H

University of
HUDDERSFIELD

University of Huddersfield Repository

Vallati, Mauro, Chrpa, Lukas and Kitchin, Diane

An Automatic Algorithm Selection Approach for Planning
Original Citation

Vallati, Mauro, Chrpa, Lukas and Kitchin, Diane (2013) An Automatic Algorithm Selection
Approach for Planning. In: IEEE International Conference on Tools with Artificial Intelligence
(ICTAI) - 2013, November 4th - 6th 2013, Washington DC, USA. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/18172/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Automatic Algorithm Selection Approach for Planning

Mauro Vallati, Luka$ Chrpa, Diane Kitchin
School of Computing and Engineering
University of Huddersfield
Email: {m.vallati, l.chrpa, d.kitchin}@hud.ac.uk

Abstract—Despite the advances made in the last decade in
automated planning, no planner outperforms all the others in
every known benchmark domain. This observation motivates
the idea of selecting different planning algorithms for different
domains. Moreover, the planners’ performances are affected
by the structure of the search space, which depends on the
encoding of the considered domain. In many domains, the
performance of a planner can be improved by exploiting
additional knowledge, extracted in the form of macro-operators
or entanglements.

In this paper we propose ASAP, an automatic Algorithm
Selection Approach for Planning that: (i) for a given domain
initially learns additional knowledge, in the form of macro-
operators and entanglements, which is used for creating differ-
ent encodings of the given planning domain and problems, and
(ii) explores the 2 dimensional space of available algorithms,
defined as encodings—planners couples, and then (iii) selects the
most promising algorithm for optimising either the runtimes
or the quality of the solution plans.

I. INTRODUCTION

Although in the last decade the performance of domain-
independent planners has significantly improved, there is
no planner that outperforms all others in every benchmark
domain. The performance of current planning systems is
typically affected by the structure of the search space,
which depends on the planning domain and its considered
encoding. In many domains, the planning performance can
be improved by deriving and exploiting knowledge about the
domain and problem structure that is not explicitly given in
the input formalization, and that can be used for optimizing
the planner behavior.

These observations motivate the idea of extracting ad-
ditional knowledge about the planning domains and auto-
matically selecting the most promising planning algorithm,
exploiting such knowledge, for a given domain.

In this paper we propose ASAP, an automatic algorithm
selection approach for planning that: (i) for a given domain
initially learns additional knowledge, in the form of macro-
operators and entanglements (inner and outer), which is
used for creating different encodings of the given plan-
ning domain and problems (i.e. planning domain/problem
reformulation), and (ii) explores the 2 dimensional space
encodings (e)-planners (p), and then (iii) selects the best
algorithm (e, p) for optimising the runtimes (ASAPs) or the
quality of the solution plans (ASAPq).

In the proposed approach, each algorithm has two dimen-
sions: one dimension is represented by different encodings of
a given domain, the other is represented by existing high-
performance domain-independent planners. We decided to
consider each couple (e, p) as a different algorithm because
the different knowledge carried in the generated encodings,
e, makes even the same planner p perform very differently.

We are not aware of other completely automated planning
systems exploiting a pure algorithm selection approach, in
the sense that they automatically select a single algorithm
for solving a specific class of planning problems. If we
include the portfolio-based approach for planning, which can
be considered as a superset of the algorithm selection one,
our approach is related to the work of Roberts and Howe
[13], [19], PbP2 [9], [10] and Fast Downward Stone Soup
[21], with some significant differences.

The major difference between all the approaches above
and ASAP is that we made a domain-specific selection of
a single algorithm, which is defined by a couple encoding—
planner. Moreover, the Roberts and Howe approaches select
the planners to exploit online, while we select the algorithm
offline. Additionally the knowledge generated by the Roberts
and Howe systems is domain-independent, while the knowl-
edge generated and exploited by ASAP is domain-specific.

PbP2 learns a domain-specific portfolio. It incorporates
seven planners it can choose from. It lets them learn macro-
actions for the given domain, and runs up to three best-
performing ones in a round-robin fashion with learned time
slots. What differentiates our approach from PbP2, is that (i)
we generate new encodings of given domains by looking for
both macro-operators and entanglements, (ii) we explore the
two-dimensional algorithm space encodings—planners, and
(iii) we select only one algorithm to exploit on a domain.

Fast Downward Stone Soup is a recent approach to select-
ing and combining a set of forward-state planning techniques
included in the well known domain-independent planner
Fast Downward [11]. Their approach is domain-independent,
it does not extract any additional knowledge from the
planning domains (in the form of macro-operators or en-
tanglements). It exploits a statical combination of several
different planning techniques for solving a single problem.

In the rest of the paper, first we give the necessary back-
ground on classical planning and problem reformulations,
then we describe the ASAP approach, we present and discuss

the experimental results and finally we give conclusions.

II. CLASSICAL PLANNING

Classical planning deals with finding a (partially or to-
tally ordered) sequence of actions transforming the static,
deterministic and fully observable environment from some
initial state to a desired goal state. In the classical rep-
resentation atoms are predicates. States are defined as
sets of ground predicates. A planning operator o =
(name(0), pre(o), eff (o), eff " (0)) is specified such that
name(o) = op_name(x1, ..., xy) (op_name is an unique op-
erator name and x1, . .. x are variable symbols (arguments)
appearing in the operator), pre(0) is a set of predicates repre-
senting operator’s precondition, eff (o) and eff" (o) are sets
of predicates representing operator’s negative and positive
effects. Actions are ground instances of planning operators.
An action a = (pre(a),eff (a),eff (a)) is applicable in a
state s if and only if pre(a) C s. Application of a in s (if
possible) results in a state (s \ eff (a)) Ueff* (a).

