
University of Huddersfield Repository

Ammari, Faisal T., Lu, Joan and Aburrous, Maher

Intelligent Banking XML Encryption Using Effective Fuzzy Classification

Original Citation

Ammari, Faisal T., Lu, Joan and Aburrous, Maher (2014) Intelligent Banking XML Encryption
Using Effective Fuzzy Classification. In: Emerging Trends in Information and Communication
Technologies Security. Elsevier, London, UK, pp. 593-623. ISBN 9780124114746

This version is available at https://eprints.hud.ac.uk/id/eprint/19027/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 1

Abstract: In this paper we present a novel approach for

securing financial XML transactions using an effective and

intelligent fuzzy classification technique. Our approach defines

the process of classifying XML content using a set of fuzzy

variables. upon fuzzy classification phase, a unique value is

assigned to a defined attribute named "ImportanceLevel".

Assigned value indicates the data sensitivity for each XML tag.

The framework also defines the process of securing classified

financial XML message content by performing element-wise

XML encryption on selected parts defined in fuzzy classification

phase. Element-wise encryption is performed using symmetric

encryption using AES algorithm with different key sizes. Key size

of 128-bit is being used on tags classified with "Medium"

importance level; a key size of 256-bit is being used on tags

classified with "High" importance level.

An implementation has been performed on a real-life

environment using online banking system in one of the leading

banks in Jordan to demonstrate its flexibility, feasibility, and

efficiency. Our experimental results of the new model verified

tangible enhancements in encryption efficiency, processing-time

reduction, and resulting XML message sizes.

Index Terms –XML Encryption, Fuzzy XML, Fuzzy

Classification, XML Security, Banking Security.

I. INTRODUCTION

The eXtensible Markup Language (XML) [1] has been widely

adopted in many financial institutions in their daily

transactions; this adoption was due to the flexible nature of

XML providing a common syntax for systems messaging in

general and in financial messaging in specific [2]. Excessive

use of XML in financial transactions messaging created an

aligned interest in security protocols integrated into XML

solutions in order to protect exchanged XML messages in an

efficient yet powerful mechanism. There are several

approaches proposed by researchers to secure XML messages.

Many models have been proposed to protect exchanged

messages both on the network level [10, 11] and on the XML

level. Among the proposed models, W3C played a major role,

providing standardized forms to represent XML data in a

secure and trusted method. W3C introduced XML Encryption

[3], XML Signature [4], and XML Key Management [5].

The XML Encryption standard defines how to encrypt the

XML message. This can involve fully encrypting the entire

message, partially encrypting it by selecting parts of each

message, or even encrypting external elements attached to the

message itself. Although this model is able to secure XML

messages, some issues arose concerning performance and

inefficient memory usage [12, 13], leaving room for more

improvements and enhancements.

However, financial institutions (i.e. banks) perform large

volume of transactions on daily basis which require XML

encryption on large scale. Encrypting large volume of

messages in full will result performance and resource issues.

Therefore, an approach is needed to encrypt specified portions

of an XML document, syntax for representing encrypted parts,

and processing rules for decrypting them. W3C XML

encryption has the feature to encrypt parts of an XML

document called element-wise encryption which is the process

of encrypting parts of the XML document. To avoid any

performance or resources issues, a mechanism should be

considered to choose which parts of the XML document to be

encrypted on the fly, whereby those parts are selected upon

intelligent criteria detecting sensitive information within the

XML document.

Fuzzy Logic (FL) [18] approach can be used here to

distinguish sensitive parts within each XML document. FL

provides a simple way to arrive at a definite conclusion based

upon vague, ambiguous, imprecise, noisy, or missing input

information. FL's approach to control problems mimics how a

person would make faster decision. FL incorporates a simple,

rule-based ‘IF X AND Y THEN Z’ approach to a solving

control problem rather than attempting to model a system

mathematically. The FL model is empirically-based, relying on

an operator's experience rather than their technical

understanding of the system.

Fuzzy logic approach is quantified based on a combination

of historical data and expert input. Fuzzy logic has been used

for decades in the computer sciences to embed expert input

into computer models for a broad range of applications. The

advantage of the fuzzy approach is that it enables processing

of vaguely defined variables, and variables whose relationships

cannot be defined by mathematical relationships. Fuzzy logic

can incorporate expert human judgment to define those

variables and their relationships. The model can be closer to

reality and be more site specific than some of the other

methods [19].

II. LITERATURE REVIEW

Flexibility, expressiveness, and usability of XML have

formed a motive for researchers to shed more light on XML

security. Researchers have focused their interests on securing

XML data due to the increased usage of XML in many

business and educational cases. Efficient models have been

proposed [3, 4, 5, 9, 10, 11] to add a secure layer over

exchanged XML data. The models’ main purpose is to ensure

data confidentiality and authenticity. Many XML threats [12]

have been considered, such as Oversized Payload, Schema

Change, XML Routing, and Recursive Payload. Such threats

Intelligent XML Encryption using Effective

Fuzzy Classification

 2

have forced researchers to pay more attention to securing

exchanged XML messages.

W3C XML Encryption Working Group [3] is developing a

method for XML encryption and decryption. The group used

XML syntax to represent the secured elements in XML. Their

approach is able to encrypt the whole message, full nodes, and

sub-trees; however, it is not able to encrypt an element while

keeping the descendants of the same node unchanged, and also

it cannot handle attribute encryption. Therefore, a solution has

been proposed [13] to handle this limitation. Ed Simon

proposed changing the attribute so that it is encrypted with the

EncryptedDataManifest attribute and including any other

details inside the element. Another solution proposed was to

use XSLT for attribute transformation into elements to

perform the encryption process. However, this suggested

solution did not face success, as the decrypted parts need to be

transformed back to the original attributes for message

validation against the corresponding XML schema.

