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Abstract 

A series of quadruply bonded dimolybdenum compounds of form Mo2(EE’CC≡CPh)4 

(EE’ = {NPh}2, Mo2NN; {NPh}O, Mo2NO;{NPh}S, Mo2NS; OO, Mo2OO) have 

been synthesised by ligand exchange reactions of Mo2(O2CCH3)4 with the acid or 

alkali metal salt of {PhC≡CCEE’}¯ . The compounds Mo2NO, Mo2NS and Mo2OO 

were structurally characterised by single crystal X-ray crystallography. The structures 

show that Mo2NO adopts a cis-2,2 arrangement of the ligands about the Mo2
4+ core, 

whereas Mo2NS adopts the trans-2,2 arrangement. The influence of heteroatom 

substitution on the electronic structure of the compounds was investigated using 

cyclic voltammetry and UV/vis spectroscopy. Simple N for O for S substitution in the 

bridging ligands significantly alters the electronic structure, lowering the energy of 

the Mo2-δ HOMO and reducing the Mo2
4+/5+ oxidation potential by up to 0.9 V. A 

different trend is found in the optoelectronic properties, with the energy of the Mo2-δ-

to-ligand-π* transition following the order Mo2OO > Mo2NO > Mo2NN > Mo2NS. 

Electronic structure calculations employing density functional theory were used to 

rationalise these observations.  

 

 

  



Introduction 

Quadruply bonded dimetal compounds of form M2(µ-L)4 (L = bidentate, three atom, 

bridging ligand; M = Mo, W) have a paddlewheel arrangement of the ligands about 

the dimetal core, and two axial sites that can be used to coordinate exogenous 

ligands.1 The M2
4+ core has a σ2π4δ2 electronic configuration, and a wide variety of 

bridging ligands, such as carboxylate and formamidinate, have been employed to 

support the dimetal core. The utility of the redox active quadruple bond was 

illustrated by W2(hpp)4 (Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-

a]pyrimidine), which is the most easily ionised closed-shell molecule known and a 

powerful reducing agent.2, 3 In addition, Berry and co-workers have shown that the 

ditungsten core of W2(2,2’-dipyridylamide)4 is capable of undergoing a four-electron 

oxidation process which, remarkably, is chemically reversible.4 The redox potential of 

dimolybdenum paddlewheel compounds has also been found to play an important role 

in their performance as catalysts in radical addition and polymerisation reactions.5 

Mixed-valence ‘dimers of dimers’ of the type [M2](µ-O2C-X-CO2)[M2]
+ (M = Mo, 

W), where X a conjugated spacer, are particularly suited for the study of electron 

transfer processes6 and have been extensively studied over the past couple of decades 

as strong electronic coupling is observed between the dimetal units.7-15 The coupling 

is mediated by M2-δ to bridge-π conjugation and is dependent on the nature of the 

bridging ligand and metal employed.  

More recent studies have shown that MM multiply bonded paddlewheels have 

remarkably long lived excited state lifetimes.16, 17 Investigations by Chisholm and 

coworkers on the photoexcited states of trans-[M2(TiPB)2(O2CR)2] (R = 2-

thiophene18, 19 or C6H4-4-CN; TiPB = 2,4,6-triisopropylbenzoate)20 show emission 

from T1 states that are 3MMδδ* in nature when M = Mo (τ = 77 or 93 µs), but 3MLCT 



in nature when M = W (τ = <10 ns). The well-defined coordination environment 

about the dimetal core also makes MM multiply bonded paddlewheel compounds 

good candidates for incorporation into materials with potentially interesting 

optoelectronic properties.21-27 This was highlighted in a detailed study by Zhou and 

co-workers which demonstrated that the shape and size of molecular architectures 

formed using dicarboxylate ligands to bridge Mo2
4+ units can be controlled by tuning 

the bridging angle and size of the bridging dicarboxylate ligand.28  

Changing the nature of the three atom ligand bridging the M2
4+ core has been found to 

have a marked effect on the properties of this type of compound.29, 30 The substitution 

of O for S in [L3Mo2]2(µ-1,4-(EE’C)2-C6H4) (EE’ = OO, OS, SS; L = O2CBut or 

N,N’-di-p-anisylformamidinate) results in a decrease of the HOMO (M2-δ) - LUMO 

(bridge π*) energy gap, and a greater mixing of the metal- and bridge-based orbitals 

which gives rise to a significant increase in electronic coupling.31, 32 Similar reasoning 

was used to account for the increases in electronic coupling observed when 

thiooxamidate as opposed to oxamidate is used to bridge Mo2 quadruply bonded 

units.33 The M2
4+ bridging ligand has also been shown to have an effect on the nature 

of the excited states;18 the 3MLCT of trans-[W2(TiPB)2(L)2] is localised on one ligand 

when L is an amidinate (L = N(iPr)2CC≡CPh), but delocalised over both ligands for a 

carboxylate (L = O2CC6H4-4-CN).20 

Despite the often dramatic effect that changing the bridging atoms of the bridging 

ligand has on the electronic structure and properties of quadruply bonded paddlewheel 

compounds, there have been no systematic studies as to the origins of these effects. 

Here we report the synthesis of a series of compounds of form Mo2(EE’CC≡CPh)4 

(EE’ = {NPh}2, {NPh}O, {NPh}S, OO), shown in Scheme 1. The effect of 

substitution of N for O for S on the electronic structure of the dimetal core and 



conjugation between the Mo2-δ and ligand-π orbitals was investigated using UV/vis 

spectroscopy, electrochemistry and X-ray diffraction studies, which are correlated 

with the results from density functional theory (DFT) calculations. 

