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Surfaces govern functional behaviours of geometrical products, especially high precision and 

high added-value products. Compared to the mean-line based filters, morphological filters, 

evolved from the traditional E-system, are relevant to functional performance of surfaces. The 

conventional implementation of morphological filters based on image processing does not 

work for state-of-the-art surfaces, for example freeform surfaces. A set of novel geometric 

computation theory is developed by applying the alpha shape to the computation. Divide and 

conquer optimisation is employed to speed up the computational performance of the alpha 

shape method and reduce memory usage. To release the dependence of the alpha shape 

method on the Delaunay triangulation, a set of definitions and propositions for the search of 

contact points is presented and mathematically proved based on alpha shape theory, which are 

applicable to both circular and horizontal flat structuring elements. The developed methods 

are verified through experimentation. 

 

Keywords: morphological filters, surface analysis, contact points, computational 

geometry, alpha shape. 
 

1. Introduction 

 
The surface of a geometrical component is an interface limiting the body of the component 

and separating it from the surrounding medium. It governs the functional behaviours of the 

product, whether that be a mechanical, tribological, hydrodynamic, optical, thermal, chemical 

or biological property, all of which are of tremendous importance to product performance 

(Bruzzone et al. 2008; Jiang 2009;). Many emerging products and devices are based on 

achieving surfaces with special functionalities. Manufactured items such as micro- and 

nanometre scale transistors, micro electro mechanical systems (MEMS) and nano electro 

mechanical systems (NEMS), microfluidic devices, optics components with freeform 

geometry and structured surface products are clear evidence of products where the surface 

plays the functional role (Jiang et al. 2007). 

 

  Surfaces and their measurement, provide a link between the manufacture of these 

engineering components and their use (Whitehouse 1978). On the one hand, it can help 

control the manufacture process: monitor changes in the surface texture and indicate changes 

in the manufacturing process such as machine tool vibration and tool wear (Peters et al. 1979; 

Trumpold 2001). On the other hand, it can help with functional prediction: characterize 

geometrical features that will directly impact on tribology and physical properties of the 

whole system (Unsworth 1995; Sayles 2001; Whitehouse 2001), for instance, the friction of 

two contact surfaces and the optical fatigue of one reflecting surface. 

 

The early use of surface measurement was mainly to control the manufacturing process. 

The surface texture is a fingerprint of the process stages of a manufacturing process. The 

effects of process and machine tool are always present in the surface textures. The former is 
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called the roughness and the latter the waviness. Also, in addition to roughness and waviness, 

even longer wavelength can be introduced into the surface geometry by weight deflection or 

long-term thermal effects (Whitehouse 2002). Filtration techniques are the means by which 

roughness, waviness and form components of the surface texture are extracted from the 

measured data for further characterization. By separating surface profile into various bands, it 

is possible to map the frequency spectrum of each band to the manufacturing process that 

generated it (Raja et al. 2002). Filtration techniques are also widely used in dimensional 

metrology to suppress the noises in the measured data to achieve a more stable data set. 

 

The 1950s saw two attempts to separate the waviness from the profile so that the 

roughness could be characterised. One was graphical, simulating electrical filters in the meter 

circuit (Whitehouse & Reason 1965). The raw profile was divided into segments of equal 

length, and in each segment a mean line was drawn that captures the slope of the profile in 

that segment. The roughness profile was obtained by considering the deviation from the mean 

line. Thus it was designated the mean line system (M-system). The other was mechanically 

simulating the contact of a converse surface, e.g. a shaft, with the face of the anvil of a 

micrometer gauge (Von Weingraber 1956). It appeared as a large circle rolling across over the 

profile from above and was entitled the envelope system (E-system). 

 

The E-system based the reference line upon an envelope generated by the centre of a 

rolling circle and shifted to the average height of the profile (Thomas 1999). The difficulty 

appeared in building practical instruments as two elements are needed: a spherical skid to 

approximate the “enveloping circle” and a needle-shaped stylus moving in a diametral hole of 

the skid to measure the roughness as deviation with respect to the “generated envelope”. The 

advantage of the E-system was claimed to be that it is more physically significant in that 

many engineering properties of a surface are determined by its peaks (Peklenik 1973). 

However, the standing objection was that the choice of the rolling circle radius is as arbitrary 

as the choice of cut-off in the M-system and no practical instruments using mechanical 

filtering could be made at that time. The discussion about the reference systems lasted for at 

least one decade between 1955 and 1966 (Peters 2001). Around 1960, with the advent of 

digital processing techniques, the M-system became pre-eminent and was improved by the 

2RC digital filter and phase-corrected digital filter. Later the Gaussian filter, with better 

performance, was chosen as the standardized filter for separating differing wavelengths.  

