Critical review of the creep damage constitutive equations for high Cr steel

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/18705/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Critical review the development of creep damage constitutive equations for high Cr steels

Qiang Xu and Xue Wang

1 Doctor, School of Computing and Engineering, Huddersfield University, Huddersfield, HD1 3BA, UK
2 Professor, School of Power and Mechanics, Wuhan University, China

Abstract
The creep deformation and failure of high Cr steel component and weld is a challenging problem for power generation industries. There is a lack of good understanding of the precise nature and role of cavitation on the creep deformation and rupture. Creep damage constitutive equation developed either specifically developed for this type of steel or borrowed from existing one have been used in research. This review demonstrates the current state of art and outlines the direction of future work.

Keywords
creep damage; creep damage constitutive equation; creep cavity; high Cr steels

1. Introduction

Demands on the thermal efficiency and reduction of CO2 emissions for fossil plants lead to the development and applications of high chromium ferritic creep-resistant steels. The steel P91 strengthened by Nb and V addition is being widely used for temperature up to 873 K. The 9-12% Cr steel strengthened by replacing Mo with W, namely P92 and P122 are being now performed for application to boiler component of ultra-supercritical (USC) power plants operating at around 898 K.

It is well known that the long term performance and creep rupture strength is below originally expected from simple extrapolation of short term creep data resulting in reductions in some of the values quoted as representing long term creep life [1-3]. For example, Ennis et al [1] found that the stresses of above 150 MPa at 600°C and above 110 MPa for 650°C, the Norton stress exponent n was found to be 16; below these stresses an n value was 6. Similarly, for the ASTM grade 92 steel crept at 550–650 °C for up to 63151 h, Lee et al found that [2] the stress exponent for rupture life to be decreased from 17 in short-term creep to 8 in long-term creep.

There were several literature review and summary about the microstructural changes/evolutions and their effects on the creep strength. For example, Parker [3] summarized the following microstructure degradation effects appearing to be primarily responsible for the loss of long term creep strength: a. the formation of new phase which leads to dissolution of fine M2X and MX carbnitrdes; b. recovery of the dislocation substructure (increase in subgrain size) and reduction in the overall dislocation density. This may be seen generally but is believed to initiate as the result of preferential recovery of microstructure in the vicinity of prior austenite grain boundaries, and c. the development of creep voids resulting in a significant loss of creep ductility. This will be discussed further in next section.

The change of the stress exponent value n in Norton power law indicates a change of creep deformation mechanism and possible the creep damage mechanism [4-7]. General speaking, that the creep deformation under lower stress is of diffusional and the void nucleaion is controlled by the maximum shear stress; which is in line with the general understanding reported by Miannay [4]. Specifically, Lee et al [1] summarized and reported for P92 steel as: 1) the steel shows ductile to brittle transition with
increasing rupture life, and the breakdown accords with the onset of brittle intergranular fracture; 2) creep cavities are nucleated at coarse precipitates of Laves phase along grain boundaries. It is further articulated that these findings suggest the following story of the breakdown of creep strength. Laves phase precipitates and grows during creep exposure. Coarsening of Laves phase particles over a critical size triggers the cavity formation and the consequent brittle intergranular fracture. The brittle fracture causes the breakdown. The coarsening of Laves phase can be detected non-destructively by means of hardness testing of the steel exposed to elevated temperature without stress.