 

Scheme 1. Drawing of the complexes used in this study. 

 

Results and discussion 

Synthesis 

The compounds Mo2({NPh}2CC≡CPh)4 (Mo2NN), Mo2({NPh}C(O)C≡CPh)4 

(Mo2NO), Mo2({NPh}C(S)C≡CPh)4 (Mo2NS), and Mo2(O2CC≡CPh)4 (Mo2OO) 

were all prepared by ligand substitution reactions with Mo2(O2CCH3)4. The reaction 

conditions are summarised in Scheme 2, with some procedures requiring use of the 

alkali metal salt or elevated temperatures to ensure complete substitution of the 

acetate ligands in the dimolybdenum starting material.  

The solubility of the compounds varied significantly depending on the nature of the 

ligand employed; Mo2NN and Mo2NS are soluble in most organic solvents, Mo2OO 

is soluble in weak donor solvents such as THF, whilst Mo2NO is only soluble in 



strong donor solvents such as DMSO or DMF. All compounds gave satisfactory 

elemental analysis and show the molecular ions M+ by matrix assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The 1H NMR 

spectra of the compounds all display overlapping aromatic resonances associated with 

the ligand phenyl groups.  

 

Scheme 2. Reaction conditions for the synthesis of compounds Mo2NN, Mo2NO, 

Mo2NS and Mo2OO. 

 

The yield of Mo2NN was consistently low, and MALDI-TOF-MS analysis of the 

crude reaction mixture showed a mixture of product and a molecular ion consistent 

with the formation of a (PhC≡CC{NPh}2)3Mo2(µ-OH)2Mo2({NPh}2CC≡CPh)3 by-

product, presumably from reaction of the product with adventitious H2O.34, 35 

However, the product could be extracted cleanly from this mixture using warm 

hexane. 

The synthesis of the dithiocarboxylate and monothiocarboxylate compounds 

Mo2(S2CC≡CPh)4 and Mo2(OC(S)C≡CPh)4 was also attempted. Reaction of 

Mo2(O2CCH3)4 with the alkali salt of the ligand36 prepared in situ in THF at -78°C 

resulted in the formation of a green solution. Upon warming to room temperature, the 



solutions turns a dark black colour above -10°C, and removal of the solvent yields a 

black oil in both instances. No evidence of any dimolybdenum ions were found in the 

mass spectra of these oils, and the thermal instability of the initial green solution 

precluded further analysis. 

For the compounds Mo2NO and Mo2NS there are 4 possible regioisomers, depicted in 

Scheme 3. Isomerisation of dimolydenum paddlewheel compounds in solution can be 

studied by 1H NMR spectroscopy,37 although in the case of Mo2NO and Mo2NS 

overlap of the phenyl proton resonances precluded a variable temperature 1H NMR 

study of potential isomeric forms in solution. In the 13C{1H} NMR spectrum of 

Mo2NO and Mo2NS, only one N-C-E resonance was observed demonstrating that one 

isomeric form is present in solution at room temperature. There is insufficient 

information in the NMR spectra to assign which regioisomer is present in solution, 

however it is reasonable to assume that the regioisomers observed in the solid-state 

studies, vide infra, persist in solution. 

 

 

Scheme 3. Possible regioisomers for Mo2NO and Mo2NS. 

 

Solid state structures 

Despite numerous attempts, we were unable to obtain crystals of Mo2NN suitable for 

X-ray diffraction studies. Crystals were obtained for the compounds Mo2NO (Figure 

1), Mo2NS (Figure 2) and Mo2OO (Figure 3). Selected bond lengths and angles for 



all compounds are displayed in Table 1. The molecule Mo2NO lies about an inversion 

centre, and there are two independent Mo2
4+ units present in the solid state structure 

of Mo2NS, which lie at sites with crystallographically imposed 2-fold symmetry; a 

drawing of the second molecule is given in the supporting information.  

All compounds display the expected paddlewheel arrangement of the ligands about 

the dimetal core. The solid-state structure of Mo2NO reveals a cis-2,2 arrangement of 

the ligands, where as Mo2NS adopts the trans-2,2 regioisomer.  

 

 

 

Figure 1. Solid state structure of Mo2NO(py)2, with anisotropic displacement 

parameters drawn at  the 50% level and hydrogen atoms omitted for clarity. Atoms 

with an additional prime (') character are generated using the symmetry operation 1-x, 

-y, 1-z. 

 



 

Figure 2. Solid state structure of one of the crystallographically independent cores of 

Mo2NS, with anisotropic displacement parameters drawn at the 50% level and 

hydrogen atoms omitted for clarity. Atoms with a prime ('), double prime ('') and 

triple prime (''') character are generated using the symmetry operations ‘1-x, 1-y, z’, 

‘y, 1-x, 2-z’ and ‘1-y, x, 2-z’, respectively.  

 



 

Figure 3. Solid state structure of Mo2OO(THF)2. Anisotropic displacement 

parameters are drawn at the 50% level, with hydrogen atoms have been omitted for 

clarity. 

