H

University of
HUDDERSFIELD

University of Huddersfield Repository
Alviano, Mario and Faber, Wolfgang

The Complexity Boundary of Answer Set Programming with Generalized Atoms under the FLP
Semantics

Original Citation

Alviano, Mario and Faber, Wolfgang (2013) The Complexity Boundary of Answer Set
Programming with Generalized Atoms under the FLP Semantics. In: Logic Programming and
Nonmonotonic Reasoning. Lecture Notes in Computer Science, 8148 (8148). Springer Verlag, pp.
67-72. ISBN 978-3-642-40563-1

This version is available at http://eprints.hud.ac.uk/id/eprint/21032/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

The Complexity Boundary of Answer Set Programming
with Generalized Atoms under the FLP Semantics

Mario Alviano and Wolfgang Faber

Department of Mathematics
University of Calabria
87030 Rende (CS), Italy
{alviano, faber}@mat.unical.it

Abstract. In recent years, Answer Set Programming (ASP), logic programming
under the stable model or answer set semantics, has seen several extensions by
generalizing the notion of an atom in these programs: be it aggregate atoms, HEX
atoms, generalized quantifiers, or abstract constraints, the idea is to have more
complicated satisfaction patterns in the lattice of Herbrand interpretations than
traditional, simple atoms. In this paper we refer to any of these constructs as gen-
eralized atoms. It is known that programs with generalized atoms that have mono-
tonic or antimonotonic satisfaction patterns do not increase complexity with re-
spect to programs with simple atoms (if satisfaction of the generalized atoms can
be decided in polynomial time) under most semantics. It is also known that gen-
eralized atoms that are nonmonotonic (being neither monotonic nor antimono-
tonic) can, but need not, increase the complexity by one level in the polynomial
hierarchy if non-disjunctive programs under the FLP semantics are considered.
In this paper we provide the precise boundary of this complexity gap: programs
with convex generalized atom never increase complexity, while allowing a single
non-convex generalized atom (under reasonable conditions) always does. We also
discuss several implications of this result in practice.

1 Introduction

Various extensions of the basic Answer Set Programming language have been proposed
by allowing more general atoms in rule bodies, for example aggregate atoms, HEX
atoms, dl-atoms, generalized quantifiers, or abstract constraints. The FLP semantics de-
fined in [5] provides a semantics to all of these extensions, as it treats all body elements
in the same way (and it coincides with the traditional ASP semantics when no general-
ized atoms are present). The complexity analyses reported in [S] show that in programs
with single simple atom rule heads, the main complexity tasks do not increase when the
generalized atoms present are monotonic or antimonotonic (col/N P-complete for cau-
tious reasoning), but there is an increase in complexity otherwise (I11-complete for
cautious reasoning). These complexity results hold under the assumptions of dealing
with propositional programs and that determining the satisfaction of a generalized atom
in an interpretation can be done in polynomial time. Also throughout this paper, we will
work under these assumptions.

However, there are several examples of generalized atoms that are nonmonotonic
(neither monotonic nor antimonotonic), for which reasoning is still in coN P. Examples

for such easy nonmonotonic generalized atoms are count aggregates with an equality
guard, cardinality constraints with upper and lower bounds, or weight constraints with
non-negative weights and upper and lower guards. All of these have the property of be-
ing convex, which can be thought of as a conjunction of monotonic and antimonotonic.
Convex generalized atoms have been studied in [7], and it is implicit in there, and in
general not hard to see that there is no increase in complexity in the presence of atoms
of this kind.

In this paper, we show that convex generalized atoms are indeed the only ones for
which cautious reasoning under the FLP semantics remains in co/N P. Our main result
is that when a language allows any kind of non-convex generalized atom, /74 -hardness
of cautious reasoning can be established. We just require two basic properties of gener-
alized atoms: they should be closed under renaming of atoms, and only a subset of all
available (simple) atoms should be relevant for the satisfaction of a single generalized
atom (this subset is the domain of the generalized atom). All types of generalized atoms
that we are aware of meet these assumptions. Essentially, the first requirement means
that it is possible to rename the simple atoms in the representation of a generalized
atom while retaining its semantic properties, while the second means that modifying
truth values of simple atoms that are irrelevant to the general atom does not alter its
semantic behavior.

Our result has several implications that are discussed in more detail in section 4.
The main ones concern implementation and rewriting issues, but also simpler identifi-
cation of the complexity of ASP extensions. In the following, we will present a simple
language for our study in section 2; essentially, we view a rule body as a single “struc-
ture” that takes the role of a generalized atom (sufficiently detailed and expressive, since
the FLP semantics treats rule bodies monolithically anyway and because convexity is
closed under conjunction). In section 3 we present our main theorem and its proof, and
in section 4 we wrap up.

