Is it possible to establish reference values for ankle muscle isokinetic strength? A meta-analytical study.

Michael Fish. B.Sc M.Sc FHEA (corresponding author)

Human and Health Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH. m.fish@hud.ac.uk. 01484 471362

Dr James Milligan BSc MSc PhD FHEA MCSP

Faculty of Health and Social Sciences, Leeds Metropolitan University, Calverley Street, Leeds, LS1 3HE

Dr Jenny Killey BSc MA PhD FHEA

Human and Health Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH.

Abstract

BACKGROUND: The importance of measuring ankle muscle strength (AMS) has been demonstrated in a variety of clinical areas. Much data has been accumulated using the Cybex Norm isokinetic dynamometer but a uniform framework does not exist.

OBJECTIVE: To identify pertinent studies which have used the Cybex Norm to measure AMS in order to establish reference values.

METHODS: A narrative review of the literature was used to identify papers that have used the Cybex Norm to measure isokinetic concentric and eccentric AMS.
RESULTS: Fifty five research papers were identified but each study used a different isokinetic protocol.

CONCLUSIONS: It is not possible to produce AMS reference values due to the wide variation in data collection methods. This is therefore an area of research that needs further exploration.

1. Introduction

The importance of measuring muscle strength across the ankle has been demonstrated in a variety of research and clinical areas. These include investigations indicating relationships between AMS and both ankle stability [1] and with falling episodes and functional movement in the elderly [2, 3]. Measurement of AMS has been established as a performance indicator and a predictor of injury in athletic populations [4, 5] as well as an indicator of the effectiveness of rehabilitation [6] and intervention strategies [7]. Reference values for AMS (sometimes also referred to as normal or normative values) represent a normal range of strength and are commonly used as a frame of reference in scientific literature. Reference values have been produced using various isokinetic dynamometers [8-10]. Harbo et al., [10] used the Biodex System 3 to produce reference values for the shoulder, elbow, wrist, hip, knee and ankle. These values have subsequently been used in several studies. Examples are a baseline for assessing the severity of muscle function impairment in chronic hemiparetic stroke patients [11] and a comparison to joint torque in patients with a reverse shoulder prosthesis [12]. However, the reference values produced by Harbo et al., [10] are only relevant to studies which have used the Biodex System 3 to measure muscle torque. They cannot be applied to studies using other dynamometers such as the Cybex Norm as the reference values produced are largely considered machine specific [13, 14].
Isokinetic dynamometry using the Cybex Norm is a safe, reliable and popular way to
AMS [15-17]. It has been used in a variety of studies for example as an indicator of the
effectiveness of rehabilitation [6] and intervention strategies [7]. Sekir et al [6] used the
Cybex Norm in an experimental test re-test design study to examine the effect of a six
week exercise intervention programme in twenty four recreational athletes using the
contralateral ankle as a control measure. They found that the intervention did improve
strength but also stated that there was no significant difference in strength between
injured and uninjured ankles in three of the four ankle strength tests performed. It could
be argued that there was no difference in the three strength measurements as both ankles
were weaker than average thus susceptible to ankle injury. It may be equally likely that
the uninvolved ankle could be injured in the future, however, the availability of
reference values could to a certain extent highlight muscle weakness and as such
become a factor in predicting injury. In the absence of reference values for AMS using
the Cybex Norm Li et al [7] used a controlled test re-test experimental design for the
measurement of AMS in forty individuals. They found a sixteen week Tai Chi
intervention programme did not significantly improve plantar flexion or dorsiflexion
strength as measured using the this system. Li et al [7] observed that the participants
could not effectively manage ankle joint movement throughout the study and suggested
this was a reason for the lack of improvement in ankle strength. Without relevant
reference values it is not clear if the participants had an ankle strength deficiency to start
with leading to this inability to manage the movement.

However, in spite of the relatively large number of studies making use of the Cybex
Norm for assessing AMS, a brief review of the literature has revealed that no such
reference values existed. Thus an in depth narrative review was necessary to determine
this more definitely.
2. Method

2.1 Eligibility criteria

The objective of the narrative review was to identify those studies which have measured AMS in terms of peak torque (PT) using the Cybex Norm. Paper inclusion criteria consisted of a defined dynamometer (Cybex Norm) for the assessment of strength using concentric or eccentric active isokinetic plantar flexion, dorsiflexion, inversion or eversion. The search was not restricted to one experimental type as the outcome measures listed above could come from multiple experimental designs.

2.2 Scope of the search

In order to access the maximum number of papers six electronic databases were searched and three academic search engines used. Four of these six databases could be searched through the National Library for Health website [18] thus allowing the automatic elimination of duplicate results from these databases. These were MEDLINE, EMBASE (Excerpta Medical Database), CINAHL (Cumulative Index of National Allied Health Literature) and AMED (Allied and Complimentary Medicine). The span of the search was January 1995 (when the Cybex Norm Isokinetic Dynamometer was first introduced) to March 2013. The remaining two of the six databases, namely the Science Direct database [19] and Pubmed [20] were searched outside of the National Library for Health website. Three academic search engines were also used; Summon [21], a search engine used in some higher education institutions which provides access to scholarly material; The Web of Science [22] and Google Scholar. Manual removal of duplicate results was necessary from these five resources.

