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Abstract 

With an increasing application of clinching in different industrial fields, the 

demand for a better understanding of the knowledge of static and dynamic 

characteristics of the clinched joints is required. In this paper, the clinching process 

and tensile-shear failure of the clinched joints have been numerically simulated using 

finite element (FE) method. For validating the numerical simulations, experimental 

tests on specimens made of aluminium alloy have been carried out. The results 

obtained from tests agreed fairly well with the computational simulation. Tensile-

shear tests were carried out to measure the ultimate tensile-shear strengths of the 

clinching joints and clinching-bonded hybrid joints. Deformation and failure of joints 

under tensile-shear loading were studied. The normal hypothesis tests were performed 

to examine the rationality of the test data. This work was also aimed at evaluating 

experimentally and comparing the strength and energy absorption of the clinched 

joints and clinching-bonded hybrid joints. 
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1.  Introduction 

Advanced joining technology is an integral part of the manufacturing processes 

of lightweight structures. Many efforts have been spent to develop the suitability of 

various joining processes for application into lightweight structures [1-4]. Clinching 

has also been developed rapidly into a new branch of mechanical joining techniques 

[5. 6]. Clinching is a high-speed mechanical fastening technique which is suitable for 

point joining advanced lightweight sheet materials that are dissimilar, coated and hard 

to weld. The use of clinching is of great interest to many industrial sectors including 

aerospace and automotive. This, together with increasing use of light weight materials 

which normally are difficult or impossible to weld, has produced a significant 

increase in the use of clinching technology in engineering structures and components 

in recent years.  

The static and dynamic behaviour of clinched joints has been the subject of a 

considerable amount of experimental and numerical studies. A study on the joining 

mechanism of clinching has been conducted by Gao and Budde [7]. Some basic 

terms, such as the mechanical contact chains and their symbols and the joint 

networks, were introduced to establish a basic theory for analysing the joining 

mechanism. In Zheng et al.’s paper [8], the extensible die clinching process has been 

simulated using finite element (FE) method. The material flowing patterns have been 

compared between the fixed grooved die clinching and the extensible die clinching. 

The process monitoring systems are able to distinguish between accidental and 

systematic process errors and can, therefore, keep unnecessary plant stops to a 

minimum and ensure high levels of plant availability [9]. The influence of process 

parameters in extensible die clinching has been systematically investigated by 

Lambiase and colleague [10, 11]. Clinched joints were produced under different 

forming loads to evaluate the evolution of the joints’ profile experimentally. The 

suitability and economics of clinching processes have been studied by Varis [12, 13]. 

In another work, Varis pointed out several problems encountered in the long-term use 

of a clinching process and both the lack of systematic maintenance, and continuous 

follow-up were discussed [14]. Mori et al [15] carried out a comparison between the 

static and fatigue behaviour of joints produced with clinching and self-piercing 

riveting.  

The clinching process is a method of joining sheet metal or extrusions by 

localized cold forming of materials. The result is an interlocking friction joint 

between two or more layers of material formed by a punch into a special die. It is 

believed that the clinched joints act to augment the system damping capacity. In spite 

of the fact that the clinched joints have been widely used in manufacturing practice, 

the reports about energy absorption of the clinched joints have never been seen in 



previous literature. Recent work by present author and coworkers investigated the 

energy effect in the vibration analysis of the clinched joints [16]. Due to the complex 

clinched joint geometry and its three dimensional nature, it is difficult to obtain 

governing equations for predicting the mechanical properties of clinch joints. The 

experimental predictions are time-consuming and expensive. To overcome these 

problems, the FE method is increasingly used in recent decades. In this paper, the 

clinching process and clinched joint tensile-shearing have been numerically simulated 

using the commercial FE analysis software. Axisymmetric FE models were generated 

based on the Cowper-Symonds material models. An implicit solution technique 

with Lagrange method and r-self-adaptivity was used. For validating the numerical 

simulations of the clinching process and clinched joint tensile-shearing, experimental 

tests on specimens made of aluminium alloy 7075 were carried out. The structural 

analysis has also been performed for comparing load-bearing capacity and energy 

absorption of clinched joints and clinching-bonded hybrid joints. 

