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Abstract 

 

Electron paramagnetic resonance (EPR) was conducted on aluminium oxide films 

deposited by atomic layer deposition on (100)Si.  Multiplet spectra are observed, 

which can be consistently decomposed assuming the presence of only Pb0 and Pb1 

centres, which are well known in Si/SiO2 structures.  Al2O3 films deposited on HF-

treated (100)Si exhibit unpassivated Pb0 and Pb1 centres, with concentrations of 

(7.7±1.0)x1011 cm-2 and (8±3)x1010 cm-2 respectively.  Rapid thermal annealing of the 

substrate in NH3 prior to film deposition reduces the unpassivated Pb0 concentration to 

(4.5±0.7)x1011 cm-2.  Forming gas annealing at temperatures in the range 400oC to 

550oC causes no further reduction in defect density; this may be related to a spread in 

passivation activation energy, associated with low temperature deposition.   
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1. Introduction 
 
 

Scaling of metal-oxide-semiconductor (MOS) devices to smaller sizes has so far 

involved reducing the thickness of the silicon dioxide, SiO2, oxide layer.  However, 

obstacles such as an increased leakage or tunnelling current set a minimum thickness 

of oxide below which devices are fundamentally unfeasible [1].  One way to combat 

this problem is to replace SiO2 with insulating metal oxides that have a higher 

dielectric permittivity: aluminium oxide, Al2O3, is one material that has emerged as a 

possible candidate, at least as a short-medium term solution [1, 2]. 

 

Al2O3 has high thermal stability and therefore, unlike other materials currently under 

study as SiO2 replacements, is compatible with the standard CMOS process [3].  

However, the quality of the silicon/oxide interface is also of vital importance in MOS 

devices.  Defects at the interface have a detrimental effect on device performance, 

affecting operational characteristics as well as increasing leakage current and oxide 

breakdown probability.  Therefore a control of interface defects is a critical issue in 

integrated circuit manufacture [1, 4, 5]. 

 

Electron paramagnetic resonance (EPR) is a key tool in atomic-scale identification of 

point defects and many studies have utilised this technique to examine interface 

defects in Si/SiO2 structures [4, 6].  However, little work has been done utilising EPR 

on aluminium oxide.  Stesmans and Afanas’ev [7, 8] use VUV depassivation of 

defects prior to EPR to show a (100)Si/Al2O3 interface that is basically Si/SiO2-like, 
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exhibiting both Pb0 and Pb1 interface traps.  Both Pb0 and Pb1 defects are trivalently 

bonded silicon atoms at the Si/SiO2 interface, •Si≡ Si3.  Pb0 is axially symmetric about 

<111> and Pb1 has monoclinic symmetry [4, 5].  Both types of defects are of 

importance from an engineering and material science point of view, and can be 

passivated (and hence made EPR inactive) through binding with hydrogen at 

moderate temperatures, thus films deposited in a hydrogen rich ambient would be 

expected to have low levels of unpassivated defects in their as-deposited state. 

 

Cantin et al. [9] show that the Pb0 and Pb1 signals observed in EPR studies on Al2O3 

samples, similar to EPR spectra of silicon dioxide on silicon, are possibly due to a 

thin, ~0.7nm, interface layer of SiO2.  However, TEM measurements have shown that 

it is possible to deposit Al2O3 on silicon without forming an interfacial SiO2 layer [1].  

The same authors also observe an additional isotropic silicon dangling bond, “Si-db”, 

signal that dominates the EPR spectrum, and suggest that some of this defect is 

present in the interface or dielectric.  They also show that forming gas annealing 

(FGA) of samples does not produce the decrease in defect density of several orders of 

magnitude observed in SiO2 [6], but that the Pb0 concentration is only reduced by 30-

50% [9]. 

 

In this study we use electron paramagnetic resonance (EPR) to examine the defects in 

samples consisting of aluminium oxide that has been deposited by atomic layer 

deposition (ALD) on (100)Si.  We quantify the unpassivated defect density, examine 

the origin of the Si-db defect, and report on the effects of a pre-deposition nitridation 

step - which has been shown in a number of dielectrics to improve interface quality 
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[10, 11] above that of ALD grown films on HF-treated substrates, which may result in 

uneven nucleation and discontinuous films [10, 12].  We also show the effects of post-

deposition annealing in forming gas. 

 

2. Experimental Details 

 

Starting substrates were 200 mm p-type silicon wafers, with resistivity of 20 ohm.cm. 

