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Abstract 

An analytical method is developed for the reconstruction of velocity profiles using measured potential 

distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). 

The method is based on the Discrete Fourier Transform (DFT), and is implemented in Matlab. The 

method assumes the velocity profile in a section of a pipe as a superposition of polynomials up to 6
th
 

order. Each polynomial component is defined along a specific direction in the plane of the pipe 

section. For a potential distribution obtained in a uniform magnetic field, this direction is not unique for 

quadratic and higher-order components; thus, multiple possible solutions exist for the reconstructed 

velocity profile. A procedure for choosing the optimum velocity profile is proposed. It is applicable for 

single-phase or two-phase flows, and requires measurement of the potential distribution in a non-

uniform magnetic field. The potential distribution in this non-uniform magnetic field is also calculated 

for the possible solutions using weight values. Then, the velocity profile with the calculated potential 

distribution which is closest to the measured one provides the optimum solution. The reliability of the 

method is first demonstrated by reconstructing an artificial velocity profile defined by polynomial 

functions. Next, velocity profiles in different two-phase flows, based on results from the literature, are 

used to define the input velocity fields. In all cases, COMSOL Multiphysics is used to model the 

physical specifications of the EMFM and to simulate the measurements; thus, COMSOL simulations 

produce the potential distributions on the internal circumference of the flow pipe. These potential 

distributions serve as inputs for the analytical method. The reconstructed velocity profiles show 

satisfactory agreement with the input velocity profiles. The method described in this paper is most 

suitable for stratified flows and is not applicable to axisymmetric flows in its present form. Its novelty is 
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that it provides not only a mean flow velocity, but a velocity distribution in a circular pipe section as an 

analytical function of the spatial coordinates. 

 

Keywords: Discrete Fourier Transform, electromagnetic flow measurement, potential distribution, 

velocity profile 

1. Introduction 

 Electromagnetic flow meters (EMFMs) have been used widely to measure the volumetric flow rate 

of conducting fluids. The conventional EMFM can have a uniform magnetic field and a pair of point 

electrodes; one at each end of the diameter normal to the magnetic field direction in a circular pipe. 

The flow induced voltage U measured between the two electrodes is proportional to the mean flow 

velocity vm when the velocity profile is axisymmetric: 

mDBvU   (1.1) 

where D is pipe diameter, and B is magnetic flux density (Shercliff, 1962). In this case, the flow signal 

of the ideal EMFM depends only on the flow rate, but not on the flow pattern. Bevir (1970) determined 

the necessary and sufficient condition for this to be satisfied. He also showed that an EMFM with 

point electrodes could never satisfy this condition, but it could be made insensitive to variations of 

asymmetric velocity profile if the flow is rectilinear.  

 Conventional EMFMs have been extended in different ways, in particular, by adding further pairs 

of electrodes and by creating non-uniform magnetic fields. An approach that is insensitive to the flow 

velocity profile was proposed by Horner et al. (1996). They extended a conventional system by adding 

additional pairs of electrodes, and showed a significant improvement in accuracy for eight- or sixteen-

electrode EMFMs. Xu et al. (2001) proposed a multi-electrode EMFM. However, they made the 

assumption that the potential difference, measured between the ends of a chord perpendicular to the 

magnetic field, is influenced only by the flow velocity components lying on that chord. With reference 

to Leeungculsatien & Lucas (2013), this assumption is unlikely to be correct. This type of flow meter 

provides mean velocity and volumetric flow rate in the flow cross section. However, it cannot 

determine the local axial velocity distribution, which is essential e.g. in multiphase flows in order to 

find the volumetric flow rate of a particular phase if its local volume fraction distribution is also known. 
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Teshima et al. (1994) proposed a design of the magnetic field to measure or evaluate flow profile and 

presented experimental results of flow profile measurement using a rotating magnetic field. 

 Varying the design of the magnetic field and the electrodes made it possible to apply EMFMs for 

reconstruction of a flow velocity field in a pipe. Clearly, the dependence of flow induced potentials on 

flow pattern is essential in order to be able to do this. Xu et al. (2004) developed a modified filtered 

backprojection algorithm in order to improve the quality of reconstructed velocity profiles in non-

axisymmetric flows. Sakuratani & Honda (2010) reconstructed the flow field in partially filled pipes 

using the weight vector corresponding to water level in the pipe. Leeungculsatien & Lucas (2013) 

proposed a design of EMFM for reconstructing axial velocity profiles in stratified flows. They divided 

the pipe section into pixels, and their method provided the axial velocity in each pixel. 

 The present paper describes an analytical method for reconstruction of velocity profiles from 

measured potential distributions obtained from a multi-electrode EMFM. The technique is most 

suitable for stratified flows rather than axisymmetric flows. An alternative technique for axisymmetric 

flows is published in Zhang & Lucas (2013), whereas the extension of the technique presented here 

for axisymmetric flows is a subject of future study. The method assumes the velocity profile as a 

superposition of polynomials up to 6
th
 order. Thus, the velocity profile is obtained as an analytical 

function of the coordinates, and the velocity can be determined at any position in a pipe section. 

