University of Huddersfield Repository

Amsdon, Timothy and Sibley, Martin J.N.

Theoretical concepts and matlab modelling of VLC based MIMO systems

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/19374/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
THEORETICAL CONCEPTS AND MATLAB MODELLING OF VLC BASED MIMO SYSTEMS

By: T.J. Amsdon PhD Student
School of Computing and Engineering
Supervisors: Dr M.J.N. Sibley, Dr P.J. Mather

Introduction

Highly efficient and long lasting LED lights are replacing standard incandescent and fluorescent lighting technologies. Solid-state LEDs have wide frequency bandwidths enabling them to be switched at very high frequencies. Combining the lighting and switching capabilities of the LED enables a dual functional system, where the primary function is room illumination, and the secondary is to act as an optical transmitter as part of a visible light communication (VLC) system. VLC systems present enormous potential for applications in computer networking, control systems and audio/video streaming.

Figure 1 Block diagram of a 4x4 MIMO VLC unidirectional system model

Research Topics

- Lambertian emissions: line-of-sight (LOS)
- Characterization of LEDs and photodetectors (PD)
- Intensity modulation (IM) schemes: DIPPM, digital offset PPM, NRZ-OOK, duo binary PPM
- Error-correction coding techniques: maximum likelihood sequence estimation (MLSE) and Reed–Solomon (RS)
- Channel estimation: channel matrix (H)
- Analogue circuits: PD transimpedance amplifiers (TIA), Matching filters (MF) and channel equalization, LED driver transconductance amplifiers (TCA)

Figure 2 MATLAB simulation: Lambertian intensity (Ro) 2x2 LED array within a 3D space 8m x 8m x 2m

Aims

- Develop MATLAB based computer models to simulate an indoor, short-range 4x4 MIMO VLC system
- Use LED as optical transmitters in a VLC system
- Generate a block diagram of a 4x4 MIMO VLC unidirectional system model

Results

- Generated a block diagram of a 4x4 MIMO VLC unidirectional system model (Figure 1)
- Coded and tested MATLAB models to simulate a single LED and 2x2 LED array’s Lambertian radiant intensity (Figure 2)
- Developed a theoretical strategy for modelling the transmitter, channel, receiver, and MIMO channel estimation (Figure 3)

Conclusions

- Successfully generated a block diagram of a 4x4 MIMO VLC unidirectional system model
- Successfully simulated Lambertian intensity of a single LED and 2x2 LED array within a 3D space using MATLAB, also simulated the path time delays from Tx to Rx
- Work continues to develop MATLAB models