A planning domain is specified via sets of predicates
and planning operators. A planning problem is specified via
a planning domain, initial state and set of goal atoms. A
solution plan is a sequence of actions such that a consecutive
application of the actions in the plan (starting in the initial
state) results in a state that satisfies the goal.

III. PLANNING PROBLEM REFORMULATIONS

Analogously to the possibility that a planning system can
be implemented in many different ways, so planning do-
mains and problems can be also encoded in several different
ways. Typically, environment and action descriptions corre-
spond with real situations which produces useful outputs for
agents (or robots) that they can easily execute. On the other
hand, sometimes such an encoding is not very efficient and
therefore some additional planner independent knowledge
(e.g. macro-operators) is often included to increase the
efficiency of planning engines.

As a running example we use the well known
BlocksWorld domain. It consists of four operators:
pickup(?x) refers to a situation when a robotic hand picks-
up a block ?x from the table, putdown(?x) refers to a
situation when a robotic hand puts-down the block ?X it is
holding to the table, unstack(?x,?y) refers to a situation
when a robotic hand unstacks a block ?x from ?y, and
stack(?x,?y) refers to a situation when a robotic hand stacks
a block ?x to ?y.

A. Macro-operators

A macro-operator encapsulates a sequence of (primitive)
planning operators and can be represented as an ordinary
planning operator. In Blocksworld, it may be observed
that instances of the operator unstack(?x ?y) are followed
by instances of the operator putdown(?x). Hence, it is
reasonable to assemble these operators into a macro-operator

unstack-putdown(?x ?y). Creating macro-operators, which
can be understood as ‘short-cuts’ in the state space, is
therefore a well known and studied approach which in
some cases can speed up plan generation considerably [1],
[16]. Macro-operators can be added into planning domains
and reformulated domains can be passed to any planning
engine. To raise the efficiency of the planning process, an
approach [5] besides generating new macro-operators also
removes some primitive operators which are very likely use-
less. In our example, when the new macro-operator unstack-
putdown(?x ?y) is created, then it may be observed that the
primitive operator putdown(?x) is useless (unless an initial
state consists of a situation where the robotic hand holds
some block).

B. Entanglements

Entanglements [3] are relations between planning opera-
tors and atoms (predicates). Entanglements aim to capture
the causal relationships characteristic for a given class of
planning problems which in many cases enable a reduction
of the branching factor in the state space. There are two
kinds of entanglements, outer and inner entanglements.

Outer entanglements [4] are relations between planning
operators and initial or goal atoms (predicates) which refers
to situations where to solve a given planning problem we
need only such instances of operators where instances of a
certain predicate in an operator’s precondition or positive
(add) effects respectively are present in the initial state
or goal situation respectively. In BlocksWorld, it can be
observed that unstacking blocks only occurs from their initial
positions. In this case an ‘entanglement by init’ will capture
that if an atom on(a b) is to be achieved for a corresponding
instance of operator unstack(?x ?y) (unstack(a b)), then
the atom is an initial atom. Similarly, it may be observed that
stacking blocks only occurs to their goal positions. Then,
an ‘entanglement by goal’ will capture that atom on(b a)
achieved by a corresponding instance of operator stack(?x
?y) (stack(b a)) is a goal atom. Outer entanglements can
be easily encoded into planning domain models, i.e., the
original domain model is reformulated (for details, see [4]).

Inner entanglements [3] are relations between pairs of
planning operators and predicates which refer to situa-
tions where one operator is an exclusive ‘achiever’ or
‘consumer’ of a predicate to or from another operator.
In the Blocksworld it may be observed that operator
pickup(?x) achieves predicate holding(?x) exclusively for
operator stack(?x,?y) (and not for operator putdown(?x)),
i.e., pickup(?x) is ‘entangled by succeeding’ stack(?x,?y)
with holding(?x). Similarly, it may be observed that pred-
icate holding(?x) for operator putdown(?x) is exclusively
achieved by operator unstack(?x ?y) (and not by operator
pickup(?x)), i.e., putdown(?x) is ‘entangled by preceding’
unstack(?x ?y) with holding(?x). Inner entanglements can

Domain ASAPs ASAPq Total
Blocksworld (Both, FF) (Both, FF) 35
Depots (Outer, FF) (Both, LPG) 35
Gripper (Outer, SGPlan) (Outer, Mp) 14
Gold Miner (Macro, FF) (Both, SatPlan) 35
Matching-BW (Macro, LPG) (Outer, LPG) 35
Parking (Original, FF) (Inner, Lama) 21
Rovers (Macro, LPG) (Macro, Lama) 21
Satellite (Outer, LPG) (Outer, LPG) 21
TPP (Both, LPG) (Outer, Lama) 35
Table I

FOR EVERY DOMAIN, THE COUPLE SELECTED BY ASAPs AND ASAPq,
AND THE TOTAL NUMBER OF AVAILABLE ALGORITHMS.

be also encoded into planning domain models (for details,
see [3]).