2.  Computational and Experimental Studies of Clinching Process 

2.1 Numerical simulation of clinching process 

A 2D axisymmetric model was generated using the commercial FE software LS-

Dyna. The von Mises yield criterion, the piecewise linear isotropic strain-hardening 

rule, and the associated flow rule were adopted in the plastic domain. Since clinching 

process involves large deformation, elements may become severely distorted. 

Distorted meshes are less accurate and may accordingly introduce numerical 

difficulties. For avoiding numerical problems due to mesh disturbances, the 

efficacious approach is to use an erosion or element kill technique. The element kill 

technique corresponds to the progressive removal of the fully damaged elements. 

When the elements are removed, the interfaces between the sheets and other parts 

become rough. For getting smoother interfaces, a small element size is required. 

However, a small element size increases the number of elements in the simulation and 

the time of the simulation. To take the whole situation into account, an implicit 

solution technique with Lagrange method and r-self-adaptivity has been used. 

As shown in Fig. 1, a single lap clinched joint comprises an upper sheet, lower 

sheet. The sheet materials tested were 7075 aluminium alloy sheets of dimensions 110 

mm length 20 mm width 2 mm thickness and were clinched together in the central 

part of lap section. The mechanical properties of the aluminium alloy sheets were as 

follow: Young’s modulus, E=68 GPa; Poisson’s ratio, v=0.33. 

Fig. 2 shows the FE model of clinching process. The punch, blank holder and die 

were modelled as rigid bodies, while the sheets were modelled as elasto-plastic 

materials. The piecewise-linear plasticity material model which adopts the Cowper-



Symbols model to consider the influence of strain rate was used. The relationship 

between the Cowper-Symbols model and yield stress is shown in the following 

equation: 
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Where 0   is the yield stress in constant strain rate， t  is the effective strain 

rate, C and P are the parameters of strain rate;  P
efff    is the hardening coefficient 

which is based on the effective plastic strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Configuration and boundary condition of a single lap clinched 

joint (dimensions in mm) 
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The friction between different parts in the model has an influence on the results of 

the simulation and the best value of the friction is not consistent for all the 

simulations. In the lack of experimental data, tentative values of the Coulomb friction 

coefficient between different parts in the model were assumed as follows: f=0.25 

punch-upper sheet, f=0.15 upper sheet-blank holder, f=0.15 upper sheet-lower sheet, 

f=0.25 lower sheet-die. These values were kept constant for all simulations in this 

study. 

The clinching process was simulated by applying a specified downward initial 

velocity to every node within the punch. Fig. 3 shows the FE simulation of clinching 

process and Fig. 4 shows the pressure-time curve of typical element in the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Clinching process tests 
A clinching equipment RIVCLINCH 1106 P50 system was employed as 

clinching machine. All clinched joints were made with constant pre-clamp (5 kN) and 

Fig. 3 FE simulation of clinching process 

Fig.4. Pressure-time curve of a typical element in clinching process 



Fig.5. Cross-section comparison between simulations and tests of clinching processes. 

a 

c 

d 

b 

setting (50 kN) load. A clinched joint was cut from the centreline of the clinch point 

perpendicular to the length of the specimen. Fig. 5 shows the cross-section 

comparison between simulations and tests of clinching processes. A reasonable 

agreement between the simulations and the tests was found. However a little 

difference between the simulation prediction and experimental measurement can be 

observed regarding the thicknesses of sheets at the bottom of clinched point. Such a 

discrepancy can be attributed to the neglecting of the material transverse anisotropy in 

the simulation prediction. The results show the capability of the 2D LS-Dyna 

axisymmetric model to simulate the clinching process for different geometries and 

work conditions.  