Section 2 explains the theoretical background of the reconstruction method, and the procedure of 

reconstruction will be provided in Section 3. The geometry and some specifications of the EMFM 

considered are described in Section 4. The reconstruction method is initially applied to reconstruct a 

polynomial velocity profile. Then, the method is tested with more complex velocity profiles measured 

in two-phase flows in Section 5. Section 6 provides pertinent conclusions. 

 

2. Theoretical Background of Electromagnetic Flow Meters and Reconstruction Method 

 

2.1 Potential Distribution at the Wall of a Circular Pipe 

 The relationship between a polynomial velocity profile and the potential distribution at the pipe wall 

will be derived in this section. The pipe is mounted within a Helmholtz coil that provides the magnetic 

field. The potential distribution is measured by means of electrodes that are placed on the pipe 

circumference (see Fig. 1b). The pipe is considered to have an infinite length in the axial or z-
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direction. All the quantities are assumed to be independent of the z-direction. The potential 

distribution at the pipe wall is given by a surface integral over the cross section  of the pipe 

(Shercliff, 1962; Horner et al., 1996): 

         




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 (2.1) 

where    zvxv ,0,0


 is the velocity field which is assumed to have only a component in the z-

direction,  xB


 is the magnetic flux density vector,  xxG 


,  is the Green’s function of the second kind 

of the disc  with radius R, x


 is the position of electrodes, and x


 is the integration variable. The 

assumptions imply that the problem is two dimensional; thus, it is sufficient to consider a section in the 

(x,y)-plane. The position and integration variables with polar coordinates are written as follows: 

  sin,cosRx 


 and   sin,cosrx 


. Then, the Green’s function takes the form (Morse & 

Feshbach, 1953): 
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The magnetic field is assumed to be homogeneous and applied in the negative y-direction, i.e. 

 1,0  BB


, then the potential becomes: 

  





 x

x

G
vBxU z

2d


  (2.3) 

or, in polar coordinates after substitution of Eq. (2.2): 
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 (a) (b) 

Fig. 1: Electromagnetic flow meter; (a) geometry and computational domain; (b) position of 

electrodes 

 

 The Fourier series expansion of the velocity field can be written in the form: 

       





1
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2

1
,

k

kkz krskrcrcrv    (2.5) 

where the coefficients are obtained as follows 

    ,...2,1,0dcos,
1
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1
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  (2.7) 

The potential distribution (2.4) after substitution of the velocity field (2.5) will take the form: 

            




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
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2.2 Conditions for a Given Polynomial Velocity Profile Component only Giving Rise to a Single 

Discrete Fourier Transform (DFT) Component 

 The velocity profile is assumed in a polynomial form. For such functions the coefficients (2.6) and 

(2.7), together with the potential distribution (2.8), can be determined analytically. The superposition 

of polynomial components can also be used to approximate more complex velocity profiles. Since the 

EMFM contains 16 electrodes (N = 16), as will be described in Section 4, polynomials up to 6
th
 order 

can be reconstructed after applying the Discrete Fourier Transform (see Section 2.3). Suppose the 

nth-order component of the velocity profile ( 60  n ) is in the simple form 

 
 

n

n

nQnQ

nn
R

yx
ayxv ,, sincos

;
 

  (2.11) 

 

 

Fig. 2: Definition of the direction Q,n 

 

with nQ,  denoting the angle of direction with respect to the x-axis, where this component is defined, 

and an is constant. The velocity component, vn, only changes in the direction nQ,  and is constant 

along lines orthogonal to this direction (see Fig. 2). It should be noted that nQ,  is not defined for n = 

0, because v0 = a0 for a uniform velocity profile. The potential distribution for this velocity component 

becomes 
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The overall boundary potential distribution  U
~

 is obtained by summing Un() for all individual 

velocity components (e.g. 60  n ). In this case, however, a given component of the DFT of  U
~

 

does not relate to a single velocity component, because each velocity component will give rise to 

multiple frequencies in the boundary potential distribution (see Eq. (2.12)). In order to be able to 

obtain information about the nth velocity component from the DFT, Un() must be expressed only in 

terms of the trigonometric quantities, cos(n+1) and sin(n+1). This will ensure that in the case of 

several velocity components, each of different order n, the (n+1)th component in the DFT of  U
~

 

relates only to the nth order velocity component (see Section 2.3). For the nth order velocity 

component, in order to eliminate terms other than cos(n+1) and sin(n+1), the velocity component 

has to be written in the form, if n is odd, 
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or, if n is even, 
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Thus, the nth velocity component is written as a sum of terms in the form of Eq. (2.14) or (2.15). The 

coefficients 
2, nn

a , 
4, nn

a , …, 
1,n

a  or 
0,n

a  may be chosen so that the undesired trigonometric terms will 

be eliminated. If m = n/2 (n is even) and m = (n–1)/2 (n is odd), then these conditions are as follows 
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In this case, the potential distribution associated with the nth velocity component will be simplified to 

the following form which only contains terms in cos(n+1) and sin(n+1) 

       1sinsin1coscos ,,  nnnnKU nQnQnn  (2.19) 

where  

 
BRa

n
K

nnnn ,
21

1


  (2.20) 

with B and R standing for the magnetic flux density and pipe radius, respectively. Note that in the 

presence of multiple velocity components, the overall boundary potential distribution  U
~

 is again 

given by summing the individual components Un() for all relevant values of n.  