IV. THE PROPOSED APPROACH

ASAP includes the following existing high performance
domain-independent planners: Lama-11 [17], LPG [8],
Metric-FF [12], Mp [18], Probe [15], SatPlan [14] and
SGPlan [2]. We selected them due to their good perfor-
mances in International Planning Competitions (IPC) and
the different techniques that they exploit.

The learning phase of ASAP is composed of four steps: (i)
extraction of macro-operators and removal of useless primi-
tive operators, (ii) detection of entanglements and encoding
them into new planning domains/problems, (iii) generation
of all the algorithms as couples (e,p), (iv) measurement
of the performances of the available algorithms, and (v)
selection of the most promising algorithm for solving the
testing instances.

Macro-operators and entanglements are extracted using
the approach described, respectively, in [5] and [3] on plans
generated by Metric-FF, exploiting the original domain
encodings, on training problems. Through these techniques
ASAP is able to generate at most four new encodings per
domain: Macros, which includes macro-operators and ex-
cludes some original operators; Inner, which includes inner
entanglements; Outer, which includes outer entanglements;
Both, which considers both inner and outer entanglements.
The maximum number of algorithms per domain is 35,
which arises from 7 included planners that can be used with
5 different encodings.

The current version of ASAP runs the available algo-
rithms on training problems. The performances are measured
in terms of CPU time required for solving each training
instance, number of actions of the solutions found, and
the number of solved problems. The performances of each
algorithm (e, p) are then compared in order to select the most
promising one to execute on testing problems. ASAP has
two different versions: ASAPs which selects the algorithms
for optimising runtimes, and ASAPq which optimises the
quality of the plans (in classical STRIPS planning the quality
is measured by plan length, i.e., shorter better).

For selecting the most promising algorithm in terms of
runtime, ASAPs uses the time IPC score. It is a value, firstly
introduced in IPC-6 [7], which considers runtimes and num-
ber of solved problems together. It is very useful because it
synthesizes different aspects of planners’ performance in a
single value, that can then be compared through different
planners. ASAPs selects the couple which achieved the best
IPC score on the learning problems; if more algorithms
achieved the same score some secondary criteria are used.
These criteria include the number of solved problems, the
number of problems in which the couple has been the fastest
and the mean CPU time on solved problems.

The method used by ASAPq is similar, but it is consid-
ering the quality of plans (in terms of number of actions)
instead of the CPU times. For the incremental planners’, i.e.
LPG and Lama, the best solution found within the CPU time
limit is considered.

The time and quality IPC score are determined as defined
for IPC-7 [6]. The time score of an algorithm A for a
planning problem P is defined as Score(A, P), which is 0
if P is unsolved, and 1/(1 + log,o(Tp(A)/T})) otherwise,

where T7 is the lowest measured CPU time to solve
problem P and Tp(A) denotes the CPU time required by
A to solve problem P. Higher values of the speed score
indicate better performance. The quality score is defined as
Score(A, p), which is 0 if p is unsolved, and Q;/Q(Ap)
otherwise (Q; < Q(A), for any A). Quality is measured
in terms of number of actions. The IPC score on a set of
problems is given by the sum of the scores achieved on each
considered problem.

V. EXPERIMENTAL ANALYSIS

In this section, we present the results of a preliminary
experimental study examining the effectiveness of the knowl-
edge generated and exploited by ASAP under the form of
selected algorithms (e, p).

A. Experimental Setup

We considered problem instances from 9 well-known
benchmark domains used in the learning tracks of Interna-
tional Planning Competitions: Blocksworld (IPC-7), Depots
(IPC-7), Gripper (IPC-7), Gold-miner (IPC-6), Matching-
BW (IPC-6), Parking (IPC-6/7), Rovers (IPC-7), Satellite
(IPC-7) and TPP (IPC-7). These domains were selected
because they are suitable for reformulations. Some domains
used in learning tracks are not suitable for extracting addi-
tional knowledge in the form of macros or entanglements
since they have a very small number of operators (1 or 2).
In other domains, since Metric-FF was not able to solve any
training problem, ASAP was not able to derive any type of
knowledge. In such domains, the comparison would be only
between basic solvers, which is not the focus of this paper.

T An incremental planner produces a sequence of solutions with increas-
ing plan quality which are generated with increasing CPU times.

Seconds Depots
1000 T T T ¥ T

o ,‘ i *
100 g, L K Kok K iy ¥

* *--¥ * ‘_*,'
* *
10 oo
v 7 o)

Metric-FF —+—
0.1 LPG —x—
LAMA ---%---

Probe &
Mp —-&-—
SGPlan --6:-
0.01 1 1 1 1 I
5 10 15 20 25 30
Seconds Depots
1000 % T R S
o ﬁ - * T * X T P Tx

Figure 1.
exploiting the same encoding (upper plot) and couples exploiting the same
planner (lower plot) on benchmark problems of Depots domain.

CPU time (log. scale) of the selected couple w.r.t. the couples

For each domain, we used the existing 30 benchmark
problems as testing instances. As training problems we used
30 training problems from those provided by organizers,
whenever available; otherwise we generated circa 30 in-
stances (easier than the ones used for testing the approach)
through available random generators.

A runtime cutoff of 900 CPU seconds (15 minutes, as
in the learning tracks of IPC) was used for both learning
and testing runs. All the experiments were run on 3.0 Ghz
machine CPU with 2GB of RAM.