As is well known, it is difficult to display the grains of aluminium alloy by 

normal chemistry etching. The electrolytic polishing and anode film coating were 

used for dealing with the cross-section, then the differential interference contrast (DIC) 

method was used for observing the microstructure of the cross-section of the clinched 

joints. Fig. 6 shows a variation in grain size and shape from un-deformed zone, to 

mechanically affected zone, then to sheet-sheet contacted zone and sheet-die 

contacted zone. The average grain size ranges from around 48 m  at un-deformed 

zone to around 26 m  at mechanically affected zone then to around 12 m  at sheet-

sheet contacted zone and sheet-die contacted zone. The grain shape changes from 

equiaxed grain to streaky grain. 

 

 

 

 

 

 

 

 

 

 

 

3.  Computational and Experimental Studies of Tensile-shear Failure of Clinched 

Joints  

It can be seen from Fig. 3, during the clinching process, the upper sheet 

undergoes a significant thinning near the punch corner radius. The strength of a 

clinched joint depends on the joint profile and particularly on the final thickness of the 

upper sheet near the punch corners, namely neck thickness, and the magnitude of the 



produced undercut. The typical failure modes of clinched joints are, depend on the 

joint profile and loading conditions, the neck fracture mode and button separation 

mode as shown in Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Numerical simulation of tensile-shear failure of clinched joints 

A 3D model was generated using the commercial FE software ANSYS. The 

clinched joint was modelled using Solid187 solid elements. As the failures of a 

clinched joint usually occur around the clinch point inside the upper sheet, the FE 

mesh must accommodate both the small dimension of the clinch point and the larger 

dimension of the remainder of the whole joint. The original FE mesh is shown in Fig. 

8. Input into the program was the description of 27550 elements by indicating the 

material properties for the elements. In the present study, a concentrated load of 2385 

N (mean load value from tensile-shear test of 8 clinched specimens) was applied at 

the right end of the upper sheet as shown in Fig. 1.  

(a). Neck fracture mode (b). Button separation mode 

Fig. 7.  Typical failure modes of clinched joints 

Fig. 6. Microstructure variations on the cross-section of clinched specimen in: 

(a) un-deformed zone; (b) mechanically affected zone; (c) sheet-sheet 

contacted zone and (d) sheet-die contacted zone.



The stress distributions around the clinch point in the clinched joint are given by 

the stress contour in Fig. 9. This stress contour shows that the upper sheet is subjected 

to high stress than the lower sheet and the maximum stress occurs at the neck of upper 

sheet. It is well known that in the tensile-shear tests the deformation of the joints is 

localized in the vicinity of the clinch point. In order to save CPU time, the numerical 

simulation of the tensile-shear failure of clinched joints can be axisymmetric, ignoring 

the exact geometry of the assembled sheets far from the clinch point. The tensile-

shear failure process of the upper sheet of the clinched joint was also shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. 3D model of clinched joint 

(a) d=0.125 mm

Fig. 9. Stress contour around the clinched point in tensile-shear failure 

process of the clinched joint (d represents the deformation in load

(b) d=0.4 mm 

(c) d=0.7 mm (d) d=0.98 mm 



3.2 Tensile-shear test of clinched joints 

A servo-hydraulic testing machine with hydraulic grips was used for conducting 

tensile-shear tests of clinched joints. The grip to grip specimen length was about 100 

mm. The upper end of the joints was fixed, and a quasi-static downward displacement 

was applied to the lower end. For all clinched joints, spacers with the sheet thickness 

were used to centralise the load during testing. The tests were performed with a 

constant displacement rate of 1 mm/min. Continuous records of the applied force-

displacement curves were obtained during each test. Table 1 shows the tensile-shear 

test results of clinched joints. Figures 10 and 11 show the tensile-shear process and 

failure model of the clinched joints separately. 

