothing much happened for almost 40 years: $K_L^0 o \ell^\pm \pi^\mp \nu$, $K_L^0 o \pi^0 \pi^0$

Seen in B mesons (b quark): BaBar and Belle

PRL **81** 091801, 2001, Nobel prize 2008 1 Large effects (several %). Many measurements. Mainstream $\Upsilon(4S) \to B^0 \overline{B^0}$ 1st decays to CP eigenstate, 2nd tagged as b or \overline{b} Plot decay time dependences.

BaBar: PRD79:072009,2009

Reported in D mesons (c quark)

¹For Kobayashi and Maskawa

Overview

Talk covers 7 non-mainstream beauty results and 3 charm results

Caused by complex weak phase in:

Mixing

Indirect CP violation

Violation of CP quantum number conservation

Decays

Direct CP violation

E.g. asymmetry in $B^0 o K^+\pi^- \ / \ \overline{B^0} o K^-\pi^+$ is $9.8 \pm 1.2\%$

Interference between mixing and decays

Different time dependence

PEP-II: a 'B factory'

Results from $471 \times 10^6 \Upsilon(4S)$ decays produced with speed 0.5c in the lab Luminosity $1.2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ Currents 2-3 amps

Technical triumph. Design goals greatly exceeded.

The BABAR detector

Precision vertex chamber, charged particle tracking, PID using DIRC, precision EM calorimeter, muon detector.

Direct CP violation in $B^\pm o K^{*\pm}$ (892) π^0

new result - preliminary

Select
$$B^{\pm} \to K_s^0 \pi^{\pm} \pi^0$$
. BR $(45.9 \pm 2.6 \pm 3.0 \pm 8.6) \times 10^{-6}$

First measurement! Final error uncertainty due to signal model

Overall
$$A_{CP} = \frac{N^+ - N^-}{N^+ + N^-} = 0.07 \pm 0.05 \pm 0.03 \pm 0.04$$

Fit Dalitz plot using isobar model: $K^{*0}(892)\pi^+$, $K^{*+}(892)\pi^0$, $K_{\varepsilon}^0\rho^+$, etc

$$A_{CP} = -0.52 \pm 0.14 \pm 0.04 \pm 0.04$$
 : Significant at 3.4σ

Difference between $B^+ \to K^{*+}\pi^0$ and $B^- \to K^{*-}\pi^0$

Direct CP violation in $B^{\pm} \to K^{(*)\pm}D^{(*)0}$: global fit to γ Phys Rev D 87 052015 (2013)

Interference between 2 diagrams in final states accessible through D or D

$B^0 \to \pi^+\pi^-\pi^0$: fit to α

Phys. Rev. D 88 012003 (2013)

Dalitz plot: fit $\rho^{\pm}\pi^{\mp}$ and $\rho^{0}\pi^{0}$. Transform to square plot to include efficiencies

Time dependent fit $\propto 1+C\cos{(\Delta_m t)}+S\sin{(\Delta_m t)}$ C terms are direct CP, S terms are interference Results interpretable in terms of CKM angle α

$B \to X_s \ell^+ \ell^-$ Direct CPV

Phys. Rev. Lett. 112, 211802 (2014)

10 different exclusive X_s modes $(K^+, K^+\pi^0, K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^+, K_S^0, K_S^0\pi^0, K_S^0\pi^+, K_S^0\pi^+\pi^0, K_S^0\pi^+\pi^-)$ Extrapolation gives branching ratio $(6.73^{+0.70}_{-0.64}, -0.25^{+0.20}_{-0.25} \pm 0.50) \times 10^{-6}$ for $m_{\ell\ell}^2 > 0.1$ $A_{CP} = 0.04 \pm 0.11 \pm 0.01$

blue=electrons, black=muons, red=average

$B \to X_s \gamma$ Direct CPV

New result - preliminary

Use charged B mesons and self-tagging neutral B meson decays

Sum over exclusive X_s states Reconstruct 38 (x2) different final states - use 16 with good statistics.

$$A_{CP} = \frac{\Gamma(B^{-}/\overline{B^{0}}) - \Gamma(B^{+}/B^{0})}{\Gamma(B^{-}/\overline{B^{0}}) + \Gamma(B^{+}/B^{0})}$$
 $A_{CP} = (1.7 \pm 1.9 \pm 1.0)\%$