 The coefficient Kn can be obtained from the (n+1)th component Xn+1 of the DFT of the boundary 

potential distribution  U
~

 using 

12  nn XK  (2.21) 

Then, the coefficient an,n is determined from Xn+1 as follows 

 For uniform (n = 0) and linear (n = 1) terms, one possibility exists only: 

 
110,0

2
Resgn X

BR
Xa   (2.22) 

21,1

8
X

BR
a   (2.23) 

 For quadratic (n = 2) and higher-order (n > 2) terms: 
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21
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X
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n
a  (2.24) 

 

2.3 Application of the DFT to the Boundary Potential Distribution 

 Once the overall potential distribution  U
~

 is known, information about the velocity profile can 

be gained by application of the DFT. First, the potential distribution is discretized in order to obtain the 
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potential Up (p = 0,…,N-1) at the positions of the measurement electrodes. The DFT of the series Up 

then provides a series of N complex numbers as follows 

   1,...,1,0/2exp
1 1

0

 




NnNnpjU
N

X
N

p

pn   (2.25) 

where N is the number of samples. Note that Xn is associated with the (n-1)th boundary potential 

component  
1n

U  which is in turn associated with (n-1)th velocity component  yxv
n

;
1

. The value of 

Xn is related to the amplitude and phase of  
1n

U . Note also that  
1n

U  has a wavelength of 2R/n. 

Thus, from the preceding arguments, a uniform velocity component  yxv ;
0

 gives rise to the boundary 

potential component  
0

U  which undergoes one complete cycle around the boundary. The DFT 

component associated with this uniform velocity component is 
1

X . A linear velocity component 

 yxv ;
1

 gives rise to a boundary potential component  
1

U  which undergoes two complete cycles 

around the boundary, etc. In case of a multi-electrode EMFM, N is equal to the number of electrodes 

on the circumference. The argument n associated with the complex number Xn is determined using 

 
 n

n
n

X

X

Re

Im
arctan

 (2.26)
 

taking into account the quadrant in which Xn lies. Unique values of Xn exist only up to the Nyquist 

frequency, that is half of the sampling frequency (i.e. N/2). The numbers X0 and XN/2 are real; thus, the 

numbers from X1 to 12/ NX  provide information about polynomial components of the velocity profile 

from 0
th
 (uniform) to (N/2-2)th order.

 

 

2.4 Angle of Direction of Velocity Profile 

 If the velocity profile takes the form (2.14) or (2.15), then the angle nQ,  of the direction of velocity 

component vn can be determined, as follows, from the argument n of the complex number Xn. 

 If n is odd and an > 0: 

n

k

n
n

nQ




21
,    
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
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,

12
,  k = 0,1,…,n–1 (2.27) 

 If n is odd and an < 0: the same solutions can be obtained, i.e. there are no further solutions. 

 If n is even and an > 0: 
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 If n is even and an < 0: 
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The equations (2.27) or (2.28)-(2.29) imply that there exist n possible values of nQ,  for a velocity 

component in the form of an nth order polynomial. Consequently, if a velocity profile is composed of 

the sum of velocity components up to the nth order polynomial, the number of possible solutions for 

this velocity profile is n! Selection of the optimum solution is described in Section 3.2. 

 

3. Procedure for Reconstruction of Velocity Profiles 

3.1 Reconstruction of possible velocity profiles 

 The procedure to determine the polynomial components of a velocity profile and their directions is 

summarized by the following stages. 

 The nth order polynomial component of the velocity profile is assumed in the form of (2.14) or 

(2.15) if n is odd or even, respectively. 

 The measured overall potential distribution  U
~

 can be written as the sum of a series of 

components  
n

U  given by Eq. (2.19) with (2.20). For a 16-electrode EMFM the maximum 

allowable value of n is 6 (see Section 2.3), but, if required, n may be limited to a lower value nmax if 

it is deemed unlikely that the velocity profile will contain velocity components of order greater than 

nmax. 

 The DFT of the measured potential distribution  U
~

 is obtained giving the DFT components Xn (n 

= 1,…,nmax+1). 

 The coefficient 
nn

a
,

 is obtained from one of Eqs. (2.22)-(2.24). 

 The coefficients 
2, nn

a , …, 
mnn

a
2, 

 are calculated from Eqs. (2.16)-(2.18). 

 The possible angles of direction of the nth velocity component are determined from the argument 

n+1 associated with the (n+1)th DFT component Xn+1 from Eq. (2.27) if n is odd, or from Eqs. 

