University of Huddersfield Repository

Humphreys, Paul and Pilling, Sally

The surface disinfection efficiency of sporicidal products

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/18810/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
• The removal of *C. difficile* spores from healthcare environments is an important aspect of the control of CDIs.
• Range of products available with proven activity against *C. difficile* spores.
• High level disinfection required to generate a significant reduction in spores dried to surfaces.
• Microfibre + sporicides can reduce levels of environmental *C. difficile* contamination.

The Surface Disinfection Efficiency of Sporicidal Products

- Range of products tested against surfaces contaminated with *C. difficile* spores.
- Wipes and Microfibre + liquid products

Impact of Low Level Disinfection

- 750 ppm Peracetic Acid
- 100 ppm Chlorine Dioxide
- Peracetic Acid Wipe

Removal of *C. difficile* spores

- 2300 ppm Peracetic Acid
- 750 ppm Peracetic Acid
- 100 ppm Chlorine Dioxide
- Peracetic Acid Wipes
- Water
- 100% Removal

Dr Paul Humphreys, Sally Pilling, Hygiene and Disinfection Centre, University of Huddersfield. p.n.humphreys@hud.ac.uk