B. Results on Selected Domains

Table I shows, for every domain, the algorithm selected
by ASAPs and ASAPq, and the total number of available
algorithms. It is interesting to note that the selected domains
encodings changes frequently through benchmark domains.
On the other hand, the planners most frequently included
in the couples selected by ASAPs are Metric-FF and LPG,
only in Gripper SGPlan is included. On the contrary, for
optimising the quality, almost all the different planners have
been selected. The total number of available algorithms can
be smaller than 35 in the case that macro-operators or some
type of entanglements were not found.

Domain | BestS Time IPC % Solved
ASAPs | BestS | ASAPs | BestS
Bw Probe 30.0 5.8 100.0 66.7
Depots Probe 30.0 8.7 100.0 100.0
Gripper LPG 30.0 5.0 100.0 33.3
Gold-m Mp 30.0 16.5 100.0 100.0
M-BW Lama 30.0 8.7 100.0 80.0
Parking FF 5.0 5.0 16.7 16.7

Rovers LPG 28.0 22.0 93.3 93.3
Satellite LPG 29.0 27.8 96.7 100.0

TPP Lama 20.0 34 66.7 333
[All above [2320 J 1029] 859 [693 |
Domain BestQ Quality IPC % Solved
ASAPq | BestQ | ASAPq | BestQ
Bw Probe 29.5 18.1 100.0 66.7
Depots Probe 30.0 26.2 100.0 100.0
Gripper LPG 30.0 8.3 100.0 33.3
Gold-m LPG 30.0 29.9 100.0 100.0
M-BW SatPlan 26.4 20.4 90.0 73.3
Parking FF 3.8 4.6 13.3 16.7
Rovers LPG 29.3 26.1 100.0 90.0
Satellite LPG 28.8 29.7 96.7 100.0
TPP Lama 30.0 9.1 100.0 33.3
[All above [2378 [1724 [889 | 681]
Table II

TIME/QUALITY IPC SCORE (MAX SCORE 30 PER DOMAIN) AND
PERCENTAGES OF PROBLEMS SOLVED BY ASAP AND THE BEST BASIC
PLANNER FOR THE SELECTED DOMAINS. BW, GOLD-M AND M-BW
STAND RESPECTIVELY FOR BLOCKSWORLD, GOLD-MINER AND
MATCHING-BW.

Figure 1 shows results for a two-dimensional comparison,
in terms of runtimes, done on the testing problems of Depots.
In the top chart we are comparing the CPU times of all the
algorithms sharing the same encoding (e) of the selected
one, but exploiting different planners. SatPlan is not showed
since it does not solve any testing problem. In the bottom
chart we are comparing the algorithms sharing the same
planner (p) but with different encodings. The impact of
both the dimensions considered by the proposed approach
is significant in terms of CPU time, and we experimentally
observed that it is significant also in terms of quality of the
solutions found.

For understanding the usefulness of the knowledge ex-
tracted under the form of domain encodings, for verifying
the hypothesis that no single planner outperforms all the oth-
ers in every considered benchmark domain, and for verifying
that ASAP effectively selects the most promising algorithm
for each selected domain, we have compared ASAP with the
best performing basic planner for each considered domain.
The best basic planner is exploiting the original domain
formulation, and has been selected according to the IPC
score achieved on the testing problems. The results of this
experiment are shown in Table II. The first interesting result
is that both ASAPs and ASAPq have significantly better
performance in terms of IPC score and number of solved
problems, while considering all the selected domains to-

gether. While analysing the results for every single domain,
ASAPs is never worse than the best basic planner, rather it is
always better except in Parking, where it selected exactly FF
and the original domain as the algorithm to exploit. On the
other hand, ASAPq is worse in two of the selected domains;
in Parking and in Satellite, mainly due to the smaller number
of problems solved by the selected algorithms. Another
interesting result that we can derive from Table II is that
every considered planner achieves the best Time/Quality IPC
score on at least one considered domain, and that the single
best planner of a domain is usually different than the one
included in the couple selected by ASAP. This means that
entanglements and macro-operators have a very significant
impact on the planners’ performance, and that the impact
varies notably from planner to planner.

In order to understand the accuracy of the algorithm
selection, we compared the performance of the three best
algorithms. In Tables III we present the results of this
comparison, in terms of time/quality IPC score, that has been
done on the benchmark problems of the selected domains.
The performances are shown in terms of IPC score, average
CPU time (quality) and solved problems. The * indicates the
algorithm selected by ASAP. The mean CPU time/quality
are calculated on instances solved by all the three best
algorithms of the given domain. We would remark that
ASAP selects the most promising algorithm on the basis
of the results achieved on the learning problems, while in
Tables III the comparison is made by ordering the algorithms
on the results that they achieved on the testing instances.
Concerning the planners included in ASAP, all of them
appear at least once. We can then derive that all the planners
are able to efficiently exploit, at least on one domain, the
knowledge extracted under the form of different encodings.