2 Syntax and Semantics

Let U be a fixed, countable set of propositional atoms. An interpretation [is a subset of
U. A structure S on U is a mapping of interpretations into Boolean truth values. Each
structure .S has an associated domain Dg C U, indicating those atoms that are relevant
to the structure. A general rule r is of the following form:

H(r) < B(r) (D

where H (1) is a propositional atom in { referred as the head of r, and B(r) is a struc-
ture on U called the body of . No particular assumption is made on the syntax of B(r),
in the case of normal propositional logic programs these structures are conjunctions of
literals. We assume that structures are closed under propositional variants, that is, for
any structure .S, also So is a structure for any bijection o : U — U, the associated
domainis Dg, = {c(a) | a € Dg}.

A general program P is a set of general rules. By datalog® we refer to the class of
programs that may contain only the following rule bodies: structures corresponding to
conjunctions of atoms, S, or any of its variants So.

Let I C U be an interpretation. I is a model for a structure S, denoted I |= S, if S
maps [to true. Otherwise, if S maps I to false, I is not a model of S, denoted I [~ S.
We require that atoms outside the domain of S are irrelevant for modelhood, that is, for
any interpretation I and X C U \ Dg it holds that I = S ifand only if IU X |= S.
Moreover, for any bijection o : U — U, let Io = {o(a) | a € I}, and we require that
Io = Soifand only if I |= S. I is a model of a rule r of the form (1), denoted I |= r,
if H(r) € I whenever I = B(r). I is a model of a program P, denoted I = P, if
I E=rforeveryruler € P.

The FLP reduct P’ of a program P with respect to [is defined as the set {r | r €
P AT = B(r)}. I is a stable model of P if I = P! and for each J C I it holds that
J = PI. A propositional atom a is a cautious consequence of a program P, denoted
P =, a, if a belongs to all stable models of P.

Structures can be characterized in terms of monotonicity as follows: Let S be a
structure. .S is monotonic if for all pairs X,Y of interpretations such that X C Y,
X E S implies Y | S. S is antimonotonic if for all pairs Y, Z of interpretations
suchthat Y C Z, Z | S implies Y |= S. S is convex if for all triples X,Y, Z of
interpretations such that X CY C Z, X = Sand Z |= S implies Y |= S.

3 Main Complexity Result

It is known that cautious reasoning over answer set programs with generalized atoms
under FLP semantics is IT2’-complete in general. It is also known that the complexity
drops to colN P if structures in body rules are constrained to be convex. This appears
to be “folklore” knowledge and can be argued to follow from results in [7]. An easy
way to see membership in coN P is that all convex structures can be decomposed into a
conjunction of a monotonic and an antimonotonic structure, for which membership in
coN P has been shown in [5].

We will therefore focus on showing that convex structures define the precise bound-
ary between the first and the second level of the polynomial hierarchy. In fact, we prove
that any extension of datalog by at least one non-convex structure and its variants raises
the complexity of cautious reasoning to the second level of the polynomial hierarchy.

The hardness proof is similar to the reduction from 2QBF to disjunctive logic pro-
grams as presented in [2]. This reduction was adapted to nondisjunctive programs with
nonmonotonic aggregates in [5], and a similar adaption to weight constraints was pre-
sented independently in [6]. The fundamental tool in these adaptations in terms of struc-
tures is the availability of structures 57, S5 that allow for encoding “need to have either
atom x” or 2%, or both of them, but the latter only upon forcing the truth of both atoms.”
S1, S2 have domains Dg, = Dg, = {zT, 2%} and the following satisfaction patterns:

0= S {z"} = S {z"} £ 51 {27, 2"} E Sy
0= S2 {zT} £ S, {z"} = S, {zT, 2"} = S,

A program that meets the specification is P = {27 « Sy, 2" + S5}. Indeed, 0 is
not an answer set of P as P’ = P and () [~ P (so also any extension of P can never
have an answer set containing neither 27 nor 2%'). Both {27} and {#!"} are answer sets
of P, because the reducts cancel one appropriate rule. {z”, z¥'} is not an answer set of

P because of minimality (P{*"*"} = P and {z7, 2"} = P, but also {z”} |= P and
{z¥} = P), but can become an answer set in an extension of P that forces the truth of
both z” and =’

A crucial observation is that S; and S5 are not just nonmonotonic, but also non-
convex. The main idea of our new proof is that any non-convex structure S that is
closed under propositional variants can take over the role of both S; and Ss. For such
an S, we will create appropriate variants So” and So!" that use indexed copies of T
and 2% in order to obtain the required multitudes of elements:

{a1,...,ap} E S {«T,..., é:}):SUT {of . 2 £}|:SU
{a1,...,ap,...,aq} =S {T, ..., %}%SUT {xF,. . x %}%Sa
{ar,...,ap,...,aq,...a,} ES {2 ... 2} ESoT {2F,... 2l'} E Sol

We can then create a program P’ acting like P by using ', %', So" and So™

place of 2T, ¥ S; and S5, respectively. In addition, we need some auxiliary rules
for the following purposes: to force 7, ... ,IZ;, o ,xg to hold always; to require
the same truth value for I’Z+1, e ,x?; and similar for x5+1, R :z:qF; to force truth of
ang, ..., 2T whenever any of qu+17 ...,2T is true and to force truth of x5+1, -
whenever any of xf PR , 2L is true. The resulting program can then give rise to an-
swer sets containing either qu or :cq , or both JCT xf; when they are forced in an exten-
sion of the program. In particular, the answer sets of P’ are the following: {z7', ..., xg,
zf,...,x]'}, corresponding to {z” };and {7 , ..., 2], xf, ... &l'}, corresponding to
{2}, Model {2T,... 2T 2f ... 2} instead is not an answer set of P’ because of
minimality, but it can be turned into an answer set by extending the program suitably.
In the proof, we need to make the assumption that all symbols = and xf are outside

the domain Dg, which is not problematic if ¢/ is sufficiently large.

Theorem 1. Let S be any non-convex structure on a set {ay,...,as}. Cautious rea-
soning over datalog® is T} -hard.

Proof. Deciding validity of a QBF ¥ = Vz;---Vz,,3y; --- Jy, E, where E is in
3CNEF, is a well-known HQP -hard problem. Formula ¥ is equivalent to —¥’, where
V' = Jxy -, Vy1 - -Vy, E’, and E’ is a 3DNF equivalent to —=F and obtained
by applying De Morgan’s laws. To prove the claim we construct a datalog® program
Py such that Py =, w (w a fresh atom) if and only if ¥ is valid, i.e., iff ¥’ is invalid.

Since S is a non-convex structure by assumption, there are interpretations A, B, C
suchthat AC B C C, A= Sand C |= S but B |~ S. Without loss of generality, let
A=A{a1,...,ap}, B={as,...,a5y and C = {aq,...,a,},for0 <p < g<r <s.
Let B/ = (11)1 A\ l172 A\ Z1)3) VeV (lk}l AN lk72 A\ Zk)3), for some k£ > 1.

Program Py is reported in Fig. 1, where oT(j) =z} and of (a;) = xf; for all
i=1,....,mandj =1 ...,q,G (aj) —y” andGF(aJ) —y” for all 1 = 1 N
andj =1,...,q; p(x;) = a: »and p(-x;) = J: Lforalli =1,....,m; u(y;) = ygr
and pu(—y;) = yfr forall i = 1,...,

Rules (2)—(9) represent one copy of the program P’ discussed earlier for each of
the z; and y; (1 = 1,...,m; 7 = 1,...,n), and so force each answer set of Py to

contain at least one of xz 0 f @ and ijq, yJF @ respectively, encoding an assignment

:réje . :cf;]e . Z:G{l,...,m},je{l,...,p} 2)
x?(—m%k m%]ew%k 1‘6{1,.,.7m},J,ke{p—l—l,...,q} 3)
i xiy wigexg t€{l...om},je{p+1,...,r}, ke{g+1,....r} (4
xzqualF queSazﬂT 1e€{l,...,m} (5)
yi;]-% . yf;j<— . zie{l,...,n},jje{l,...,p} (6)
yifjeyifk y?jeyiﬁk %e{l,...,n},J,ke{p+1,...,q} (7
y%ﬂj<—yi7kp yiﬁj<—yi,kT 1‘6{1,...,n}7je{p-l-l,...ﬂ“},ke{q-i—l,...m} (8)
Yiq < S0; Yig < S0; ie{l,...,n} 9)

ylj < sat oyl sat ie{l,...,n},je{p+1,...,r} (10)
sat u(liﬁl),/.t(liyz), ,U,(li,g) 1€ {1, ey]f} (11)
aj + je{l,...,p} (12)
aj < ag jshke{p+1,...,q} (13)
a; < sat jef{p+1,....q} (14)
w8 (15)

Fig. 1. Program Py

of the propositional variables in ¥’. Rules (10) are used to simulate universality of
the y variables, as described later. Having an assignment, rules (11) derive sat if the
assignment satisfies some disjunct of E’ (and hence also E’ itself). Finally, rules (12)—
(15) derive w if sat is false.