After an IMEC clean step, a native oxide etch was performed in 2% HF for 30s. This 

hydrogen-terminated silicon was one of the substrate surface preparations used in this 

work (films deposited on this surface are henceforth referred to as “HF-last”). The 

second surface preparation was a nitridation step performed at 560oC on the 

hydrogen-terminated silicon by rapid thermal annealing (RTA) in NH3 for 30s 

(referred to subsequently as “nitrided”). Al2O3 was deposited at Philips by atomic 

layer deposition (ALD) at 300oC to a thickness of 15 nm, with a tri-methyl alumina 

(Al(CH3)3) precursor.  

 

Some samples were subjected to a 30 minute forming gas anneal (FGA), either at 

400oC with a cool down also in forming gas, or a 550oC FGA with a cool down 

ambient of either nitrogen or forming gas.   

 

The samples for EPR were etched in a CP4-variant solution to reduce the substrate 

thickness from 0.5mm to ≈ 150µm.  This reduces the amount of silicon in each 

sample, and thus decreases the reduction of EPR sensitivity that occurs due to the 

presence of a conducting material within the cavity.  This thinning also allows a 
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number of ‘slices’ of a sample to be stacked together in the cavity, increasing the area 

of interface and volume of bulk film under study.  Measurements were typically 

carried out on bundles of five slices.  As a final treatment, the backs and edges of the 

samples were etched in CP4-variant solution after cleaving the samples to size, in 

order to remove the native oxide and passivate the damage centres, respectively.  

Electron paramagnetic resonance measurements on as-deposited samples were 

conducted before and after this final etch, to investigate the origin of the Si-db signal.  

EPR was also carried out on the annealed samples following final etching. 

  

EPR measurements were made at room temperature on a Bruker EMX machine, using 

100kHz field modulation, a microwave frequency of approximately 9.9GHz (X-band) 

and a TM011 mode cavity.  Each g value was calculated by comparing the field 

position of the resonance with that of a resonance of known g value, in this case F+ 

centres in MgO, with g=2.0023.  The field range was calibrated with a proton NMR 

probe that also gave absolute field values.   

 

Measurements were conducted at a non-saturating power.  To improve the signal-to-

noise ratio without distorting the EPR line, each spectrum has been averaged over a 

large number of scans with the modulation field kept at approximately one third of the 

Pb1 peak-to-peak linewidth, the narrowest feature in each spectrum [13].  Errors given 

in this work are suitable for comparing one sample with another on this set-up – but 

do not include error in Varian standard concentration or measurement.  For absolute 

uncertainty values fractional errors should be increased by approximately 20%. 
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3. Results and Discussion 

 

3.1 Si-db centre 

 

Figure 1 shows EPR spectra of the as-deposited HF-last film, prior to the final etch of 

the substrate back and edges.  Figure 1 a) and b) show the spectrum obtained when the 

applied field is parallel to the [100] and [111] direction, respectively.  The spectra are 

clearly asymmetric, and in addition to lines with position dependent on field 

orientation, a resonance line with isotropic g value, g ≈ 2.0056, is clearly observed.  

Previous work [9] has shown that such a resonance line can be present in addition to 

the lines due to Pb0 and Pb1 defects.  This line is attributed to silicon dangling bonds 

(Si-db) and is well known to occur in damaged silicon [14].  The fit to these spectra, 

included in figure 1, shows each spectrum can be accurately decomposed into 

components, and consists of only Si-db, Pb0 and Pb1 lines. 

 

Figure 2 shows spectra taken from repeating the EPR measurements after the etch to 

remove oxide from the back of the wafer and to passivate damage on cleaved edges.  

It can be immediately seen that although there is a line with g ≈ 2.0056 in the [100] 

spectrum, there is no corresponding line in the [111] spectrum.  This suggests that the 

isotropic Si-db line has been removed by the etching process, and the lines observed 

in the [100] spectrum are anisotropic Pb0 and Pb1 lines.  This hypothesis can be 

verified by fitting to the experimental spectra. 
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In all cases the EPR spectra taken with field in [100] direction, after the final etch, can 

be decomposed into component lines assuming only the presence of Pb0 and Pb1 type 

defects.  To verify that only these defects are present, fits are made to the spectra 

taken with the magnetic field in the [111] orientation using the relative intensities of 

Pb0 and Pb1 taken from [100] fits.  Fitting to the [111] spectra shows that there is no 

resonance line with isotropic g-value at g ≈ 2.0056, and thus indicates that the signal 

in [100] is due to Pb0, not silicon dangling bonds, and in addition shows that the 

intensities obtained from [100] fit are consistent with the spectra obtained at another 

orientation.  The absence of the isotropic line at g ≈ 2.0056 is shown to be due to the 

etch immediately prior to conducting the EPR measurements.  This etch removes any 

signal due to damage and oxide growth on the back of the substrate and on the lateral 

cleavage planes – thus EPR spectra can be collected without the resonance line due to 

the Si-db centre that is observed to be obscuring the Pb0 signal in recent work by 

Cantin et al. [9].  