 

The Gaussian filter, although a good general filter, is not applicable for all functional 

aspects of a surface, for example in contact phenomena, where the E-system method is more 

relevant. The advent of fast practical computers, which can be used in association with 

measurement instruments, had virtually eliminated the need for any hardware implementation 

for the E-system (Tholath & Radhakrishnan 1999). Furthermore, there were growing 

evidences showing that the E-system method can give better results in functional prediction of 

surface finish in the analysis of mating surfaces, such as contact, friction, wear, lubrication 

and failure mechanism (Westberg 1997). With the M-system, there is little correlation 

between the standardized surface roughness parameters and functional requirements, while 

the E-system that depends on geometrical characteristics of the workpiece is more relevant 

(Dietzsch et al. 2008). In this aspect the logic of the E-system was sounder as against the M-

system. Both the M-system and the E-system approaches have their benefits and limitations. 

Arguing that one is better than the other without any concrete proof from the application area 

is not convincing (Radhakrishnan & Weckenmann 1998). In fact rather than competing with 

each other, the M-system and the E-system are complementary to each other, contributing to a 

better solution to surface evaluation. 

 

In the last two decades, more advanced filtration techniques emerged as a result of urgent 

needs for the analysis of surfaces with complex geometry and high precision produced by 

modern manufacturing technologies. The M-system was greatly enriched by incorporating 

advanced mathematical theories. The enhanced toolbox now contains the robust Gaussian 
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regression filter (Seewig 2006; Zeng et al. 2010), the spline filter (Krystek 1996), and the 

robust spline filter (Goto et al. 2005; Zeng et al. 2011). More recently, a method of Gaussian 

filtering for freeform surface was developed by solving the diffusion equation which 

overcomes geometrical distortion in the presence of non-zero Gaussian curvature (Jiang et al. 

2011). 

 

Meanwhile the E-system also experienced significant improvements. By introducing 

mathematical morphology, morphological filters emerged the superset of the early envelope 

filter, but offering more tools and capabilities (Srinivasan 1998). The basic variation of 

morphological filters includes the closing filter and the opening filter. They could be 

combined to achieve superimposed effects, referred to as alternating symmetrical filters. 

Scale-space techniques further developed morphological filtering techniques, which provide a 

multi-scale analysis to surface textures (Scott 2000). Even though morphological filters are 

generally accepted and regarded as the complement to mean-line based filters, they are not 

universally adopted due to limitations caused by their current implementation and lack of 

capabilities demanded by the analysis of modern functional surfaces, especially freeform 

surfaces.  

 

Freeform surfaces are continuous surfaces having no translational and rotational 

symmetry (ISO 17450-1 2011; Jiang & Whitehouse 2012).  For freeform surfaces, the 

description data might be specified by coordinates in two or three dimensions, rather than 

regular surface height. Responding to all these requirements, novel methods based on the 

geometric computation have been developed with an aim of supporting morphological 

filtering on freeform surfaces. Alpha shape theory provides the theoretical basis of 

geometrically computing morphological envelopes. Furthermore the contact points on 

component surfaces are highly addressed for they play a critical role in determining 

morphological envelopes. The paper mainly exhibits the geometric computation theory for 

morphological filtering on freeform surfaces. Applications are also added to further illustrate 

the capability and feasibility of the proposed computation theory. 

 

2. Morphological operations and morphological filters 

 

2.1 Morphology operations on sets 

 

Mathematical morphology is a mathematical discipline established by two French researchers 

Jorge Matheron and Jean Serra in the 1960s. An overview of their work is given in Serra 

(1982). The central idea of mathematical morphology is to examine the geometrical structure 

of an image by probing it with the structuring element. Four basic morphological operations, 

namely dilation, erosion, opening and closing, form the foundation of mathematical 

morphology. 

 

Dilation combines two sets using the vector addition of set elements. The dilation of A  

by B  is defined as: 

     
( , )D A B A B

∨

= ⊕ ,                                               (2.1) 

where ⊕  is the vector addition and B
∨

 is the reflection of B  through the origin of B . 

 

Erosion is the morphological dual to dilation. It combines two sets using the vector 

subtraction of set elements. The erosion of  A  by B  is 

( , )     E A B A B
∨

= ,                                                 (2.2) 

where                                            A B A B= + ,                                                      (2.3) 

and A  is the complementation of A . 



 4

 

Both opening and closing use combinations of dilation and erosion operations in pairs. 

The opening of A  by B  is obtained by applying the erosion followed by the dilation with the 

common set element B, 

( , ) ( ( , ), )O A B D E A B B
∨

= .                                                    (2.4) 

 

Closing is the morphological dual to opening. The closing of A  by B  is given by 

applying the dilation followed by the erosion, 

( , ) ( ( , ), )C A B E D A B B
∨

= .                                                    (2.5) 

 

2.2 Morphological filters for surface metrology 

 

Morphological filters in surface metrology are based on mathematical morphology. The 

profile and surface are treated as functions on �
�

 and �
�

 respectively (Srinivasan 1998). 