2.3 Search Terms
To identify studies likely to meet the eligibility criteria the terms ‘Cybex’, ‘norm’, ‘isokinetic’ and ‘ankle’ were used to search the databases and in the search engines. There are a number of different isokinetic dynamometers such as Kin-Com, Biodex and Lido so the term ‘Cybex’ was used to limit the search to the relevant machine. There is a large amount of physiological testing equipment under the Cybex brand and a number of older versions of the isokinetic dynamometer [23]. To isolate the specific piece of equipment the term ‘norm’ was also used. The National Library for Health website [18] and Google Scholar allows quotation marks to enable searching for exact phrases. “Cybex Norm” was used to determine only papers which contain this phrase. As well, to discount unrelated research concerning the shoulder, elbow, wrist, hip and knee as well as isometric and isotonic tests the Boolean phrase AND was used to include the search terms ‘ankle’ and ‘isokinetic’.

3. Analysis

Figure 1 shows the number of papers identified at each stage of the search process. The initial search produced 613 papers which matched the search terms. The title and abstract of each of these papers was analysed and if eligibility could not be determined the whole paper was read. 542 papers were rejected as the eligibility criteria were not met. Any duplicate papers were removed which left 55 papers that met the eligibility criteria.

Of the 55 papers found in this search there was no single paper which set out to produce reference values for AMS using this dynamometer. However, many of the papers have compared their findings to measurements derived from a control group. A control group may provide a basis for comparison but the collected data cannot be considered reference due to low external validity resulting from the small numbers used and the
specific sample demographics. On the other hand, however, it may be theoretically possible to combine the results of control groups from separate studies in a meta-analysis to produce valid reference values which could be used in a general clinical setting [24], subject to very strict factors including gender, age, activity level and test protocol. Table 1 lists the papers in terms of the experimental and control groups that have been used. Reference values for a healthy population by their definition should be produced by a healthy population, however, analysis of the data presented in table 1 shows two of the papers have not tested a healthy population or used one as a control meaning only 53 of the papers are potentially eligible to contribute to a meta-analysis. Additionally, it has been demonstrated that age and gender affect the amount of torque produced [8, 10] and as such any reference value produced would have to be specific to age and gender. This means that the populations described in table 1 would have to be matched for age and gender before a meta-analysis can be performed.

The graph in figure 2 shows the breakdown of populations described in table 1 in terms of age and gender. For reference values to have sufficient external validity a large amount of data should be considered. Significant numbers were only tested in the 18–29 years and 60–69 years age ranges and as such reference values could only potentially be produced for these groups.

The papers within these age and gender specific groups were analysed and differences in the data collection methods were found. Examination of all 55 papers produced 7 common methodological variables, these are: the position of the body on the Cybex Norm; degree of knee flexion; use of a warm up; speed of contraction and contraction type; the number of sets and reps used; whether the dominant or non-dominant foot was used; use of verbal or visual encouragement. Details of these variables are given in table 2. If altering these variables affects the outcome measures then it is not possible to
combine the data in a meta-analysis. The effects of altering these seven variables are discussed here.

3.1 Position

Seymour and Bacharach [25] showed that when using a Cybex II+ to measure ankle plantar flexion, altering from a supine to a prone position significantly reduced the amount of torque produced at 0° per second and 30° per second. As they used the Cybex II+ and not the Cybex Norm it is difficult to draw an exact comparison. However due to the lack of empirical evidence using the latter, it is necessary to infer the effect of an alteration in body position from a closely related protocol.

3.2 The degree of knee flexion.

Extension of the knee stretches the plantar flexors thus reducing range of movement as the dorsiflexion displacement angle is reduced [26]. Plantar flexion PT occurs at near full dorsiflexion [27] so fully extending the knee may prevent development of PT during a concentric contraction. However, during an eccentric contraction the increased tension in the plantar flexors as a result of extending the knee produces higher PT compared to a flexed knee [28]. As such angle of knee extension should be considered when producing a reference value.

3.3 Warm up.

One or combinations of three types of warm up were used in the papers described in table 2; these were cardiovascular, stretching and familiarisation. The rationale for a cardiovascular warm up is exercise would increase the muscle temperature and so improve the neuromuscular function [29]. However, in an experiment to determine the effect of warming up and stretching on Achilles tendon reflex activity Rosenbaum and
Hennig [30] demonstrated that a 10 minute warm up on a treadmill did not affect torque production of the plantar flexors in fifty healthy males. A review on stretching and its effect on performance by McHugh and Cosgrave [31] stated there is an acute loss of strength after relaxed muscle has been stretched. This conclusion supports the ankle specific research by Rosenbaum and Hennig [30] and Fowles and Sale [32] both of whom demonstrated that static stretching prior to testing significantly reduced plantar flexion PT production. From this it can be concluded that any papers to be included in a meta-analysis should have a standardised warm-up and familiarisation procedure.

3.4 The speed and type of contraction.

Decreases in PT associated with increased angular velocity are well established [33]. Equally, an eccentric contraction produces greater torque than a concentric contraction [6, 34]. Hence, if results are to be combined in a meta-analysis, both the speed any type of contraction should be constant.

3.5 The number of sets and repetitions used.

If participants were given just one attempt at achieving PT it is unlikely the results would be reliable as without practice the movement can be unfamiliar. Equally fatigue has been shown to alter muscle strength [35] so multiple attempts at achieving PT at one speed or movement type could reduce the accuracy of subsequent tests. Van Cingel et al [15] compared reproducibility of inversion eversion strength between one set of three reps and three sets of three reps and found that the standard error of measurement and intraclass correlation coefficient between the two was noticeably different. As such, papers included in a meta-analysis should use the same number of sets and reps, and that protocol should be reproducible.
3.6 Effect of foot dominance.