 

3.2 Pb0 and Pb1 centres 

 

Pb0 and Pb1 concentrations and linewidths are obtained through fits made to the 

(derivative) spectrum taken with the magnetic field in the [100] direction (i.e. 

perpendicular to the sample, for these films on (100)Si substrates).  These fits assume 

Lorentzian lines fixed at, or within error of, the known g-values for Pb0 and Pb1 in this 

field orientation, g=2.0059 and g=2.0037, respectively [7, 9].  With the applied field 

in this orientation the four branches coincide for both Pb0 and Pb1 thus making 

identification and measurements more accurate.  The intensities of the resonance lines 
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are calculated from the height multiplied by the square of the peak-to-peak linewidth, 

with appropriate normalisation and shape factor corrections.  The defect concentration 

is then calculated by comparing the intensity to that of a standard Varian sample of 

pitch in KCl.  The total defect concentration is then the sum of the concentrations of 

individual defect types. 

 

The Pb0 and Pb1 defect densities and component linewidths obtained from fitting to 

B║[100] spectra are shown in table 1.  Sample spectra from measurements with 

B║[100] and B║[111] are shown in figure 2a and figure 2b, respectively, fits 

consisting of Pb0 and Pb1 component lines are also shown. 

 

 

  

 

 

 

Anneal 
conditions 

Surface [Pb0] / 
1011cm-2 

∆Bpp /G  
Pb0  

[Pb1] / 
1010cm-2 

∆Bpp /G  
Pb1  

Total 
Defects / 
1011cm-2 

[Pb0] / 
[Pb1] 

HF-last 7.7±1.0 3.5(1) 8±3 2.4(2) 8.5 10 
None 

Nitrided 4.5±0.7 4.0(3) 11±5 2.2(3) 5.6 4 
400oC  
FG Cool  Nitrided 5.8±0.9 3.3(1) 5.8±2.1 2.2(2) 6.4 10 

HF-last 5.8±0.9 4.9(1) 3.2±0.9 2.0(2) 6.1 18 550oC  
N2 cool Nitrided 5.3±0.8 3.4(1) 39±7 3.5(1) 8.2 1.3 

HF-last 6.4±0.9 4.0(1) ≤ 6.6 2.6(3) 6.7 10 550oC  
FG cool Nitrided 4.6±0.6 3.5(1) 5.7±1.6 2.5(1) 5.2 8 

Table 1.  Concentrations of EPR-active centres for Al2O3 films on “Nitrided” (NH3) 
and “hydrogen-terminated” (HF-last) substrates.  Peak-to-peak linewidths for 
B║[100] are also shown.  All anneals were carried out in forming gas (FG) with cool 
down either in FG or N2. 
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The as-deposited film grown on the hydrogen terminated substrate shows a 

concentration of unpassivated Pb0 defects of (7.7±1.0)x1011 cm-2.  This is 

approximately one order of magnitude lower than the ~6x1012 cm-2 defects after 

depassivation by photodesorption, observed by Stesmans and Afanas’ev [7] in their 

work on (100)Si/Al2O3/ZrO2 stacks grown by ALD on substrates treated with a HF 

dip prior to deposition.  The Pb1 defect concentration is, at (8±3)x1010 cm-2, 

approximately a factor of ten smaller than the Pb0 concentration seen in the as-

deposited films in the current work.  This dominance of Pb0 over Pb1 is also observed 

in Cantin’s work [9] and in Stesmans’ and Afanas’ev’s [8] depassivated films; it 

probably reflects the rather low deposition temperature, since high [Pb0]/[Pb1] ratios 

are also seen in SiO2 films grown with low oxidation temperatures (Tox).  Thermal 

SiO2 grown at Tox = 180 oC has concentrations of defects such that [Pb0]/[Pb1] ≈ 20; 

this ratio decreases as the oxidation temperature is raised [15]. 

 

It is worth noting that the Pb0 and Pb1 linewidths obtained from the fits to spectra in 

this work are, at 4.1±0.8G and 2.2±0.2G respectively, considerably smaller than the 

9.7±0.4 G and 3.75±0.2 G observed in (100)Si/Al2O3/ZrO2 stacks by Stesmans and 

Afanas’ev [7]. 

 

It can be seen from table 1 that the initial nitridation step reduces the detected Pb0 

concentration for as-deposited films, from (7.7±1.0)x1011 cm-2 to (4.5±0.7)x1011 cm-2.  