(2.28) and (2.29) if n is even. 
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3.2 Choice of optimum solution 

 The procedure as described in Section 3.1 provides n! velocity profile solutions if all velocity 

components up to nth order are present. Thus, the optimum solution must be chosen from them. A 

method is proposed in this study for this purpose, which is applicable for single and two-phase flows, 

and is based on predicting the boundary potential distribution in a non-uniform magnetic field for a 

given velocity profile using weight values. This non-uniform magnetic field is described later in the 

present section and shown in Fig. 3b. 

 This method can be applied to choose the optimum solution if the potential distribution is 

measured in a specific non-uniform magnetic field, as well as the uniform magnetic field, and the 

potential distribution is calculated using weight values for all of the possible velocity profile solutions in 

this non-uniform magnetic field. The optimum velocity profile is that for which the calculated boundary 

potential distribution most closely matches the measured boundary potential distribution in the non-

uniform magnetic field. Before the potential distribution associated with a given velocity profile can be 

calculated for the non-uniform magnetic field, the relevant weight values must be determined. 

 In the present study, the pipe section is divided into M subdomains (see Fig. 3a, from which it can 

be seen that M = 30). For an N-electrode system the potential difference jÛ  between the jth electrode 

and a reference electrode in the non-uniform magnetic field can be expressed as follows 

1,...,1
2ˆ

1

 


NjAwv
R

B
U

M

i

iiji

op

j


 
(3.1)

 

where Ai is the area of the ith subdomain and vi is the mean axial velocity in the ith subdomain 

calculated using the analytical expression for velocity profile associated with one of the n! possible 

velocity profile solutions. wij is the weight value relating the velocity in the ith subdomain to the jth 

potential difference measurement jÛ , R is the internal pipe radius and Bop is a reference magnetic 

flux density at a specific location in the flow cross section for the case of the non-uniform magnetic 

field. 

 In this paper simulation results are presented whereby a reference velocity profile is entered into a 

COMSOL model of a 16-electrode EMFM (see Fig. 1 and Section 4). The potentials Up (p = 0 to 15) 
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on the 16 electrodes are calculated in a uniform magnetic field of 0.01 T allowing the n! possible 

predictions of the original reference velocity profile to be calculated as described in Section 3.1. (Note 

that the uniform magnetic field is obtained by letting equal current of appropriate magnitude flow in the 

same direction in each of the coils forming the Helmholtz coil). 

 Next, the same velocity profile is entered into COMSOL but for the case of a non-uniform magnetic 

field, generated by letting currents of equal magnitude flow in opposite directions in each of the coils 

forming the Helmholtz coil. The resultant non-uniform magnetic field is shown in Fig. 3b. The value of 

Bop in Eq. (3.1) is arbitrarily taken as the magnetic flux density at electrode e13 (Fig. 1b) and in the 

simulations described in this paper was equal to 0.005 T. For this non-uniform magnetic field the 

potentials Up on each of the 16 electrodes were calculated using COMSOL, and 15 reference 

potential differences refjU ,
ˆ  (j = 1 to 15) were obtained by subtracting the value of the potential U5 (on 

reference electrode e5) from the value of the potential on each of the remaining electrodes. Next, for 

each of the n! velocity profile solutions, the 15 potential differences jÛ  were calculated for the non-

uniform magnetic field using the weight value method encapsulated by Eq. (3.1). Finally, for each of 

the n! velocity profile solutions, a quantity SU was calculated where 

 



15

1

2

,
ˆˆ

j

jrefjU UUS  (3.2) 

The optimum velocity profile from the n! possible solutions was taken as that for which the quantity SU 

was a minimum, i.e. the velocity profile for which the predicted potential differences using Eq. (3.1) 

gave the best agreement with the calculated potential differences refjU ,
ˆ  which were obtained by 

applying the reference velocity profile to the COMSOL simulation model. 

 The weight values wij in Eq. (3.1) were obtained using a method described in detail by 

Leeungculsatien & Lucas (2013). This method requires 30 separate COMSOL simulations, one for 

each of the 30 subdomains shown in Fig. 3a. Each simulation was carried out using the non-uniform 

magnetic field shown in Fig. 3b and for a given simulation the axial velocity in the chosen subdomain 

(with index i) was set equal to vwt,i whilst the axial velocity in all of the other subdomains was set equal 

to zero. The potentials on each of the 16 electrodes calculated using COMSOL were used to generate 

15 potential differences jwtU ,
ˆ  (j = 1 to 15) by subtracting the potential at electrode e5, successively, 
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from the potentials on each of the remaining electrodes. The weight values wij associated with the 

chosen subdomain with index i were then calculated using the expression 

15,...,1;30,...,1
ˆ

2 ,

,
 ji

vA

U

B

R
w

iwti

jwt

op

ij


 (3.3) 

This process was repeated for the remaining subdomains, thereby allowing the 450 weight values 

required for the correct application of Eq. (3.1), to be calculated. Due to the high computing time 

required to calculate the weight values for each subdomain, the number of subdomains was limited to 

30 in the present study. 