consistent	with	SM	prediction

#	Final State	#	Final State
1*	$B^+ \rightarrow K_S \pi^+ \gamma$	20	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^- \gamma$
2*	$B^+ \rightarrow K^+ \pi^0 \gamma$	21	$B^0 \to K^+ \pi^+ \pi^- \pi^- \pi^0 \gamma$
3*	$B^0 o K^+\pi^-\gamma$	22	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^0 \pi^0 \gamma$
4	$B^0 o K_S \pi^0 \gamma$	23*	$B^+ o K^+ \eta \gamma$
5*	$B^+ o K^+ \pi^+ \pi^- \gamma$	24	$B^0 o K_S \eta \gamma$
6*	$B^+ \rightarrow K_S \pi^+ \pi^0 \gamma$	25	$B^+ \to K_S \eta \pi^+ \gamma$
7*	$B^+ \rightarrow K^+ \pi^0 \pi^0 \gamma$	26	$B^+ o K^+ \eta \pi^0 \gamma$
8	$B^0 \rightarrow K_S \pi^+ \pi^- \gamma$	27*	$B^0 \rightarrow K^+ \eta \pi^- \gamma$
9*	$B^0 \rightarrow K^+\pi^-\pi^0\gamma$	28	$B^0 o K_S \eta \pi^0 \gamma$
10	$B^0 o K_S \pi^0 \pi^0 \gamma$	29	$B^+ \rightarrow K^+ \eta \pi^+ \pi^- \gamma$
	$B^+ o K_S \pi^+ \pi^- \pi^+ \gamma$	30	$B^+ o K_S \eta \pi^+ \pi^0 \gamma$
	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \gamma$	31	$B^0 \rightarrow K_S \eta \pi^+ \pi^- \gamma$
	$B^+ \to K_S \pi^+ \pi^0 \pi^0 \gamma$	32	$B^0 o K^+ \eta \pi^- \pi^0 \gamma$
14*	$B^0 \rightarrow K^+\pi^+\pi^-\pi^-\gamma$	33*	$B^+ o K^+ K^- K^+ \gamma$
15	$B^0 \rightarrow K_S \pi^0 \pi^+ \pi^- \gamma$	34	$B^0 o K^+K^-K_S\gamma$
	$B^0 ightarrow K^+\pi^-\pi^0\pi^0\gamma$	35	$B^+ o K^+ K^- K_S \pi^+ \gamma$
	$B^+ \rightarrow K^+\pi^+\pi^-\pi^+\pi^-\gamma$	36	$B^+ o K^+ K^- K^+ \pi^0 \gamma$
	$B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^0 \gamma$	37*	$B^0 o K^+K^-K^+\pi^-\gamma$
19	$B^+ \to K^+ \pi^+ \pi^- \pi^0 \pi^0 \gamma$	38	$B^0 \rightarrow K^+K^-K_S\pi^0\gamma$

$B^0 \to D^{*+}D^{*-}$ Time dependent asymmetry

Phys. Rev. D 86 112006 (2012)

One D^* reconstructed fully from $D^0\pi$ with $D^0 \to K\pi, K\pi\pi, K\pi\pi\pi, K_S^0\pi\pi$ Second reconstructed partially: combine first with slow pion and requiring missing mass consistent with M_D .

Flavour of other B^0 from identified kaon or lepton.

$$C = 0.15 \pm 0.09 \pm 0.04$$
 $S = -0.34 \pm 0.12 \pm 0.05$

Consistent with $sin2\beta$ determined from B^0 Roger Barlow (Huddersfield University)

CP violation in mixing: $B^0 \to D^{*-} X \ell \nu_{\ell}$ and a kaon tag Phys. Rev. Lett. 111 101802 (2013)

Reminder: CPV in mixing not seen by BaBar: dilepton asymmetry (PRL **96** 251802 (2006)) $A_{CP} = (1.6 \pm 5.4 \pm 3.8) \times 10^{-3}$ Consistent with SM(\approx 0). Means the DØ result must be due to B_s decays.

Partial reconstruction technique for D^* Tag the other B through kaon (avoids lepton identification systematics)

$$\left(A_{CP} = rac{N(B^0B^0) - N(\overline{B^0}\,\overline{B^0})}{N(B^0B^0) + N(\overline{B^0}\,\overline{B^0})} = (0.6 \pm 1.7^{+3.8}_{-3.2}) imes 10^{-3}
ight)$$

Charm: $D^0 \rightarrow K^+K^-, K^{\pm}\pi^{\mp}, \pi^+\pi^-$ Phys. Rev. D 87 012004 (2012)

Compare lifetimes to CP even K^+K^- and $\pi^+\pi^-$ with CP mixed $K^\pm\pi^\mp$

Rate
$$\Gamma^+$$
 for $D^0 \rightarrow CP_{even}$, $\overline{\Gamma}^+$ for $\overline{D}^0 \rightarrow CP_{even}$, Γ for $D^0 \rightarrow CP_{mixed}$ $y_{CP} = \frac{\Gamma^+ + \overline{\Gamma}^+}{2\Gamma} - 1 = (0.72 \pm 0.18 \pm 0.12)\%$ $\Delta Y = \frac{\Gamma^+ - \overline{\Gamma}^+}{2\Gamma} = (0.09 \pm 0.26 \pm 0.06)\%$

So 3.3σ evidence for mixing, no evidence for CP violation

Charm: Singly Cabibbo Suppressed $D^{\pm} o K^+K^-\pi^{\pm}$

Phys Rev. D 87 05210 (2013)

Evaluate charge asymmetry:

$$A_{CP} = (0.37 \pm 0.30 \pm 0.15)\%$$

Also no sign in any of the subregions

(low $M_{K\pi}$, K^* , ϕ , high $M_{K\pi}$) or in isobar-model fits

(KK^* , $\pi\phi$, etc)

Charm: $D^{\pm} \rightarrow K_S^0 K^{\pm}, D_S^{\pm} \rightarrow K_S^0 K^{\pm}, D_S^{\pm} \rightarrow K_S^0 \pi^{\pm}$ Phys. Rev. D87 052012 (2013)

Detector charge bias determined from data

$$A_{CP}(D^{\pm} \to K_S^0 K^{\pm}) = (0.13 \pm 0.36 \pm 0.25)\%$$

 $A_{CP}(D_S^{\pm} \to K_S^0 K^{\pm}) = (-0.05 \pm 0.23 \pm 0.24)\%$
 $A_{CP}(D_S^{\pm} \to K_S^0 \pi^{\pm}) = (0.6 \pm 2.0 \pm 0.3)\%$
All consistent with zero and small SM prediction (0.000)

All consistent with zero and small SM prediction (0.33 %).

15 / 16

Conclusions

Measurements of CP violation in B mesons continue
No sign of CP violation in charm

No sign of charge asymmetry as reported by DØ Results give consistent values of CKM matrix α, β, γ angles. Powerful constraints on New Physics models