 

  



Table 1. Selected bond lengths (Å) and angles (º) for Mo2NO(py)2, Mo2NS, and Mo2OO(THF)2  

 Mo2NO(py)2 Mo2NS  Mo2OO(THF)2 
Mo-Mo Mo1-Mo1’  2.1269(7) Mo1-Mo1’’  2.1026(18) 

Mo2-Mo2’’’  2.1171(16) 
Mo1-Mo2  2.1106(6)  

Mo-Leq Mo1-N1      2.136(3) 
Mo1-N2      2.141(3) 
Mo1-O1      2.111(2) 
Mo1-O2      2.114(2) 

Mo1-N1      2.149(6) 
Mo1-S1’’    2.462(2) 
Mo2-N2      2.144(6) 
Mo2-S2’’    2.457(2) 

Mo1-O1    2.107(4) 
Mo1-O3    2.100(4) 
Mo1-O5    2.101(4) 
Mo1-O7    2.094(4) 

Mo2-O2    2.101(4) 
Mo2-O4    2.092(4) 
Mo2-O6    2.117(4) 
Mo2-O8    2.114(4) 

Mo-Lax Mo1-N3      2.690(3) - Mo1-O9    2.540(6) Mo2-O10  2.558(6) 
Phenyl 

torsion 

O1’-C9-C6-C1            72.7(4) 
O2’-C24’-C21’-C16’  29.9(5) 

S1-C1-C4-C5        10.9(7) 
S2-C16-C19-C20  72.2(7) 

O1-C1-C4-C5        70.6(6) 
O4-C10-C13-C14  1.3(6) 
 

O6-C19-C22-C23  80.3(6) 
O8-C28-C31-C32  21.4(6) 

 

  



The Mo-Mo bond distance for Mo2NO (2.1269(7) Å) is the longest bond length found for a 

homoleptic dimolybdenum quadruply bonded compound containing N-C-O¯  bridging ligands. The 

metal-metal distance for Mo2OO (2.1106(6) Å) is also relatively long for a complex of form 

Mo2(O2CR)4(THF)2; only Mo2(O2CCF3)4(THF)2 has a longer Mo-Mo bond distance (2.1202(5) 

Å).38 The relatively long Mo-Mo bond lengths observed for both compounds may be a result of 

significant Mo2-δ to ligand-π* backbonding.  

There have been only four structural studies of dimolybdenum paddlewheel compounds containing 

bridging N-C-S¯  units, using the ligands ¯ SC(NMe)PMe2 (Mo-Mo = 2.083(1) Å),39 4,6-dimethyl-2-

mercaptidopyrimidine (Mo-Mo = 2.083(2) Å),40 7-methyl-1,8-napthyridine-2-thiolate (Mo-Mo = 

2.131(2) Å) and 2-mercaptidoquinoline (Mo-Mo = 2.089(1) Å). The Mo-Mo bond lengths for the 

two independent molecules in the crystal structure of Mo2NS are slightly different (2.1026(18) and 

2.1171(16) Å), but fall within the range observed for other Mo2
4+ cores with N-C-S¯  bridging 

ligands. The only significant difference is the orientation of the phenyl ring on the ligand backbone; 

the torsion angles with the N-C-S¯  moiety and phenyl rings are 10.9(7)° and 72.2(7)°.  

 

Electrochemical studies 

The cyclic voltammograms of Mo2NN, Mo2NO, Mo2NS, and Mo2OO are displayed in Figure 4, 

with data summarised in Table 3. All compounds display a single oxidation process corresponding 

to the removal of an electron from the highest occupied molecular orbital (HOMO), which is the 

Mo2-δ orbital. The Mo2
4+/5+ redox process is reversible for Mo2NS in THF solution, and Mo2NN in 

dichloromethane and dimethylformamide. However this process is irreversible for all compounds, 

except Mo2NN, in dimethylformamide. In solutions containing dimolybdenum paddlewheel 

compounds, donor solvents will coordinate to the axial sites of the Mo2 core. The irreversible nature 

of the oxidation in dimethylformamide is likely a result of attack of the M-M bond in the Mo2
5+ 

ions formed by the axially coordinated donor solvent molecules. The small change observed in 

oxidation potential for Mo2NN in dimethylformamide (-0.322 V) and dichloromethane solutions (-



0.313 V) suggests that the ligand N-phenyl groups protect the axial coordination site of the dimetal 

core from dimethylformamide coordination, accounting for the reversible nature of the Mo2
4+/5+ 

redox process.  

The trend in oxidation potentials (Mo2NN < Mo2NO < Mo2NS < Mo2OO) correlate with ligand 

basicity; the more basic the ligand the better the stabilisation of the Mo2
5+ oxidation state. Hence the 

lowest oxidation potential is observed for Mo2NN, whilst Mo2OO has the highest. The range of the 

Mo2
4+/Mo2

5+ potentials (~0.9 V) illustrates the dramatic effect that the character of the ligand 

bridging atoms has on the electronic structure of these compounds. 

 

 

Figure 4. Cyclic voltammograms of Mo2NN (in dichloromethane), Mo2NO (in 

dimethylformamide), Mo2NS (in THF) and Mo2OO (in THF) recorded in 0.1 M nBu4NPF6 

solutions. 