 In practical applications of the technique described above measured potentials, obtained from a 

real EMFM in a uniform magnetic field, are used to generate the n! possible velocity profile solutions. 

Similarly, measured potentials obtained from the EMFM in a non-uniform magnetic field are used for 

selecting the optimum velocity profile solution using the weight value method described above. For a 

given design of EMFM it is only necessary to calculate the weight values once, i.e. prior to the device 

being used for the first time. 

 

4. Electromagnetic Flow Meter 

 The geometry of the EMFM considered in the simulations described in this paper is given in this 

section. It consists of a polytetrafluoroethylene flow pipe mounted within a Helmholtz coil (see Fig. 

1a). The inner diameter of the pipe is 80 mm, and the thickness of the pipe wall is 5 mm. The inner 

and outer diameters of the two coils forming the Helmholtz coil are 204.8 mm and 255 mm, 

respectively. The potential distribution is measured by means of 16 electrodes that are placed at 

angular intervals of 22.5 degrees on the pipe circumference as shown in Fig. 1b. 

 When the weight value method is applied for this specific EMFM, the specifications given in 

Section 3.2 are considered. Since electrode e13 is located at the position x = 0, y = –40 mm (see Fig. 

1), the value of Bop in Eq. (3.1) is taken at that position (0.005 T). 
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  (a) (b) 

Fig. 3: Specifications when applying the weight value method, (a) division of pipe section (h = (2*R)/6, 

w = (2*R)/5, w1 = (2*r1)/5, where r1 = 29.8 mm for a 40-mm-radius pipe), (b) non-uniform magnetic 

field, colour bar is in T 

 

5. Application of Reconstruction Method 

 The method applied in this section is to reconstruct different velocity profiles. In this study, 

COMSOL Multiphysics (COMSOL, 2008) is used to model the physical specifications of the EMFM 

and to simulate the measurements. The computational domain is shown in Fig. 1a. It should be noted 

that the pipe was not simulated in its full length in order to reduce computational cost. For each case 

under consideration, a velocity profile is defined as the input for the COMSOL simulation. The 

simulation then produces a potential distribution on the internal circumference of the pipe. This 

potential distribution is used in the reconstruction method described in Section 3 to attempt to 

reproduce the velocity profile that was initially input into the COMSOL simulation. The reconstruction 

method was implemented in Matlab. 

 First, the reconstruction of possible solutions was tested by a known velocity profile defined in 

polynomial form. Then, the method including the choice of optimum solution was applied to two more 

complex velocity profiles which had previously been measured in two-phase flows. 

 

5.1 Reconstruction of a quartic velocity profile 

 The following 4
th
-order (quartic) polynomial velocity profile was used for testing the reconstruction 

method 
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           yxvyxvyxvyxvyxvyxv ;;;;;; 43210   (5.1) 

where the indices refer to the order of polynomial, and the components are defined as follows 
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 The reference velocity profile defined by Eq. (5.1) is introduced into COMSOL, and the potential 

distribution in the uniform magnetic field is determined (Fig. 4a). This distribution is used as an input 

for the reconstruction method to determine the possible solutions for the velocity profile. Since a 

quartic velocity profile is the subject of reconstruction, the highest order of polynomial component is 4 

and the number of possible solutions is 4! = 24. Then, the potential distribution in the non-uniform 

magnetic field is determined by COMSOL for the original velocity profile. 24 possible solutions for the 

boundary potential distribution in the non-uniform magnetic field are also calculated using the weight 

value method given in Section 3.2. The sum of differences SU as defined by Eq. (3.2), is calculated for 

each of the 24 possible velocity profile solutions, and the optimum velocity profile is the one for which 

SU has a minimum value. Fig. 4b shows potential distributions obtained in the non-uniform magnetic 

field: the distribution simulated by COMSOL is indicated by “COMSOL”, the optimum velocity profile 

solution chosen as explained above is indicated by “Closest calculated”, and the solution for which SU 

is maximum is indicated by “Farthest calculated”. It can clearly be seen that, although both calculated 

potential distributions are close to that obtained from COMSOL, the “Closest calculated” shows a 

closer agreement with the COMSOL one than the “Farthest calculated”; the quantity SU is 81095.2   

and 81087.8   for the “Closest calculated” and “Farthest calculated” velocity profiles respectively. The 

corresponding three velocity profiles are drawn in Fig. 5. The chosen solution coincides closely with 

the reference solution, although some minor differences are visible. However, the farthest calculated 

solution shows more significant discrepancies from the reference velocity profile. 
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  (a) (b) 

Fig. 4: Potential distribution of simulated and reconstructed quartic polynomial velocity profiles; (a) 

uniform magnetic field; (b) non-uniform magnetic field 

 

 The reliability of the method may be evaluated by calculating a term v which represents an 

average percentage deviation in the local velocity of a reconstructed velocity profile as compared with 

the original velocity profile. This term v is determined for each velocity profile solution according to 

