Computing and Library Services - delivering an inspiring information environment

High temperature ceramics for use in membrane reactors: the development of microporosity during the pyrolysis of polycarbosilanes

Williams, H.M., Dawson, Elizabeth A., Barnes, Philip A., Rand, B., Brydson, Rik M.D. and Brough, A.R. (2002) High temperature ceramics for use in membrane reactors: the development of microporosity during the pyrolysis of polycarbosilanes. Journal of Materials Chemistry, 12. pp. 3754-3760. ISSN 0959-9428

[img] PDF
Restricted to Registered users only

Download (166kB)


The pyrolysis of polycarbosilane (PCS), a ceramic precursor polymer, at temperatures up to 700 uC under an inert
atmosphere results in the development of amorphous microporous materials which have a number of potential
applications, such as gas separation membranes. This paper investigates the development of microporosity
during pyrolysis under nitrogen, at temperatures ranging from 300 to 700 uC, of both the cross-linked and noncross-
linked starting materials. The products are characterised by nitrogen adsorption, to determine surface
areas and pore volumes, solid-state NMR, electron microscopy and FTIR, and their formation is studied using
thermal analysis and evolved gas analysis with on-line mass spectrometry. The cross-linked and non-crosslinked
PCSs have a maximum micropore volume of 0.2 cm3 g21 at pyrolysis temperatures of between 550
and 600 uC. The microporosity is stable in air at room temperature, but is lost in oxidising atmospheres at
elevated temperatures.

Item Type: Article
Additional Information: © The Royal Society of Chemistry 2002
Uncontrolled Keywords: microporosity polycarbosilanes
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Materials and Catalysis Research Centre
Related URLs:
References: 1 S. Yajima, J. Hayashi, M. Omori and K. Okamura, Nature (London), 1976, 261, 683–685. 2 S. Yajima, M. Omori, J. Hayashi, K. Okamura, T.Matsuzawa and C. Liaw, Chem. Lett., 1976, 551. 3 P. Colombo, T. E. Paulson and C. G. Pantano, J. Am. Ceram. Soc., 1997, 80, 2333–2340. 4 K. Langguth, S. Bockle, E. Muller and G. Roewer, J. Mater. Sci., 1995, 30, 5973–5978. 5 O. Delverdier, M. Monthioux, D. Mocaer and R. Pailler, J. Eur. Ceram. Soc., 1993, 12, 27–41. 6 Y. Hasegawa and K. Okamura, J. Mater. Sci., 1983, 18, 3633– 3648. 7 E. Bouillon, D. Mocaer, J. F. Villeneuve, R. Pailler, R. Naslain, M. Monthioux, A. Oberlin, C. Guimon and G. Pfister, J. Mater. Sci., 1991, 26, 1517–1530. 8 Z. Li, K. Kusakabe and S. Morooka, J. Membr. Sci., 1996, 118, 159–178. 9 K. Kusakabe, Z. Li, H. Maeda and S. Morooka, J. Membr. Sci., 1995, 103, 175–180. 10 K. Kusakabe, Z. Li, H. Maeda and S. Morooka, Sep. Sci. Technol., 1997, 32, 1233–1254. 11 A. B. Shelekhin, E. J. Grosgogeat and S. Hwang, J. Membr. Sci., 1991, 66, 129–141. 12 E. J. Grosgogeat, J. R. Fried, R. G. Jenkins and S. Hwang, J. Membr. Sci., 1991, 57, 237–255. 13 J. P. Dismukes, J. W. Johnson, J. L. Pizzulli and R. A. McEvoy, Proc. Electrochem. Soc., 1999, 97–98, 196. 14 J. P. Dismukes, J. W. Johnson, J. S. Bradley and J. M. Miller, Chem. Mater., 1997, 9, 699–706. 15 J. Zaman and A. Chakma, J. Membr. Sci., 1994, 92, 1–28. 16 G. Saracco, G. F. Versteeg and W. P. M. Van Swaaij, J. Membr. Sci., 1994, 95, 105–123. 17 S. Yajima, Y. Hasegawa, J. Hayashi and M. Omori, J. Mater. Sci., 1978, 13, 2569. 18 R. M. Laine and F. Babonneau, Chem. Mater., 1993, 5, 260–279. 19 S. Yajima, Y. Hasegawa, K. Okamura and T. Matsuzawa, Nature (London), 1978, 273, 525–527. 20 T. Ishikawa, M. Shibuya and T. Yamamura, J. Mater. Sci., 1990, 2, 2809–2814. 21 Y. Hasegawa, J. Mater. Sci., 1989, 24, 1177–1190. 22 E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, P. V. Hong, J. C. Sarthou, A. Delpuech, M. Monthioux and A. Oberlin, J. Mater. Sci., 1991, 26, 1333–1345. 23 P. A. Barnes, G. M. Parkes and P. Sheridan, J. Therm. Anal., 1994, 42, 841–854. 24 R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, Chem. Mater., 1992, 4, 711–716. 25 T. Taki, M. Inui, K. Okamura and M. Sato, J. Mater Sci. Lett., 1989, 8, 918–920. 26 R. K. Harris, J. Magn. Reson., 1975, 17, 174. 27 J. Brus and J. Dybal, Polymer, 2000, 41, 5269–5282. 28 G. J. J. Out, A. A. Turetskii, M. Mollerand and D. Oelfin, Macromolecules, 1994, 27, 3310–3318. 29 C. K. Whitmarsh and L. V. Interrante, J. Organomet. Chem., 1991, 1, 69–77. 30 Y. Hasegawa and K. Okamura, J. Mater. Sci., 1986, 21, 321–328. 31 A. E. Aliev, K. D. M. Harris and D. C. Apperley, J. Chem. Soc., Chem. Commun., 1993, 251–253. 32 Z.-F. Zhang, F. Babonneau, R. M. Laine, Y. Mu, J. F. Harrod and J. A. Rahn, J. Am. Chem. Soc., 1991, 74, 670–673. 33 M. P. Besland, C. Guizard, H. Hovnaian, A. Larbot, L. Cot, J. Sanz, I. Sobrados and M. Gregorkiewitz, J. Am. Chem. Soc., 1991, 113, 1982–1987. 34 M. F. Gozzi and I. V. P. Yoshida, Macromolecules, 1995, 28, 7235–7240. 35 J. S. Hartman, M. F. Richardson, B. L. Sherriff and B. G. Winsborrow, J. Am. Chem. Soc., 1987, 109, 6059–6067. 36 X. X. Jiang, R. Brydson, S. P. Appleyard and B. Rand, J. Microsc., 1999, 196, 203–212. 37 D. Upadhaya, R. Brydson, C. M. Wardclose, P. Tsakiropoulos and F. H. Froes, Mater. Sci. Technol., 1994, 10, 797–806. 38 K. Oshida, K. Kogiso, K. Matsubayashi, K. Takeuchi, S. Kobayashi, M. Endo, M. S. Dresselhaus and G. Dresselhaus, J. Mater. Res., 1995, 10, 2507–2517. 39 S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1984, p. 226. 40 D. Cazorla-Amoros, J. Alcaniz-Monge and A. Linares-Solano, Langmuir, 1996, 12, 2820–2824. 41 T. Shimoo, H. Chen and K. Okamura, J. Mater. Sci., 1994, 29, 456–463.
Depositing User: Briony Heyhoe
Date Deposited: 12 Jul 2007
Last Modified: 28 Aug 2021 23:35


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©