 

Electronic absorption spectroscopy 

The UV/vis absorption spectra of the compounds are shown in Figure 5. All compounds show an 

intense absorption in the visible region, which can be assigned to Mo2 δ → ligand π* (MLCT) 

transitions. The energy of this transition is dependent on the nature of the ligand. The highest 

energy MLCT transition is observed for Mo2OO at 446 nm, with the same transition red shifted for 



Mo2NO (496 nm), Mo2NN (520 nm) and Mo2NS (526 nm). The compound Mo2NO also displays a 

weak transition at 605 nm. A more detailed analysis of these transitions can be obtained from the 

time-dependent density functional theory calculations, discussed next. 

 

 

Figure 5. UV/vis spectra of Mo2NN, Mo2NO, Mo2NS and Mo2OO recorded in DMF solutions at 

room temperature. 

 

Electronic structure calculations 

The geometry and electronic structures of all the compounds were studied by density functional 

theory calculations as implemented in the Gaussian09 suite of programs.41 The model compounds 

Mo2({NH}2CC≡CPh)4 (Mo2NN’), Mo2({NH}C(O)C≡CPh)4 (Mo2NO’) and 

Mo2({NH}C(S)C≡CPh)4 (Mo2NS’), in which {NPh} has been replaced by {NH}, were used to 

reduce computational time. Whilst the compounds Mo2(SC(O)C≡CPh)4 (Mo2SO) and 

Mo2(S2CC≡CPh)4 (Mo2SS) could not be isolated in this study due to their instability at room 

temperature, homoleptic dimolybdenum monothio- and dithiocarboxylate paddlewheel compounds 

are known.42 Calculations were therefore also performed on Mo2SO and Mo2SS as it is informative 

to consider the effect of sulphur coordination on the electronic structure. Selected bond lengths for 

the optimised structures are given in Table 2, and show excellent agreement with the solid state 

structures obtained for Mo2NS, Mo2OO and Mo2NO.  



 

Table 2. Calculated bond lengths (Å). 

 Mo2NN’ Mo2NO’ Mo2NS’ Mo2OO Mo2SO Mo2SS 

Mo-Mo 2.137 2.130 2.142 2.124 2.156 2.150 
Mo-N 2.149 2.140 2.140 -   
Mo-O - 2.107 - 2.104 2.078  
Mo-S - - 2.506 - 2.495 2.496 
 

Regioisomers 

We first probed which regioisomers of Mo2NO’, Mo2NS’ and Mo2SO are more stable in the gas 

phase by optimising the structures of the 4,0, 3,1, trans-2,2, and cis-2,2 regioisomers (see Scheme 

3). The results shown in Figure 6 indicate that the trans-2,2 regioisomer is the most stable in all 

instances. For Mo2NO’ and Mo2SO, there are a number of regioisomers close (<5 kJ mol-1) in 

energy to the trans-2,2 form. This suggests that more than one regioisomer could be present in the 

solid-state or at elevated temperatures in solution, although no experimental evidence of multiple 

regioisomers was observed. The solid state structure of Mo2NO it was found to adopt the cis-2,2 

regioisomer. As this is the only form observed experimentally, subsequent discussion about 

Mo2NO’ will focus on results from the cis-2,2 isomer calculations. For Mo2NS’ and Mo2SO’, the 

results of the trans-2,2 isomer calculations will be discussed. 

In order to check that substitution of {NH} for {NPh} did not affect the relative stability of the 

isomers, geometry optimisation on the cis-2,2 and trans-2,2 forms of Mo2NO were performed; the 

trans-2,2 isomer was still found to be the most stable.  

 



 

Figure 6. Calculated stabilities of isomeric forms of Mo2NO’, Mo2NS’ and Mo2SO. 

 

Electronic Structure 

The calculated frontier molecular orbital energy levels and selected MO diagrams for Mo2OO are 

displayed in Figure 7. The HOMO in all instances is the Mo2 δ, with energies given in Table 3 

ranging from -3.83 eV for Mo2NN to -5.26 eV for Mo2SS. This large energy range of ~1.4 eV 

shows that substitution of N for O for S can result in dramatic changes in the electronic structure of 

dimolybdenum paddlewheel compounds. This effect is even greater than would be expected if Mo 

was substituted by W, which would result in the M2-δ orbital rising by ~0.5 eV in energy.43 The 

electrochemical data is also included in Table 3, and shows that the calculated trend in HOMO 

energy is matched by experiment.  

  

 



 

Figure 7. Calculated frontier molecular orbital energies and selected Gaussview plots of Mo2OO 

orbitals (drawn with an isosurface value of 0.03). 

  



Table 3. Calculated MO energies, and a comparison of the experimental observed and calculated energy of the MLCT transition. 

Compound HOMO 

/ eV
a
 

HOMO-LUMO 

gap / eV
a
 

∆∆∆∆E(Lππππ*
) 

/ eV
a 

E1/2(1) / V
b,c

 λλλλmax obs (εεεε) 

/nm (M
-1

 cm
-1

)
c
 

λλλλmax calc 

/nm
a
 

λλλλmax calc 

assignment 

Mo2NN -3.83 2.62 0.46 -0.322 (–0.313d) 520 (5600) 539 (1.564) δ → Lπ* 
Mo2NO -4.31 2.77 0.52 –0.200e 605 (600) 

496 (6000) 
523 (0.545) 
504 (0.778) 
476 (0.216) 

δ → Lπ* 

δ → Lπ* 

δ → δ* 

Mo2NS -4.68 2.79 0.55 
 

0.092e (0.297f) 526 (6600) 508 (1.300) 
468 (0.138) 

δ → Lπ* 

δ → M2-π
* 

Mo2OO -4.82 2.95 0.49 
 

0.282e (0.410e,f) 446 (9100) 484 (1.560) δ → Lπ* 

Mo2SO -5.02 2.74 0.60 - - 527 (1.297) δ → Lπ* 
Mo2SS -5.27 2.56 0.45 - - 570 (1.064) 

421 (0.302) 
δ → Lπ* 
S l.p. → Lπ* 

a) Calculated values. b) vs. Cp2Fe0/+. c) recorded in dimethylformamide solution. d) recorded in dichloromethane solution. e) irreversible oxidation 

wave. f) recorded in THF solution. 