Eq. (5.2): 

 
%100~

min,max,

~

1

,

min,max,















inin

M

i

iini

inin

average

vvM

vv

vv

v
v  (5.2) 

Here, M
~

 is a number of subregions into which the cross section can be divided and where the 

velocity is calculated. In this case, M
~

 can be chosen arbitrarily high, because both the input and 

reconstructed velocity profiles are known analytically. In the example given here M
~

 was chosen to be 

88. vin,i is the input velocity in the ith subregion. vin,max and vin,min are, respectively, the maximum and 

minimum velocities in the input velocity profile. [Note that min,max, inin vv   is used in the denominator of 

Eq. (5.2) rather than vin,i  to prevent v  tending to   for vin,i  values which approach zero]. For the 

chosen optimum solution (Fig. 5b), the following value was obtained: v = 2.4%, whereas for the 

farthest calculated solution (Fig. 5c): v = 9.2%. Thus, v is significantly lower for the chosen solution 

than for the farthest calculated solution; furthermore, the value of v is smallest for the optimum 

solution among all the 24 possibilities. 
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 (a) (b) (c) 

Fig. 5: Simulated and reconstructed quartic polynomial velocity profiles, x and y are in m, colour bar is 

in m/s; (a) reference velocity profile; (b) chosen optimum (closest calculated); (c) farthest calculated 

 

 The robustness of the method was studied by adding “noise” to the potential distributions obtained 

in both the uniform and non-uniform magnetic fields. A random error of up to u01.0  was added to 

the calculated true potential at each electrode, using COMSOL for the uniform magnetic field, where 

u = 4109   V. The value of u was chosen because it represents the difference between the true 

maximum and true minimum electrode potentials in the uniform magnetic field. [Note that this random, 

absolute error represents a percentage error of up to about %2  of the true electrode potential for 

those electrodes with the highest magnitude flow induced potentials. However, for those electrodes 

with lower magnitude flow induced potentials, the percentage error of the true electrode potential, 

caused by the addition of u01.0 , may exceed %10 ]. Similarly a random error of up to nu01.0  

was added to the true potential at each electrode, calculated using COMSOL for the non-uniform 

magnetic field, where nu = 4103.3   V. The value of nu was chosen because it represents the 

difference between the true maximum and true minimum electrode potentials in the non-uniform 

magnetic field. Next, the reconstruction method was applied using these “noisy” potential distributions, 

and the value of v was calculated using Eq. (5.2). This process was repeated over 20 trials, since the 

“noisy” potential distributions, and consequently v, are slightly different in each trial. The average 

value of v in these trials was 4.0%, with a minimum of 2.6%, and a maximum of 5.9%. Note that the 

v value was 2.4% for the noise-free potential distributions. These results demonstrate that, for a 

future practical system, provided that the electrode potentials can be measured to an accuracy of 

u01.0  and nu01.0  in the uniform and non-uniform magnetic fields respectively, the mean 
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deviation v (Eq. (5.2)) in the local velocity will be of the order of only 4%. In what follows, the 

reliability of the method will be tested on velocity profiles that are not exactly polynomial. 

 

5.2 Reconstruction of velocity profile measured in two-phase flows 

 The reconstruction method is applied in this section for two measured velocity profiles, namely the 

water velocity profile in a two-phase flow of oil in water and the water velocity profile in a two-phase 

flow of solids in water. 

 

5.2.1 Two-phase flow of oil in water 

Two-phase flow of oil in water in a pipe with inclination angle of 30 deg to the vertical was considered 

in Zhao & Lucas (2011). They measured the volumetric flow rate of water Qw and of oil Qo, the time 

averaged distribution of the local oil volume fraction o  and the time averaged distribution of the local 

axial oil velocity vo, as shown in Fig. 6. The local water velocity vw is calculated from the local oil 

velocity vo using 

slipow vvv   (5.3)
 

where the axial slip velocity vslip in a pipe with inclination angle of 30 deg to the vertical is assumed to 

be given by 

30cos0,slipslip vv   (5.4)
 

The value for 0,slipv  was obtained experimentally as 0.16 m/s (Zhao & Lucas, 2011), hence slipv = 0.14 

m/s. The input water velocity data in reduced spatial resolution as entered into COMSOL is shown in 

Fig. 7a. The differences between Figs. 6b and 7a are that the constant slip velocity given by Eq. (5.4) 

is subtracted and that the spatial resolution is reduced in Fig. 7a. The input velocity profile for the 

COMSOL simulation shown in Fig. 7a is defined as follows. An 80-mm x 80-mm rectangular section 

including the circular pipe is divided into 100 identical regions. Three regions at each corner of the 

rectangular section fall outside the pipe where the velocity is zero (entirely white rectangles in Fig. 

7a), and average water velocities were defined in the remaining 88 regions. Of each region, only the 

area that falls inside the pipe is considered in the calculation (non-white areas of rectangles in Fig. 

7a). Average velocities in each region are determined in correspondence with measured values. 