There is conflicting evidence regarding the effect of limb dominance on the level of plantar-dorsiflexion PT produced at the ankle. Some evidence suggests that there is no difference due to dominance in terms of the above [36-39]. Özçaldiran and Durmaz [40] did show a significant difference between left and right dorsiflexion at 30°/s in runners. However, no such difference was found in plantar flexion at 30°/s or in plantar flexion or dorsiflexion at 120°/s in runners, or in any ankle movement or speed in swimmers. Theoharopoulos and Tsitskaris [41] found a significant difference between dominant and non-dominant plantar flexion PT at 60°/s in basketball players. Both Özçaldiran and Durmaz [40] and Theoharopoulos and Tsitskaris [41] found, in instances where there was significant difference between left and right, that the non-dominant side was significantly stronger. Lin et al [42] concluded there were no differences in inversion / eversion PT between dominant and non-dominant ankles when testing concentric strength at 30° and 120°/s using a Biodex 3 dynamometer. Konradsen et al [37] demonstrated no difference in isometric eversion strength between left and right ankles six weeks post unilateral ankle injury. They assumed that the PT in the contralateral ankle was the same as the involved ankle pre injury based on unpublished data cited in the paper.

3.7 Encouragement or feedback

Campenella et al [43] showed that visual feedback or a combination of visual and verbal feedback increased the amount of PT produced in the hamstrings, however verbal feedback alone did not. Jung and Hallbeck [44] found similar results in terms of visual feedback when investigating handgrip strength but found that verbal encouragement did increase torque production. Although the specific relationship between encouragement
and AMS has not been studied, these conclusions suggest that standardising verbal feedback could be problematic as participants may respond differently verbal encouragement.

Thus alteration of any of the variables describes above would alter the PT produced. As such the lack of standardisation in the papers which have used the Cybex Norm to measure ankle muscle strength means it is not possible to combine the results and produce reference values by meta-analysis.

