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Lukáš Chrpa
PARK research group

School of Computing and Engineering
University of Huddersfield, UK
l.chrpa@hud.ac.uk

Abstract

Trajectory planning is a generalisation of path planning in
which velocity is also taken into consideration. Consider-
ing velocity, in the context of a real-world system such as a
robotic vehicle, means considering physical constraints such
as the speed limit constraints when steering the vehicle. One
of the recent algorithms for solving this type of planning
problem is Augmented Lazy Theta*.
In this work we introduce the trajectory planner Abstract
Augmented Lazy Theta*. This planner uses a combination
of abstraction and relaxation to reduce the search space of
Augmented Lazy Theta*. We demonstrate that Abstract Aug-
mented Lazy Theta* significantly improves the time perfor-
mance of Augmented Lazy Theta* whilst retaining the same
overall solution quality. Additionally, we show that Abstract
Augmented Lazy Theta* performs competitively with an-
other state-of-the-art trajectory planning algorithm, the RRT*
algorithm, by demonstrating significantly better overall per-
formance, in terms of both time and quality.

1 Introduction
Efficient path planning for robotic, and simulated, vehicles
requires reasoning about the velocity of the vehicle. It is
sensible to drive as quickly as possible in order to reach the
destination quickly. However, there are constraints on the
speed a vehicle may travel: specifically the vehicle’s angle
of turn is limited by its speed (lower speeds are necessary
for tighter turns). We call this more general problem (where
velocity is taken into consideration) trajectory planning.

Increasing the size of the search space (due to angle and
speed being considered) and adding new constraints to the
problem naturally makes trajectory planning more difficult
than traditional path planning. In this work we present a
trajectory planning algorithm, called Abstract Augmented
Lazy Theta* (AALT∗ from here), which uses a combina-
tion of abstraction and relaxation in order to increase the ef-
ficiency of a current approach to this problem (Augmented
Lazy Theta*, also referred to as ALT∗).

We compare the performance of AALT∗ with both the
ALT∗ and RRT∗ (RRT∗ or Rapidly-growing Random
Trees*: a state of the art trajectory planning approach). We
test the planners on 240 tasks across six different maps of
varying structure. Our results show that the AALT∗ al-
gorithm is significantly faster than ALT∗, whilst finding

plans in comparable quality (supporting the idea that ab-
straction is an effective approach for trajectory planning).
We also demonstrate that, although RRT∗ finds its first so-
lution faster than AALT∗ on some maps, AALT∗ finds
plans of significantly higher quality than RRT∗ even when
RRT∗ is allowed more time.

2 Problem Definition
Trajectory planning deals with a problem of finding a tra-
jectory from a configuration of origin to a configuration of
destination following constraints such as obstacle avoidance
or maximum speed for turn manoeuvres. In the robotic lit-
erature, configurations are defined by position and velocity
vectors. Path planning, which is widely used in video games,
relaxes the dynamic part of trajectory planning, that is, plan-
ning for one position to another while avoiding obstacles.
Continuous (Euclidean) space is often discretized into (reg-
ular) grids, where grid cells are either free or blocked.

Formally, a grid can be represented by an undirected
graph G = (V,E), where vertices V represent free grid
cells and edges E connect neighbouring (free) cells. A path
p = 〈v0, . . . ,vk〉 is a sequence of vertices (v0, . . . ,vk ∈ V )
such that (vi,vi+1) ∈ E (0 ≤ i < k). Note that the con-
straint for adjacent vertices in a path can be weakened by
introducing a line-of-sight (LOS) check which, informally
said, refers to situations when more distant vertices are ‘vis-
ible’. More formally, LOS(vi,vj) is true if and only if the
line connecting vi and vj does not cross any blocked cell (or
obstacle). LOS hence allows any-angle path planning and
provides more realistic paths. A path planning problem is
a triple P = (G,v0,vg) where G = (V,E) is an undirected
graph representing the underlying grid, v0 ∈ V is the initial
position (cell) and vg ∈ V is the goal position (cell). A so-
lution of a path planning problem P = (G,v0,vg) is a path
p = 〈v0, . . . ,vg〉.