Considering the runtime optimization, the planner that
appears most frequently in Table III is LPG, followed
by Metric-FF and Probe. We can derive that LPG and
Metric-FF are the planners that better exploit macro-
operators and entanglements for improving runtime. This
is quite surprising if we consider that LPG and Metric-FF
are the oldest planners included in ASAP, and that they
appeared more rarely in Table II. One could argue that, since
the plans found by Metric-FF were used for reformulating
the domains, the fact that Metric-FF performs well while
exploiting entanglements or macro-operators, is not surpris-
ing. From this perspective, it is worth noting that LPG is
the planner which is able to better exploit this additional
knowledge, and that the plans found by Metric-FF were used
due to their good quality and to the relatively low CPU time
required for finding them. If we focus on the best algorithms
for optimising quality of the solutions, the planner which
appears most frequently in Table III is again LPG, but in
this case it is followed by Lama-11. While LPG is often the
best basic solver, as shown in Table II, Lama is the best
one only in TPP. It seems then reasonable to deduce that

Optimising runtimes

Domain Algorithm IPC Mean CPU | % Solved
{Both, FF)* 30.0 13 100.0
Blocksworld (Outer, Probe) 20.6 3.8 100.0
(Outer, LPG) 19.8 8.1 100.0
(Outer, FF)* 282 05 100.0
Depots (Outer, LPG) 214 0.9 100.0
(Both, LPG) 21.2 1.1 100.0
(Outer, Mp) 300 8.0 100.0
Gripper (Outer, SGPlan)* 26.7 11.0 100.0
(Outer, LPG) 239 153 100.0
(Macro, FF)* 29.9 0.02 100.0
Gold-miner (Outer, FF) 21.8 0.08 100.0
(Inner, FF) 18.8 0.1 100.0
(Macro, LPG)* 24.6 1.9 100.0
Matching-BW (Both, LPG) 21.6 5.4 96.7
(Macro, FF) 17.0 42.6 76.7
(Original, FF)* 4.6 376.9 16.7
Parking (Inner, Lama) 2.6 659.8 133
(Original, Probe) 2.5 308.7 10.0
{Macro, LPG)* 280 156 933
Rovers (Original, LPG) 22.0 92.9 93.3
(Outer, LPG) 15.1 261.6 86.7
{Outer, LPG)~ 38 759 96.7
Satellite (Original, LPG) 22.1 924 100.0
(Macro, LPG) 17.8 85.1 66.7
(Outer, LPG) 232 342 100.0
TPP (Both, LPG)* 20.0 14.7 66.7
(Outer, Probe) 19.9 61.3 100.0

Optimising Quality

Domain Algorithm IPC Mean Qual | % Solved
{Both, FF)* 295 2315 100.0
Blocksworld (Outer, LPG) 28.3 243.0 100.0
(Outer, Probe) 27.5 248.7 100.0
(Outer, LPG) 29.4 120.3 100.0
Depots (Both, LPG)* 29.2 120.9 100.0
(Both, Probe) 27.7 127.1 100.0
(Outer, Mp)* 300 566.8 100.0
Gripper (Outer, LPG) 28.6 593.8 100.0
(Outer, SGPlan) 25.8 659.9 100.0
(Both, SatPlan)* 30.0 234 100.0
Gold-miner (Macro, Lama) 30.0 23.4 100.0
(Macro, LPG) 30.0 234 100.0
(Outer, SatPlan) 26.4 57.2 933
Matching-BW (Both, SatPlan) 26.4 57.2 93.3
(Outer, LPG)* 25.8 61.1 90.0
(Original, FF) 4.6 78.0 16.7
Parking (Inner, Lama)* 3.8 82.0 133
(Inner, FF) 2.9 74.5 10.0
(Macro, Lama)* 27.5 674.3 100.0
Rovers (Macro, LPG) 23.7 669.0 93.3
(Outer, Lama) 21.5 657.1 83.3
(Original, LPG) 29.7 675.5 100.0
Satellite (Outer, LPG)* 28.8 673.1 96.7
(Original, SGPlan) 13.7 742.5 50.0
(Outer, Lama)* 27.1 422.1 100.0
TPP (Both, Lama) 21.0 387.1 733
(Outer, Probe) 19.7 570.4 100.0

Table IIT

TIME/QUALITY IPC SCORE (MAX SCORE 30 PER DOMAIN), AVERAGE
CPU TIME/PLAN QUALITY AND PERCENTAGES OF PROBLEMS SOLVED
BY THE FIRST 3 COUPLES W.R.T. THE IPC SCORE, FOR THE SELECTED
DOMAINS. THE * INDICATES THE ALGORITHM SELECTED BY
ASAPs/ASAPq.

the impact of macro-operators and entanglements is strong
on the performance of Lama.

From the point of view of the encodings of the domains,
there are no significant differences between runtime and
quality, the OQuter entanglements appear most frequently in
Table III. The less useful encodings are the Inner entangle-

ments, that rarely allowed algorithms considering them to
achieve good results.

In terms of runtimes, ASAPs almost always selects the
best algorithm, which usually performs significantly better
than the second and the third ones. In two domains, TPP
and Gripper, ASAPs selected the second one. It is worth
noting that in Gripper domain the performance of the best
performing algorithm is similar to the ones of the second. On
training problems, their performance were still very close,
but the second one had slightly better results. In TPP, the
selected algorithm is solving 20 testing problems out of
30. In all of them it is the fastest planner (quality score is
exactly 20.0). Interestingly, on the remaining 10 problems,
LPG crashed due to memory errors. We believe that this
is a bug in the planner and that, without this bug, the
algorithm selected by ASAPs would be the best one also
in that domain.