4. Conclusion

To date no paper has published reference values for AMS using the Cybex Norm. The differences in the variables presented in the references rendered a unified picture not possible. As such reference values for AMS using this dynamometer cannot be determined from the current literature. The apparent non-standardisation of data collection methods for AMS seen across these papers suggests the need for a consensus method. Once a consensus method is produced reference values can be determined for future use both in clinical rehabilitation and research.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Experimental population</th>
<th>Control Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckley et al [45]</td>
<td>10 males 5 females aged 75±3 years</td>
<td>N/A – older vs younger population</td>
</tr>
<tr>
<td></td>
<td>10 males 7 females aged 25±4 years</td>
<td></td>
</tr>
<tr>
<td>Alfieri et al [46]</td>
<td>1 male, 22 females aged 70.18±4.8 years</td>
<td>N/A – strength training vs multisensory training experiment.</td>
</tr>
<tr>
<td>Fong and Tsang [47]</td>
<td>13 males, 7 females aged 15±1.2 years</td>
<td>N/A – correlation study between hours of taekwondo training and muscle strength</td>
</tr>
<tr>
<td>Noguchi et al [48]</td>
<td>10 males football players aged 20±0.8 years</td>
<td>10 males athletes aged 21.1±0.57 years</td>
</tr>
<tr>
<td>Strejcova et al [49]</td>
<td>8 males 1 female aged 25.0±0.9 years (slackline walkers)</td>
<td>8 males 1 female aged 22.9±0.8 years (non-slackline walkers)</td>
</tr>
<tr>
<td>Tan et al [50]</td>
<td>13 male and 12 female Diabetics patients aged 65.9±4.2 years</td>
<td>No healthy control</td>
</tr>
<tr>
<td>Wang [51]</td>
<td>“elite skaters” no other detail given</td>
<td></td>
</tr>
<tr>
<td>Zhang and Xia [52]</td>
<td>6 males aged 25.8±3.87 years</td>
<td>N/A – comparison of national and international skaters</td>
</tr>
<tr>
<td></td>
<td>12 males aged 22.3±2.56 years</td>
<td></td>
</tr>
<tr>
<td>Patterson & Ferguson [53]</td>
<td>8 females aged 23±3 years</td>
<td>N/A – training method comparison between blood restriction and no restriction and 25%1RM and 50%1RM reps</td>
</tr>
<tr>
<td></td>
<td>8 females aged 22±3 years</td>
<td></td>
</tr>
<tr>
<td>Gopalakrishnan et al [54]</td>
<td>4 males aged 49.5±4.7 years</td>
<td>N/A – strength measured pre and post space flight</td>
</tr>
<tr>
<td>Reeves, et al [55]</td>
<td>5 males 10 females aged 74.8±2.8 years</td>
<td>10 males 7 females aged 24.6±4.1 years</td>
</tr>
<tr>
<td>Li, Xu, & Hong [7]</td>
<td>13 males 12 females 64.9±3.2 years (healthy performed Tai Chi)</td>
<td>12 males 13 females 65.6±3.5 years (healthy did not perform Tai Chi)</td>
</tr>
<tr>
<td>Koutsioras et al [56]</td>
<td>7 males aged 16.3±1.2 years</td>
<td>N/A – examination of muscle strength and long jump performance</td>
</tr>
<tr>
<td></td>
<td>7 females aged 16.1±1.2</td>
<td></td>
</tr>
<tr>
<td>Eyigor et al. [57]</td>
<td>8 males 25 females aged 55.79±12.4 years with Rheumatoid arthritis</td>
<td>7 males 26 females aged 60.27±10.7</td>
</tr>
<tr>
<td>Reeves et al [58]</td>
<td>15 “older adults” aged 74±2.8 years</td>
<td>N/A – comparison of older and younger biomechanics of stair descent</td>
</tr>
<tr>
<td></td>
<td>17 “young adults” aged 24.6±4.1 years</td>
<td></td>
</tr>
<tr>
<td>Özçaldiran & Durmaz [40]</td>
<td>14 males median age 18(6) (elite swimmers)</td>
<td>N/A comparison between swimmers and runners.</td>
</tr>
<tr>
<td></td>
<td>8 males median age 20(5) (elite runners)</td>
<td></td>
</tr>
<tr>
<td>Thom et al [59]</td>
<td>9 males aged 74.7±4.0 years</td>
<td>N/A – comparison between older and younger males</td>
</tr>
<tr>
<td></td>
<td>15 males aged 25.3±4.5</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Sample Description</td>
<td>Age Details</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Muller et al [60]</td>
<td>10 males, 33 females aged 86.0±5 years. Hospitalised patients</td>
<td>6 males, 22 females aged 75.4±6.2 years</td>
</tr>
<tr>
<td>Eyigor et al. [61]</td>
<td>20 participants aged 70.3±6.5 years gender not stated</td>
<td>N/A - test retest design</td>
</tr>
<tr>
<td>Dehail et al. [3]</td>
<td>6 males aged 75.6±5.4 years, 18 females aged 73.2±6.7 years</td>
<td>N/A analysis of strength and sit to walk movement</td>
</tr>
<tr>
<td>Xu et al [62]</td>
<td>13 males, 8 females aged 66.2±5.1 years (Tai Chi practitioners) 11 males, 7 females aged 65.2±3.0 years (joggers)</td>
<td>12 males, 10 females aged 64.9±3.2 years</td>
</tr>
<tr>
<td>Neto et al [63]</td>
<td>8 males between 20 and 23 years</td>
<td>N/A – test retest design</td>
</tr>
<tr>
<td>Mahieu et al [64]</td>
<td>69 males aged 18.41±1.29 years</td>
<td>N/A – cohort study examining risk factors for Achilles overuse injury</td>
</tr>
<tr>
<td>Greene et al [65]</td>
<td>20 females aged 15.9±1.6 years (middle distance runners) 20 males aged 16.8±0.6 years (middle distance runners)</td>