They are carried out by performing morphological operations on the input profile/surface with 

circular or horizontal flat structuring elements (ISO 16610-40 2010). 

 

As Figure 1 illustrates, the dilation of the surface profile with a disk structuring element 

is the locus of the centre of the disk as it rolls over the profile from the above (Scott 2000). 

Dual to the dilation, the erosion is obtained by rolling the disk over the profile from the 

below. See Figure 2. Closing is the combination of two operations, first a dilation followed by 

an erosion. Opening is morphological dual to closing, given by applying an erosion followed 

by a dilation. In fact, the closing and opening envelope are the upper and lower boundary of 

the disks respectively. In particular, the E-system is a dilation envelope with a circular 

structuring element offset by the disk/ball radius. 

 

It is obviously revealed that the closing filter suppresses the valleys on the profile which 

are smaller than the disk radius in size, meanwhile the peaks remain unchanged. On the 

contrary the opening filter suppresses the peaks on the profile which are smaller than the disk 

radius in size, while it retains the valleys. The combining effects of the closing and opening 

filter lead to alternating symmetrical filters, by which peaks and valleys are both suppressed. 

 

2.3 Conventional computation method and limitations 

 
The traditional implementation of morphological filters was based on morphological 

operations in image processing where sampled points are treated as pixels in an image. Figure 

3 presents a basic method to compute the dilation operation with the disk structuring element 

for profile data (Shunmugam & Radhakrishnan 1974). The disk ordinates are computed from 

the disk centre to the two ends with the same sampling interval to the measured profile. These 

ordinates are placed to overlap the profile ordinates with the disk centre locating at the target 

profile point. The ordinate where the mapping pair of the profile ordinate and the disk 

ordinate gives the maximum value in height determines the height of the disk centre. This 

procedure is repeated for all the profile ordinates to obtain the whole dilation envelope. The 

erosion envelope can be obtained by first flipping the original profile followed by flipped its 

dilation envelope. In the case of areal data, the disk is replaced by the ball, on which the ball 

ordinates are calculated on the hemisphere. 
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This supporting algorithm, although easy in implementation, has a couple of limitations 

which restrict the prevalence of morphological filters. They are restricted to “planar surfaces”, 

namely height fields embedded in the Euclidean spaces �
�

and therefore unsuitable for 

freeform surfaces. Even with planar surfaces data, it is not robust against rotation in space. 

Another shortcoming lies in the destructive end effects for surfaces in the presence of 

significant form component, which is notable when the structuring element of a large size is 

used. As a result, the filtration will be badly distorted in the boundary regions.  

 

A further issue regarding existing methods is their inaccuracy in capturing the contact 

points of the measured surface with the structuring element. The detection of contact points is 

dependent on the numerical comparison between the original data and the closing or opening 

 
Figure 1. The dilation and closing envelope of an open profile by a disk. 

 

 
Figure 2. The erosion and opening envelope of an open profile by a disk. 

 

 
Figure 3. Computation of the dilation operation with the disk structuring element. 
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envelope. This is limited by the accuracy of the algorithm and sensitivity to the round-off 

errors in the calculation. This situation is even compounded by sampling the structuring 

element discretely. 

 

Besides the limitations mentioned above, morphological filters also suffer from two 

practical issues raised in the employment of the traditional computation method. For areal 

surface datasets with large number of measured points, the method is extremely time-

consuming. Even using the current available commercial surface analysis software, e.g. the 

Mountain map (Digital Surf), the performance is far from satisfactory. Also the size of the 

structuring element is restricted from growing big due to the fact that the computational time 

is in exponential proportion to the size of structuring element. For another, the image 

processing based methods treat the data as uniformly distributed pixels and unsuited to non-

uniform sampled data. This further limits their usage in the field of dimensional metrology 

where adaptive sampling is allowed. 

 

Except for the image processing based approach, there are a few other computation 

methods, which yet cannot fully overcome the aforementioned deficiencies (Scott 1992; 

Tholath & Radhakrishnan 1999; Kumar & Shunmugam 2006). In particular, Scott (1992) 

developed an efficient algorithm for morphological profile filters on the basis of motif 

combination. However it is hard to extend this idea to areal data. 

 

3. The alpha shape method for morphological filters 

 
To overcome the limitations of the traditional computation method, a totally different method 

has been developed, whereas measured surfaces are no longer treated as greyscale images, but 

3D point clouds (Jiang et al. 2012). Geometric computation techniques are adopted to solve 

the morphological envelope of the point cloud. The alpha shape, a ubiquitous geometric 

structure in the field of surface reconstruction, is closely related to morphological envelopes 

and can be employed for their computation. 

 

3.1 Alpha shape theory 

 
The alpha shape was introduced by Edelsbrunner in the 1980s aiming to describe the specific 

“shape” of a finite point set with a real parameter controlling the desired level of details 

(Edelsbrunner & Muche 1994). Given a planar point set, a circular disk of radius α  is rolled 

around both inside and outside (see Figure 4), this will generate an object with arcs and 

points. The boundary of the resulted object is called the alpha hull. If the round faces of the 

object are straightened by line segments, it generates another geometrical structure, the alpha 

shape. 