Table 1. Tensile-shear test results of clinched joints 
Specimens Maximum load (N) Energy absorption (J) 

c-1 2356.00 0.823 
c-2 2434.21 0.86 
c-3 2334.25 0.825 
c-4 2355.87 0.928 
c-5 2408.51 0.873 
c-6 2467.58 0.928 
c-7 2340.66 1.013 
c-8 2385.02 0.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Failure mode of the clinched joints 

Fig. 10. Tensile-shear process of the clinched joints 



As expected, it can be seen from figures 10 and 11 that in this case the failure 

mode is neck fracture mode which agree with the simulation results. Under the 

tensile-shear load, a main shear load is applied on the neck of upper sheet by 

geometrical interlocking and increasing gradually. The neck is fractured when the 

shear stress reaches the fracture stress of the upper sheet. The experimentally 

measured results were compared with the simulated results and found to be very well 

correlated. 

4. Load-bearing Capacity and Energy Absorption of Clinched and Clinch-

bonded Joints 

Load-bearing capacity and energy absorption are two most important features in 

clinched joints structural analysis. It is also important for clinching to benefit from the 

advantages of other joining techniques, such as adhesively bonding. It is commonly 

understood that the addition of adhesive in clinched joints is beneficial but it is not 

clear if there are negative effects on mechanical properties of clinched joints [17]. In 

this section, deformation and failure of homogeneous joints under tensile-shear 

loading were studied for validating the load-bearing capacity and energy absorption of 

clinched joints and clinch-bonded hybrid joints. 

The clinch-bonded hybrid joints were produced following exactly the same 

procedure as the respective clinched joints. The adhesive was applied on degreased 

surfaces and the two sheets were pressed together in order to squeeze sufficient 

adhesive out to avoid undue quilting of the finished clinch-bonded hybrid joints. The 

clinching processes were then produced. The thickness of the adhesive layer was 

controlled by the clinching process. Thereafter, the adhesive was cured at room 

temperature for at least 24 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Tensile-shear process of the clinch-bonded hybrid joints 



The tensile-shear tests of clinch-bonded hybrid joints were performed with exactly 

the same procedure as the respective clinched joints. Fig. 12 shows the tensile-shear 

process of the clinch-bonded hybrid joints. It can be seen from Fig. 12 that the failure 

mode of the clinch-bonded hybrid joints is also neck fracture mode. Table 2 shows 

tensile-shear testing results of clinch-bonded hybrid joints. 

Table 2. Tensile-shear testing results of clinch-bonded hybrid joints 
Specimens Maximum load (N) Energy absorption (J) 

h-1 2396.40 1.208 
h-2 2422.33 1.169 
h-3 2441.79 1.1 
h-4 2446.69 1.14 
h-5 2224.74 1.06 
h-6 2522.04 1.223 
h-7 2450.30 1.125 
h-8 2550.94 1.285 

 

Fig. 13 shows the force-displacement curves of the clinched joints and clinch-

bonded hybrid joints. For each test, eight samples were mechanically tested. To 

examine the rationality of the test data, the normal hypothesis tests were performed 

using MATLAB 7.0. The results show that the tensile-shear strengths of all the 

clinched joints and clinch-bonded hybrid joints follow normal distributions. The mean 

values (  ) and standard deviations ( ) have the following numerical values: for 

clinched joints
 Cμ =2385.30 N, C =47.85 N; for clinch-bonded joints

 CBμ =2431.90 N, 

CB =97.99 N. All test data fitting the region estimated by the degree of confidence of 

95%. The tensile-shear strengths normal probability density distributions of the 

clinched joints and clinch-bonded hybrid joints are also shown in Fig. 13. 

The energy absorption values of the clinched joints and clinch-bonded hybrid 

joints were obtained by measuring the areas between the force-displacement curves 

and abscissas. To examine the rationality of the energy absorption values of the 

clinched joints and clinch-bonded hybrid joints, the normal hypothesis tests were 

performed. The results show that the energy absorption values of all the clinched 

joints and clinch-bonded hybrid joints follow normal distributions. For clinched joints
 

EACμ =0.8825 J, EAC =0.0696; for clinch-bonded joints
 EACBμ =1.1636 J, 

EACB =0.0727. All test data fitting the region estimated by the degree of confidence of 

95%. The energy absorption values normal probability density distributions of the 

clinched joints and clinch-bonded hybrid joints shown in Fig. 14. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Force-displacement curves and tensile-shear strengths normal probability 

density distributions of clinched joints and clinch-bonded hybrid joints 

(b) Clinch-bonded hybrid joints 

(a) Clinched joints 

Fig.14. Energy absorption normal probability density distributions of clinched 

joints and clinch-bonded hybrid joints. 