Furthermore, the applications of these high Cr steels have been further hampered due the early cracking in weldment, namely Type IV cracking. It occurs in the FG-HAZ or IC-HAZ of weldment [8-9]. Firstly [8], the susceptibility of Type IV cracking is due to weak creep region in HAZ due to thermal cycle, as well as mistach of the mechanical properties in weldment. Secondly [8], it has been that M$_{23}$C$_6$ precipitates and Laves phases form faster in the fine grain HAZ region in 9Cr martensitic type of steels compared with the other regions of the weldment. This metallurgical effect further increases the vulnerability of the type IV region. Since not only are matrix-strengthening elements such as Cr, Mo and W depleted but the Laves phase offers potential sites for the nucleation of creep voids. High density of creep voids are developed over the HAZ, with crack formation and final propagation occurring only very late in creep life, according to [8]. With interrupted creep tests it was found that: the creep voids begin to form at the early state (at about 0.2 of rupture lifetime) and the number of voids increases all the way up to about 0.7 of rupture lifetime [9]. After that it can be considered that the rate of void coalescence is higher than that of void formation. With the coalescence of creep voids, they grow into the crack, which is known as Type IV cracking. The area fraction of creep voids can be a good variable to predict the creep life since it always tends to increase during creep. They also suggested that the high level stress triaxial factor combined with the large equivalent creep strain in the fine grained HAZ accelerate the void formation in P91 steel weld joint during creep at elevated. Recently, Parker summarized [8] as: a. it is now widely accepted that in creep tests at relatively high stress and temperature the results of cross weld creep testing are not typical of long term damage in component welds; b. clearly then it is important to select test conditions and specimen geometries for laboratory test programs so as to produce failures where the damage mechanisms are relevant to long terms service, c. using these conditions it is apparent that failure occurs as a consequence of nucleation, growth and link up of creep voids. It appears that the damage is significantly greater within the volume of the specimen where relatively high constraint conditions are developed; and d) the Type IV life is significantly below that of the parent under the same conditions. It was also reported by Parker [8] that further work is in progress to examine Grade 91 welded samples which have been tested to different creep life fractions with advanced characterization techniques to establish further details of creep cavity nucleation and growth within the weld HAZ.

For the safe design and operation, as well as for better design and develop new creep resistant steel itself, it is important to understand the creep damage evolution, particularly in terms of the detailed knowledge of nucleation, growth, and coalescence under different stress levels and stress states are needed. That is one of new research directions and it is understood that EPRI has undertaken [8] among others.

On the other hand, creep damage models have been developed. It is the intention to develop a set of creep damage constitutive equations which are suitable for this type of steels and its welds for a wide range of stress levels. Preliminary literature review of the creep deformation mechanisms and creep damage mechanism has been conducted and reported [5-6]. This paper expands the literature review on the creep damage constitutive equations developed and/or used for high Cr steels [10] paying more attention to the cavity nucleation and growth. This paper contributes to knowledge and the method for the development of creep damage constitutive equations.

2. Creep Cavitation
Creep cavities are observed mostly at grain boundaries perpendicular to the applied stress. The first to observe that nucleation is often strain controlled was probably Needham et al, according to Magnusson [7]. This was also found by Dyson [11] for ferritic 2.25% Cr steel, austenitic 347 steel, and Ni-based Nimonic 80A. The continuous nucleation has also been confirmed for 12% Cr steels by Wu et al [12]. The significance of the creep cavity for damage is also supported by the long-term creep test of 12% Cr steel (up to 139,971 h) it revealed that creep cavities lined up along the former austenite grain boundary perpendicular to the direction of applied stress [13].

There are two types of view on the cavity nucleation mechanisms, e.g. creep strain control or local stress controlled. Yin [14] proposed a creep controlled damage controlled by power law of creep strain recently. The influence of stress state on the formation and growth of cavity has been highlighted and investigated experimentally by Gaffard et al [15] via notched bar creep tests of P91 material. Furthermore, Gaffard et al proposed the nucleation rate is strain controlled also depends on the stress state and a frame work of multi-deformation and damage mechanisms, which differs from other stress controlled nucleation law developed in Chu and Needleman [16] or Herding and Kuhn [17], without giving further explanation and justification. On contrary, Magnusson [8] adopted a linear creep strain control nucleation and growth of cavity for analyzing the creep strain and damage under uniaxial creep condition.

It seems that there is not adequate and/or definite experimental data for validation. However, it is noted that, advanced/sophisticated techniques do come into use and some useful results have been produced. The first one is the application of microtomography to investigate the creep cavity damage where the size, shape and spatial distribution of voids can be obtained [18-19]; the second is interrupted creep testing [9] where, combined with FE analysis, the void density and size and their distribution can be investigated and the influence of stress states can be identified.

The application of microtomography to E911 after long term creep 26,000 h at 575 °C under multi-axial stress state [18] the stress triaxiality has the highest correlation coefficient (≈0.98) with the volumetric void density, the Von Mises stress and maximum principal stress have similar correlation, but, smaller, coefficients, still large enough to indicate their influence on damage. Its application to copper [19] has provided four dimensional characteristics of creep cavity growth in copper. Its finding has been compared with creep damage models.