In terms of quality, ASAPq selects the best algorithm in
five domains; in Depots, Parking and Satellite the selected
couple is the second one, in Matching-BW the third one.
On the other hand, the three best couples usually achieve
similar quality score results, this behavior is quite different
between quality and runtimes.

The results shown in Table III indicate that the approach
used for selecting the most promising algorithm, even if
not very sophisticated, scales well with increasing problem
instance size. The couples selected on training instances,
easier than testing ones, are achieving very good results also
on significantly harder testing instances.

C. ASAP versus PbP2

To evaluate the effectiveness of our approach against
the state-of-the-art of learning-based planners, we compared
ASAP with PbP2. It is the winner of the learning track of
the last IPC, the IPC-7, which was held in 2011. For this
comparison we used exactly the same benchmark domains
and problems that were used for the IPC-7. PbP2 exploited
the same knowledge that it used for the competition, while
ASAP was trained on 30 problems, easier than the testing
ones, that were generated by using the problem generators
provided by the organizers.

Table IV shows performance in terms of time/quality
IPC score, mean CPU time (quality) and percentage of
solved problems on benchmark problems of the selected
domains. The mean CPU time/quality are calculated on
instances solved by both the approaches. The mean on all the
domains is not indicated because, given the great variability
of both CPU time and plan quality across the domains, it
is not informative. The results indicate that ASAP performs
better than PbP2 in terms of quality of the solution plans,
but it achieves slightly worse results in terms of runtimes.
ASAPs is significantly faster than PbP2s in four of the
selected domains. In particular, ASAPs is significantly faster
(more than 2 orders of magnitude) in Depots, where the

Domain Time IPC Mean CPU % Solved
ASAPs | PbP2s | ASAPs | PbP2s | ASAPs | PbP2s
Barman 12.0 30.0 72.9 2.0 100.0 100.0
Bw 30.0 16.4 1.3 9.9 100.0 100.0
Depots 30.0 8.8 0.5 76.7 100.0 86.7

Gripper 30.0 24.7 11.0 18.3 100.0 100.0

Parking 3.6 8.0 455.3 172.8 16.7 26.7
Rovers 19.8 26.2 58.4 18.5 93.3 90.0
Satellite 22.9 30.0 71.1 28.3 96.7 100.0
Spanner 15.1 30.0 208.1 15.9 100.0 100.0
TPP 20.0 16.5 14.7 113.8 66.7 83.3
(Al | 1834 [1906 | - [- | 859 [870 |
Domain Quality TPC Mean Quality % Solved
ASAPq | PbP2q | ASAPq | PbP2q | ASAPq | PbP2q
Barman 29.8 29.9 452.8 449.3 100.0 100.0
Bw 29.9 25.7 231.5 269.9 100.0 100.0

Depots 30.0 19.2 118.1 163.8 100.0 86.7
Gripper 30.0 28.9 566.8 588.7 100.0 100.0
Parking 3.7 5.0 82.0 68.0 13.3 20.0

Rovers | 274 | 273 | 6939 | 7084 | 100.0 | 100.0

Satellite | 26.8 | 282 | 7908 | 7843 | 967 | 100.0

Spanner | 30.0 | 30.0 | 3260 | 3260 | 1000 | 100.0

TPP 295 | 134 | 3433 | 3701 | 1000 | 50.0

(Al | 2371 [2076 | - [- [900 [840 |
Table IV

TIME/QUALITY IPC SCORE (MAX SCORE 30 PER DOMAIN), AVERAGE

CPU TIME/PLAN QUALITY AND PERCENTAGES OF PROBLEMS SOLVED

BY ASAP AND PbP2 FOR THE SELECTED DOMAINS. BW STANDS FOR
BLOCKSWORLD.

entanglements give a great speedup. We noticed that ASAPs
is significantly slower than PbP2s in Barman and Spanner.
In these domains, our approach was not able to extract any
additional knowledge since Metric-FF was not able to solve
any training problem, except trivial ones.

Given the fact that some planners (LPG, Metric-FF, Lama
and SGPIan) that are included in the ASAP system are also
included in PbP2, it is interesting to analyse the domains
in which PbP2 selected as a member of the portfolio the
planner selected in the algorithm of ASAP. In Barman,
both ASAPs and PbP2s are exploiting SGPlan, but PbP2s
was able to extract some macro-operators that improve the
performance of the planner in that domain. PbP2s config-
ured a portfolio composed of only LPG (without macros) in
Rovers, Satellite and Spanner domains. In the same domains,
ASAPs also selected an algorithm which included LPG. In
all of them PbP2s is faster than ASAPs. It should be noted
that in those domains PbP2s exploits a domain-specific
configuration of the parameters of LPG, obtained by [22],
while ASAPs runs the default configuration of LPG. Since
the use of reformulated problems is useful for LPG in such
domains (this can be derived by comparing Tables II and III),
and considering that PbP2s did not include macros in the
corresponding portfolios, we believe that the results achieved
in such domains are due to the speedup allowed by the tuned
configuration of LPG. On the other hand, in Blocksworld,
Depots and TPP ASAPs selected algorithms which include

Metric-FF and LPG, that are available in PbP2s but are
not selected; in these domains the performance improvement
given by the entanglements is very significant.

In terms of quality of the solution plans, ASAPq achieved
better results in five of the selected domains. In two domains,
namely TPP and Depots, ASAPq has significantly better
results than PbP2q. We also noticed that, counterintuitively,
in Rovers, the macros are helpful for improving the quality
of the solution plans.