For trajectory planning we have to provide an extension of
the terminology. A configuration c is specified by position
pos(c) and velocity vector vel(c) (velocity vector incorpo-
rates orientation and speed). A trajectory is a continuous
function of time to the (Euclidean) space. Given the dis-
cretization of the space into grids, we split trajectories into
segments, concretely Straight manoeuvre (a line) and Turn
manoeuvre (an arc). The line-of-sight (LOS) check between
configurations is the same as in the path planning case be-



cause only positions are needed. The LOS check is insuf-
ficient for checking whether we can transit from one con-
figuration to another, hence we introduce speed limit (SL)
check which takes into the account also velocities. In other
words, the SL check verifies whether, for instance, the entity
is moving slowly enough to perform a Turn manoeuvre, or
can accelerate to reach the target speed. The notion path is
extended in such a way that it is a sequence of configurations
(p = 〈c0, . . . ,ck〉) such that LOS(ci,ci+1) and SL(ci,ci+1)
holds for 0 ≤ i < k. A trajectory planning problem is a
triple P = (C,c0,cg) where C is a set of configurations,
c0 ∈ C is an initial configuration and cg ∈ C is a goal
configuration. A solution of a trajectory planning problem
P = (C,c0,cg) is a path p = 〈c0, . . . ,cg〉.

Given a solution path of a trajectory planning problem,
the trajectory can be constructed from Straight and Turn
manoeuvres in the following way. Turn manoeuvres are
kept within the cells because then we can easily be sure
that the Turn manoeuvre will not cross any obstacle. Let
ri be a radius of cell inscribed circle and α be a turn angle.
Then the radius of the Turn manoeuvre r is calculated as:
r = ri cot

α
2 . Straight manoeuvres are used to transit be-

tween successive configurations ci and ci+1 in the solution
path. They are not thus connecting the exact positions of ci
and ci+1 referring to centers of cells (except initial and goal
cells) but they start at ri distance from pos(ci) and finish
at ri distance of pos(ci+1). Turn manoeuvres thus provide
a smooth connection of the adjacent Straight manoeuvres.
Speed can be adjusted only for Straight manoeuvres which
is done by applying uniformly accelerated motion.

The configuration space can be constructed in a sim-
ilar way as the graph representing a grid, i.e., the ver-
tices are configurations and edges connect configurations
in neighbouring (free) cells and have ‘compatible’ velocity
vectors. However, the number of configurations might in-
crease rapidly when any-angle path planning methods (e.g.
Theta* (Daniel et al. 2010)) are applied. A similar problem
might occur when a range of possible speed values is large
or densely discretized. Therefore, for practical reasons the
underlying graph for the search will remain the same as for
path planning (i.e. positions only) and velocity vectors will
be calculated during the search. This is discussed in detail
later in the text.

3 Background
This work extends ideas in path planning with graph ab-
stractions to trajectory planning with any-angle planning and
speed limit constraints. Before discussing our algorithm, we
provide a background to these areas.

3.1 Graph Abstractions
Abstraction is a technique widely used to simplify problem
solving, in such areas as Planning, Constraint Programming,
Databases and Machine Learning (Saitta and Zucker 2013).
It is the process of removing information in order to reduce
the size or complexity of a problem, whilst retaining enough
structure to allow the results of reasoning about the abstract
problem to still have some meaning in the original problem.

Abstraction has been successfully applied in grid-based path
planning (Botea, Müller, and Schaeffer 2004; Sturtevant and
Jansen 2007). Bäckström and Jonsson (2013) identify a re-
cent trend towards refinement techniques in domain inde-
pendent planning (Gregory et al. 2011; Bäckström and Jon-
sson 2013; Seipp and Helmert 2013). It has been shown to
drastically reduce the search time required to find solutions,
whilst only reducing solution quality by a small amount.

The typical way in which abstraction is used in path plan-
ning is by abstracting the underlying graph and then using
the abstraction to limit the search space in a two-step proce-
dure. In the first of these steps a hierarchy of increasingly
abstract graphs is created. An example of an abstraction
hierarchy is given in Figure 1, where the ground problem
(we use the term ground to refer to the actual problem un-
der consideration) is in the top left and the most abstract is
at the bottom right. The second step is to solve these path
planning problems in reverse order, where the solution to
each abstract problem is used in order to reduce the size of
the search space at the next-most ground level by consider-
ing only those nodes that are subsumed by the nodes in the
abstract solution.