 

In the context of the alpha shape, the disk used in the above example is called the alpha 

ball. It is formally defined as an open ball of radius α . Given a point set X ⊆�
�

, a certain 

 
Figure 4. The alpha shape of a planar point set. 
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alpha ball  b  is empty if b X = ∅∩ . With this, a k-simplex 
T

σ   is said to be α-exposed if 

there exists an empty alpha ball b with T b X= ∂ ∩  ( 1T k= + ) where b∂  is the surface of 

the sphere (for d=3) or the circle (for d=2) bounding b , respectively. 

 

Definition 1. For 0 α≤ ≤ ∞ , the alpha hull of X , denoted by ( )H Xα , is defined as the 

complement of the union of all empty α-balls. ( )S Xα∂ , the boundary of the alpha shape of 

the point set X ,  consists of all k-simplices of X  for 0 k d≤ <  which are α-exposed,  

( ) { | , 1,  α-exposed}
T T

S X T X T kα σ σ∂ = ⊂ = +                                   (3.1) 

 

The computation of the alpha shape is based on the Delaunay triangulation. Given a point 

set X ⊆�
�

, the Delaunay triangulation is a triangulation ( )DT X  such that no point in X  

is inside the circumsphere of any d-simplices 
T

σ  with T X⊂ . The relationship between the 

Delaunay triangulation and the alpha shape is that the boundary of the alpha shape Sα∂
 
is a 

subset of the Delaunay triangulation of X , i.e. 

( ) ( )S X DT Xα∂ ⊂ .                                                      
 
(3.2) 

 

In order to further extract the simplices of ( )S Xα∂
 
from ( )DT X , another concept, the 

alpha complex ( )C Xα , was developed. Set 
T

ρ  the radius of the smallest circumsphere 
T

b  of 

T
σ . For 3k = , 

T
b  is the circumsphere; For 2k = , 

T
b  is the great circle; And for 1k = , the 

two points in T  are antipodal on 
T

b . For a given point set X ⊆ �
�

, the alpha complex 

( )C Xα  is the following simplicial sub-complex of ( )DT X .  

A simplex ( )
T

DT Xσ ∈  ( 1T k= + , 0 k d≤ ≤ ) is in ( )C Xα  if: 

(1)  
T

ρ α<  and 
T

ρ -ball is empty, or 

(2)  
T

σ  is a face of other simplex in ( )C Xα . 

 
The relationship between the alpha complex and the alpha shape is that the boundary of 

the alpha complex makes up the boundary of the alpha shape, i.e. 

( ) ( ) ( )C X S X DT Xα α∂ = ∂ ⊂ .                                                 (3.3) 

 

3.2 Link between alpha hull and morphological envelopes 

 

The alpha hull resembles the morphological opening and closing envelopes, as the alpha ball 

acts as a spherical structuring element and the input set as the point set. In fact a theoretical 

link between the alpha hull and morphological opening and closing operations was found by 

Worring and Smedulers (1994) that the alpha hull is equivalent to the closing of X  with a 

generalized ball of radius 1 α− . Hence from the duality of the closing and the opening, the 

alpha hull is the complement of the opening of 
cX  (complementation of X ) with the same 

ball as the structuring element. 

 

3.3 Morphological envelope computation based on the alpha shape 

 
Based on the established relationship between the alpha shape and morphological envelopes, 

alpha shape theory is applied to the computation of morphological envelopes. The 

computation starts with the Delaunay triangulation of the point set that comprises the 

measured surface. 
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The Delaunay triangulation results in a series of k-simplices σ  ( 2k =  for profiles, 

which are triangles; 3k =  for surfaces, which are tetrahedrons). These k -simplices are 

categorized into two groups:  k -simplices pσ  whose circumsphere radius is larger than the 

radius of the rolling ball α , and k -simplices npσ  whose circumsphere radius is no larger 

than the radius of the rolling ball α . 

 

pσ  consists of two parts: the ( 1)k − -simplices 
int

σ  interior to pσ , and the ( 1)k − -

simplices regσ  that bounds its super k -simplices pσ . We called regσ  the regular facets. npσ  

is comprised of three components: the ( 1)k − -simplices 
ext

σ  out to Cα , part of the regular 

facets 
'

reg
σ  shared by both pσ and npσ , and the  ( 1)k − -simplices singσ  that are the other 

part of Cα∂ . We call  singσ  the singular facets. singσ  differs from regσ  in that it does not 

bound any super k -simplices belonging to Cα . singσ  satisfies two conditions as follows: 

(1) The radius of its smallest circumsphere is smaller than α . 

(2) The smallest circumsphere is empty. 

