Computing and Library Services - delivering an inspiring information environment

Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques

Tiernan, M. J., Barnes, Philip A. and Parkes, Gareth M.B (2001) Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques. Journal of Physical Chemistry B, 105. pp. 220-228. ISSN 1089-5647

[img] PDF
Restricted to Registered users only

Download (257kB)


The mechanisms and kinetics of the reduction of powdered Fe2O3 and Fe3O4 samples have been investigated under nonisothermal conditions to provide a detailed insight into the processes occurring. Both conventional linear heating temperature-programmed reduction (TPR) and constant rate temperature-programmed reduction (CR-TPR) techniques were utilized. Fe2O3 was found to reduce to Fe in a two-step process via Fe3O4. The mechanism of the prereduction step of Fe2O3 to Fe3O4 was found to follow an nth order expression where nucleation or diffusion was not the rate-controlling factor while the main reduction step to metal was described by a model involving the random formation and growth of nuclei. A CR-TPR rate perturbation method, "rate-jump", was applied to the measurement of variations in apparent activation energy throughout the reduction processes, under near-equilibrium conditions and the activation energy measurements are compared with those obtained under conventional linear heating conditions.

Item Type: Article
Additional Information: Copyright © 2007 American Chemical Society
Uncontrolled Keywords: Iron oxide catalysts
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Materials and Catalysis Research Centre
Related URLs:
References: (1) Wimmers, O. J.; Arnoldy P.; Moulijn, J. A. J. Phys. Chem. 1986, 90, 1331. (2) Shimokawabe, M.; Furuichi, R.; Ishii, T. Thermochim. Acta 1979, 28, 287. (3) Sastri, M. V. C.; Viswanath R. P.; Viswanath B. Int. J. Hydrogen Energy 1982, 7, 951. (4) Viswanath, R. P.; Viswanath B.; Sastri, M. V. C. React. Kinet. Catal. Lett. 1975, 2, 51. (5) Jung H.; Thompson, W. J. J. Catal. 1991, 128, 218. (6) Boot, L. A.; van Dillen, A. J.; Geus J. W.; van Buren, F. R. J. Catal. 1996, 163, 186. (7) van Ommen, J. G.; Bosch, H.; Gellings. P. J.; Ross, J. R. H. In Studies in Surface Science and Catalysis; Delmon, B., Grange, P., Jacobs, P. A., Poncelet, G., Eds.; Elsevier: Amsterdam, 1987; Vol. 31, p 151. (8) Turkdogan E. T.; Vinters, J. V. Metall. Trans. 1972, 3, 1561. (9) Edstrom, J. O. J. Iron Steel Inst. 1953, 175, 289. (10) Quets, J. M.; Wadsworth M. E.; Lewis, J. R. Trans. Metall. Soc. AIME 1960, 218, 545. (11) Somorjai, G. A. Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994; Chapter 7. (12) Hurst, N. W.; Gentry, S. J.; Jones, A.; McNicol, B. D. Catal. ReV.s Sci. Eng. 1982, 24 (2), 233. (13) Ortega, A. Thermochim. Acta 1996, 284, 379. (14) Cioci, F.; Lavecchia, R.; Fierro, G.; Lo Jacono, M.; Inversi, M. Thermochim. Acta 1996, 287, 351. (15) Malet, P.; Caballero, A. J. Chem. Soc., Faraday Trans. 1 1988, 84 (7), 2369. (16) Stuchly, V. J. Therm. Anal. 1989, 35, 837. (17) Monti, D. A.; Baiker A. J. Catal. 1983, 83, 323. (18) Tiernan, M. J.; Barnes, P. A.; Parkes, G. M. B. J. Phys. Chem. 1999, 103, 338. (19) Barnes, P. A.; Parkes, G. M. B.; Brown, D. R.; Charsley, E. L. Thermochim. Acta 1995, 269/270, 665. TABLE 4: Comparison of Kinetic Models and Activation Energies for the Reduction of Fe2O3 Found in This Work and in the Literature source reduction step reduction mechanism E (kJ mol-1) method Wimmers et al.1 Fe2O3 f Fe3O4 n/dc n/dc linear heating rate Fe3O4 f Fe random nucleation 111 linear heating rate Shimokawabe et al.2 Fe2O3 f Fe3O4 random nucleation 74-117a linear heating rate Fe3O4 f Fe phase boundary 60-73a linear heating rate Sastri et al.3 Fe2O3 f Fe phase boundary 57-73a isothermal this work Fe2O3 f Fe3O4 n/dc 106 linear heating rate Fe3O4 f Fe n/dc 54 linear heating rate this work Fe2O3 f Fe3O4 phase boundary 96 CRTA “rate-jump” Fe3O4 f Fe random nucleation 59-69b CRTA “rate-jump” a depending on heating conditions employed for pretreatment prior to reduction. b depending on the extent of reduction. c n/d - not determined. Reduction of Iron Oxide Catalysts J. Phys. Chem. B, Vol. 105, No. 1, 2001 227 (20) Rouquerol, J. Thermochim. Acta 1989, 144, 209. (21) Ortega, A.; Akhouayri, S.; Rouquerol, F.; Rouquerol, J. Thermochim. Acta 1994, 235, 197. (22) Tiernan, M. J.; Barnes, P. A.; Parkes, G. M. B. J. Phys. Chem. 1999, 103, 6944. (23) Sharp, J. H.; Brindley, G. W.; Narahari Acker, B. M. J. Am. Chem. Soc. 1966, 49, 379. (24) Criado, J. M.; Ortega, A.; Gotor, F. J. Thermochim. Acta 1990, 157, 171. (25) Malek, J.; Sestak, J.; Rouquerol, F.; Rouquerol, J.; Criado, J. M.; Ortega A. J. Therm. Anal. 1992, 38, 71. (26) Reading, M.; Dollimore, D.; Rouquerol, F.; Rouquerol, J. J. Therm. Anal. 1984, 29, 775. (27) Maciejewski, M. J. Therm. Anal. 1992, 38, 51. (28) Parkes, G. M. B.; Barnes, P. A.; Charsley, E. L. Thermochim. Acta 1998, 320 (1-2), 297. (29) Reading, M.; Dollimore, D.; Whitehead, R. J. Therm. Anal. 1991, 37, 2165. (30) Baldi, M.; Escribano, V. S.; Amores, J. M. G.; Milella, F.; Busca, G. Appl. Catal. B 1998, 17, L175. (31) Barnes, P. A.; Tiernan, M. J.; Parkes, G. M. B. J. Therm. Anal. Calorim. 1999, 56, 733. (32) Voge, H. H.; Atkins, L. T. J. Catal. 1962, 1, 171. (33) Hayden, B. E.; Lamont, C. L. A. J. Phys. Condens. Matter 1989, 1, SB33. 228 J. Phys. Chem. B, Vol. 105, No. 1, 2001 Tiernan et al.
Depositing User: Briony Heyhoe
Date Deposited: 12 Jul 2007
Last Modified: 28 Aug 2021 23:35


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©