3.2 Theta* and Lazy Theta*
A* is probably the best known algorithm for informed
search. In path planning A* can be easily applied if the (Eu-
clidean) space is discretized and represented by a graph. A*
maintains a priority queue open where the elements are or-
dered according to their value (the element with the smallest
value is on the front) which is calculated as a sum of g(v),
the actual cost from the initial position to v, and h(v), the es-
timated cost from v to the goal position. It starts by putting
the initial position into open. In an intermediate step a loop
is performed until open is empty (there is no solution): v is
taken from the front of open, if v is the goal position then
the solution is returned, otherwise v is put into a close list
and then v is expanded. The expansion of v is done in such
a way that for each of its neighbours v′ we check whether
v′ is in close, if not g(v′) and h(v′) are calculated and v′ is
put into open or its value is updated if smaller. We also keep
a track of predecessors, so we set parent(v′) = v (if v′ is
added into or updated in open).

Solutions produced by A* are, however, not very realis-
tic since we can transit only between neighbouring cells in
grids. Such solutions can be improved in a post-processing
step by iterative checking whether the LOS check is sat-
isfied between the given cell and its grand-parent (i.e.
parent(parent(v))) (Botea, Müller, and Schaeffer 2004).
This idea is exploited in the Theta* algorithm (Daniel et
al. 2010) where rather than improving solutions in a post-
processing step the LOS check is performed during the
search. Theta* is a variant of A* but when v is being ex-
panded for all its neighbours v′ we perform the LOS check
with parent(v), i.e., LOS(parent(v),v′). If the LOS check
succeeds, then parent(v′) = parent(v), otherwise Theta*
behaves in the same way as A*. Although Theta* generates
solutions which are realistic, optimality (in the continuous
space) is not guaranteed (Daniel et al. 2010).

Lazy Theta* (Nash, Koenig, and Tovey 2010) is a vari-



Figure 1: An example graph abstraction hierarchy on a grid-structured map. Nodes are shown as continuous regions of ground
cells with the same shade. Each abstract node subsumes several nodes from the previous level in the hierarchy. The ground
problem (top left) has approximately 1000 nodes whilst the most abstract shown (bottom right) has approximately 10 nodes.

ant of Theta* which performs lazy evaluation of the LOS
checks. In other words, because the LOS check might be
computationally expensive it is performed only when nec-
essary. In the expansion phase, it is, therefore, assumed
that the LOS check is successful. Of course, such an as-
sumption may be incorrect. This is verified when v is taken
from the front of open. If LOS(parent(v),v) fails, then
it is necessary to revert the situation to the A* case which
is done by selecting v′ from close such that v is neigh-
bour of v′ and g(v′) + h(v′) is minimum. Then we set
parent(v′) = parent(v) and parent(v) = v′. Clearly, this
approach might lead to non-optimal solutions, especially
when such reverts are frequent. This issue can be handled
by re-inserting v into open if the LOS check fails which is
incorporated in Lazy Theta*-R (Nash, Koenig, and Tovey
2010). However, empirical study (Nash, Koenig, and Tovey
2010) shows that using Lazy Theta*-R improves the qual-
ity of solution path only marginally while runtime increases
more significantly (in comparison to Lazy Theta*).

3.3 Speed Limit Constraints Planner

The idea of extending path planning methods for trajectory
planning has been thoroughly discussed by Chrpa and Os-
borne (2013). Incorporating velocities directly in search
space may cause its explosion. Therefore, the advantage of
reasonably small search space we deal with in path planning
where only positions (grid cells) are considered should be
kept. In other words, search space should be of similar size
for both path and trajectory planning. This is provided by
computing velocities in the expansion phase of A* (Theta*
and Lazy Theta*), which is discussed later.