 

An explanatory graph is presented by Figure 5. The regular facets regσ  and the singular 

facets singσ  form the whole boundary of the alpha complex, i.e. the boundary of the alpha 

shape, as the equation (3.4) presents.  

reg singS Cα α σ σ∂ = ∂ = +                                 (3.4) 

 

Figure 6 illustrates an example of the alpha shape facets extracted from the Delaunay 

triangulation of an experimental profile data. With the boundary alpha shape facets, the 

morphological envelope can be solved. For each sample point, there is a one-to-one 

corresponding point on the envelope. These points form a discrete representation of the 

morphological envelope. Each boundary facet of the alpha shape determines its counterpart 

on the alpha hull. Due to the fact that the target envelope is contained in the alpha hull, the 

sample points are projected onto the alpha hull along the local gradient vector to obtain the 

envelope coordinates. 

 

The alpha shape method calculates morphological filters geometrically and has a number 

of advantages over traditional methods. Firstly, by viewing the measured surface points as the 

2D/3D point set, it breaks the constraints of the traditional method which only applies to 

planar profiles/surfaces. Secondly, alpha shape theory enables arbitrary size of disk/ball 

radius. Moreover, the alpha shape method more suits non-uniform sampled data. The alpha 

shape method depends on the Delaunay triangulation, bringing in an additional merit that the 

 
Figure 5. Regular and singular facets. 
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triangulation could be reused for multiple attempts of various disk radii, saving a great deal of 

computing time because in practice a multitude of trials may be made for choosing an 

appropriate disk radius. 

 

3.4 Divide and conquer optimisation 

 
The alpha shape method is more competent than traditional algorithms. However its 

bottleneck is that the 3D Delaunay triangulation is costly in both computation time and 

memory for large areal data sets and it was reported that the data structure of the Delaunay 

triangulation is not suitable for datasets of millions of points (Bernardini et al. 1999). In 

practice, measured engineering surfaces usually contain a large quantity of data, especially 

using fast optical measurement instruments. As a result, the divide and conquer optimisation 

is employed to speed up the computation of morphological envelopes and avoid the risk of 

running out of memory. 

 

 In the context of the alpha shape method, the vertices of boundary facets of the alpha 

shape are of tremendous importance because they are the surface points in contact with the 

rolling ball. The morphological envelope of a surface is only determined by these vertices, 

while not affected by other points. 

 

The basic scheme of the divide and conquer approach is to break a problem into several 

sub-problems that are similar to the original problem but smaller in size, solve the sub-

problems iteratively and then combine these solutions to create a solution to the original 

problem (Cormen et al. 1989). By applying the divide and conquer method, the surface under 

evaluation is divided into a series of small sub-surfaces. Each sub-surface is rolled by the ball 

to generate a set of alpha shape vertices. Afterward the resulted vertices from each sub-

surface are merged to reconstruct a super set of vertices, which will be treated as the point set 

for the next iteration. It will be noticed that some of the vertices around the joint sections in 

the previous iteration are removed. By repeating the iterations, the final alpha shape of the 

original surface can be found and the morphological envelope of the surface is then 

determined. A demonstration of the divide and conquer procedures is given by Figure 7. 

 

Figure 6. Alpha shape facets extracted from the Delaunay triangulation of a profile data. 
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4. The contact points and their searching procedures 

 

Using the alpha shape vertices, the divide and conquer optimisation reduces the amount of 

points in the iteration processed by the Delaunay triangulation. However it is not a 

fundamental change to the alpha shape method because the Delaunay triangulation is still 

required in order to extract the alpha shape boundary facets. It will be revealed that the 

Delaunay triangulation is not necessary for searching the boundary facets and an alternative 

computational method is explored by searching the contact points. 

 

4.1 Redundancy of the Delaunay triangulation 

 

In Edelsbrunner’s theory the alpha shape is extracted from the Delaunay triangulation. In fact 

the whole family of alpha shapes can be generated from the Delaunay triangulation, from the 

point set itself ( 0α → ) to the convex hull of the point set (α → ∞ ). Therefore the Delaunay 

triangulation data could be reused for multiple attempts of ball radii for the same data set. It 

however could be a drawback because the Delaunay triangulation is costly for large areal data 

sets. Given a single radius, the Delaunay triangulation contains much more information than 

 

Figure 7. Divide and conquer optimisation for the alpha shape method. 



 11

is necessary to generate the corresponding alpha shape for that radius. Thus in this sense it is a 

waste of time and memory to achieve the desired alpha shape with redundant computation. 