The LUMO for each compound is one of the ligand π* orbital combinations, and included in Table 

3 is the calculated HOMO-LUMO gap. The effect of N for O for S substitution on the HOMO-

LUMO gap is less dramatic than observed for the HOMO energy. Introduction of the more 

electronegative O for N reduces the energy of the ligand π* orbitals. The effect of S for N 

substitution is also to reduce the energy of the ligand π*, however in this instance it is the longer 

and weaker C–S bond that is responsible for the reduction in energy. These effects combine to 

result in similar reduction in the ligand π* orbital energies as the Mo2-δ orbitals energies are 

reduced.  

In complexes of the type M2(TiPB)2(L)2 (L = π-accepting carboxylate ligand) the separation 

between the in- and out-of-phase π* combinations of ‘L’ can be used as a measure of the strength of 

interaction between the O2CR π-systems and the Mo2-δ.43 In homoleptic paddlewheel compounds 

having D4h symmetry, there are three non-bonding ligand π* combinations of eu and a2g symmetry, 

and a b2g combination that has the correct symmetry to interact with the Mo2-δ. Molecular orbital 

diagrams of the b2g combination are given in the Supporting Information. The extent of separation 

between these bonding and non-bonding combinations, ∆E(Lπ*), is therefore an indication of the 

extent of coupling between the M2-δ and ligand π-systems, with values presented in Table 3. Based 

on the HOMO-LUMO separation, the magnitude of ∆E(Lπ*) would be expected to follow the order 

Mo2NN < Mo2NO < Mo2NS. The reverse of this order is actually observed. This can be 

rationalised by examining the MO diagrams which show the amount N-C-E π* character in the 

ligand π* orbital follows the trend E = N < O < S. The bridging N-C-E group is serving as an 

‘alligator clip’,6, 44 coupling metal and ligand π orbitals. The large 3 p orbitals of sulphur have the 

best overlap, and hence the strongest metal-ligand coupling is observed. This highlights that it is 

essential to consider metal and E-C-E’ orbital overlap, and not just MO energy, when choosing 

ligands to electronically couple dimetal units.  



For Mo2SS, a smaller than expected separation of the ligand π* orbital combinations is observed. 

The MO diagram of the b2g ligand π* combination for Mo2SS, shown in the Supporting Information, 

reveals additional bonding interactions between the diffuse S 3p orbitals on adjacent ligands are 

present, which serve to stabilise the orbital.  

Time-dependent DFT was used to calculate the absorption spectra for each compound. Calculated 

transitions with significant oscillator strength (f > 0.1) in the visible region are listed in Table 3. In 

each instance, the main transition in the visible region is the expected Mo2-δ to ligand π* transition, 

with the calculated values closely matching the experimental data. However, they do not predict the 

weak transition observed at 605 nm for Mo2NO. This peak could be due to a δ → δ* transition, 

which for Mo2NO’ is calculated to have appreciable oscillator strength. 

 

Conclusion 

This investigation has probed how N for O for S substitution in the E-C-E’ bridging group of 

dimolybdenum quadruply bonded paddlewheel compounds influences their properties. For the 

Mo2(EE’CC≡CPh)4 compounds studied, this simple change was shown to have a dramatic effect on 

the electronic structure of dimolybdenum core. Electrochemical studies showed that Mo2
4+ 

oxidation can be tuned over a range of nearly 0.9 V, with N for O for S substitution, because of 

decreases in ligand basicity. Density functional theory calculations indicate that this range could be 

increased upon inclusion of mono- and di-thiocarboxylate ligands to the series.  

Dicarboxylates are by far the most common ligands used in the assembly of molecular architectures 

incorporating M2
4+ units or other metal clusters. This study has shown that the optoelectronic and 

redox properties of these assemblies may be tuned by judicious selection of bridging ligand. Given 

that heteroatom substitution has a dramatic effect on the ground-state properties of these molecules, 

future studies will also investigate differences in the photoexcited states of these compounds.  

 

 



Experimental 

Physical measurements 

Elemental analyses were carried out by the Microanalytical Service of the Department of Chemistry 

at Sheffield with a Perkin-Elmer 2400 analyzer. Electronic absorption spectra were recorded using a 

Varian Cary 5000 UV-Vis-NIR spectrophotometer. Electrochemical measurements were carried out 

in nitrogen-purged 0.1 M [nBu4N][PF6] solutions using a standard three-electrode system with a Pt 

microdisc working electrode, Pt wire counter electrode, and Ag/AgCl reference electrodes. At the 

end of every experiment ferrocene was added as an internal standard. ESI mass spectra were 

collected on a Waters Micromass LCT operating in ESI mode. Matrix assisted laser 

desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry was performed on a Bruker 

Reflex III (Bruker, Breman, Germany) mass spectrometer operated in positive ion mode with a N2 

laser.  Laser power was used at the threshold level required to generate signal. Dithranol was used 

as the matrix and prepared as a saturated solution in THF.  Allotments of matrix and sample were 

thoroughly mixed together; 0.5 mL of this was spotted on the target plate and allowed to dry. IR 

spectra were recorded as solid samples with a Perkin-Elmer Spectrum RX I FT-IR spectrometer 

equipped with a DuraSamplIR II diamond ATR probe and universal press. 1H and 13C NMR spectra 

were collected at room temperature on Bruker Avance 250, 400 or DRX500 spectrometers. 