These values are represented by the colourmap in Fig. 7a. In this section, the potential distribution 
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that is used in the reconstruction is obtained from a COMSOL simulation in a uniform magnetic field 

(see also Fig. 7b) using the input velocity profile described above as shown in Fig. 7a. 

 

 

 (a) (b) 

Fig. 6: Measurements in a two-phase flow of oil-in-water in a pipe with inclination angle of 30 deg 

to the vertical (from Zhao & Lucas, 2011), horizontal and vertical axes are in m, (a) time averaged 

distribution of the local oil volume fraction, colour bar represents fraction, (b) time averaged 

distribution of the local axial oil velocity, colour bar is in m/s 
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Fig. 7. (a) Division of pipe section and the discrete input water velocity profile, x and y are in m, colour 

bar is in m/s, (b) potential distribution as obtained in COMSOL simulation in a uniform magnetic field 
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 A preliminary study was undertaken to investigate the highest order polynomial velocity component 

that should be used in the velocity profile reconstruction. To this end, the highest order component 

was successively changed from first order, to second, to fourth to sixth order. For the velocity profile 

containing velocity components up to first order only one solution exists, whereas in the other three 

cases, multiple velocity profile solutions exist. For each case, the solution for which v, as defined by 

Eq. (5.2), was a minimum was chosen. These resultant velocity profiles are shown in Fig. 8. The 

values of v for these four profiles are 11.01%, 9.02%, 6.75% and 7.91% (for highest order velocity 

components of first order, second order, fourth order and sixth order, respectively). Inspection of Fig. 

8 shows that the velocity profile containing components up to sixth order displays physically 

unrealistic spatial variations which were are also discrepant with the input velocity profile (Fig. 7a). 

Note that an earlier series of simulations with a variety of input velocity profiles also showed that, for 

velocity components of higher order than fourth, v values started to increase showing that the 

velocity profile was becoming less accurate. A probable explanation of this observation lies in the 

tendency of the relative magnitude of DFT components to decrease with increasing ‘component 

number’ - the magnitude of the 7
th
 DFT component (corresponding to the 6

th
 order velocity 

component) being 2 to 3 orders of magnitude smaller than the first components (corresponding to the 

lowest order velocity components). Thus, noise from any source (numerical or experimental), has a 

significant effect on the calculated highest order velocity components. Until these noise sources are 

better understood, the authors have decided to limit the highest order velocity component to fourth 

order. Consequently, in the analyses which follow, velocity component terms up to fourth order only 

will be considered. 
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Fig. 8: Reconstructed water velocity profiles with highest-order terms (a) 1
st
 order, (b) 2

nd
 order, (c) 4

th
 

order, (d) 6
th
 order, x and y are in m, colour bar is in m/s 

 

 Using the boundary potential distribution of Fig. 7b, the reconstruction method described in Section 

3 was applied to determine the 24 possible water velocity profile solutions. The weight value method 

described in Section 3.2 (and also in Section 5.1) was then used in order to select the optimum water 

velocity profile. The optimum oil velocity profile can be obtained by adding the slip velocity vslip to the 

optimum water velocity profile. It can be seen in Fig. 9 that the potential distribution for the chosen 

water velocity profile solution (“Closest calculated”) provides a closer agreement with the reference 

water velocity profile than the “Farthest calculated”. Note also that the quantity SU is 91080.2   and 

91001.5   for the “Closest calculated” and “Farthest calculated” profiles respectively. However, the 

difference between the “closest” and “farthest” solutions is less than the difference between the 

chosen (“Closest calculated”) and the reference solutions. The original and the chosen oil velocity 

profiles are shown in Figs. 10a and 10b, respectively. The term v as defined by Eq. (5.2) is lowest for 

the oil velocity profile solution shown in Fig. 10c, whereas it is greatest for the solution shown in Fig. 

10d. Consequently, a solution (Fig. 10c) closer to the original oil velocity profile than the chosen 

solution (Fig. 10b) exists. The value of v for the oil velocity profile in Fig. 10c is 6.8%. The value of v 

for the oil velocity profile in Fig. 10d is 11.4%. The value of v for the chosen oil velocity profile is 

9.0%. Thus, v is quite low for all the 24 possible solutions. Although it is not minimum for the chosen 

solution (Fig. 10b), it is below 10% which is still acceptable, and the chosen solution approximates 
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closely the main characteristics in the original oil velocity profile, without being able to predict some of 

the more subtle details that are visible in Fig. 10a. 
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Fig. 9: Potential distribution of simulated and reconstructed velocity profiles in non-uniform magnetic 

field 
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Fig. 10: Oil velocity profiles, x and y are in m, colour bar is in m/s, (a) original from measurement; (b) 

chosen by comparing potential distributions (min SU); (c) lowest value of v (Eq. 5.2), (d) highest value 

of v 

 