  

4.2 Definition of contact points 

 
In physics, the contact points are those points on the surface which are in contact with the 

moving structuring element. Thus these points give an indication which surface portions in 

the neighbourhood of these contact points are most likely to be active in the contact 

phenomenon. From a point of view of mathematical morphology, the contact points are those 

points on the surface which remain constant before and after morphological closing/opening 

operations. Based on the mapping between the alpha hull and morphological opening and 

closing envelopes, the formal mathematical definition of the contact point is given by 

Definition 2 using alpha shape theory: 

 

Definition 2. Given a sampled point set X ⊆ �
�

( 2,3)d =  and δ α≤ ≤ ∞ ( δ : sampling 

interval), the contact points ( )P α  are those sampled points { | }
i i

p p X∈  that are on the 

boundary of the alpha hull ( )H Xα∂ : 

{ }( ) | , ( )
i i i

P p p X p H Xαα = ∈ ∈ ∂ . 

 

4.3 Propositions for searching contact points 

 

Proposition 1. Given a point set X ⊆ �
�

( 2,3)d =  and 1δ α≤ ≤ ∞ , 2δ α≤ ≤ ∞ , if 

1 2α α≤ , then 2 1( ) ( )P Pα α⊆ . 

Proof. 
1 21 2 ( ) ( )H X H Xα αα α≤ ⇒ ⊆  (Fischer 2000). By Definition 2, 

{ }
11( ) | , ( )i i iP p p X p H Xαα = ∈ ∈∂ , { }

22( ) | , ( )i i iP p p X p H Xαα = ∈ ∈∂ . Hence 

1 2
( ) ( )H X H Xα α⊆  implies 2 1( ) ( )P Pα α⊆ . 

 

Proposition 2. Given the point set X ⊆ �
�

( 2,3)d =  and δ α≤ ≤ ∞ . The convex hull 

points must all be contact points. 

Proof. Let α ′ → ∞ , hence  lim ( ) ( )H X Conv Xα α′ ′→∞ = . By Definition 2,  

{ }( ) | , ( )
i i i

P p p X p H Xαα ′′ = ∈ ∈∂ , then { }( ) | , ( )
i i i

P p p X p Conv Xα ′ = ∈ ∈ ∂ , namely 

( )P α ′  is the convex point set. By Proposition 1, ( ) ( )P Pα α α α′ ′≤ ⇒ ⊆ . Thus the convex 

hull points must be contained in ( )P α . 

 

Figure 8 presents an example illustrating the boundary facets of the alpha shape of a 

planar point set regarding to four different disk radii respectively. The Delaunay triangulation 

of the point set is presented by triangle mesh and the boundary facets of alpha shape are 

graphed as bold dotted lines. It can be easily verified that the results presented by four sub-

figures are consistent with Proposition 1 and 2. For instance, the contact points of Figure 8(a) 

with radius 1 mm are contained in Figure 8(b) with radius 0.5 mm, and so forth. 

 

Following the definition of contact points and two associated propositions, another four 

propositions are proposed with proofs attached for searching contact points. For convenience 

of explanation, the morphological closing profile filter with the disk structuring element is 

taken as the objective for demonstration. These propositions however can be easily extended 

to the opening filter, horizontal flat structuring elements and areal data. In the context of the 

statement below, a  and b  are two known contact points and r  is the given radius of the ball 

(disk). 
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Proposition 3. If there are points lying above 
ab

σ  (left/positive side of ab
���

), then the contact 

point is the furthest point orthogonal to ab
���

. 

Proof. Suppose there exist some points above 
ab

σ . See Figure 9. The furthest point c  is the 

convex point for the point set { , , , }
i

a b c p  (Barber et al. 1996). By Proposition 2, the convex 

point must be the contact point. Thus c  must be the contact point. 

 

 

Figure 9. Search the furthest point on the positive side of ab
���

 in orthogonal direction. 

 

Proposition 4. If there are no points lying above 
ab

σ and there exist points { }
i

p  in the 

circular section ���  of the ball with radius 1
2max{ , }r abα = , then the contact point c  is the 

 

Figure 8. The Delaunay triangulation of a planar point set and the boundary facets of the 

alpha shapes of four disk radii: (a)  mm; (b)  mm; (c)  mm; (d) 

 mm. 
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one among the points { }
i

p  in ��� , which satisfies the condition: the circumscribed circle of  

abc
σ  have the largest radius among the circumscribed circles of { }

iabp
σ . 

Proof. First consider the case 2ab r≤ . See Figure 10(a). a , b  could determine an unique 

alpha ball B  with radius r . Since there exist points in the circular section ���  (the shadowed 

portion in the figure), { }
i

B X p= ≠ ∅∩ , thus 
ab

σ  is not α-expose. By Definition 1, 

( )
ab r

H Xσ ∉∂ . Let { }
i

ρ  be the radii of the circumscribed circles of { }
iabpσ  and c  the point 

with max( )
i

ρ . The circumcircle of 
abc

σ  must be empty, thus max( )( )
i

c H Xρ∈∂ . By 

Proposition 1, max( ) (max( )) ( )
i i

r P P rρ ρ> ⇒ ⊆ . By Definition 1, (max( ))
i

c P ρ∈ . 

Thus ( )c P r∈ , c  is the contact point.  

