University of Huddersfield Repository

Bishop, Emily, Yusuf, Alex, Stephenson, John and Airley, Rachel

A metabolic phenotype in sarcoma? Repression of skeletal muscle transcription factor mondo A (Mlx- Interacting Protein)

Original Citation


This version is available at http://eprints.hud.ac.uk/id/eprint/18965/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
A Metabolic Phenotype in Sarcoma? Repression of Skeletal Muscle Transcription Factor Mondo A (MLX-Interacting Protein)

Emily Bishop¹, Alex Yusuf³, John Stephenson² and Rachel Airley¹,

1. School of Pharmacy, University of Huddersfield, UK
2. School of Human and Health Sciences, University of Huddersfield, UK

Introduction:
MondoA (MLX-interacting protein) is a bHLH transcription factor primarily located in skeletal muscle which drives glucose-dependent pathways such as glycolysis and the expression of TXNIP (thioredoxin-interacting protein). A Mondo-A/TXNIP feedback pathway has been defined previously which is believed to regulate the uptake of glucose by tumours in response to increased glycolysis and production of lactate. The aim of this study was to profile MondoA protein expression in muscle-derived sarcomas and to determine how MondoA may interact with pathways associated with the Warburg Effect, lipid metabolism and pathways associated with sarcoma.

Methods:
Immunohistochemical detection and semi-quantitative scoring of Mondo A protein expression was carried out in a commercially available tissue microarray composed of samples of sarcoma of a range of pathologies representing malignant progression versus normal smooth and striated muscle controls (Biomax #S02081). To explore the mechanistic basis of these observations, a statistical analysis of MondoA mRNA expression was carried out using data from a study involving human samples of sarcoma (data mined from Oncomine, Compdenia Biosciences). From this data, the top 200 correlates with MondoA were calculated and Ingenuity Pathway Analysis® used to compile a network for comparison with key pathways involved in sarcoma and muscle development.

Results:
IHC revealed a significant trend for decreased expression of Mondo A in sarcoma relative to normal tissue (One way ANOVA, P <=0.001) (figures 1 and 2A).

Meanwhile, distribution of Mondo A mRNA (figure 2B) also showed a trend for under expression with malignancy, although levels were highest in GIST tumours. MondoA correlates were represented in key pathways associated with sarcoma (P = 8.00E-4) and skeletal and muscle disorders (P = 5.1E-05) and reflective of the function of MondoA as a glucose-responsive transcription factor, with significant representation of gene correlates in pathways involved with energy production (P =3.37E-21 - 1.09E-02), lipid (P = 3.37E-21 - 1.47E-02) and carbohydrate metabolism (P = 4.81E-11 - 1.47E-02). Further network analysis via the Ingenuity Knowledge Base indicates that MondoA interacts with pathways mediated by PPARalpha and gamma, MLX and TXNIP (figure 3).

Conclusions:
MondoA may behave as a tumour suppressor in sarcoma, by interfering with the increased demands for glycolysis and fatty acid production in malignancy. This effect may be partially mediated via the MondoA target gene TXNIP.