Velocity vectors are composed from orientations and
speeds. Orientation is computed as a normalised difference
between positions of successive configurations in a path, i.e.,
||pos(ci+1) − pos(ci)||. Speeds are maintained as intervals
rather than single values since it might lead to significant
growth of the search space. In other words, introducing
speed intervals allows us to process a set of configurations
(having the same position and orientation) in a single step.
For example, a car initially goes 30mph. Then, it contin-
ues to go straight ahead and at some point it can go between
10mph and 55mph (depending on whether the car is accel-
erating or decelerating). Then, the car may continue to go
straight ahead (there is no limitation on speed in which this
manoeuvre can be performed), or perform a Turn manoeu-
vre which can be performed in a maximum speed of 20mph.
If the Turn manoeuvre is selected, then the current speed in-
terval is trimmed, so the car can go between 10 and 20mph.
Note that if for some very sharp Turn manoeuvre the maxi-
mum speed is 5mph, then it cannot be performed.

Speaking more formally, path planning methods are ex-
tended as follows. For A* and Theta*, velocities (orienta-
tions and speed intervals) are calculated in the node expan-
sion phase. If ci is being expanded and cj is its neighbour
(i.e., the position of cj is in adjacent cell to ci), then Turn and
Straight manoeuvre between ci (alternatively parent(ci) if
the LOS check is successful) and cj are computed and then
the SL check is performed. The SL check consists of deter-
mining interval of speed values (the speed limit constraint)
for which it is possible to transit from ci (resp. parent(ci))
to cj . If the interval is disjoint with the current speed inter-
val in ci (resp. parent(ci)) the SL check fails (cj will not be



inserted to open at this stage). Otherwise, the current speed
interval in cj is calculated and cj is inserted into open. Note
that the current speed interval in cj is calculated from the
speed interval which is an intersection of the current speed
interval in ci (resp. parent(ci)) and the speed limit con-
straint. For Theta*, if either of the LOS or SL checks fails,
the ‘A* branch’ is performed (it also includes the SL check).
For Lazy Theta*, it is in the node expansion phase assumed
that the SL check is successful as well as the LOS check.
Since this assumption might be also incorrect, the SL check
is performed after the node (configuration) is selected for ex-
pansion. If the SL check fails, then the situation is reverted
to the ‘A* case’. The SL check, however, must be performed
also for the ‘A* case’. If it fails again, then the node (config-
uration) cannot be processed at this stage and the next node
in open is selected for expansion.

Extension of A* and (Lazy) Theta* as presented here is
referred in literature to lite versions (Chrpa and Osborne
2013). Of course, the presented approach is generally in-
complete, since after processing a configuration, we cannot
revisit the same position (cell) even with a different veloc-
ity vector. On the other hand, it has been empirically shown
that losing solvability of the problem occurs rarely and that
such an approach performs similarly well as the path plan-
ning methods.

3.4 Related Work
Trajectory planning with vehicle dynamics is an important
problem in the robotics community and is, hence, well-
studied. In robotics, regular lattice discretization is often
used since it better corresponds with manoeuvrability of
robots, hence trajectories produced by these approaches can
be very precise (Pivtoraiko, Knepper, and Kelly 2009). Tra-
jectory planning had an important role in the DARPA Ur-
ban Challenge (Ferguson, Howard, and Likhachev 2009) by
utilising an approach based on numerical optimisation which
considers also effects of terrain and robot dynamics (Howard
and Kelly 2007). SIPP (Phillips and Likhachev 2011) is a
trajectory planning approach for environments with mov-
ing obstacles. SIPP introduces safe intervals, time periods
for configurations without any collisions. Using safe inter-
vals is a similar idea to using speed intervals resulting in
‘saving’ one dimension. There are exact and approximate
algorithms, depending on whether optimal solutions are re-
quired. Probabilistic Roadmaps (Kavraki et al. 1996) and
Rapidly-growing Random Trees (LaValle and Kuffner 1999)
are two examples of incomplete search algorithms based
on sampling to provide discretisations of continuous search
spaces.

RRT∗ We focus in more detail on one other state-of-the-
art trajectory planning approach, which we will use in order
to compare with our algorithm. This is the RRT∗ algo-
rithm.