A system has been proposed by [15] for pool encryption,

which has the capability of removing sensitive information

from the output file. Their basic idea is to parse the XML

message which needs encryption into a DOM tree, where each

node in the tree is labeled and all information related to its

position is attached to the corresponding node. Then each node

is encrypted individually with a "node specific" encryption

key. These nodes are removed from their original position in

the XML message into a pool which contains all other

encrypted nodes. The pool can be saved into the original

message or in a different message. The sender determines the

decryption capabilities of different users by distributing the

collection of node keys to the receiver. This collection of node

keys is encrypted with the recipients’ key before final

submission. Although this model solves the issue of removing

confidential material from the main message and hides the size

of the encrypted content, it has the following disadvantages:

The original position for each individual node needs to be

attached, Due to the addition of "the position information", a

decent increase in message size is noticed, Due to the pool of

node keys, a decent increase in message size is noticed, and

High resource usage and bandwidth allocation, more storage

more processing power is needed, and A unique node key has

to be generated for each node.

[20] Introduced an XML access control (XAC) that is a

server-side access control and a trusted access control

processor allowing security policies and procedures to be

established based on the policies, XAC present a way to

control access of users to specific portions of the full XML

document that is stored on a server. XAC encrypts an XML

element with the ability to exclude its descendants. This

specific feature gives the advantage of XAC over XEnc

because XEnc requires the encryption of a full sub-tree.

[21] Presented an approach to incorporate fuzziness in

XML. Their approach tried to identify the potential entities in

XML that can have fuzzy values. They analyze the structure of

an XML document to identify the portions that can be handled

using fuzziness; then they specify the appropriate mechanism

to incorporate fuzziness. Their approach focused on XML

being structured (logical and physical) and well-formed

language.

[22] Introduced a fuzzy XML data model to manage fuzzy

data in XML, based on possibility distribution theory, by first

identified multiple granularity of data fuzziness in UML and

XML. The fuzzy UML data model and fuzzy XML data model

that address all types of fuzziness are developed. Further, they

developed the formal conversions from the fuzzy UML model

to the fuzzy XML model, and the formal mapping from the

fuzzy XML model to the fuzzy relational databases.

[23] Presented an XML methodology to represent fuzzy

systems for facilitating collaborations in fuzzy applications

and design. DTD and XML Schema are proposed to define

fuzzy systems in general. One fuzzy system can be represented

in different formats understood by different applications using

the concept of XSLT stylesheets. With an example, they

represent that given fuzzy system in XML and transform it to

comprehensible formats for Matlab and FuzzyJess

applications.

[24] Proposed an approach along with an automated tool

called (FXML2FOnto) for constructing fuzzy ontologies from

fuzzy XML models, they also investigated how the

constructive fuzzy ontologies may be useful for improving

some of the fuzzy XML applications (i.e. reasoning on fuzzy

XML models).

III. SYSTEM MODEL AND DESIGN

The model consists of two major parts. Each part has a

discrete scope acting as an independent unit and forming an

essential part of the whole system. Content is classified using a

set of fuzzy classification techniques [8] and encrypted using

an element-wise encryption on selected parts within each XML

message. The fuzzification phase is performed before the

XML messages are submitted to the next phase which is

responsible for securing message content. The process of fuzzy

classification is mainly responsible for defining an attribute

value and assigning it to an existing XML tag named

"ImportanceLevel". The assigned value will be used to define

the security level needed in the next phase. Next phase

involves applying element-wise encryption to different parts

within each XML message. Encryption could be for the whole

message or elements of an XML message. The “Importance

Level” value assigned in fuzzification phase is also used to

decide which type of encryption and key size is to be

deployed. Element-wise encryption is based on W3C’s

recommendation [3].

Figure 1.0 illustrates the system model and basic components

used to form our framework. As seen in the figure, the main

two components are displayed as two separate units each act as

an independent unit performing set of operations that used as

input to the other phase.

 3

Figure 1: Main System Design

The system core has been built based on two major phases.

Phase one involves performing a set of fuzzy classification

techniques on XML messages. The fuzzy classification process

is designed mainly for deciding the similarity of different

standards within the same message. Basically the main target is

to describe how semantic concepts are evaluated and explained

by the provided XML content. Upon fuzzy classification, a

new value is generated and assigned to an existing XML tag.

We assigned the name "ImportanceLevel" to the mentioned tag

so we can use it as an identifier for the next phase. Phase two

involves applying element-wise encryption to different parts

within each XML message. Encryption could be for the whole

message, some elements, or some attributes of an element of

an XML message. The ImportanceLevel value assigned in

phase one is used to decide which type of encryption is

performed, and also decides which parts of the XML message

are to be encrypted. We base our encryption on W3C’s

recommendation [3]. The following stages form system life

cycle in details:

1. Fuzzy Classification Phase

In our fuzzy classification phase, we categorized 10

transaction characteristics into three different layers according

to their type. The characteristics were chosen after exploring

different experts’ opinions and backgrounds, reviewing

financial analysis tools, reviewing technical reports,

researching different online and offline financial systems

conducted within the financial institution, and performing a set

of internal surveys among banking group heads. We

categorized these 10 transaction characteristics extracted from

the XML message into three layers (Account Segment, Details

Segment, and Environment Segment). Grouping will facilitate

and simplify the process of fuzzy classification. The

architecture of the fuzzy logic inference-based classification

model is shown in Figure 2.