We first show that ¥ not valid implies Py F. w. If ¥ is not valid, ¥’ is valid. Hence,
there is an assignment v for x1, ..., x,, such that no extension to y1, ..., y, satisfies
E, i.e., all these extensions satisfy E’. Consider the following model of Py :

M:{xéj|y(mi):1,i= yeeesmy J=p+1,...,q}
UG vz =0, =1 . j=p+1ooq)
U{x%j,l“fﬂi: yeeym, j=1,...,p}

Uyl uli li=1,...n,j=1,...,r}
Ufa;|j=1,...,q}U{sat}

We claim that M is a stable model of Py. Consider I C M such that I | P,},W T
contains all x atoms in M due to rules (2)—(5). I also contains an assignment for the
y variables because of rules (6)—(9). Since any assignment for the ys satisfies at least a
disjunct of E’, from rules (11) we derive sat € I. Hence, rules (10) force all i atoms
to belong to I, and thus I = M holds, which proves that M is a stable model of Py.
Now we show that Py }~. w implies that ¥ is not valid. To this end, let M be
a stable model of Py such that w ¢ M. Hence, by rule (15) we have that M [~ S.
Since A C M because of rules (12), in order to have M [~ S, atoms in B have
to belong to M. These atoms can be supported only by rules (13)—(14), from which
sat € M follows. From sat € M and rules (10), we have y ,yf, € M for all
i =1,...,n. And M contains either xgjq or qu fori =1,..., m because of rules (2)—
(5). Suppose by contradiction that ¥ is valid. Thus, for all assignments of x1, ..., 2y,
there is an assignment for yi,...,y, such that E is true, i.e., E’ is false. Let v be

an assignment satisfying F and such that v(z;) = 1 if xzjq € M and v(z;) = 0if

af, € Mforalli =1,...,m.Consider I = M\ {sat}\{y},,yf;[i=1,...,n, j=
G LY [v) = 0, i =1y, = pt L gh \ {uF, | v(y) =
1,i=1,...,n, j=p+1,...,q}. Since v satisfies F, v does not satisfy E’, i.e., no
disjunct of E’ is satisfied by v. Hence, all rules (11) are satisfied, and thus I = Péw s
contradicting the assumption that M is a stable model of Py, and so ¥ is not valid. O

4 Discussion

Our results have several consequences. First of all, from our proof it is easy to see that
convex generalized atoms also form the complexity boundary for deciding whether a
program has an answer set (in this case the boundary is between N P and X1’) and for
checking whether an interpretation is an answer set of a program (from P to coN P).
It also means that for programs containing only convex structures, techniques as those
presented in [1] can be used for computing answer sets, while the presence of any
non-convex structure requires more complex techniques such as those presented in [4].
There are several examples for convex structures that are easy to identify syntactically:
count aggregates with equality guards, sum aggregates with positive summands and
equality guards, dl-atoms that do not involve A and rely on a tractable Description Logic
[3]. However many others are in general not convex, for example sum aggregates that
involve both positive and negative summands, times aggregates that involve the factor
0, average aggregates, dl-atoms with A, and so on. It is still possible to find special cases
of such structures that are convex, but that requires deeper analyses.

The results also immediately imply impossibility results for rewritability: unless the
polynomial hierarchy collapses to its first level, it is not possible to rewrite a program
with non-convex structures into one containing only convex structures (for example, a
program not containing any generalized atoms), unless disjunction or similar constructs
are allowed in rule heads.

The results obtained in this work apply only to the FLP semantics. Whether the
results carry over in any way to other semantics is unclear and left to future work.

References

1. Alviano, M., Calimeri, F., Faber, W., Leone, N., Perri, S.: Unfounded Sets and Well-Founded
Semantics of Answer Set Programs with Aggregates. JAIR 42, 487-527 (2011)

2. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propo-
sitional Case. AMAI 15(3/4), 289-323 (1995)

3. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set pro-
gramming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495-1539
(2008)

4. Faber, W.: Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates. In
LPNMR’05. LNCS, vol. 3662, pp. 40-52. (2005)

5. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Al 175(1), 278-298 (2011), special Issue: John McCarthy’s Legacy

6. Ferraris, P.: Answer Sets for Propositional Theories. In LPNMR’05. LNCS, vol. 3662, pp.
119-131. (2005)

7. Liu, L., Truszczynski, M.: Properties and applications of programs with monotone and convex
constraints. JAIR 27, 299-334 (2006)