RRT∗ (Karaman et al. 2011) is an extension to the RRT
(LaValle and Kuffner 1999) algorithm and represents an-
other state-of-the-art trajectory planner to compare against.
RRT (or Rapidly-growing Random Trees) is a path-planning
algorithm that quickly explores a state-space by building a

Algorithm 1 The Abstract Augmented Lazy Theta* Algo-
rithm. Within this description, it is assumed that ALT∗ is
an implementation of Augmented Lazy Theta* that can only
explore a limited set of nodes (Si in the description).

function AALT∗(G,v0,vg)
H = [h0, ..., hn]← Abstraction Hierarchy of G
R = [r0, ..., rn]← Relaxed Solutions of H
for i = 0 to n do

Si ← Ground states of ri
P ←ALT∗(G,v0,vg,Si)
if P is a solution then

return P
end if

end for
return no solution

end function

tree from an initial location by repeatedly sampling arbitrary
states and connecting them to the existing tree, through the
closest location, when possible. RRT∗ improves on this al-
gorithm by firstly connecting the sampled states to the state
which minimises the distance travelled from the root of the
tree, and secondly by reconnecting existing nodes in the tree
through the sampled state if that reduces the distance trav-
elled from the root of the tree.

4 Abstract Augmented Lazy Theta*
We now introduce the Abstract Augmented Lazy Theta*
(AALT∗) algorithm which uses the techniques of relax-
ation and abstraction in order to improve the ALT∗ algo-
rithm with speed limit constraints described in section 3.3.
The pseudo-code of the algorithm is provided in algorithm 1.
The algorithm has three stages:

1. Relax the problem to a path planning problem (i.e. only
positions are considered) and solve the relaxation using
a abstraction-based path planning algorithm. Retain the
ground states contained in each of the abstract solutions.
Call the states visited in the concrete relaxed plan the re-
laxed state set.

2. Using the ALT∗ trajectory planning algorithm, solve the
full problem, whilst only expanding states corresponding
to locations within the relaxed state set.

3. If no plan is found, add the ground states from the next-
most abstract plan to the relaxed state set, and then repeat
step 2. Continue in this way until the problem is solved.

The solutions to the abstract problems in this case are so-
lutions to a relaxed version of the problem with no veloci-
ties, and hence no speed limit constraints. The abstraction is
therefore, in the language of Giunchiglia and Walsh (1992),
a theorem increasing abstraction (i.e. the abstraction permits
solutions that are not possible in the concrete problem).

The states visited in the relaxed plan then form the lo-
cations that can be visited by the ALT∗ phase of the al-
gorithm. Since the abstraction is theorem increasing, it is
possible that there is no solution to the ALT∗ problem us-
ing only the cells visted in the abstract plan. Failure of this



Figure 2: A presentation of the different stages in the
AALT∗ algorithm. An abstract solution is shown in the
top map (the abstract states which form the plan are dis-
played in darker colours and are roughly the states around
the outside edge of the map). The ground relaxed solution
is shown (middle) and the ground solution is shown in the
bottom map, as the dashed line.

kind can happen, for example, if the abstract plan requires
turning a tight corner not permitted by the speed-limit con-
straints. In this case, a greater number of cells are considered
by incorporating the cells visited in the next-most abstract

solution. In the worst case, the cells in the most abstract
solution (i.e. all of the cells in the map) will eventually be
incorporated. Hence, although incomplete, full ALT∗ will
eventually be executed and so its practical runtime perfor-
mance is preserved.

Combining Abstraction with Line-of-Sight
One interesting consequence of combining a Theta*-based
trajectory planner and an abstraction approach is that al-
though the expansion phase of ALT∗ can only consider
nodes that were part of the abstract solution, the line-of-sight
check is still through the original ground space. Because of
this, it is possible to find shortcuts that travel through free
cells not in the abstract plan, so long as they start and finish
within cells in the abstract plan. This is seen in the bottom
pane of figure 2 where the ground plan takes takes a short-
cut through space unoccupied by the relaxed solution. It is
better for the ground solution to use fewer turn maneuvers,
since these are the operations that require slowing the ve-
hicle. Following the relaxed plan exactly would require far
more turn maneuvers than the plan found by AALT∗ and
so would have a longer duration.