This phase is responsible for assigning a new value which is

the importance level for each XML tag. The main idea is

distinguish which parts of the message is to be encrypted using

AES-128 bit key encryption and which are to be encrypted

using AES-256 bit key. Usage of the key depends on the

importance level value (high, medium or low), whereby we

deploy the 128-bit key on tags with "Medium" Importance

Level and the 256-bit key on tags with "High" Importance

Level value. Tags with a "Low" importance level value are

forwarded directly to the message assembler where no

encryption is performed. The phase uses fuzzification

techniques of a set of input variables based on ten 10

characteristics extracted from the XML message, all

depending on the previous knowledge experience and

expertise backgrounds. The 10 characteristics are defined in

details as follows:

1) Transaction Amount: Financial institutions set pre-defined

transaction limits. The limits allow users to perform

transactions with specified limits on a daily basis. The range of

 4

transaction limits is defined based on the local policy within

each institution. Banks normally treat the transaction amount

as an alert to any critical transaction, the amount is used in

most banks to measure the weight of total transaction

performed. Source, destination, and amount all combined to

act as an alert which is already pre-defined based on bank's

policy. Large transaction amounts will affect the importance of

the transaction itself, which can be used in our model as a

measurement item in our importance level evaluation.

2) Transaction Currency: A well-defined list of allowed

currencies that can be used online or offline. Each currency

has its own set of risk variables depending on usage and

importance. Foreign currency uses exchange rates, operational

interference, and market value for the transaction the moment

occurred. Banks treat each FX transaction with high

importance, because it involves buying and selling with bank's

rate. We have used this factor in our importance evaluation

3) Account Type: Accounts are segmented within each

institution. Segmentation is performed to enable application of

a set of internal rules on selected segments. Each segment has

its own value and weight, for example corporate account

segments are listed with high importance and priority because

most of the transactions are with large volume which can

benefit the bank for each transaction. We used this factor due

to its role deciding the importance level for the whole

transaction.

4) Transaction Notes: Exceptions are placed upon unusual

activity on a specific account, and such exceptions will raise a

flag in any transaction being processed to handle the exception

before the process is completed. Having a flagged transaction

will raise the importance level and trigger an alert to monitor

that specific transaction due to its importance; we have used

this factor to measure the importance level in term of

transaction critical weight.

5) Profile ID: A unique identifier for the destination account

owner, the value is set during the system integration and

profile creation process. companies or individuals with custom

profile ID's have a high potential to be monitored for

transactions, monitoring is based on the transaction amount

after classifying each profile id whereby a range of ID's are

listed in the high importance zone, all after deploying bank's

methods and procedures.

6) Account Tries: How many times the account is used in the

system; more usage means more trust whereby the history of

the account is known and trusted. A historical log is kept and

evaluated on regular basis to confirm trusted accounts and

suspicious ones. Evaluation will result a set of important

ranges of trusted accounts to be used in transaction evaluation

and setting importance level

7) Incorrect Password Tries: The number of times users try to

enter the password incorrectly to complete the financial

transaction. This factor adds a slight importance level for each

transaction, high rate of incorrect tries gives an indication of

high importance.

8) Time Spent on the Service: The time spent navigating the

service before performing the transaction. The time range is

set based on the bank’s policy, taking into consideration peak

hours. This factor considered a technical factors to measure

importance level of the transaction which is based on non-

financial elements

9) Daily Transactions: How many transactions are performed

before the financial transaction is carried out. Number of daily

transactions put a weight on overall importance level for the

transaction itself, whereby number of transactions to be

performed is set based on bank's policy within the allowed

ranges.

10) Transaction Time: The financial day is categorized in

three periods: peak period, normal hours, and dead zone.

Periods are defined separately by the financial institution

based on local policy and the historical transactions range.

Each period has its own value which adds an importance level

and how the occurrence of any transaction is affected by the

time of occurrence. Ranges are set to weigh an importance

level when the transaction is performed.

2. Fuzzy Methodology

Our fuzzy classification phase is based on Mamdani [8]

fuzzy inference, performing the basic four steps shown in

Figure 2.

Figure 2 Mamdani fuzzy inference system

Step 1 (Fuzzification): Take the crisp input X and Input Y and
determine the degree to which these inputs belong to, and
where they fit into, the fuzzy set. Figure 3 illustrates an
example of a linguistic variable used representing one factor,
which is the transaction currency. The x-axis represents the
range of transaction amount. The y-axis represents the degree
of each value in the linguistic descriptor.

Transaction Currency (Non-Sensitive, Normal, Sensitive)
Variable used: Transaction Amount
Ranges:

 Non-Sensitive: [0, 0, 6, 8]
 Normal: [6, 9, 12]
 Sensitive: [10, 12, 18, 18]

 5

Figure 3 Input variables in the fuzzification step

Step 2 (Rule Evaluation): Take the fuzzy inputs and apply
them to the qualified fuzzy rules. The fuzzy operators (AND /
OR) are used in case of any uncertainty to get a single value.
The outcome value is called “Truth Value” which will be
applied to the membership function for rule evaluation.
Step 3 (Aggregation of the Rule Outputs): Process of
unification of the outputs of all the rules. Combining scaled
rules into a single fuzzy set for each variable.
Step 4 (Transforming the fuzzy output into a crisp output):
Figure 4 illustrates an example of an expected crisp output
[Low, Medium, and High]

Figure 4 Sample output of classification rate “importance level”

The output should have a clear crisp value where it will be

assigned to each tag classified.

Low: Means the importance level is low and more attention

should not be paid to the value. The root element and child

tags should be forwarded directly to the message assembler,

skipping the encryption phase.

Medium: The tag is important to some extent, and the tag

attribute is assigned the value of medium so an element-wise

encryption will be applied using the AES algorithm with a

128-bit key on selected parts.

High: To be handled with high importance and encrypted in

the next phase using the AES algorithm with a 256-bit key.

3. Detection Module

To perform the fuzzy inference system we have categorized

the XML tags within each message into 10 characteristics

distributed into three layers, each with its own weight and

criteria. The layers are Account Layer, Details Layer, and

Environment Layer. Figure 5 represents the layers

distribution.

Figure 5 Layers Distribution

By giving a weight to each layer, the calculation of overall
weight is based on the following criteria:
Importance Level: Sum (Layer Weight * Layer Member)

Rule Base: Each layer has a set of rules defined based on input

variables within each layer. The rule is based on the “IF-

THEN” rule. The rule base should contain a number of entries

depending on how many layer members exist. For example,

layer 1 has three members and we have three outputs expected,

so the entries should be calculated as (3ᵌ) = 27 entries

presenting the rules for that layer.