3. Physically based Creep damage Mechanics

3.1 Dyson framework
The physically based continuum creep damage mechanics (CDM) was summarized and detailed in one of Dyson’s publication [11]. According to that the creep damages were grouped into broad categories of creep damage based on solely on the kinetics of damage evolution, and they are: strain-induced damage; thermal induced damage; and environmentally induced damage. For brevity, only the relevant damage mechanism, damage rate, and strain rate are included here:

Strain-induced damage: creep-constrained cavity nucleation controlled:

\[D_N = \frac{\pi d^2 N}{4}; \quad \dot{D}_N = \frac{k}{\varepsilon_f} \dot{\varepsilon} = \dot{\varepsilon} \sinh \left(\frac{\sigma (1-H)}{\sigma_0 (1-D_N)} \right) \]

(1)

Strain-induced damage: creep-constrained Cavity Growth Controlled:

\[D_C = \left(\frac{r}{t} \right)^2 \dot{D}_C = \frac{d}{2l_D G} \dot{\varepsilon} = \dot{\varepsilon} \sinh \left(\frac{\sigma (1-H)}{\sigma_0 (1-D_N)} \right) \]

(2)

Strain-induced: multiplication of Mobile Dislocation:

\[D_d = 1 - \frac{P_i}{P}; \quad \dot{D}_d = C(1 - D_d)^2; \quad \dot{\varepsilon} = \frac{\dot{\varepsilon}_0}{1-D_d} \sinh \left(\frac{\sigma (1-H)}{\sigma_0} \right) \]

(3)
Thermally-induced: particle coarsening:
\[
D_p = 1 - \frac{P_i}{p_i}, \quad \dot{D}_p = \frac{\dot{\rho}_p}{3} \left(1 - D_p \right)^4; \quad \dot{\varepsilon} = \frac{\dot{\varepsilon}_0}{1 - D_d} \sinh \left[\frac{\sigma(1-H)}{\sigma_0(1-D_p)} \right]
\]
(4)

Thermally-induced: depletion of solid solution element:
\[
D_s = 1 - \frac{\dot{\varepsilon}_0}{C_c} \dot{D}_s = K_s(1 - D_s)D_s^{1/3}; \quad \dot{\varepsilon} = \frac{\dot{\varepsilon}_0}{1 - D_s} \sinh \left[\frac{\sigma(1-H)}{\sigma_0} \right]
\]
(5)

This framework looks almost universal, and any need for the development of creep damage constitutive equations can be met combining the relevant elementary creep damage from the list. It is essentially a uniaxial version and the multi-axial version can be generalized though it is not straightforward as it looks. This will be discussed later.

3.2 Specific Applications

3.2.1 Yin et al [14] proposed an approach for creep damage modeling of P92 steel by including multiplication of mobile dislocation, depletion of solid solution element, and particle coarsening, equation 3, 4, 5 respectively, and replacing the strain induced damage by a new cavity damage kinetic equation:
\[
D_N = A \varepsilon^B
\]
(6)

where A and B are temperature dependent material constants. The justification was not given fully in the original paper. Only this uniaxial version has been used to the middle and high stress level. This version has also been used for P91 steel. The creep damage is still essentially creep strain controlled. There is no multi-axial version proposed yet, except an attempt by Yang et al [20].

3.2.2 Chen et al [21] had essentially adopted Yin’s approach and developed a creep model for T/P91 material under high stress level (130 to 200 MPa) at 600°C, existing literature have been used in the determining the values of material constants. Including the same elementary damage similarly to Yin’s approach.

3.2.3 Basirat et al [22] inserted them directly into the Orowan’s equation. The temperature and stress level’s influence is realized by the dependence of two material constants. It is worthy comparing the similarity between this and Yin’s approach.

3.2.3 Semab et al [23] adopted the above Dyson’s framework and proposed a version of creep damage constitutive equation where a novel way to incorporated the strain-dependent coarsening of subgrains and network dislocations.

3.2.4 Oruganti et al [24] aimed to build a comprehensive creep model using Dyson’s framework. The significant efforts were placed on identify the critical microstructural features that controlled creep and quantification of their effect and evolution with time and strain. In this approach, coarsening of carbonitrides and subgrain structure resulting from martensitic transformation were incorporated in the damage constitutive equations.