5 Experimental Setup
In order to demonstrate the effectiveness of AALT∗ in
terms of its time efficiency and quality, we provide an em-
pirical analysis comparing it with both the ALT∗ algorithm
and the RRT∗ algorithm. Since AALT∗ is based upon the
ALT∗ algorithm, it is important to demonstrate that it im-
proves upon it. It is also important to show that AALT∗
performs competitively with current state-of-the-art algo-
rithms (where RRT∗ is taken here as an example of the
current state of the art). We now outline our methodology
for testing our hypotheses.

5.1 Benchmarks
In order to test the implementation, we use the benchmarks
supplied by the Moving AI Lab at the University of Den-
ver (Sturtevant 2012). This collection of instances are grid-
based path planning problems on large maps derived from
computer game maps and artificially constructed maze-like
maps. We selected six maps from the benchmark suite that
have varied layouts: these are shown in Figure 3. The maps
are specified as n ×m grids, where each cell can either be
traversable or blocked. In Figure 3 the traversable cells are
white and the blocked locations are black. We translate these
maps to trajectory planning benchmarks by interpreting each
cell as a 10 × 10 square, providing a 10n × 10m map (i.e.
the map is simply scaled up by 10 times).

5.2 Experimental Design
We compare the algorithms on 40 randomly generated in-
stances for each benchmark map. We report the numbers of
unsolved instances for each map and overall. In practice, all
unsolved instances are by the RRT∗ algorithm; as a local
search algorithm, it sometimes fails to find a solution within
the termination criteria. Any instances found unsatisfiable
in the relaxation of AALT∗ (guaranteed to be unsolvable
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Figure 3: The benchmark maps used for the evaluation. All are available from the MovingAI labs website.

as this tests reachability on the path planning version of the
problem) are ignored as RRT∗ is a local-search algorithm
and can never report that the instance is unsatisfiable.

Once results were gathered, we tested the normality of the
distributions of the differences in the data using the Shapiro-
Wilk test for normality. Neither time taken to solve nor so-
lution quality is distributed normally in either the raw data
or the log of the data. Therefore in order to compare quality
of plan and time taken to solve, we use the non-parametric
Related-Samples Wilcoxon Signed Rank Test that tests for
significant differences in the distributions of ranks with no
requirement of normality.

5.3 Implementation, Hardware and Limits
All of the algorithms are implemented in a Java-based simu-
lation system, and are run using the OpenJDK 1.7.09 virtual
machine. The experiments are perfomed on a desktop PC
with two Intel Xeon E5-2665 8-core CPUs with 64GB sys-
tem memory, running CentOS Linux 2.6.32. Statistics are
calculated using SPSS v21 Mac OSX. We impose no time
limits on the algorithms. We place a 10,000 node limit on
RRT∗: although any runs that reach this limit are implic-
itly recorded in the main results, we nevertheless report the
failure rate of RRT∗ to provide the reader with an idea of
which maps were challenging for that algorithm. The ob-

jective function is the duration of the plan (we consider this
as the most natural objective function; since velocities form
part of the state, the planners should finding the fastest plans
rather than simply the shortest distance).

6 Experimental Evaluation
In this section, we report the findings of our experiments.
Table 1 provides a summary of the results of the statisti-
cal testing for significance at the p < 0.05 level. The table
shows the effect size (r in the table), where r = 0.1 in-
dicates small effect, r = 0.3 indicates medium effect and
r ≥ 0.5 indicates large effect. In the table, where r is pos-
itive, performance has improved by using AALT∗. When
r is negative, performance is degraded by using AALT∗.
Finally we indicate whether the hypotheses were supported
for each map and also when all results are combined.

(H1) AALT∗ finds solutions faster than ALT∗
H1 is supported across all maps and for the combined re-

sult. AALT∗ is significantly faster than ALT∗ on the com-
bined result (Z = 13.37, p < 0.001, r = 0.86) with a large
effect size. In fact, in almost every instance, AALT∗ finds
solutions faster than ALT∗.