The final evaluation is dependent on finding the centre of
gravity as shown in the following equation:

∫
∫

=
dxx

dxxx
COG

i

i

)(

)(

µ

µ

µi(x): Aggregated membership function.
x: Output variable.
After deploying the fuzzy classification methodology on the
three layers, we then have a list of classified tags with an
importance level attribute defined and assigned.

4. Encryption Module

The encryption phase has two possibilities: the first one is to

perform an element-wise encryption using the AES algorithm

with a key size of 256-bit, while the second is to perform an

element-wise encryption using the AES algorithm with a key

size of 128-bit. Key size is determined by the Importance

Level value assigned in the fuzzy classification phase. Figure 6

illustrates the process of encryption. Tags with "Low"

ImportanceLevel will be forwarded directly to the message

composition stage without any type of encryption being

performed.

 6

Figure 6 Encryption module layout

Tags related to the parent tag are also encrypted using the
same level of encryption. Child tags behaviour is taken from
the parent "ImportanceLevel" value.

Figure 7 illustrates the XML message after the fuzzy
classification phase where the “ImportanceLevel” attribute is
assigned a value.

Figure 7 Sample XML message after fuzzy classification

Figure 8 illustrates the same XML message after encryption
depending on the fuzzy classification performed earlier.

Figure 8 Sample XML message after encryption phase

Tags related to the parent tag are also encrypted using the

same level of encryption. Child tags behavior is taken from the

parent "ImportanceLevel" value. In Figure 7 (Account Holder,

Account Number, Amount, Currency, and Type), tags are

encrypted using AES encryption with a key size of 256 bit as

per their parent "Account" layer. Basically we inherit the

encryption behavior from parent to child as per our

categorization process, and the categorization process in our

model is built based on relevance and parent tag evaluation.

Keys used during the encryption process should be transferred

to the decryptor in the destination using a secure and private

method. We use Diffie-Hellman [16] key exchange for the

handover of keys between source and destination. Figure 9

illustrates how to exchange keys between source and

destination.

Figure 9 Key exchange using D-H method

IV. EXPERIMENT AND RESULTS

We have performed our evaluation using two sets of XML

messages; each set represent a period in which the messages

were extracted. Each set has number of XML messages to test.

Collected XML messages present online banking service

transactions fetched from Jordan Ahli Bank, one of the leading

banks in Jordan. We have selected to deploy full and partial

encryption on selected sets of XML messages, whereby we

will deploy full encryption on first set of XML messages, and

partial encryption on the second set of XML message.

The two sets have been selected randomly taken for a period

of seven months (between January 2012 until August 2012)

representing financial transactions in specific. In the first set

we collected 1,000 random XML messages presenting a period

of three months (between January 2012 and March 2012). In

the second set we used 1,500 XML messages presenting a

period of four months taken (between April 2012 and August

2012). Sample sets have been collected after taking necessary

approvals and authorizations from the bank’s concerned

departments. Table 1 illustrates the two sets of XML messages

in details.
TABLE 1: EXPERIMENT SET DETAILS

Set Messages Nodes Size Period Encryption

1 1,000 4,000
947

KB

3 Months

Jan 12-Mar12
Full

2 1,500 6,000
1380

KB

4 Months

Apr12-Aug12
Partial

 7

Figure 10 illustrate an actual XML message fetched form one

of the XML messages in set 1.

Figure 10 Actual XML message from Set 1

Table 2, Table 3, and Table 4 illustrate a sample of the data

provided in set 1, segregated into three layers.

TABLE 2: SAMPLE OF DATA RECEIVED CLASSIFIED FOR LAYER 1

Transaction
Amount

Transaction
Currency

Account
Type

Account
Segment

Non-Sensitive Non-Sensitive Non-Sensitive Low

Normal Normal Sensitive Medium

Sensitive Non-Sensitive Sensitive High

Normal Non-Sensitive Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Low

TABLE 3: SAMPLE OF DATA RECEIVED CLASSIFIED FOR LAYER 2

Transaction
Notes CODE

Destination
ProfileID

Destination
Account

Tries

Incorrect
 Password

Tries

Details
Segment

Normal Sensitive
Non-

Sensitive

Non-

Sensitive
Medium

Sensitive
Non-

Sensitive

Non-

Sensitive

Non-

Sensitive
Medium

Non-Sensitive Normal
Non-

Sensitive
Normal Low

Non-Sensitive Sensitive Sensitive Sensitive High

Normal Sensitive
Non-

Sensitive

Non-

Sensitive
Medium

TABLE 4: SAMPLE OF DATA RECEIVED CLASSIFIED FOR LAYER 3

Time On
Site

Daily
Transactions

Transaction
Time

Transaction
Level

Sensitive Normal Sensitive High

Non-Sensitive Sensitive Sensitive High

Normal Non-Sensitive Normal Medium

Sensitive Non-Sensitive Sensitive High

Non-Sensitive Normal Sensitive High

To ensure we are evaluating our model in a fair and

comprehensive manner, we divided our evaluation into two

stages. Evaluation stages are compared against W3C XML

Encryption Recommendations. In each stage there are two

experiments performed, each experiment presents an

encryption using different key sizes. In first stage we have

deployed full message encryption using W3C encryption

standard with different key sizes. In the second stage we have

deployed partial encryption using W3C encryption standard

with different key sizes.

Results from both stages are compared against our model

which uses element-wise encryption and mixture of key sizes.

Table 5 illustrates the evaluation details for stage 1.