<td>20 females aged 16±1.8 years, 20 males aged 16.4±0.7 years</td>
</tr>
<tr>
<td>Gerodimos et al [66]</td>
<td>30 males in each group: aged 12.3±0.1 years Aged 13.4±0.2 years Aged 14.5±0.3 years Aged 15.2±0.1 years Aged 16.5±0.3 years Aged 17.4±0.2 years</td>
<td>N/A – analysis of strength in basketball players</td>
</tr>
<tr>
<td>Ferri, et al [67]</td>
<td>9 males aged 71.8±4.3 years</td>
<td>N/A – test retest design</td>
</tr>
<tr>
<td>Greene et al. [68]</td>
<td>20 females aged 16±1.7 years (middle distance runners)</td>
<td>20 females aged 16±1.8 years</td>
</tr>
<tr>
<td>McCarthy, et al [69]</td>
<td>47 females aged 64.51±3.08 years</td>
<td>N/A – comparison of sit to stand movement and hip, knee and ankle strength</td>
</tr>
<tr>
<td>Demonty et al [70]</td>
<td>10 males mean age 52.8 with occlusive arterial disease</td>
<td>10 males mean age 53.9 years</td>
</tr>
<tr>
<td>Reeves and Narici [71]</td>
<td>4 males, 4 females aged 25.1±2.6 years</td>
<td>N/A – examination of muscle fascicles during dynamic movement</td>
</tr>
<tr>
<td>Ferri et al [72]</td>
<td>16 males aged 67.9±0.9 years</td>
<td>N/A – test retest protocol</td>
</tr>
<tr>
<td>Tsiokanos, et al [4]</td>
<td>29 males aged 22.1±2.2 years</td>
<td>N/A – comparison of leg strength and jumping performance</td>
</tr>
<tr>
<td>Schulze et al [33]</td>
<td>8 males 27.1±3.0, 8 males 29.5±2.9 years (underwent unilateral lower limb)</td>
<td>8 males 31.4±2.9 years, 8 males 32.5±3.9 years</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Design/Measurements</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bourdel-Marchasson et al [73]</td>
<td>4 males, 7 females aged 87.1±5.7 years (malnourished)</td>
<td>Suspension for 21 days</td>
</tr>
<tr>
<td>Ademoglu et al. [74]</td>
<td>3 males, 1 female between 24 and 47 years (average 35)</td>
<td>Contralateral ankle</td>
</tr>
<tr>
<td>Mouraux et al [75]</td>
<td>4 males, 6 females aged 24.7±3.2 years</td>
<td>N/A – test retest design</td>
</tr>
<tr>
<td>Guo and Song [76]</td>
<td>10 males aged 22.4±2.6 years</td>
<td>14 males aged 19.4±0.8 years</td>
</tr>
<tr>
<td>Behrens et al. [77]</td>
<td>7 short track speed skaters aged 17.1±1.3 years (gender not stated)</td>
<td>N/A – test retest design</td>
</tr>
<tr>
<td>Collado et al [78]</td>
<td>6 males, 3 females aged 25.1±2.57 (eccentric training); 4 males, 5 females aged 23.3±2.8 (concentric training)</td>
<td>2 males, 8 females aged 24.4±3.06</td>
</tr>
<tr>
<td>Latour et al [79]</td>
<td>10 males, age not stated</td>
<td>10 males, aged not stated</td>
</tr>
<tr>
<td>Urguden et al [80]</td>
<td>15 males, 5 females aged 20.6 years (range 16 – 32 years) with chronic ankle instability</td>
<td>‘20 patients with same demographic characteristics’</td>
</tr>
<tr>
<td>van Cingel et al [15]</td>
<td>15 males aged 34.2±9.32 years; 15 females aged 28.6±8.64 years</td>
<td>N/A – reproducibility study</td>
</tr>
<tr>
<td>Sekir et al. [34]</td>
<td>24 males aged 21.1±1.8 with functional ankle instability</td>
<td>N/A – reliability study</td>
</tr>
<tr>
<td>Sekir et al. [6]</td>
<td>24 males aged 21±2 years with unilateral functional ankle instability</td>
<td>Contralateral ankle</td>
</tr>
<tr>
<td>Hoiness et al [81]</td>
<td>9 males aged 26.2±4.4 years (using normal bike pedal); 10 males aged 24.5±3.9 years (using bi-directional bike pedal)</td>
<td>Contralateral ankle</td>
</tr>
<tr>
<td>Yildiz et al [82]</td>
<td>8 males aged 26.2±2 years with chronic ankle instability</td>
<td>9 males aged 25±2 years</td>
</tr>
<tr>
<td>Sanioglu et al. [83]</td>
<td>9 males, 7 females aged 24.3 ±4.12 years</td>
<td>Strength with ankle taped vs not taped</td>
</tr>
<tr>
<td>Visamara et al. [84]</td>
<td>11 adults aged 33±4.3 years</td>
<td>20 healthy adults aged 28±7.8 years</td>
</tr>
<tr>
<td>Giagazoglou et al [85]</td>
<td>10 blind females aged 33.5±7.9 years</td>
<td>10 healthy females aged 33.5±8.3 years</td>
</tr>
<tr>
<td>Taskiran et al[86]</td>
<td>2 males, 11 females aged 34.3±9.2 years</td>
<td>N/A test – retest reliability study</td>
</tr>
<tr>
<td>Geremia et al [87]</td>
<td>5 individuals (no population data given)</td>
<td>Contralateral ankle</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Comparison</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Tallent et al [88]</td>
<td>10 resistance trained males aged 22±2 years</td>
<td>9 untrained males aged 26±3 years</td>
</tr>
<tr>
<td>Frasson et al [89]</td>
<td>36 females, age not stated</td>
<td>Ballet dancers versus volleyball players</td>
</tr>
<tr>
<td>Wilcox et al [90]</td>
<td>8 males, 12 females mean age 61 range 28 - 80</td>
<td>Contralateral ankle control</td>
</tr>
<tr>
<td>Sammarco et al [91]</td>
<td>16 males mean age 53.4 range 18-74 and 24 female mean age 55 range 15-74</td>
<td>Contralateral ankle control</td>
</tr>
</tbody>
</table>