3.3 Multi-axial Version

This specific version of multi-axial creep damage constitutive equations was originally developed for low Cr alloy Perry and Hayhurst [25]. However, due to its popularity and been used by some researchers [26] to analyze the creep damage problem of this type of steel and weldment, it is included in this review. The multi-axial generalization is based on the isochronous surface concept via stress state coupling on damage evolution.

\[
\frac{d\varepsilon_i^c}{dt} = 3 S_i \frac{\sigma_0^2}{2 \sigma_{eq}} A \sinh \left[\frac{B \sigma_{eq}(1-H)}{(1-\Phi)(1-\omega_2)} \right]
\]
(7)
where \(N=1\), \(\sigma_1>0\) (tensile) and \(N=0\), \(\sigma_1<0\) (compressive). \(A, B, h, H^*, K_c, D\) and \(\nu\) are material constants, where \(\nu\) is related to tri-axial stress-state sensitivity of the material. The state variable \(H\) (\(0<H<H^*\)) represents the strain hardening occurring during primary creep. The \(H\) variable increases during the evolution of creep strain and reaches a maximum value of \(H^*\) at the end of primary stage and remains unchanged during the tertiary creep. The state variable \(\Phi\) (\(0<\Phi<1\)) describes the evolution of spacing of the carbide precipitates. The last-state variable, \(\omega_2\) (\(0<\omega_2<1/3\)), represents intergranular cavitation damage. The maximum value of \(\omega_2\) (at failure) is related to the area fraction of cavitation damage at failures, which in a uniaxial case is approximately 1/3.

3.4 Petry’s modification to Hayhurst approach [27]

A one state variable version of creep damage constitutive equations (Hayhurst, [28] 1972) was slightly modified by Petry et al. and it is given as:

\[
\begin{align*}
\frac{dH}{dt} &= \frac{h^c_e}{\sigma_{eq}} \left(1 - \frac{H}{H^*}\right), \\
\frac{d\Phi}{dt} &= \frac{K_c}{3} (1 - \Phi)^4, \\
\frac{d\omega_2}{dt} &= DN^c_e \left(\frac{\sigma_1}{\sigma_{eq}}\right)^\nu,
\end{align*}
\]

where \(N=1\), \(\sigma_1>0\) (tensile) and \(N=0\), \(\sigma_1<0\) (compressive). \(A, B, h, H^*, K_c, D\) and \(\nu\) are material constants, where \(\nu\) is related to tri-axial stress-state sensitivity of the material. The state variable \(H\) (\(0<H<H^*\)) represents the strain hardening occurring during primary creep. The \(H\) variable increases during the evolution of creep strain and reaches a maximum value of \(H^*\) at the end of primary stage and remains unchanged during the tertiary creep. The state variable \(\Phi\) (\(0<\Phi<1\)) describes the evolution of spacing of the carbide precipitates. The last-state variable, \(\omega_2\) (\(0<\omega_2<1/3\)), represents intergranular cavitation damage. The maximum value of \(\omega_2\) (at failure) is related to the area fraction of cavitation damage at failures, which in a uniaxial case is approximately 1/3.

3.5 Naumenko’s Formulation

Within the phenomenological approach framework, a version of stress-range-dependent creep damage constitutive model was proposed ([29] Naumenko, 2009). The key features are:

1. The hyperbolic sine law has been replaced by the sum of a linear and power-law stress functions:

\[
\dot{\varepsilon} = \dot{\varepsilon}_0 \frac{\sigma}{\sigma_0} + \dot{\varepsilon}_0 \left(\frac{\sigma}{\sigma_0}\right)^\kappa = \dot{\varepsilon}_0 \frac{\sigma}{\sigma_0} \left[1 + \left(\frac{\sigma}{\sigma_0}\right)^{\kappa-1}\right],
\]

2. Damage evolution is controlled by stress not creep strain
It claims that the definition of σ_T offers the possibility of transition from the pure ductile to pure shear brittle damage mode. This kinetic equation for creep damage rate is consistent with experimental fact that voids and microcracks nucleate on grain boundaries which are perpendicular to the first principal direction of the stress tensor and the void formation may progress even under pure hydrostatic pressure.