TABLE 5: STAGE 1 SET DETAILS

Stage 1: Evaluation for this stage has been conducted by

performing two experiments; first experiment deployed by

performing full encryption using W3C XML encryption

standard with a 128-bit key size, deployed on the first set of

1,000 XML messages. SXMS uses the same sample of XML

messages to deploy element-wise encryption. SXMS model

uses symmetric AES encryption with mixed key values (128-

bit, 256-bit), Key size used in the encryption process depends

on the importance level attribute value assigned by the

fuzzification stage for selected set of tags within each XML

message. Our model main goal is to optimize and increase

encryption-processing time; therefore we have listed the

number of occurrences for “High” and “Medium”| importance

level which require an encryption process to secure existing

content. Table 6 represents the number of occurrences for

transactions marked with “High” and “Medium” across the

three layers.

TABLE 6: APPEARANCES FOR EACH CLASSIFICATION LAYER

Classification Layer

“High”

Appearances

“Medium”

Appearances

Percentage

(High +

Medium)

Layer1 (Account) 267 62 32.9%

Layer 2 (Details) 401 410 81.1%

Layer 3 (Environment) 250 421 67.1%

As seen in table 6, the highest occurrences for “High” and

“Medium” importance level combined is 32.9% in layer 1,

which means only 32.9% of the 1,000 XML messages require

an encryption processing either using 128bit key or 256bit key,

leaving a 67.1% of the sample data to be forwarded directly to

message assembler without the need of the encryption process.

In brief, instead of performing full encryption for the whole

XML message or even performing partial encryption on pre-

selected parts, we were able to produce secured, optimized,

and utilized messages, performing encryption only on needed

parts selected using our fuzzy classification techniques.

Figure 11 present an actual XML message after fuzzy

classification phase where we notice the importance level

value assigned per root node in each XML message.

Stage
XML

Messages
Model

Experiment 1

Used Key

Experiment 2

Used Key

1

1,000

Messages

4,000

Nodes

W3C

Full

Encryption

128 bit 256 bit

SXMS

Element-

Wise

128 bit or 256

bit or NO

Encryption

128 bit or 256

bit or NO

Encryption

 8

Figure 11 Classified XML message taken from first implementation

Table 7 illustrates time needed and resulting file size to

encrypt the XML message set using our model compared

against W3C XML encryption model using a key size of 128

bit encrypting each message in full.

TABLE 7: PERFORMANCE EVALUATION FOR STAGE 1 – EXPERIMENT 1

Stage 1 –

Experiment 1

(Full

Encryption)

Processing Time File Size

XML

Message Set

SXMS

Model

W3C

128 bit

XML

Messages

SXMS

Model

1 XML File 0.0018 MS 0.0023 MS 1 XML File 0.0018 MS

300 XML 0.562 MS 0.702 MS 300 XML 0.562 MS

600 XML 0.873 MS 1.264 Sec 600 XML 0.873 MS

900 XML 1.271 Sec 1.825 Sec 900 XML 1.271 Sec

1,000 XML

(Set 1)
1.625 Sec 2.456 Sec

1,000 XML

(Set 1)
1.625 Sec

We have encrypted the XML messages in chunks of 1, 300,

600, 900, and 1,000 messages. Our SXMS model processed

the XML chunks with a measurable improvement in

processing time compared to W3C XML encryption model

which uses a 128-bit key size to encrypt the whole XML

message. SXMS uses a 128-bit key in the cases where the

importance level attribute value equals to “Medium” and 256-

bit key used when the importance level attribute value equals

to “High”. As seen in table 7, the encryption process for the

whole XML 1,000 messages using W3C Encryption standard

with a 128-bit key size took 2.456 seconds to complete,

compared to 1.625 seconds using SXMS model. The result

reflects a 33.8% improvement in processing time for the 1,000

messages. Figure 11 illustrates the comparison between the

two models and performance improvement using SXMS.

Table 7 also illustrates files size reduction encrypting XML

messages using SXMS model, table shows a measurable

reduction in file size, whereby the total size of the encrypted

1,000 XML messages was 988 KB using W3C model with a

key size of 128-bit encrypting each XML message in full.

SXMS achieved smaller sizes for the same set of 1,000

encrypted XML messages which is 652.4 KB showing a size

reduction of 34% from the encrypted file size using W3C

model. Such improvement can save a measurable amount of

space and bandwidth on large scale. Figure 11 illustrates the

processing time needed to encrypt the sample messages in the

first experiment compared to our model.

Figure 11 Comparison chart between SXMS and W3C model using 128-bit

As seen in Figure 11, the x-axis present the number of XML

messages being processed, while y-axis present the processing

time encrypting XML messages in seconds. Figure 12 presents

file size comparison for the encrypted XML messages using

SXMS and W3C XML Encryption syntax and processing

model using a key size of 128-bit performing full message

encryption.

Figure 12 File size comparisons between SXMS and W3C model using 128bit

Second experiment has been conducted performing full

encryption using W3C XML encryption standard with a 256-

bit key deployed on the same 1,000 sample XML messages.

SXMS uses the same sample of XML messages to deploy

element-wise encryption. Later we compared results for both

experiments against results from our model. Table 4 illustrates

time needed and resulting file size to encrypt the XML

message set using our model compared against W3C XML

encryption model using a key size of 256 bit encrypting each

message in full.