Table 1. Papers which used the Cybex Norm to measure isokinetic AMS displayed in terms of age and gender of participants
<table>
<thead>
<tr>
<th>Reference</th>
<th>Prone/Supine/weight bearing</th>
<th>Degree of Knee Flexion</th>
<th>Warm up</th>
<th>Speed / contraction type, in °/s</th>
<th>Sets and Repetitions</th>
<th>Dominant or non-dominant foot</th>
<th>Encouragement given</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckley et al [45]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>60, 120, 180, 240 eccentric PF</td>
<td>3 reps at each speed</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
<tr>
<td>Alfieri et al [46]</td>
<td>Supine</td>
<td>80°</td>
<td>3 reps at free angular speed</td>
<td>30 PF DF INV EVE</td>
<td>5 reps</td>
<td>Not stated</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Fong and Tsang [47]</td>
<td>Prone</td>
<td>0°</td>
<td>3 trials</td>
<td>60, 240 PF DF concentric</td>
<td>3 trials, 10 seconds between trials (reps per trial not stated)</td>
<td>Dominant (self reported)</td>
<td>Not stated</td>
</tr>
<tr>
<td>Noguchi et al [48]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>1 ‘practice run’</td>
<td>30</td>
<td>‘2 tests in between 1 minute intervals’</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
<tr>
<td>Strejcova et al [49]</td>
<td>Supine</td>
<td>90°</td>
<td>Not stated</td>
<td>30, 120 PF DF</td>
<td>5 reps 30°, 15 reps 120°</td>
<td>dominant</td>
<td>Not stated</td>
</tr>
<tr>
<td>Tan et al [50]</td>
<td>Supine</td>
<td>Not stated</td>
<td>‘familiarisation and a warm up’ no detail given</td>
<td>30, 60 PF DF</td>
<td>2 sets of 3 reps 1 minute rest between</td>
<td>dominant</td>
<td>Not stated</td>
</tr>
<tr>
<td>Wang [51]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>60, 120, 180, 240, 300, 360, 420, 480 concentric; 60, 8 reps at each concentric speed and 5 reps at each eccentric</td>
<td>both</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Position</td>
<td>Initials</td>
<td>Warm-up</td>
<td>Speeds (concentric, eccentric)</td>
<td>Reps per speed</td>
<td>Rest</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Zhang and Xia [52]</td>
<td></td>
<td></td>
<td></td>
<td>120, 180, 240, 300 eccentric</td>
<td>60, 120, 180, 240, 300, 420, 480 concentric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 reps at each speed, 20secs between reps</td>
<td></td>
<td>both</td>
</tr>
<tr>
<td>Patterson & Ferguson [53]</td>
<td>Prone</td>
<td>0°</td>
<td>5 contractions at each speed</td>
<td>30, 60, 120 PF concentric</td>
<td>3 reps at each speed. 1 minute between reps</td>
<td></td>
<td>both, Verbal encouragement given</td>
</tr>
<tr>
<td>Gopalakrishnan et al [54]</td>
<td>Prone</td>
<td>0°</td>
<td>5mins bike 25-50W 60-80rpm. 5 sub max reps, 2-3 max reps 2mins rest</td>
<td>30 PF DF concentric eccentric</td>
<td>5 reps ecc 5 reps con</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Reeves, et al [55]</td>
<td>Prone</td>
<td>0°</td>
<td>Not stated</td>
<td>60, 120, 180, 240 concentric PF</td>
<td>Not stated</td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>Li, Xu, & Hong [7]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>30 PF DF concentric.</td>
<td>3 reps no info on rest</td>
<td>dominant</td>
<td></td>
</tr>
<tr>
<td>Koutsioras et al [56]</td>
<td>Prone</td>
<td>0°</td>
<td>3 sub max reps</td>
<td>60, 120 concentric and eccentric PF</td>
<td>3 max reps at each speed for each movement</td>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Position</td>
<td>Angle</td>
<td>Warm-up/Preparation</td>
<td>Speeds</td>
<td>Sets</td>
<td>Rest Between Sets</td>
<td>Reps at Each Speed</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>----------------------</td>
<td>--------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Eyigor et al. [57]</td>
<td>Supine</td>
<td>90°</td>
<td>10 min walk 2 sub max reps 180° per sec</td>
<td>60, 120, 180 PF DF</td>
<td>6 reps at each speed 20s between speeds</td>
<td>Not stated</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Reeves et al. [58]</td>
<td>Prone</td>
<td>0°</td>
<td>Not stated</td>
<td>60, 120, 180, 240 eccentric PF</td>
<td>3 reps at each speed 2-3 minute rest between</td>
<td>left</td>
<td>Not stated</td>
</tr>
<tr>
<td>Özçaldiran & Durmaz [40]</td>
<td>Supine</td>
<td>0°</td>
<td>5 min warm up plus 4 sub max reps</td>
<td>30, 120 PF DF</td>
<td>5 reps at 30° per sec 15 reps at 120° per sec with 30 sec rest between sets</td>
<td>Both</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Thom et al. [59]</td>
<td>Prone</td>
<td>0°</td>
<td>Familiarisation session and 5 isometric MVCs</td>
<td>50, 100, 150, 200, 250 Concentric PF</td>
<td>4 reps at each speed, 1 min between reps, 5mins between speeds.</td>
<td>left</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Muller et al. [60]</td>
<td>Supine</td>
<td>30°</td>
<td>5 sub max reps</td>
<td>30, 60 PF concentric</td>
<td>2 sets 5 reps 30°sec 1 set 5 reps 60° per sec</td>
<td>right</td>
<td>Not stated</td>
</tr>
<tr>
<td>Eyigor et al. [61]</td>
<td>Supine</td>
<td>90°</td>
<td>10 min walk then 2 sub max PF/DF reps at 180° per sec</td>
<td>60, 120, 180 PF DF</td>
<td>6 reps at each speed. 20s between reps</td>
<td>both</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Study</td>
<td>Position</td>
<td>Angle</td>
<td>Training</td>
<td>Exercise Details</td>
<td>Dominant</td>