Chemical shifts were assigned relative to the residual solvent peak and are given to 0.01 ppm for 1H 

and 0.1 ppm for 13C. 

 

Materials and methods 

All experimental manipulations were performed under an inert atmosphere using standard Schlenk-

line and glovebox techniques. THF was distilled over sodium wire, and methanol was distilled over 

CaH2. All other solvents obtained from a “Grubbs” solvent purification system. N,N’-diphenyl 

carbodiimide (PhN=C=NPh),45 PhC≡C(O)CNHPh,46 and Mo2(O2CCH3)4
47 were synthesised 

according to literature procedures. All other chemicals were obtained from commercial sources. 



 

Preparation of PhC≡≡≡≡C(NPh)CN(H)Ph 

This ligand was synthesised by a modified literature procedure.48 Phenyl acetylene (0.272 g, 2.66 

mmol) was dissolved in THF (20 ml) and cooled to -78°C. n-Butyllithium (1.06 ml of a 2.5M 

solution in hexane, 2.66 mmol) was added slowly to the solution and stirred for 20 min at -78°C. A 

solution of freshly prepared and degassed N,N’-diphenyl carbodiimide (0.486 g, 2.50 mmol) was 

dissolved in THF (10 ml) and added dropwise. The pale yellow solution was allowed to warm 

slowly to room temperature and stirred for 2 h, producing a further colour change to orange. The 

reaction was quenched by addition of MeOH (25 ml), and the solvent removed to leave a yellow 

solid. The solid was purified by recrystallisation from hot hexane to yield orange needle crystals 

(0.652 g, 88%). 1H NMR (CDCl3, 20°C): δ 8.06 (s, 1H, NH), 7.77-7.29 (m, 15H, ArH). 13C{1H} 

NMR (CDCl3, 20°C): 80.6 (Ar-C≡C); 92.7 (Ar-C≡C); 120.7, 121.2, 123.3, 128.5, 128.7, 129.8, 

132.2, 139.4 (Aryl C); 146.0 (N=C(C)N). mp 121°C (lit.,48 122-123.5°C). ESI-MS: calcd 

monoisotopic MW for C21H16N2, 296.1; found m/z 297.1 (MH+, 100.0%). 

 

Preparation of Mo2({NPh}2CC≡≡≡≡CPh)4, Mo2NN 

A mixture of sodium hydride (17 mg, 0.70 mmol) and PhC≡C(NPh)CNHPh (207 mg, 0.70 mmol) 

in THF (15 ml) were heated to 60°C for 15 mins, where upon an orange solution was formed. The 

solution was then cooled to -78°C and a solution of Mo2(O2CCH3)4 (50 mg, 0.12 mmol) in THF (5 

ml) was added dropwise. After addition, the reaction mixture was heated to 55°C, and stirred at this 

temperature for 72 h. The reaction was then cooled to room temperature, and solvent removed in 

vacuo to leave a dark red solid. The product was extracted from this residue using warm (50°C) 

hexane, and filtered before drying in vacuo to yield a bright red solid (52 mg, 32% yield). Anal. 

calcd for C84H60N8Mo2: C, 73.46; H, 4.40; N, 8.16. Found: C, 73.82; H, 4.46; N, 8.09%. MALDI-

TOF-MS: calcd monoisotopic MW for C84H60N8Mo2, 1376.3; found m/z 1376.1 (M+, 100%). 1H 

NMR (CDCl3, 20°C): δ 7.55-7.02 (m, 60H, ArH). 13C{1H} NMR(CDCl3, 20°C): δ 83.3 (Ar-C≡C); 



92.6 (Ar-C≡C); 120.6, 123.6, 125.46, 128.5, 128.4, 128.7, 131.9, 139.2 (Aryl C);  149.9 (N=C(C)N). 

UV-Vis (DMF) [λmax, nm (ε, M-1 cm-1)]: 517 (5590). 

 

Preparation of Mo2(OC{NPh}C≡≡≡≡CPh)4, Mo2NO 

Sodium hydride (0.042 g, 1.8 mmol) and PhC≡CC(O)NHPh (0.388 g, 1.8 mmol) were suspended in 

THF (20 ml) and heated to 60°C for 15 min. The orange solution that formed was then cooled to -

78°C and a solution of Mo2(O2CCH3)4 (0.150 g, 0.35 mmol) in THF (5 ml) was added dropwise. 