We have encrypted the XML messages in chunks of 1, 300,

600, 900, and 1,000 messages. Our SXMS model processed

the XML chunks with a measurable improvement in

processing time compared to W3C XML encryption model

which uses a 256-bit key size to encrypt the whole XML

message. SXMS uses a 128-bit key in the cases where the

importance level attribute value equals to “Medium” and 256-

 9

bit key used when the importance level attribute value equals

to “High”.
TABLE 8: PERFORMANCE EVALUATION FOR STAGE 1 – EXPERIMENT 2

Stage 1

Experiment 2

 (Full

Encryption)

Processing Time File Size

Message Set SXMS

Model

W3C

256 bit

SXMS

Model

W3C

256 bit

1 XML File 0.0018 MS 0.0027 MS 1.14 KB 1.98 KB

300 XML 0.562 MS 0.811 MS 167.9 KB 283.4 KB

600 XML 0.873 MS 1.591 Sec 342.6 KB 601 KB

900 XML 1.271 Sec 2.137 Sec 501.9 KB 864.8 KB

1,000 XML 1.625 Sec 2.8 Sec 652.4 KB 1112 KB

In the second experiment of stage 1, we deployed W3C

Encryption standard to fully encrypt the same sample of 1,000

XML messages but this time using 256-bit key size. SXMS

uses the same sample of XML messages to deploy element-

wise encryption. SXMS model uses symmetric AES

encryption with mixed key values (128-bit, 256-bit), Key size

used in the encryption process depends on the importance

level attribute value assigned by the fuzzification stage for

selected set of tags within each XML message. Table 6.4

represents the time needed for each model performing the

encryption process on selected sample of messages.

As seen in Table 8, the encryption process for the whole

message using the W3C Encryption standard with a 256-bit

key size took 2.8 seconds to complete, compared to 1.625

seconds using SXMS model. The result reflects a 41.9%

improvement in processing time for the 1,000 messages.

Table 8 also illustrates files size reduction encrypting XML

messages using SXMS model, table shows a measurable

reduction in file size, whereby the total size of the encrypted

1,000 XML messages was 1112 KB using W3C model with a

key size of 256-bit encrypting each XML message in full.

SXMS achieved smaller sizes for the same set of 1,000

encrypted XML messages which is 652.4 KB showing a size

reduction of 41.3% from the encrypted file size using W3C

model. Such improvement can save a measurable amount of

space and bandwidth on large scale. Figure 13 illustrates the

performance comparison between SXMS model and W3C

encryption standard using key size of 256-bit. Figure 14

presents file size comparison for the encrypted XML messages

using SXMS and W3C XML Encryption syntax and

processing model using a key size of 256-bit.

Figure 13 Comparisons chart between SXMS and W3C model using 256-bit

Figure 14 File size comparisons between SXMS and W3C using 256-bit key

Finally, figures 15, 16 illustrates the final performance and file

size reduction comparison between SXMS and W3C model for

both experiments which uses 128-bit key and 256-bit key

performing full encrypting for each XML message in the first

message set. Figure presents a measurable amount of

performance improvement using SXMS model.

Figure 15 Performance comparisons between SXMS and XML using 256-bit

Figure 16 File Size comparisons between SXMS and XML using 256-bit key

Stage2: Evaluation for this stage has been conducted by

performing two experiments; first experiment deployed

performing partial encryption on a pre-defined list of tags

using W3C XML encryption standard with a 128-bit key size

 10

deployed on the second set of 1,500 sample XML messages.

SXMS uses the same sample of XML messages to deploy

element-wise encryption. SXMS model uses symmetric AES

encryption with mixed key values (128-bit, 256-bit), Key size

used in the encryption process depends on the importance

level attribute value assigned by the fuzzification stage for

selected set of tags within each XML message. Second

experiment has been conducted performing partial encryption

on a pre-defined list of tags using W3C XML encryption

standard with a 256-bit key deployed on the same 1,500

sample XML messages. SXMS uses the same sample of XML

messages to deploy element-wise encryption. Later we

compared results for both experiments against results from our

model. Table 9 represents the number of occurrences for

transactions marked with “High” and “Medium” across the

three layers.
TABLE 9: APPEARANCES FOR EACH CLASSIFICATION LAYER

Classification Layer

“High”

Appearances

“Medium”

Appearances

Percentage

(High +

Medium)

Layer1 (Account) 274 43 28.8%

Layer 2 (Details) 425 484 82.6%

Layer 3 (Environment) 299 457 68.7%

Table 10 illustrates time needed and resulting file size to

encrypt the XML message set using our model compared

against W3C XML encryption model using a key size of 128

bit encrypting each message in full.

TABLE 10: PERFORMANCE EVALUATION FOR STAGE 2 – EXPERIMENT 1

Stage 2 Exp

1 (Partial

Encryption)

Processing Time File Size

Message Set SXMS

Model

W3C

128 bit

SXMS

Model

W3C

128 bit

1 XML File 0.0018 MS 0.0019 MS 1.14 KB 1.61 KB

300 XML 0.562 MS 0.578 MS 167.9 KB 244 KB

600 XML 0.873 MS 0.984 Sec 342.6 KB 510.2 KB

900 XML 1.271 Sec 1.422 Sec 501.9 KB 740.7 KB

1,500 XML 1.963 Sec 2.218 Sec 810.1 KB 1203.6 KB

As seen in Table 10, the encryption process for part of the

message using the W3C Encryption standard with a 128-bit

key size took 2.218 seconds to complete, compared to 1.963

seconds using SXMS model. The result reflects a 11.4%

improvement in processing time for the 1,500 messages.

Table 10 also illustrates files size reduction encrypting

XML messages using SXMS model, table shows a measurable

reduction in file size, whereby the total size of the encrypted

1,500 XML messages was 1203.6 KB using W3C model with

a key size of 128-bit encrypting each XML message partially.

SXMS achieved smaller sizes for the same set of 1,500

encrypted XML messages which is 810.1 KB showing a size

reduction of 32.6% from the encrypted file size using W3C

model. Such improvement can save a measurable amount of

space and bandwidth on large scale.

Figure 17 illustrates the comparison between SXMS model

and W3C encryption standard using key size of 128-bit.

Figure 17 Performance comparisons between SXMS and W3C Standard

using AES-as128 Key

Figure 18 presents file size comparison for the encrypted XML

messages using SXMS and W3C XML Encryption syntax and

processing model using a key size of 128-bit performing

partial message encryption.