(H2) AALT∗ finds solutions at least the same qual-
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ALT∗ time 14251 1893 25 86167 31536 21596 25912
AALT∗ time 182 54 5 891 354 230 286
RRT∗ time 22115 437 28 144592 6064 926 23848

ALT∗ duration 346.7 280.8 52.9 1460.7 630.3 452.7 537.4
AALT∗ duration 336.4 231.5 46.2 1424.3 664.7 424.8 521.3
RRT∗ duration 755.0 580.3 92.9 2168.5 891.0 1000.3 833.6

St
d.

E
rr

or

ALT∗ time 1514.76 240.03 3.24 10265.36 3405.02 2421.46 42.44
AALT∗ time 10.73 4.89 0.53 90.80 28.12 14.58 24.83
RRT∗ time 12063.84 194.11 22.53 56917.30 5455.50 506.30 8295.44

ALT∗ duration 28.70 36.35 6.61 162.92 71.73 38.15 2633.63
AALT∗ duration 31.07 27.58 5.26 156.83 69.35 36.76 41.39
RRT∗ duration 77.31 104.72 11.35 317.73 167.96 118.35 68.98

M
ed

ia
n

ALT∗ time 11629 1570 39 71652 31830 16221 10619
AALT∗ time 171 47 5 703 339 215 178
RRT∗ time 41 29 2 125333 – 65 54

ALT∗ duration 319.2 208.5 38.5 1361.0 616.2 398.0 314.0
AALT∗ duration 299.9 195.4 37.5 1253.9 716.2 398.2 302.8
RRT∗ duration 685.9 338.7 70.1 3415.6 – 673.5 678.3

RRT∗ fail rate 0 / 40 2 / 40 0 / 40 14 / 40 22 / 40 0 / 40 38 / 240

(H
1)

AALT∗ has shorter runtime than ALT∗.

Z 5.511 5.511 5.281 5.511 5.511 5.511 13.368
p < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

r 0.871 0.871 0.835 0.871 0.871 0.871 0.863
Supported 3 3 3 3 3 3 3

(H
2)

AALT∗ has no worse quality than ALT∗.

Z 0.511 1.661 1.772 0.000 3.387 0.175 0.615
p 0.295 0.045 0.039 0.508 <0.001 0.430 0.263
r 0.081 0.263 0.280 0.000 −0.536 −0.277 −0.040

Supported 3 3 3 3 8 3 3

(H
3)

AALT∗ has shorter runtime than RRT∗.

Z 3.018 0.948 1.154 4.624 3.898 1.391 2.245
p 0.001 0.170 0.133 < 0.001 <0.001 0.083 0.014
r −0.477 0.150 −0.182 0.731 0.616 −0.220 0.145

Supported 8 8 8 3 3 8 3

(H
4)

AALT∗ has higher quality than RRT∗.

Z 5.269 5.511 5.027 5.511 5.444 5.377 13.09
p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
r 0.833 0.871 0.795 0.871 0.861 0.850 0.845

Supported 3 3 3 3 3 3 3

Table 1: Summary of the experiments. Computed data about the distributions of both runtime and quality are shown at the top
of the table, the results of the statistical tests are shown underneath. Each hypothesis is summarised and tested for each map
and for the combination of the results. In the raw data, all times are in milliseconds, the means and standard errors for RRT∗
do not take the unsolved instances into account, whilst the medians do take the unsolved instances into account (a dash means
that the median instance was unsolved).



ity of ALT∗
H2 is supported across all benchmark maps except

orz100d, and for the combined result. ALT∗ produces
significantly higher quality solutions (Z = 3.39, p <
0.001, r = −0.54) only for the orz100d benchmark map.
We conjecture that because this map has features such as
narrow corridors and unusually shaped obstacles, the ab-
stract solution fails to correspond to an efficient ground so-
lution.

The combined situation shows that the solutions produced
by ALT∗ are only slightly better than those produced by
AALT∗, but far from a significant level and with very small
effect size (Z = 0.62,p = 0.263,r = −0.040).

Taking both H1 and H2 in conjunction, we can state with
a high degree of certainty that AALT∗ is a more efficient
planning algorithm than ALT∗ as it produces solutions of a
comparable quality in significantly faster time.