4. Multi Mechanisms Creep Failure Model

This creep failure model was developed based on the concept of that both deformation and damage evolution under multiple viscoplastic mechanisms is used to present high temperature creep deformation and damage of a martensitic stainless steel in a wide range of load levels [15].

\[\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_{vp} + \dot{\varepsilon}_{dif} \]

Where the strain component is elastic strain, power-law creep strain, and diffusional creep strain tensor, respectively. The creep damage of each mechanism is explicitly defined using porous viscous material model:

\[\frac{\sigma^2}{\sigma^2_m} + q_1f^* \left[h_M(X) + \frac{1 - M}{1 + M} \frac{1}{h_M(X)} \right] - 1 - q_1 \frac{1 - M}{1 + M} f^{*2} \equiv 0 \]

This model has been used for predicting Type IV failure of P91 weldment and the result is in agreement with experimental observation.

5. The Validation on Hayhurst Formulation [30]

Although the set of creep damage constitutive equation described in 3.3 was popular, a critical review revealed its deficiency inherent from its generalisation method, namely: this method used lifetime (under plane stress condition) only and ignored creep deformation consistency [31-32].

Fig. 1 Isochronous rupture loci for Hayhurst formulation [30]
The critical validation on the Hayhurst formulation has revealed that [30]:

1) A significant creep strength increase under plane strain condition when the tri-axiality is about the order of 1.5–2.8 as shown in Fig. 1. This increase is not realistic according to well-known creep strength theory. Thus, the previous formulation is unable to find a value for stress sensitivity that can satisfy the isochronous rupture loci under plane stress and plane strain conditions simultaneously. This deficiency was not revealed in previous constitutive equation development and/or validation.

2) The lifetime predicted under uni-axial tension and bi-axial equal tension is the same, which does not agree with the generally experimental observation.

3) Furthermore, the ratios of strain at failure for the previous formulation shown in Fig. 2 are conjugated with the shape of isochronous rupture loci shown in Fig. 1 through the common stress sensitivity parameter \(\nu \). Thus, there is no freedom provided to produce strain at failure consistent with experimental observation. This further demonstrates its incapability to predict consistently with experiment.

Furthermore, the Yin’s uniaxial version has been generalized into multi-axial version where the creep strain and stress in uniaxial damage rate equation are simply replaced by effective creep strain and Von-Mises stress [20]. Firstly, it was found that the life time under plane stress situation is far longer than it is observed and/or expected, suffering the similar problem occurred in Hayhurst’s multi-axial formulation mentioned above. This indicated the need to fundamentally research on the multi-axial generalization method. Secondly, the calibrated equation (6) based on middle and high stress is not applicable to lower stress as the predicted creep curve is still showing high strain at failure. This reveals further supported that the result of the evolution of cavity damage is different between lower and high stress level, probably resulted from different nucleation and growth laws in the first place.

6. Discussion

1. The high Cr steels do suffer creep failure and the most significant contributor to its failure is due to the cavity nucleation, growth and coalesces. At this moment, there is a lack of precise understanding of them experimentally, particularly under different stress levels and states, for the developing and/or validating the nucleation and growth models.

2. The high Cr steel components will work under lower stress regime where the creep deformation and the creep damage evolution rules may differ from that under the middle and high stress level. It was noted that the sum of linear and power-law creep rate equation and the multiple mechanisms approach offer

3. Dyson’s framework is open and it is up to user to select to right elementary damage mechanisms to compose a suitable one. However, as it is primarily a uniaxial version, how to generalize it into multi-axial version is not straight forward and prone to suffering the pitfall identified in Hayhurst’s approach. However, conceptually, it has been limited to strain induced damage. The stress controlled damage evolution kinetic rules and laws may be included in future. The need is even more evident when considering the generalization for multi-axial version.

In fact, it is reported that the cavity is continually nucleated and grow and the nucleation and growth may be described differently depending on the level of stress and influenced by the stress sate. At this moment, only multiple creep failure models have clearly offered that capability.

4. There is no sound multi-axial generalization method yet. The difficulty and complexity here roots at the coupling between creep damage and creep deformation, as well as the damage evolution itself, under the multi-axial states of stress. Furthermore, the hydrostatic stress do cause creep damage, but may not cause creep devitoric deformation.

Future direction of research work is outlined as:

1) To better understand precisely the nucleation, growth and rupture (both for parent material and welds) under different stress levels and states.

In terms of nucleation, there are obvious tasks, e.g. the relationship between the formation and growth of Laves and the nucleation of cavity, and the influence of states of stress. This set of information is the foundation for validation of any kinetic models for nucleation, growth and coalescence.

2) To validate or revise the creep cavity damage evolution model.

3) To develop and apply the generalization method and to conduct vigorous validation. This point has been addressed before by Xu [30-32].