Figure 18 File size comparisons between SXMS and W3C Standard using

AES-128 Key

In the second experiment of stage 2, we deployed W3C

Encryption standard to partially encrypt the XML messages to

same sample of 1,500 XML messages but this time using 256-

bit key size. SXMS uses the same sample of XML messages to

deploy element-wise encryption. SXMS model uses symmetric

AES encryption with mixed key values (128-bit, 256-bit), Key

size used in the encryption process depends on the importance

level attribute value assigned by the fuzzification stage for

selected set of tags within each XML message. Table 11

represents the time needed for each model performing the

encryption process on selected sample of messages.

TABLE 11: PERFORMANCE EVALUATION FOR STAGE 2 – EXPERIMENT 2

Stage 2 Exp

2 (Partial

Encryption)

Processing Time File Size

Message Set SXMS

Model

W3C

128 bit

SXMS

Model

W3C

128 bit

1 XML File 0.0018 MS 0.0021 MS 1.14 KB 1.72 KB

300 XML 0.562 MS 0.687 MS 167.9 KB 269 KB

600 XML 0.873 MS 1.42 Sec 342.6 KB 588.4 KB

900 XML 1.271 Sec 2.026 Sec 501.9 KB 813.9 KB

1,500 XML 1.963 Sec 2.899 Sec 810.1 KB 1399.6 KB

 11

As seen in Table 11, the encryption process for part of the

message using the W3C Encryption standard with a 256-bit

key size took 2.899 seconds to complete, compared to 1.963

seconds using SXMS model. The result reflects a 32.2%

improvement in processing time for the 1,500 messages. Table

11 also illustrates files size reduction encrypting XML

messages using SXMS model, table shows a measurable

reduction in file size, whereby the total size of the encrypted

1,500 XML messages was 1399.6 KB using W3C model with

a key size of 256-bit encrypting parts of the XML message.

SXMS achieved smaller sizes for the same set of 1,500

encrypted XML messages which is 810.1 KB showing a size

reduction of 42.1% from the encrypted file size using W3C

model. Such improvement can save a measurable amount of

space and bandwidth on large scale.

Figure 19 illustrates the comparison between SXMS model

and W3C encryption standard using key size of 256-bit

encrypting parts of the XML message for the second sample

set.

Figure 19 comparisons between SXMS and W3C Standard using AES-256

Figure 20 presents file size comparison for the encrypted XML

messages using SXMS and W3C XML Encryption syntax and

processing model using a key size of 256-bit performing

partial message encryption.

Figure 20 File size comparisons between SXMS and W3C model using 256bit

Finally, Figure 21, and Figure 22 illustrate performance

improvements and file size reduction comparison between

SXMS model and W3C model for both experiments in stage 2

showing a measurable amount of performance improvement

and size reduction on a large scale using SXMS model.

Figure 20 comparisons between SXMS and W3C Standard using different

keys

Figure 21 file size comparisons between SXMS and W3C Standard using

different keys

V. CONCLUSION AND FUTURE WORK

In this paper, a novel approach for securing financial XML

messages using intelligent mining fuzzy classification

techniques has been proposed.

Mining fuzzy classification techniques have been used to

evaluate and measure the data sensitivity level within each

XML message to find a degree of sensitivity for each tag in the

message. The mining fuzzy classification process allowed us to

assign a value to a new attribute added to the parent XML

nodes. A value is determined by applying a set of classification

processes based on Mamdani inference. A new value has been

used to determine which type of encryption algorithm is being

performed on selected tags, allowing us to secure only the

needed parts within each message rather than encrypting the

whole message. XML encryption is based on W3C XML

recommendation. Nodes that are assigned an importance level

value of "High" will be encrypted using the AES encryption

algorithm with a key size of 256 bit to ensure maximum

 12

security is performed. Nodes that are assigned an importance

level value of "Medium" will be encrypted using the AES

encryption algorithm with a key size of 128 bit. An

implementation was performed on a real-life environment

using online banking systems to demonstrate its flexibility,

feasibility, and functionality. Our experimental results of the

new model verified tangible enhancements in encryption

efficiency, processing time reduction, and financial XML

message utilization.

Each unit in our SXMS model acts independently as a

separate system. Taking into consideration such flexible nature

allows and motivates future work and enhancements. The

following points describe the future work on each unit within

our SXMS model:

• Fuzzy classification phase: We can utilize supervised

machine learning techniques to automate the fuzzy rule

generation process, in order to reduce the human expert

knowledge intervention and increase performance of the

phishing detection system. This can be achieved by generating

classification rules using well known classifiers, for example

we can use: PRISM [25], C4.5 Decision Tree [26], Ripper

[27], k-nearest neighbor classification (kNN) [28], naïve bayes

classification [29], linear least squares fit mapping [30], and

the vector space method [31]. These mining association

classification rules can be combined with fuzzy logic inference

engine to provide efficient and competent techniques for

importance level extraction.

• Encryption phase: We can utilize a different encryption

scheme, asymmetric algorithms can be deployed. We have

deployed symmetric encryption due to the efficiency and

processing time outperforming asymmetric encryption

algorithms. Even we can change the symmetric encryption

algorithm to something different like DES, triple DES, and

Blowfish. Researchers will be able to test and measure

performance for any replaced encryption algorithm. Also

usage of the encryption keys can be change to reflect different

key size for each importance level assigned. For example we

can assign an encryption key of size 192 bit instead of 256 bit

for the importance level “High” value.

• We can create multiple instances of SXMS whereby it

handles XML messages based on load balancer designed to

distribute XML messages on multiple SXMS instances. By

performing this distribution it will boost the processing speed

2x or even more depending on the new instances created and

used. However, such initiative might be high cost on resources

used.

REFERENCES

[1] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. W3C, Feb. 1998

[2] Fan, M. Stallaert, J. and Whinston, A. B.: The Internet and the Future of
Financial Markets, Communications of the ACM, 43(11):83-88,
November 2000.

[3] XML Encryption Syntax and Processing (W3C Recommendation),
2003.