<td>Other Details</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Dehail et al. [3]</td>
<td>Supine</td>
<td>0°</td>
<td>3 training reps before each set</td>
<td>30, 60 Concentric PF, 2 x 5 reps at 30° per sec, 1 x 5 reps at 60° per sec, 2 mins between sets</td>
<td>dominant</td>
<td>Verbal encouragement given</td>
<td></td>
</tr>
<tr>
<td>Xu et al [62]</td>
<td>Supine</td>
<td>Not stated</td>
<td>5 mins bike 50-60w 3 submax reps</td>
<td>30 concentric PF DF, 3 reps</td>
<td>dominant</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>Neto et al [63]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>30, 60, 120, Concentric 60, eccentric PF, 3 reps of each apart from 5 reps of 120°</td>
<td>All subjects were right leg dominant, not clear which leg was tested.</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>Mahieu et al [64]</td>
<td>Supine</td>
<td>0°</td>
<td>10 sub-max reps at 90° per sec</td>
<td>30, 120 Concentric PF DF, 3 reps at 30° per sec and 5 reps at 120° per sec, 1 minute rest between tests</td>
<td>both</td>
<td>Verbal encouragement given</td>
<td></td>
</tr>
<tr>
<td>Greene et al [65]</td>
<td>‘Standard positioning used’</td>
<td>Not stated</td>
<td>Not stated</td>
<td>60 PF DF, 5 reps</td>
<td>dominant</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>Gerodimos et al [66]</td>
<td>Supine</td>
<td>0°</td>
<td>15 minutes cycling and stretching 3</td>
<td>30, 90 Concentric, 5 reps of each movement at each speed, 5</td>
<td>1 randomly determined leg</td>
<td>Visual feedback, no verbal</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Position</td>
<td>Angle</td>
<td>Reps</td>
<td>Speed</td>
<td>Sets</td>
<td>Rest</td>
<td>Feedback</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Ferri, et al [67]</td>
<td>Prone</td>
<td>0°</td>
<td>‘several’ warm up contractions</td>
<td>60, 120 concentric 60 eccentric PF DF</td>
<td>3 reps at each speed, 1 min between reps</td>
<td>Left (non dominant in all subjects)</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Greene et al [68]</td>
<td>‘Standard positioning used’</td>
<td>Not stated</td>
<td>60 PF DF</td>
<td>5 reps</td>
<td>dominant</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>McCarthy et al [69]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>3 submax reps at 60° per sec</td>
<td>60 PF DF</td>
<td>5 reps right PF DF, 5 mins rest, 5 reps left PF DF</td>
<td>both</td>
<td>Not stated</td>
</tr>
<tr>
<td>Demonty et al [70]</td>
<td>Supine</td>
<td>‘straight’</td>
<td>10 mins bike 40w 60rpm 3 submax reps</td>
<td>120, 30 concentric PF DF</td>
<td>5 reps 120° 3 reps 30° 30s rest between sets</td>
<td>both</td>
<td>Not stated</td>
</tr>
<tr>
<td>Reeves and Narici [71]</td>
<td>Supine</td>
<td>90°</td>
<td>Warm up not stated</td>
<td>50, 100, 150, 200, 250, concentric eccentric DF</td>
<td>5 reps each movement each speed 180s rest between contraction sets</td>
<td>right</td>
<td>Not stated</td>
</tr>
<tr>
<td>Ferri et al [72]</td>
<td>Prone</td>
<td>180°</td>
<td>Several sub max reps</td>
<td>30, 60, 90, 120, PF</td>
<td>3 reps at each speed</td>
<td>dominant</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Tsiokanos, et al</td>
<td>Prone</td>
<td>0°</td>
<td>3 submax reps at</td>
<td>60, 120, 180</td>
<td>3 reps at each speed, 30s</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
<tr>
<td>Reference</td>
<td>Position</td>
<td>Degree</td>
<td>Exercise Details</td>
<td>Duration Details</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulze et al [33]</td>
<td>Supine</td>
<td>160°</td>
<td>4 sub max contractions at 50% peak torque at each speed</td>
<td>30, 60, 120, 180, 240, 300 concentric eccentric PF</td>
<td>left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bourdel-Marchasson et al [73]</td>
<td>Supine</td>
<td>0°</td>
<td>3 training exercises (reps) for each set</td>
<td>30, 60 PF</td>
<td>Right (or the healthy side)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ademoglu et al. [74]</td>
<td>Supine</td>
<td>10°</td>
<td>2 submax and 1 max rep</td>
<td>30, 120 PF DF</td>
<td>Both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouraux et al [75]</td>
<td>Supine</td>
<td>90°</td>
<td>10 minutes bike and familiarisation with the equipment</td>
<td>30, 60, 90 PF Concentric eccentric</td>
<td>Both pre and post training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo and Song [76]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>10 mins preparatory activities and 2 sets 3 reps at 60°</td>
<td>60, 120, 180, 240, 300 concentric</td>
<td>right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Position</td>
<td>Angle Range</td>
<td>Protocol Description</td>
<td>Reps</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behrens et al [77]</td>
<td>Supine</td>
<td>Between 100° - 110°</td>
<td>10 mins bike at 100W 5 submax concentric reps at 240° per sec</td>
<td>3 max reps</td>
<td>right</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>240° inv eve Concentric</td>
<td></td>
<td>No visual feedback, verbal encouragement was given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collado et al [78]</td>
<td>Supine</td>
<td>90°</td>
<td>3 practice trials</td>
<td>3 reps</td>
<td>Both (one had suffered lateral ankle sprain)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 concentric eccentric</td>
<td></td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latour et al [79]</td>