The mixture was stirred at room temperature for 16 hours producing a solution with an orange 

suspension. The precipitate was isolated by filtration and washed with THF (3 × 10 ml aliquots) 

before drying in vacuo to yield the product as a bright orange solid (250 mg, 67% yield). Crystals 

suitable for X-ray diffraction were grown by slow diffusion of Et2O into a pyridine solution 

containing Mo2NO. Anal. calcd for C60H40N4O4Mo2: C, 67.17; H, 3.76; N, 5.22. Found: C, 67.37; 

H, 3.79; N, 5.13%. MALDI-TOF-MS: calcd monoisotopic MW for C60H40N4O4Mo2, 1076.1; found 

m/z 1075.9 (M+, 100%). 1H NMR (dmso-d6, 20°C): δ 7.79-7.32 (m, 40H, ArH). 13C{1H} NMR 

(dmso-d6, 20°C): δ 83.5 (Ar-C≡C); 87.0 (Ar-C≡C); 120.7, 122.1, 124.6, 126.0, 128.3, 129.2, 132.3, 

154.6 (Aryl C); 174.7 (O=C(C)N). IR(cm-1): 2360w, 2340w, 1573s, 1488m, 1468s, 1438s, 1387s, 

1259w, 1200m, 1098w, 1009w, 992w. UV-Vis (DMF) [λmax, nm (ε, M-1 cm-1)]: 265 (24570), 492 

(6010). 

 

Preparation of Mo2(SC{NPh}C≡≡≡≡CPh)4, Mo2NS 

Phenyl acetylene (0.192 ml, 1.75 mmol) was dissolved in THF and cooled to -78°C. n-Butyllithium 

(0.70 ml of a 2.5 M solution in hexanes, 1.75 mmol) was added to the solution and stirred for 20 

mins at -78°C. Phenyl isothiocyanate (0.201 ml, 1.75 mmol) was added dropwise, then the solution 

was allowed to warm to room temperature and stirred for 1 h producing a dark red solution. The 

solution was cooled to -78°C and transferred to a Schlenk flask containing a suspension of 

Mo2(O2CCH3)4 (0.150 g, 0.35 mmol) in THF (10 ml) also held at -78°C. The mixture was allowed 



to warm slowly to room temperature, and stirred for 16 h. The solvent was removed in vacuo to 

leave a red solid, which was redissolved in warm toluene (20 ml, 80°C) and filtered whilst hot. The 

filtrate was allowed to cool slowly to room temperature yielding the product as red-orange crystals, 

which were isolated by decantation and dried in vacuo (0.320 g, 81%). Anal. calcd for 

C60H40N4S4Mo2: C, 63.37; H, 3.55; N, 4.93; S, 11.28. Found: C, 63.82; H, 3.72; N, 4.87; S, 11.27%. 

MALDI-TOF-MS: calcd monoisotopic MW for C60H40N4S4Mo2, 1140.0; found m/z 1140.2 (M+, 

100%). 1H NMR (dmso-d6, 20°C): δ 7.51-7.32 (m, 16H, ArH), 7.29-7.02 (m, 24H, ArH). 13C{1H} 

NMR (dmso-d6, 20°C): δ 88.5 (Ar-C≡C); 95.8 (Ar-C≡C); 120.5, 122.2, 123.2, 127.7, 128.7, 130.7, 

131.8, 153.8 (Aryl C); 174.7 (S=C(C)N). IR(cm-1): 2359s, 2343m, 1589s, 1482m, 1421s, 1274m, 

1766w, 1096s, 1070m, 1024m. UV-Vis (DMF) [λmax, nm (ε, M-1 cm-1)]: 286 (14610), 520 (6680). 

 

Preparation of Mo2(O2CC≡≡≡≡CPh)4, Mo2OO 

Phenylpropiolic acid (0.250 g, 1.71 mmol) and Mo2(O2CCH3)4 (0.100 g, 0.23 mmol) were refluxed 

in toluene (15 ml) for 16 h. The reaction mixture was cooled to room temperature producing an 

orange precipitate. This precipitate was isolated by filtration, and washed with toluene (3 × 10 ml 

aliquots) before drying in vacuo, yielding Mo2(O2CC≡CPh)4 as a bright orange powder (0.110 g, 

60%). Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a THF 

solution containing Mo2OO. Anal. calcd for C36H20O8Mo2: C, 55.98; H, 2.61. Found: C, 56.15; H, 

2.73%. MALDI-TOF-MS: calcd monoisotopic MW for C36H20O8Mo2, 775.9; found m/z 775.9 (M+, 

100%). 1H NMR (dmso-d6, 20°C): δ 7.85-7.52 (m, 20H, ArH). 13C{1H} NMR (dmso-d6, 20°C): δ 

81.8 (Ar-C≡C); 83.7 (Ar-C≡C); 118.9, 129.0, 130.9, 132.8 (Aryl C); 183.4 (O=C(C)O). IR(cm-1): 

2360w, 2343w, 2210m, 2182w, 1492m, 1475s, 1441m, 1386s, 1220m, 986w, 942w. UV-Vis 

(DMF) [λmax, nm (ε, M-1 cm-1)]: 265 (19030), 441 (10540). 

 

 

 



X-ray Crystallography 

Data were collected were measured on a Bruker Smart CCD area detector with Oxford Cryosystems 

low temperature system. After integration of the raw data and merging of equivalent reflections, an 

empirical absorption correction was applied (SADABS) based on comparison of multiple 

symmetry-equivalent measurements.49 The structures were solved by direct methods (SHELXS-

97)50 and refined by full-matrix least squares on weighted F2 values for all reflections.51 All 

hydrogens were included in the models at calculated positions using a riding model with U(H) = 1.5 

x Ueq (bonded carbon atom) for methyl and hydrogens and U(H) = 1.2 x Ueq (bonded carbon atom) 

for methine, methylene and aromatic hydrogens.  