[4] XML-Signature Syntax and Processing (W3C/IETF Recommendation),
February-2002

[5] XML Key Management Specification (XKMS 2.0).
http://www.w3.org/TR/2005/PR-xkms2-20050502/, 2 May 2005

[6] Shirasuna, S., Slominski, A., Fang, L., Gannon, D., 2004. Performance
comparison of security mechanisms for grid services. In: Fifth IEEE/
ACM International Workshop on Grid Computing. IEEE Computer
Society, pp. 360–364.

[7] Park, N., Kim, H., Chung, K., Sohn, S., Won, D., 2006.
XMLsigncryption based lbs security protocol acceleration methods in
mobile distributed computing. Computational Science and Its
Applications – ICCSA 2006’, vol. 3984. Springer, Berlin/Heidelberg,
pp. 251–259.

[8] M. Liu, D. Chen and C. Wu. The continuity of Mamdani method.
International Conference on Machine Learning and Cybernetics,
Page(s): 1680 - 1682 vol.3, 2002.

[9] “Oasis security services (saml) tc,” ”http://www.oasis-
open.org/committees/security/”.

[10] Organization for the Advancement of Structured Information Standards
(OASIS), Extensible Access Control Markup Language (XACML),
V2.0, February 2005.

[11] ContentGuard. XrML: The digital rights language for trusted content
and services. http://www.xrml.org/, 2001.

[12] SOA Approach to Integration, Packt Publising, M. Juric, P. Sarang, R.
Loganathan, F. Jennings, 2007.

[13] Ed Simon. XML Encryption: Issues Regarding Attribute Values and
Referenced, External Data. W3C XML-Encryption Minutes, March
2000. Session 3, Boston, MA.

[14] Imamura, T., Clark, A., Maruyama, H., 2002. A stream-based
implementation of XML encryption. In: XMLSEC 2002: Proceedings of
the 2002 ACM Workshop on XML security. ACM Press, pp. 11–17.

[15] Christian Geuer-Pollmann. XML Pool Encryption. ACMWorkshop on
XML Security, November 2002. Institute for Data Communications
Systems, University of Siegen.

[16] DIFFIE,W. ANDHELLMAN,M. E. 1976. New directions in
cryptography. IEEE Trans. on Information Theory IT-22, 6 (Nov.), 644–
654.

[17] Hwang, G.-H. & Chang, T.-K. ‘An operational model and language
support for securing xml documents.’, Computers & Security 23(6),
498–529, 2004.

[18] L.A. Zadeh, Fuzzy Sets, Information and Control, 1965

[19] Mahant, N. (2004) Risk Assessment is Fuzzy Business – Fuzzy Logic
provides the Way to Assess Off-site Risk from Industrial Installations,
Bechtel, Australia.

[20] Ricardo Rosario. Secure XML An Overview of XML Encryption,
November 2001

[21] Abhishek Gaurav , Reda Alhajj, Incorporating fuzziness in XML and
mapping fuzzy relational data into fuzzy XML, Proceedings of the 2006
ACM symposium on Applied computing, April 23-27, 2006, Dijon,
France

[22] Ma Z. Fuzzy XML data modeling with the UML and relational data
models. Data & knowledge engineering. 2007;63:972-996.

[23] Tseng C. Universal fuzzy system representation with XML. Computer
standards and interfaces. 2005;28:218-230.

[24] Fu Zhang, Z.M. Ma, Li Yan, Construction of fuzzy ontologies from
fuzzy XML models, Knowledge-Based Systems, Volume 42, April
2013, Pages 20-39, ISSN 0950-7051, 10.1016/j.knosys.2012.12.015.

[25] Cendrowska, J. (1987) PRISM: An algorithm for inducing modular
rules. International Journal of Man-Machine Studies. Vol. 27, No. 4,
(pp.349-370).

[26] Quinlan, J. (1996) Improved use of continuous attributes in c4.5.
Journal of Artificial Intelligence Research, Vol. 4, No. 1, (pp. 77-90).

[27] Cohen, W. (1995) Fast effective rule induction. Proceedings of the 12th
International Conference on Machine Learning, (pp. 115-123). CA,
USA.

[28] Guo G, Wang H, Bell D, Bi Y and Greer Y (2004): Using kNN Model
for Automatic Text Categorization, Journal of Soft Computing,
Springer-Verlag Heidelberg.

[29] McCallum, A. and Nigam, K. A Comparison of Event Models for Naive
Bayes Text Classification. in AAAI-98 Workshop on Learning for Text
Categorization, Madison,WI, 1998, 41-48.

 13

[30] Yiming Yang and Christopher G. Chute. An application of least squares
fit mapping to text information retrieval. In Proceedings of the ACM
SIGIR, pages 281--290, Pittsburgh, PA, June 1993. 163

[31] Susan Gauch, Juan M. Madrid, Subhash Induri, Devanand Ravindran,
and Sriram Chadlavada. KeyConcept: A Conceptual Search Engine,
Information and Telecommunication Technology Center, Technical
Report: ITTC-FY2004-TR-8646-37, University of Kansas.

Faisal T. Ammari (F.Ammari@hud.ac.uk) currently is a research student in

the University of Huddersfield, UK. He is currently managing the business

solutions department at Jordan Ahli Bank in Jordan since 2009. His main

research interests are within web technologies and advanced security

especially in financial sector.

Professor Zhongyu (Joan) Lu (joan.lu@hud.ac.uk) is in the Department of

Informatics at the University of Huddersfield, UK. She was a Team Leader of

IT Department in an industrial company before she jointed university. She has

successfully conducted two industrial projects in the area of XML and

database systems, collaborating with Beijing University, China, during her

working in the company.

Maher Aburrous (maher198@hotmail.com) is an Assistant Professor in the

Software Engineering Department, Faculty of Engineering & Applied Science

at Al Hoson University - UAE, he has an intensive experience in Network

Technology and Internet security, used to be an IT manager in the at Jordan

Ahli Bank.