This suggests that the NH3 RTA reduces the number of Pb0 defects or causes further 

passivation.  This is consistent with previous electrical measurements on aluminium 
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and zirconium oxide on silicon, which show that nitridation of the silicon substrate 

produces a better quality interface [10, 11]. 

 

Forming gas annealing (FGA) of SiO2 films on silicon causes the Pb–type defect 

concentration to be reduced by several orders of magnitude [6].  However, annealing 

of our nitrided Al2O3 film in forming gas at 400oC causes no further reduction in the 

concentration of detected unpassivated defects.  This contrasts with the effect of FGA 

on SiO2, but matches (in context) with the reduction of only ~30% in Pb0 concentration 

following a 450oC FGA observed by Cantin et al. [9] in their work on ALD Al2O3 

films deposited on HF-dipped (100)Si.  However, this may be because a large 

proportion of the Pb0 and Pb1 defects are already passivated in the as-deposited state.  

Indeed the defect concentrations in the as-deposited films in this work are similar to 

the lowest observed by Stesmans and Afanas’ev [8] in their trials of various post-

deposition treatments. 

 

The lack of passivation efficiency is perhaps related to the low-temperature deposition 

conditions.  Work on SiO2 [16] has shown that for fixed anneal conditions, defects in 

films produced with low oxidation temperatures, Tox, of 250oC are passivated to a 

much lesser extent than films with a higher Tox.  This is attributed to higher levels of 

interface stress in these low temperature films, which leads to a variation in Pb 

morphology between individual sites, creating a spread in the passivation activation 

energies [16, 17].  This results in a proportion of sites, with high activation energies, 

that are not passivated by a standard anneal.  The ALD process at 300oC, which in 

some cases essentially creates a low-Tox SiO2 interface [1, 9], may also produce films 
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with levels of interface stress that cause significant spread in the passivation 

activation energy of Pb centres, which therefore causes the passivation efficiency to be 

reduced.  

 

Forming gas annealing at 550oC with cool down in nitrogen, causes the Pb1 

concentration of the nitrided film to increase from (1.1±0.5)x1011cm-2 to 

(3.9±0.7)x1011cm-2, approaching the (5.3±0.8)x1011cm-2 of Pb0 defects.  This decrease 

in the [Pb0]:[Pb1] ratio following our 550oC anneal may initially suggest a relaxation of 

the interface stress.  However, with an anneal at 550oC but with a cool down in 

forming gas, the defect concentrations and relative intensities are very similar to those 

of the unannealed sample, and have not been reduced as would be expected following 

stress relaxation.  It is probable that the relatively high anneal temperature is 

beginning to drive hydrogen off defect sites where it is more weakly bound, thus 

depassivating a proportion of the defects.  The cool down in nitrogen will cause these 

defects to remain unpassivated, however, cooling down in forming gas has allowed 

hydrogen in the ambient to repassivate the defects. 

 

4. Conclusions 

 
EPR measurements on (100)Si/Al2O3 show the presence of unpassivated Pb0 and Pb1 

defects, similar to those observed in Si/SiO2 interfaces.  For as-deposited films on 

hydrogen terminated (HF-last) surfaces the Pb1 concentration is (8±3)x1010 cm-2; 

however, the Pb0 line dominates the spectra with a concentration of (7.7±1.0)x1011 cm-2.  

This is an order of magnitude smaller than the concentration of defects following 
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depassivation [7].  No isotropic line due to damage-related silicon dangling bonds (Si-

db) is observed, contrary to inference in another work [9], confirming that for our ALD 

samples this defect is wholly in the lateral cleavage planes and/or substrate back. 

 

Subjecting the substrate to an RTA in NH3 prior to film deposition is shown to reduce 

the Pb0 density to (4.5±0.7)x1011 cm-2, however, no further reduction of density 

(within errors) occurs following forming gas annealing at temperatures in the range 

400oC to 550oC.  We suggest that the lack of passivation efficiency may be the result 

of a spread in passivation activation energies, caused by stress levels in the interface 

associated with low temperature deposition.  This reduced annealing passivation 

efficiency and the high [Pb0]/[Pb1] ratio seen in these films are also observed in 

thermal SiO2 grown with low oxidation temperatures [15, 16].  The effects seen are 

perhaps, therefore, associated with a SiO2 interface layer.   
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Figure 1. EPR spectra of as-deposited HF-last Al2O3 sample, with applied magnetic 

field a) parallel to [100] and b) parallel to [111]. 
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Figure 2. EPR spectra of Al2O3 films on hydrogen-terminated silicon substrates, after 

etch of wafer back and cleavage planes, with applied field in a) [100] and b) [111] 

directions 

 

 

 

  