The portfolios configured by PbP2q on the IPC-7 domains
are usually composed of either 2 or 3 different planners. It
could happen that all the included planners are useful, or
that just a subset of them is actually exploited for finding
solution plans on testing problems; it is unclear what the
real contribution of each planner is to the portfolio. For
this reason a comparison between the planners selected by
PbP2q and ASAPq is not possible. Only in the Spanner
domain PbP2q exploits a portfolio that is composed of a
single planner, LPG, without macros. ASAPq selects an
algorithm which is composed of LPG and the original
domain encoding, which leads the systems to achieve exactly
the same results. In the Barman, Depots, Parking, Rovers,
Satellite and TPP, the planner included in the algorithm
selected by ASAPq is present in the portfolio configured
by PbP2q. Finally, in Blocksworld ASAPq is selecting
Metric-FF, which is considered in PbP2q but not included
in the portfolio, and in Gripper our approach is selecting a
planner, Mp, which is not considered by PbP2q.

VI. DISCUSSION

As the results shown in the previous section indicated,
an accurate selection of a single algorithm allows ASAP
to achieve better results than the portfolio-based planning
system PbP2 in terms of plan quality, and to be very close
to PbP2 in terms of CPU time. We believe that a domain-
specific portfolio can be completely exploited when the
different planners can run in pure parallel, so when several
cores are available. In case a single core is available, using
different planners together can slow down the performance
of the best one on the given domain.

The algorithms selected by ASAP have shown very good
performance on testing problems. As indicated by the results
shown in Table III, there is no or very little space for
further improvements in terms of CPU time. However, in
Matching-BW and Satellite domains the selected algorithms
still achieved the best results in total in comparison to the
others, but for some problems the results of the selected
couple were significantly worse. For instance we observed
that in Satellite domain about 40% of testing problems
could be solved significantly faster by a different algorithm
(Macros, LPG) then the selected one (Outer, LPG). It indi-
cates that we need to somehow classify problems even within
the same domain. An initial idea assumes that each class of
the problem has a different algorithm assigned to it which

provides the best results. In the learning stage we can easily
identify which couple works best on a particular problem and
hence determine classes of problems (the number of classes
is equal to the number of algorithms which were best on
at least one problem). However, it might happen that some
classes will be small (containing only a few problems) which
may prevent identification of their characteristic properties.
Therefore, it seems to be appropriate to move problems
from ‘small’ classes to larger ones where the corresponding
couple is closest to the best. However, an efficient classifier
for planning problems has not been developed yet.

Interestingly, the need for classification seems to be
restricted to runtime optimization. By analyzing the per-
formance of algorithms, we observed that in terms of plan
quality, usually the couple that achieves the best result is
finding the best solution for all, or almost all, the testing
problems. In the Matching-BW domain the best algorithm
is outperformed by a different one only on three problems
out of the 30 considered.

Regarding the exploitation of the knowledge extracted in
the form of macro-operators and entanglements, we noticed
that Metric-FF and LPG are the ones that, in terms of run-
times, exploited it more efficiently. Considering the results
shown in Table II, in Blocksworld, Depots, Gold-miner and
Matching-BW, Metric-FF and LPG are not the best single
planner; but while exploiting the additional knowledge, they
outperforms the others, as shown in Table III. Also in terms
of quality, the impact of the additional knowledge extracted
in the form of new encodings is significant. This is surpris-
ing if we consider that macro-operators and entanglements
are designed especially for improving the performance of
planners in terms of time needed for finding a satisficing
solution. A very interesting example of this behaviour is
given by Lama in the domain TPP, in which the exploitation
of entanglements, either Both or Outer, lets the planner
improve its performance by more than the 60%; all the plans
found by Lama and the original domain encoding have lower
quality.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented ASAP, an automatic
algorithm selection approach for planning. ASAP is based on
the idea of extracting additional knowledge from a domain,
in the form of macro-operators and entanglements, com-
bining such knowledge with existing planning systems for
generating new algorithms, and selecting the most promising
algorithm for solving problems from the given domain.
ASAP has two different versions: ASAPs which selects
the most promising algorithm for optimising runtimes, and
ASAPq which optimises the quality of the solution plans.

An experimental analysis conducted on a total of 11 well-
known benchmark domains and that involved 660 planning
problems, has shown that (i) the impact of the consid-
ered dimensions on the performances of the algorithms is

significant, (ii) the technique used for selecting the most
promising algorithm to exploit on testing problems is very
accurate, (iii) ASAPs is competitive with the state-of-the-
art of learning-based planning systems, PbP2s, in terms
of runtime, (iv) ASAPq outperformed PbP2q in terms of
quality of solution plans.

Future work includes further experimental analysis, in
particular for understanding if learning-based approaches
exploiting domain-specific portfolios would always be out-
performed by accurate and efficient automatic algorithm
selection based planners, while sharing the same planners
and the same additional knowledge, on single core ma-
chines. A specific experimental analysis is also needed for
having a better understanding of the impact of problems
reformulation on the different planning systems; a system
for predicting this impact would lead to a great reduction
of the learning time needed for selecting the algorithm to
use for a specific domain. Moreover, we are interested in
combining the approach used for reformulating planning
problems with existing techniques for generating macro-
operators (e.g., Wizard [16], Macro-FF [1]).