Reference
Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel
2. Ennis, P. J. Ennis, A. Zielinska-lipiec, A. O. Wachter, A. Czyska-filemonowicz
Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant
3. J. Parker
In-service behavior of creep strength enhanced ferritic steels Grade 91 and Grade 92 – Part 1 Parent Metal

5. L. An, Q. Xu, Z. Lu, D. Xu
 Analyzing the characteristics of the cavity nucleation, growth and coalescence mechanism of 9Cr-1Mo-VNb steel (P91)”, accepted by 3rd International Conference of Machinery, Materials Science and Engineering, 22-23, June, 2013 Wuhan, China.

 Review of creep deformation and rupture mechanism of P91 alloy for the development of creep damage constitutive equations under low stress level accepted by the 10th International conference of scientific computing, Las Vegas, Nevada, 22-25, July, UAS.

7. H. Magnusson

8. J. Parker
 In-service behavior of creep strength enhanced ferritic steels grade 91 and grade 92 – Part 2 Weld Issues

 Evaluation of creep damage in heat affected zone of thick welded joint for Mod.9Cr-1Mo Steel2

10. Q. Xu, X. Wang,
 Critical review the development of creep damage constitutive equations for high Cr steels
 Submitted to SMiRT22, San Francisco, California, August 18-23, 2013, USA

11. B. Dyson
 Use of CDM in materials modelling and component creep life prediction

12. R. Wu, R. Sandstrom
 Creep cavity nucleation and growth in 12Cr-Mo-V steel,

13. A. Aghajani, Ch. Somsen, G. Eggeler,
 On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel

14. Y. Yin, R. G. Faulkner, P. F. Morris, P. D. Clarke
 Modelling and experimental studies of alternative heat treatments in Steel 92 to optimise long term stress rupture properties

15. V. Gaffard, J. Besson, A.F. Gourgues-Lorenzon
 Creep failure model of a tempered martensitic stainless steel integrating multiple deformation and damage mechanisms
 Int. J. Fracture, 133(2005), pp.139-166.

16. C.C. Chu, A. Needleman
 Voids nucleation effects in biaxially stretched sheets

17. U. Herding, G. Kuhn, G.
 A field boundary element formulation of damage mechanics

 Microtomographic investigation of damage in E911 steel after long term creep

20. X. Yang, Q. Xu, Z. Lu
 The development and validation of the creep damage constitutive equations for P91 Alloy
 accepted by the 10th International conference of scientific computing, Las Vegas, Nevada, 22-25, July, UAS.

21. Y. S. Chen, W. Yan, P. Hu, Y. Dan, K. Yang
 CDM model for P91 under high stress level
 ACTA Metallurgica Sinica, 47(11), pp.1372-1377.

 A study of the creep behavior of modified 9Cr-1Mo steel using continuum-damage modeling

23. H. Semba, B. Dyson, M. McLean
 Microstructural-based creep modeling of 9%Cr martensitic steel,
 Materials at High Temperatures 25(3), pp.131-137

24. R. Oruganti, M. Karadge, S. Swaminathan
 Damage mechanics-based creep model for 9-10%Cr ferritic steel

25. J. Perrin, D.R. Hayhurst
 Creep constitutive equations for 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 600–675 °C,

26. T. H. Hyde, A. A. Becker, W. Sun, J. A. William
 Finite-element creep damage analysis of P91 pipes

27. C. Petry, G. Lindet
 Modelling creep behavior and fracture of 9Cr-0.5Mo-1.8W-VNb steel

28. D. R. Hayhurst
 Creep rupture under multi-axial states of stress

29. K. Naumenko, Y. Koystenko
 Structural analysis of a power plant component using a stress-range-dependent creep-damage
 constitutive model

30. Q. Xu
 The development of validation methodology of multi-axial creep damage constitutive equations and
 its application to 0.5Cr0.5Mo0.25V ferritic steel at 590°C
 Nuclear Engineering and Design, vol. 228(2004), issues 1-3, pp.97-106

31. Q. Xu
 The development of constitutive equations for creep damage behaviour under multi-axial states of stress”,

32. Q. Xu
 The development of creep damage constitutive equations under multi-axial states of stress, in:
 European Conference on Advances in Mechanical Behaviour, Plasticity and Damage, 7–9 November 2000, Tours, France, pp. 1375–1384.