 

Then consider the other case 2ab r> . See Figure 10(b). Since 2ab r> , fit a great 

circle with radius 1
2 abα =  passing through the points a , b with the centre at the middle of 

ab
σ . Similar to the previous case, we could prove 1

2( )c P ab∈ . Then by Proposition 2, 

1 1
2 2( ) ( )ab r P ab P r> ⇒ ⊆ , thus ( )c P r∈ , c  is the contact point. 

 

 

Figure 10. Search the contact point with: (a) 2ab r≤ ; (b) 2ab r> . 

 

Definition 3. { }ip  are points lying below 
ab

σ  (right/negative side of ab
���

). 
iabpσ  has an 

unique circumscribed circle with radius α . If the centre of the circumscribed circle is on the 

positive side of 
ab

σ , the circle has the positive radius α+ , otherwise the negative radius α−

.  

 

See Figure 11. { }1 2, ,p p p  are three points below 
ab

σ . 
1abpσ  has its circumcircle centre 

1o  above 
ab

σ , thus it has a positive radius. Conversely, the centre of the circumcircle of 

2abpσ  lies below 
ab

σ , therefore the radius is negative. The critical case is that of abpσ  which 

has its circumcircle centre o  at the centrepoint of 
ab

σ . In this case the radius is taken as 

positive. 
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Figure 11. The signed circumscribed circle radius. 

 

Proposition 5. If 2ab r>  and there are no points lying above 
ab

σ  and also no points in the 

circular section ���  of the alpha ball with radius 1
2 abα = , then the contact point is the one 

c  that satisfies the condition: the circumscribed circle of 
abc

σ  has the largest radius among 

the circumscribed circles of { }
iabp

σ .  

Proof. See Figure 12. There is no point in the circular section ��� , thus the centre of 

circumscribed circles of  { }
iabp

σ  locates at the negative side of the chord ab .  Thus their 

radii are negative. The circumscribed circle with the largest radius (smallest in absolute value) 

must be empty, thus ( )c H Sα∈∂ . ( )
r

r c H Sα > ⇒ ∈∂ . By Proposition 1, we have 

( )c P r∈ . 

 

 

Figure 12. Search the contact point with 2ab r>  and �	�  empty. 

 

Proposition 6. If 2ab r≤  and there are no points lying above 
ab

σ and also no points in the 

circular section ���  of the alpha ball with radius r , then ( )
ab r

H Xσ ∈∂ . 

Proof. See Figure 13. a , b  could determine an alpha ball B  with radius r. If there is no 

point lying above 
ab

σ  and no point in the circular section ��� , then { },B X a b∂ =∩ . Thus 

ab
σ  is α-expose. By Definition 1, ( )

ab r
H Xσ ∈∂ . 

 



 15

 
Figure 13. 

ab
σ   determines a facet of the alpha shape. 

 

Propositions 1-6 establish the searching order of contact points. It first targets convex 

hull points between two known contact points, which corresponds to rolling a disk with an 

infinite large radius over the profile. If no convex hull point lies above the evaluating simplex, 

the contact point is found by computing the signed circumcircle radii. The contact point is the 

one that has the largest circumcircle radius. This is equivalent to rolling a disk with a radius 

smaller than the infinite big but larger than the given radius r . Finally if the simplex in 

evaluation could hold an empty disk with radius r  by its two ends, namely the disk is in no 

contact with other sample points except two end points, then the simplex is a boundary facet 

of the alpha shape. In summary the algorithm is searching the contact points using disks with 

radius ranging from the infinite big down to r . It should be notified that the above 

propositions also hold for areal data by replacing the disk with a ball and the circumcircle 

with a circumsphere. 

 

Although the presented algorithm is specific to circular structuring elements, it is even 

easier to apply the basic scheme to horizontal flat structuring elements. In that case, the 

contact point is examined by checking the highest point (say 2p  in { }1 2 3, ,p p p ) between 

two known contact points (say a , b ). If that point is lower in height than two given contact 

points (say 2p  is lower than a , b ) and the horizontal distance between the two contact 

points is smaller than the length of the given horizontal line segment (say ab L< ), the 

searching procedure exits and the envelope height is determined by the lower height of the 

two contact points. 

 

5. Performance comparison 

 
Using the traditional method, the calculation of each envelope coordinate will involve the 

whole surface data when the size of structuring element is equal and larger than that of the 

surface, thus its time complexity is 
2( )O n . The alpha shape depends on the Delaunay 

triangulation, which has the theoretical time complexity of ( log )O n n . The divide and 

conquer optimisation, although still relying on the Delaunay triangulation, can reduce the 

amount of points being processed in the iteration and require less computation memory. The 

contact point searching method eliminates the dependence of the alpha shape method on the 

Delaunay triangulation, having the expected time complexity ( log )O n n . 