(H3) AALT∗ finds solutions faster than RRT∗
H3 provides the most mixed picture of any of the hypothe-

ses. Before discussing the more detailed picture we note that
the combined results demonstrate that AALT∗ is faster than
RRT∗ to a statistically significant level (Z = 2.245, p =
0.014,r = 0.15) but with a small effect size. However,
looking at the results for each map individually, it is seen
that H3 is only supported for two of the six maps (though in
these cases the effect size is much larger than in the maps for
which H3 is not supported). Despite the fact that AALT∗
finds solutions significantly faster than RRT∗ overall, the
question remains about performance on the maps where H3
was not supported. This question will be looked at once H4
has been examined.

(H4) AALT∗ finds higher-quality solutions than
RRT∗

H4 is supported across all benchmark maps and also for
the combined (Z = 13.09,p < 0.001,r = 0.85) result.
Across all benchmark maps and the combined results, the
solutions are significantly higher quality with a large effect
size. Taking both H3 and H4 in conjunction, there is a mixed
picture. Whilst the solution quality of AALT∗ is univer-
sally higher than for RRT∗ over each map, the runtime
is not universally better. This calls for further investigation
in order to demonstrate if we can provide a stronger result
about performance on these maps.

6.1 Further Comparisons with AALT∗ and
RRT∗

The RRT∗ algorithm is an anytime algorithm as the con-
struction of the tree can continue beyond the point at which
the first solution is found. We provide a further test to get
more detail into the tradeoff between using AALT∗ and
RRT∗. This experiment is set up to allow RRT∗ at least
as much time as AALT∗ requires to find its first solution
(i.e. allowing RRT∗ to potentially find several improving
solutions). We firstly run the AALT∗ algorithm on an in-
stance to find a baseline time (call this tALT). We then use
that time as a lower bound on the execution time of RRT∗:
if RRT∗ finds its first solution within tALT, we allow it to

Z p r Su
pp

or
te

d

AR0308SR 3.307 0.001 0.523 3

Arena2 5.296 <0.001 0.837 3

Den009d 5.000 <0.001 0.791 3

Maze512-32-0 5.430 <0.001 0.859 3

Orz100d 5.350 <0.001 0.850 3

PlunderIsle 5.269 <0.001 0.833 3

Combined 12.208 <0.001 0.788 3

Table 2: Results of statistical testing for H5. H5 is the hy-
pothesis that AALT∗ finds higher-quality solutions than
RRT∗, even when RRT∗ is allowed the same time as
AALT∗ as a lower-bound on its execution time.

continue constructing its tree until tALT has elapsed, when
we accept the best solution found until that point.

This test is designed to show whether RRT∗ would pro-
duce better quality solutions if it spent the same amount of
time searching as AALT∗. If not, then it is reasonable
to conclude that AALT∗ is a significantly more efficient
planner (finds higher quality solutions in faster time) than
RRT∗. Therefore we test the following hypothesis:
(H5) AALT∗ finds higher-quality solutions than
RRT∗, even when RRT∗ is allowed the same time
as AALT∗ as a lower-bound on its execution time.

We test the hypothesis on the same 40 benchmark in-
stances per map used for the previous experiments. The re-
sults of the experiment are shown in Table 2. Even allowing
RRT∗ the same amount of time as AALT∗ takes does not
allow it to produce the same quality of solution. Overall H5
is supported (Z = 12.21, p < 0.001, r = 0.79).

Given the evidence that AALT∗ produces higher qual-
ity solutions than RRT∗, is found to be significantly faster
overall than RRT∗ we conclude that AALT∗ is superior
to RRT∗ as a general purpose trajectory planner.

7 Conclusions
The main questions studied in this work are whether a
graph abstraction approach can be generalised from a pure
path-planning domain to the more realistic general trajec-
tory planning problem, and whether the resulting algorithm
provides performance competitive with the current best ap-
proaches. We have provided evidence supporting these
claims. We have introduced the Abstract Augmented Lazy
Theta* algorithm, which improves upon the Augmented
Lazy Theta* algorithm (thus providing evidence that ab-
straction is indeed a useful approach in the trajectory plan-
ning domain). We have also demonstrated that Abstract
Augmented Lazy Theta finds significantly higher quality
plans than RRT∗ even when execution times are equalised
(thus providing evidence that AALT∗ is competitive with
current state of the art trajectory planning algorithms).
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