<td>Supine (based on photo, not stated in text)</td>
<td>Bent (based on photo, not stated in text)</td>
<td>Not stated</td>
<td>30, 120, inv eve concentric eccentric</td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30, 120, inv eve concentric eccentric</td>
<td></td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 reps</td>
<td></td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urguden et al [80]</td>
<td>Supine</td>
<td>80 – 110°</td>
<td>Not stated although proprioception test performed on the Cybex prior to isokinetic tests</td>
<td>60, 150 inv eve</td>
<td>Both (1 injured 1 uninjured)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60, 150 inv eve</td>
<td></td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Cingel et al [15]</td>
<td>Supine</td>
<td>10°</td>
<td>5min bike 75w 70 – 80rpm, 3 submax inv eve 2 max inv eve</td>
<td>3 sets of 3 reps at each speed</td>
<td>Both</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30, 120 inv eve</td>
<td></td>
<td>No visual feedback or verbal encouragement given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sekir et al. [34]</td>
<td>Supine</td>
<td>80° - 110°</td>
<td>10minute ‘general ROM</td>
<td>5 maximal contractions</td>
<td>14 dominant 10 non dominant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 inv eve concentric</td>
<td></td>
<td>Verbal encouragement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Position</td>
<td>Angle</td>
<td>Warm Up</td>
<td>Duration</td>
<td>Exercise Description</td>
<td>Rest Between</td>
<td>Injured Ankle</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sekir et al. [6]</td>
<td>Supine</td>
<td>80° - 110°</td>
<td>No warm up</td>
<td>10 minute</td>
<td>‘general ROM and stretching’ 3 submax contractions</td>
<td>2 mins between inv and eve tests</td>
<td>(only injured ankle tested)</td>
</tr>
<tr>
<td>Høiness et al [81]</td>
<td>Supine</td>
<td>80° - 110°</td>
<td>No warm up</td>
<td>60, 180 eve</td>
<td>5 maximal contractions</td>
<td>14 dominant</td>
<td>Verbal encouragement given</td>
</tr>
<tr>
<td>Sanioglu et al. [83]</td>
<td>Supine</td>
<td>Not stated</td>
<td>5 mins cycling, 6-10 submax PF DF contractions, 2-3 max PF DF contractions then 2 mins rest</td>
<td>60, 180 PF DF Concentric</td>
<td>5 reps at 60° per sec 15 reps at 180° per sec</td>
<td>5 reps 15 min rest 5 reps (to ensure reliability)</td>
<td>Both (1 injured 1 uninjured)</td>
</tr>
<tr>
<td>Visamara et al. [84]</td>
<td>Prone</td>
<td>180°</td>
<td>Not stated</td>
<td>60, 120 PF DF</td>
<td>5 reps at each speed, 1 min rest between reps</td>
<td>both</td>
<td>Not stated</td>
</tr>
<tr>
<td>Giagazoglou et al [85]</td>
<td>Supine</td>
<td>‘fully extended’</td>
<td>3 submax contractions</td>
<td>30, 60, 120 PF DF concentric eccentric</td>
<td>3 reps of each movement at each speed with 2 mins between</td>
<td>Dominant</td>
<td>Consistent, identical verbal encouragement provided, no visual feedback</td>
</tr>
<tr>
<td>Study</td>
<td>Position</td>
<td>Initial Position</td>
<td>Work Type</td>
<td>Reps</td>
<td>Rest</td>
<td>Speeds</td>
<td>Control</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Taskiran et al [86]</td>
<td>Prone</td>
<td>‘full extension’</td>
<td>4 submax</td>
<td>30, 120 PF DF concentric</td>
<td>5 reps at 30° per sec</td>
<td>10mins rest</td>
<td>Both (non-dominant was sprained)</td>
</tr>
<tr>
<td>Geremia et al [87]</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>60, 120, 180, 240, 300 PF DF concentric</td>
<td>3 reps per speed, 90sec rest between speeds</td>
<td>Both (non-dominant was sprained)</td>
<td>Not stated</td>
</tr>
<tr>
<td>Tallent et al [88]</td>
<td>Supine</td>
<td>120°</td>
<td>Not stated</td>
<td>15 DF concentric and eccentric</td>
<td>3 reps</td>
<td>dominant</td>
<td>Not stated</td>
</tr>
<tr>
<td>Frasson et al [89]</td>
<td>Prone</td>
<td>180°</td>
<td>A ‘series’ of submax contractions at different speeds</td>
<td>60, 120, 180, 240, 300, 360, 420 PF DF concentric</td>
<td>3 reps at each speed, 2mins rest between reps</td>
<td>right</td>
<td>Not stated</td>
</tr>
<tr>
<td>Wilcox et al [90]</td>
<td>Prone</td>
<td>Knee fully extended</td>
<td>3 trial reps at each speed</td>
<td>30, 120 PF DF concentric inferred but not stated</td>
<td>5 reps at 30° per sec, 10 reps at 120° per sec</td>
<td>Both</td>
<td>Not stated</td>
</tr>
<tr>
<td>Sammarco et al [91]</td>
<td>Supine</td>
<td>Knee ‘flexed’</td>
<td>Not stated</td>
<td>‘standardised protocol’</td>
<td>5 reps</td>
<td>Both</td>
<td>Not stated</td>
</tr>
<tr>
<td>Yildiz et al [82]</td>
<td>Supine</td>
<td>80° - 110°</td>
<td>10 minute warm up – general rom and stretching, 3</td>
<td>120 concentric inv, eccentric eve</td>
<td>5 reps inv, 2mins rest, 5 reps eve</td>
<td>Not stated</td>
<td>Verbal encouragement</td>
</tr>
</tbody>
</table>
Table 2 Details of the methodological variables found in papers using the Cybex Norm to measure isokinetic AMS. PF = plantar flexion; DF = dorsiflexion; Inv = inversion; Eve = eversion
Initial search of 6 databases and 3 academic search engines:
613 papers

542 papers rejected as they did not meet the eligibility criteria

71 papers met eligibility criteria

16 papers rejected as duplicates

55 papers put forward for analysis

Figure 1 A chart showing the results at each stage of the search process.
Figure 2. A graph showing the breakdown of the numbers of males and females tested in different age groups.
References