For Mo2NO(py)2⋅5py, pyridine solvate molecule located on the inversion centre is delocalised over 

two positions with site occupancy 0.5/0.5. Two other solvate molecules were disordered over two 

positions with site occupancies of 0.76/0.24 and 0.52/0.48. The axially coordinated THF molecules 

in Mo2OO(THF)2 are disordered and were refined isotropically over two positions, both with site 

occupancies of 0.65/0.35. The toluene solvate molecules in Mo2NS⋅4(toluene) are also disordered 

over two positions with occupancies of 0.51/0.49 and 0.67/0.33, and were refined isotropically. The 

residual electron density peak of 2.405 e Å-3 is located close (1.059 Å) to Mo2. 

CCDC 859556 [Mo2NO(py)2⋅5py], 859557 [Mo2NS⋅4(toluene)] and 859558 

[Mo2NS⋅4(toluene)] contain the supplementary crystallographic data for this paper. These data can 

be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. Experimental data relating to the structure determinations of 

all complexes are displayed in Table 4. 

 

Table 4. Crystallographic data for Mo2NO(py)2⋅5py, Mo2NS⋅4(toluene) and Mo2OO(THF)2. 

Compound Mo2NO(py)2⋅5py Mo2NS⋅4(toluene) Mo2OO(THF)2 
Empirical Formula  C95H75Mo2N11O4 C88H72Mo2N4S4 C44H36Mo2O10 
Formula weight 1626.54 1505.62 916.61 
Temperature 100(2) K 150(2) K 150(2) K 
Wavelength  0.71073 Å 0.71073 Å 0.71073 Å 
Crystal system  Monoclinic Tetragonal Monoclinic 



Space group  P21/n I-4 P21/c 
Unit cell dimensions a = 13.501(4) Å;  

α = 90° 
a = 26.8014(14) Å;  
α= 90° 

a = 18.8160(6) Å;  
α = 90° 

 b = 20.289(6) Å;  
β= 90.104(8)°. 

b = 26.8014(14) Å;  
β = 90.104(8)° 

b = 12.8292(4) Å;  
β = 90.032(2)° 

 c = 14.126(4) Å;  
γ = 90° 

c = 10.1004(6) Å;  
γ = 90° 

c = 17.2278(5) Å:  
γ = 90° 

Volume 3869(2) Å3 7255.3(7) Å3 4158.7(2) Å3 
Z 2 4 4 
Density (calculated) 1.396 Mg m-3 1.378 Mg m-3 1.464 Mg m-3 
Absorption coefficient 0.387 mm-1 0.511 mm-1 0.659 mm-1 
F(000) 1676 3104 1856 
θ range for data collection 1.76 to 27.55°. 1.07 to 27.47° 1.08 to 27.50° 
Index ranges -17<=h<=17, 

-26<=k<=25,  
-18<=l<=18 

-34<=h<=34,  
-34<=k<=33,  
-12<=l<=13 

-24<=h<=24;  
-16<=k<=16;  
-22<=l<=22 

Reflections collected 37994 44580 53498 
Independent reflections 8876 [R(int) = 0.0464] 8266 [R(int) = 0.0845] 9550 [R(int) = 0.0396] 
Completeness to θ 100.0 %  99.6 %  99.8% 
Data / restraints / 
parameters 

8876 / 220 / 591 8266 / 27 / 383 9550 / 14 / 499 

Goodness-of-fit on F2 1.181 1.068 1.271 
Final R indices [I > 2σ(I)] R1 = 0.0529,  

wR2 = 0.1280 
R1 = 0.0556,  
wR2 = 0.1276 

R1 = 0.0596,  
wR2 = 0.1406 

R indices (all data) R1 = 0.0708,  
wR2 = 0.1399 

R1 = 0.0908,  
wR2 = 0.1479 

R1 = 0.0668,  
wR2 = 0.1434 

Largest diff. peak and hole 
(e Å-3) 

0.468 and -0.631 2.405 and -0.901  1.154 and -1.493 e Å-3 

 

Computational details 

Molecular structure calculations were performed using density functional theory as implemented in 

the Gaussian 09 software package.41 The B3LYP functional52, 53 and the 6-31G*(5d) basis set54 

were used for H, C, O, N and S, along with the SDD energy consistent pseudopotentials for 

molybdenum.55 This level of theory was chosen as it was recommended in a benchmark study 

probing the physical and electronic structure of M2(O2CR)4 compounds.56 The model compounds 

Mo2({NH}2CC≡CPh)4 (Mo2NN’), Mo2({NH}C(O)C≡CPh)4 (Mo2NO’) and 

Mo2({NH}C(S)C≡CPh)4 (Mo2NS’), in which {NPh} has been replaced by {NH}, were used. For 

Mo2NS’ and Mo2SO results from calculations on the trans-2,2 regioisomer are used in the 

discussion, and for Mo2NO the discussion is based on computational results from the cis-2,2 

regioisomer. The structure of each compound was optimised in the gas phase in D4h (Mo2NN’, 



Mo2OO, Mo2SS), D2d (Mo2NS’, Mo2SO) or C2h (Mo2NO’) symmetry, and confirmed to be minima 

on the potential energy surface using harmonic vibrational frequency analysis. Electronic 

absorption spectra were calculated using the time-dependent DFT (TD-DFT) method. 
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