5.2.2 Two-phase flow of solids in water 

The solids velocity profile for a two-phase flow of solids in water in an inclined pipe with inclination 

angle of 30 deg to the vertical was measured in Cory (1999). The measured solids velocity profile is 

shown in Fig. 11. The water velocity profile can be determined from the measured solids velocity 

profile using Eq. (5.3) with oil velocity vo replaced by solids velocity. The slip velocity of the solids with 

respect to water in a vertical pipe was found by Cory (1999) to be 16.00, slipv m/s. This value is 

negative since the solids density was greater than that of water. The application of Eq. (5.4) provides 

the solids slip velocity in the inclined pipe as 14.0slipv m/s. The division of pipe section into a 

number of regions in order to provide the input water velocity profile for a COMSOL simulation was 

performed in the same way as explained in Section 5.2.1. Potential distributions were obtained from 

this COMSOL simulation for both the uniform and non-uniform magnetic fields described in Section 

3.2. 

 

Fig. 11: Measured solids velocity profile (from Cory, 1999) 

 

 For the reconstruction procedure water velocity profiles containing polynomial components up to 

fourth order were considered. The optimum water velocity profile from the 24 possible solutions was 

chosen by comparing the potential distributions calculated using the weight value method for the non-

uniform magnetic field with the reference potential distribution obtained from COMSOL in the non-

uniform magnetic field. The potential distribution for the chosen solution in Fig. 12 (“Closest 
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calculated”) provides a closer agreement with the COMSOL simulation than the “Farthest calculated”. 

Note also that the quantity SU is 81085.2   and 81055.5   for the “Closest calculated” and “Farthest 

calculated” solutions respectively. The difference between the “closest” and “farthest” potential 

distributions is less at some angular positions (270-350 deg) than the difference between the “chosen” 

and the reference potential distributions. However, in this example there are some angular positions 

where this situation is reversed (20-50 deg, 120-240 deg). The original, “closest calculated” and 

“farthest calculated” water velocity profiles are shown in Figs. 13a, 13c and 13d, respectively. Also 

shown, in Fig. 13b, is the water velocity profile for which v (Eq. 5.2) is a minimum. Similar 

conclusions can be drawn from Fig. 13 as from Fig. 10 in the previous example. The chosen (“closest 

calculated”) solution (Fig. 13c) provides a visibly closer approximation to the reference water velocity 

profile (Fig. 13a) than the “farthest calculated” (Fig. 13d). However, the value of v is lowest for the 

solution in Fig. 13b, i.e. a solution closer to the original water velocity profile than the “chosen” water 

velocity profile exists. The value of v for the profile in Fig. 13b is 5.0%, whereas v = 5.2% for the 

chosen solution in Fig. 13c. 

0 50 100 150 200 250 300 350
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-4

 (deg)

U
 (

V
)

 

 

COMSOL

Closest calculated

Farthest calculated

 

Fig. 12: Potential distribution of simulated and reconstructed water velocity profiles in non-uniform 

magnetic field 
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 (a) (b) 

  

 (c) (d) 

Fig. 13: Water velocity profiles; (a) original as defined in COMSOL simulation; (b) lowest value of v 

(Eq. 5.2), (c) “closest calculated” solution by comparing potential distributions (min SU), (d) “farthest 

calculated” solution by comparing potential distributions (max SU) 

 The results for the two examples presented in this section show that the method proposed for 

choosing the optimum solution does not necessarily provide the solution with the closest velocity 

profile to the original velocity profile. However, the chosen solution in both examples provides an 

estimation of the reference velocity profile for which the mean deviation v (Eq. 5.2) is below 10%. For 

many industrial multiphase flow measurement applications this level of error would be acceptable. 

 

6. Conclusions 
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 An analytical velocity reconstruction method has been developed and tested, which is applicable to 

flow measurement with a multi-electrode electromagnetic flow meter (EMFM). The method is based 

on the Discrete Fourier Transform (DFT), and includes two steps. Firstly, possible solutions are 

determined in polynomial form and secondly the optimum velocity profile is chosen from among them. 

The first step requires measurement of potential distribution in a uniform magnetic field; whereas 

measurement of potential distribution in a non-uniform magnetic field is necessary for the second 

step. It was shown that the complex numbers obtained from the DFT coefficients provide information 

about the coefficients of the polynomial velocity components of the reconstructed velocity profile, 

together with the angle of the direction of these velocity components. Thus, a method has been 

proposed that provides the velocity distribution analytically for a continuous conductive phase in a 

circular pipe section, in either single phase or multiphase flow. 

 The application of the method to artificial velocity profiles constructed from polynomial velocity 

components shows that the reconstructed velocity profile coincides closely with the original profile, in 

spite of the fact that there exist multiple solutions with identical potential distributions in a uniform 

magnetic field and with nearly identical potential distributions in the non-uniform magnetic field. When 

the method is applied to more complex velocity profiles, then the choice among the possible solutions 

may not be that which is closest by local velocities, i.e. that for which the term v is minimum. 

However, the chosen solution is a satisfactory estimation of the input velocity profile with a value of v 

that in general is not greater than 10%. 
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