We noticed that the major limitation of ASAP is that, in its
current version, it is heavily dependent on Metric-FF. The
solutions found by this planner on a small set of training
problems are analyzed for extracting additional knowledge.
It could happens, and it happened in Barman and Spanner
domains, that Metric-FF is not able to solve any non-
trivial training problem. To avoid this situation, we are
planning to extend the techniques used for extracting macro-
operators [5] and entanglements [3] in order to exploit plans
produced by different planners. This could also lead to
the derivation of more specific additional knowledge that,
potentially, could further increase planner performance.

Finally, we are considering including different algorithm
selection techniques in ASAP. The current one is mainly
based on IPC score, which considers performance and num-
ber of solved problems together. The exploitation of more
sophisticated score systems could improve the selection ac-
curacy. Alternative selection techniques could be based, for
instance, on the well-known PAR10 score, or on statistical
analysis.

REFERENCES

[1] A.Botea, M. Enzenberger, M. Miiller and J. Schaeffer, “Macro-
FF: Improving Al planning with automatically learned macro-
operators”, Journal of Artificial Intelligence Research (JAIR)
24:581-621, 2005.

[2] Y. Chen, B. W. Wah and C. W. Hsu, “Temporal planning
using subgoal partitioning and resolution in SGPlan”, Journal
of Artificial Intelligence Research (JAIR) 26:323-369, 2006.

[3] L. Chrpa and T. L. McCluskey, “On exploiting structures of
classical planning problems: Generalizing entanglements”, In

Proc. of the 20th European Conference on Artificial Intelligence
(ECAI), 240-245, 2006.

[4] L. Chrpa and R. Bartdk, ‘Reformulating planning problems by
eliminating unpromising actions’, in Proceedings of SARA 2009,
50-57, 2009.

[5] L. Chrpa, “Generation of macro-operators via investigation of
action dependencies in plans”, Knowledge Engineering Review
25(3):281-297, 2010.

[6] A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. Linares,
S. Sanner and S. Yoon, “A survey of the seventh international
planning competition”, Al Magazine 33:83-88, 2012.

[7]1 A. Fern, R. Khardon and P. Tadepalli, “The first learning track
of the international planning competition”, Machine Learning
84:81-107, 2011.

[8] A. Gerevini, A. Saetti and I. Serina, “Planning through stochas-
tic local search and temporal action graphs”, Journal of Artificial
Intelligence Research (JAIR) 20:239-290, 2003.

[9] A. Gerevini, A. Saetti and M. Vallati, “An automatically
configurable portfolio-based planner with macro-actions: PbP”,
In Proc. of the 19th International Conference on Automated
Planning and Scheduling (ICAPS), 19-23, 2009.

[10] A. Gerevini, A. Saetti and M. Vallati, “PbP2: Automatic
configuration of a portfolio-based multiplanner”, In Booklet of
the 7th International Planning Competition. 2011.

[11] M. Helmert, “The Fast Downward planning system”, Journal
of Artificial Intelligence Research (JAIR) 26:191-246, 2006.
[12] J. Hoffmann, “The Metric-FF planning system: Translating
“ignoring delete lists” to numeric state variables”, Journal of

Artificial Intelligence Research (JAIR) 20:291-341, 2003.

[13] A. Howe, E. Dahlman, C. Hansen, A. vonMayrhauser and
M. Scheetz, “Exploiting competitive planner performance”, In
Proc. of the 5th European Conference on Planning (ECP), 62—
72, 1999.

[14] H. Kautz, B. Selman and J. Hoffmann, “SatPlan: Planning
as satisfiability”, In Abstract Booklet of the 5th International
Planning Competition, 2006.

[15] N. Lipovetzky and H. Geffner, “Searching for plans with
carefully designed probes”, In Proc. of the 21st International
Conference on Automated Planning and Scheduling (ICAPS),
2011.

[16] M. A. H. Newton, J. Levine, M. Fox and D. Long, “Learning
macro-actions for arbitrary planners and domains”, In Proc. of
the 17th International Conference on Automated Planning and
Scheduling (ICAPS), 256-263, 2007.

[17] S. Richter, M. Westphal and M. Helmert, “Lama 2008 and
20117, In Booklet of the 7th International Planning Competi-
tion, 2011.

[18] J. Rintanen, “Engineering efficient planners with SAT”, In
Proc. of the 20th European Conference on Artificial Intelligence
(ECAI), 684-689, 2012.

[19] M. Roberts and A. Howe, “Learned models of performance
for many planners”, In Proc. of the ICAPS-07 Workshop of Al
Planning and Learning (PAL), 2007.

[20] M. Roberts and A. Howe, “Learning from planner perfor-
mance”, Artificial Intelligence 173(56):536-561, 2009.

[21] J. Seipp, M. Braun, J. Garimort and M. Helmert, “Learning
portfolios of automatically tuned planners”, In Proc. of the
22nd International Conference on Automated Planning and
Scheduling (ICAPS), 2012.

[22] M. Vallati, C. Fawcett, A. Gerevini, H. Hoos and A. Saetti,
“Automatic Generation of Efficient Domain-Specific Planners
from Generic Parametrized Planners”, In Proc. of the Sixth
Annual Symposium on Combinatorial Search (SoCS), 2013.