 

Table 1 presents the results of algorithm running time against increasing amounts of 

experimental areal data with the same ball radius. The data matrices range from 100× 100 up 

to 1000× 1000 points with sampling interval 5 µm. They are applied by the morphological 

closing filter using a 10 mm ball. The algorithms were implemented by Matlab R2009 and ran 

on a computer with 3.16 GHz Intel Core Duo CPU and 3 GB RAM. Table 1 evidently shows 

that the naive algorithm consumes too much time in dealing with large dataset, e.g. more than 
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12 hours for the 1000× 1000 data set. In contrast, the alpha shape method achieved higher 

performances. Its efficiency is improved by the divide and conquer optimisation. Generally 

the contact point searching algorithm achieved better results over others. The number of 

contact points is quite small in comparison to that of the original areal data. For instance, 

there are only 3189 contact points in the 500× 500 data set. However it could be noticed that 

its performance on the 1000× 1000 data set is slower than that of the alpha shape method with 

the divide and conquer optimisation. It is due to the fact that the bigger the data set is, the 

more recursions are required and deep recursion levels will evoke huge additional memory 

operations for stack maintenance. 

 

Table 1. Algorithm running time against increasing sizes of areal data with the same ball 

radius. 

Data size 100× 100 250× 250 500× 500 750× 750 1000× 1000 

Naive algorithm  2.79 s 100.87 s 1822.6 s 10334.9 s 46208.8 s 

Alpha shape algorithm 0.85 s 10.3 s 73.1 s 292.6 s 715.4 s 

Alpha shape algorithm 

with D&C  
1.06 s 7.14 s 27.83 s 62.72 s 111.62 s 

Contact point 

searching algorithm  
0.09 s 0.998 s 10.47 s 28.1 s 134.93 s 

 

6. Case Studies 

 
Two freeform surface case studies are employed to illustrate the capabilities of the proposed 

computation theory for morphological filters. In Figure 14, a saddle surface is presented with 

a number of tiny bump features on the surface topography. It can also be observed that the 

surface has several twisted waves superimposed on the topography. Morphological 

symmetrical filters (closing followed by opening) are applied to this surface with ball radius 

0.5 mm and 2 mm respectively. Figure 15 illustrates the generated surfaces. It is obvious that 

bump features are suppressed by the filter in Figure 15(a) and wave features are also 

smoothed in Figure 15(b). By comparing the three surfaces, these topographical features of 

the surface can be separated and analysed. 

 
In the second example, Figure 16 is the surface measured from an optical F-theta lens, 

which is widely used in laser printers and scanners. F-theta lenses are designed to have a 

smooth and continuous freeform shape to achieve specific optical functions and have ultra-

precision accuracy with sub-micrometre shape error and nanometre roughness. Using a 

morphological closing filter with ball radius 2.5 mm, a covering envelope surface is 

constructed. See Figure 17(a). The surface presented in Figure 17(b) is the residual surface 

obtained by subtracting the envelope surface from the original surface. The material defects as 

well as manufacturing marks possibly produced by the diamond fly-cutting are easy to detect 

on the residual surface. 
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Figure 14. An experimental saddle surface. 

 

 
Figure 15. The smoothed surfaces generated by the application of morphological alternating 

symmetrical filters with ball radii: (a) 0.5 mm; (b) 2 mm. 

 

 
Figure 16. The surface measured from an F-theta lens. 
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Figure 17. The envelope surface and residual surface generated by the application of 

morphological closing filter with ball radius 2.5 mm: (a) envelope surface; (b) residual 

surface. 

 

7. Conclusion and future work 

 
Morphological filters are useful tools in the surface analysis toolbox. Regarded as the 

complement to the mean-line based filtration techniques, morphological filters are relevant to 

the functional performance of surfaces, especially contact phenomenon of two mating 

surfaces. The conventional implementation of morphological filters has several fatal 

deficiencies that restrict the prevalence of morphological filters. 

 

 A full set of geometric computation theory for morphological filters is developed. On the 

basis of the relationship between the alpha hull and morphological envelopes, alpha shape 

theory is applied to the computation of morphological filters. The geometrical computation 

method brings in prominent capabilities so that the new algorithm works for freeform surfaces 

and suits non-uniform sampled surfaces, with arbitrary disk/ball radius enabled. The divide 

and conquer optimisation further improved the performance of the alpha shape method and 

reduced the memory usage. To release the dependence of the alpha shape method on the 

Delaunay triangulation, a set of definitions and propositions for searching contact points is 

presented and mathematically proved based on alpha shape theory. The contact point 

searching method is applicable to both circular and horizontal flat structuring elements, 

bringing in more generality over the alpha shape method. 

 

Key issues of the future work include further improvement of the alpha shape algorithm 

by practical programming and efficient data structures, and further optimisation of the contact 

point searching algorithm, which consists two aspects: (1) improve the performance. 

Recursion should be replaced by iteration to avoid the huge cost of stack manipulations; (2) 

improve the robustness against arbitrary and complex shapes of surfaces.  
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