5.  Discussion 

Fig. 15 shows the intercept for load-bearing capacity and energy absorption of the 

clinched joints and clinch-bonded hybrid joints. It is clear that both the maximum load 

and energy absorption values of clinch-bonded hybrid joints are higher than that of 

clinched joints. This means that the addition of adhesive resulted in an increase in 

both the load-bearing and the energy absorption capacities of clinched joints.  Table 3 

shows statistical tensile-shear testing data of clinched joints and clinch-bonded hybrid 

joints. 

Table 3. Statistical tensile-shear testing data of clinched joints and clinch-bonded 

hybrid joints 
 Mean values Standard deviations Confidence interval (95%) 
Maximum load of 
clinched joints 

2385.3 (N) 47.85 2345.3-2425.3 (N) 

Maximum load of 
hybrid joints 

2431.9 (N) 97.993 2350-2513.8 (N) 

Energy absorption 
of clinched joints 

0.8825 (J) 0.0696 0.8244-0.9407 (J) 

Energy absorption 
of hybrid joints 

1.1636 (J) 0.0727 1.1028-1.2244 (J) 

As mentioned above, the clinching processes were produced before adhesive 

curing. In the clinching process, adhesive layer can be like a lubricant and fully 

sandwiched between two sheets. After curing, the adhesive layer can give strong 

adhesive forces between two sheets due to the adhesion mechanism. In the tensile-

shear test, a main shear load is applied on the neck of upper sheet by geometrical 

interlocking and increasing gradually which led to excessive elongation in the region 

of the joint neck. After the peak load the failure of adhesive layer occurs in a brittle 

manner. In this case, though the clinching still keeps the sheets connected but the joint 

can only bear low load, resulting in some more elongation, as shown in Fig. 13. 
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Fig. 15. Intercepts of strength and the energy absorption for 

clinched joints and clinch-bonded hybrid joints 



6. Conclusions 

The present paper aims to contribute to the basic studies on strength and energy 

absorption of clinched joints. The clinching process and tensile-shear failure of the 

clinched joints have been numerically and experimentally investigated. The results 

can be summarised as follows: 

(1) The clinching process has been numerically simulated using a 2D LS-Dyna 

axisymmetric FE model. An implicit solution technique with Lagrange method 

and r-self-adaptivity was used. Experimental tests on specimens made of 

aluminium alloy 7075 have been carried out for validating the numerical 

simulations. Good agreements between the simulations and the tests have been 

found. 

(2) The tensile-shear failure of the clinched joints has been numerically and 

experimentally investigated. In 3D FE numerical simulation, the stress contour 

shows that the upper sheet is subjected to high stress than the lower sheet and 

the maximum stress occurs at the neck of upper sheet. The tensile-shear failure 

process of the upper sheet has been presented. The experimentally measured 

results were compared with the simulated results and found to be very well 

correlated. 

(3) Deformation and failure of homogeneous clinched joints under tensile-shear 

loading were studied for validating the load-bearing capacity and energy 

absorption of the clinched joints and clinch-bonded hybrid joints. The results 

show that the failure mode of the clinch-bonded hybrid joints is also neck 

fracture mode, the same as the clinched joints. The results also show that both 

maximum loads and energy absorption values of clinch-bonded hybrid joints 

are higher than that of clinched joints. This means that the addition of adhesive 

resulted in an increase in both the load-bearing and the energy absorption 

capacities of clinched joints. 

(4) To examine the rationality of the test data, the normal hypothesis tests were 

performed using MATLAB 7.0. The results show that the tensile-shear 

strengths of all the clinched joints and clinch-bonded hybrid joints follow 

normal distributions. The results also show that the energy absorption values of 

all the clinched joints and clinch-bonded hybrid joints follow normal 

distributions. 
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