
University of Huddersfield Repository

Jimoh, Falilat, Chrpa, Lukas, McCluskey, T.L. and Shah, Mohammad Munshi Shahin

Towards Application of Automated Planning in Urban Traffic Control

Original Citation

Jimoh, Falilat, Chrpa, Lukas, McCluskey, T.L. and Shah, Mohammad Munshi Shahin (2013)
Towards Application of Automated Planning in Urban Traffic Control. In: 2013 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013). Institute of Electrical and
Electronics Engineers (IEEE), pp. 985-990. ISBN 9781479929139

This version is available at http://eprints.hud.ac.uk/id/eprint/18140/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Towards Application of Automated Planning in Urban Traffic Control

Falilat Jimoh, Member, IEEE, Lukáš Chrpa, Thomas Leo McCluskey and
Shahin Shah

Abstract— Advanced urban traffic control systems are often
based on feed-back algorithms. For instance, current traffic
control systems often operate on the basis of adaptive green
phases and flexible co-ordination in road (sub) networks based
on measured traffic conditions. However, these approaches are
still not very efficient during unforeseen situations such as
road incidents when changes in traffic are requested in a short
time interval. Therefore, we need self-managing systems that
can plan and act effectively in order to restore an unexpected
road traffic situations into the normal order. A significant step
towards this is exploiting Automated Planning techniques which
can reason about unforeseen situations in the road network and
come up with plans (sequences of actions) achieving a desired
traffic situation. In this paper, we introduce the problem of self-
management of a road traffic network as a temporal planning
problem in order to effectively navigate cars throughout a road
network. We demonstrate the feasibility of such a concept and
discuss our preliminary evaluation in order to identify strengths
and weaknesses of our approach and point to some promising
directions of future research.

I. INTRODUCTION

Several types of advanced, intelligent traffic control sys-
tems operate on the basis of adaptive green phases and
flexible co-ordination in (sub) networks based on measured
traffic conditions [1], [2]. Where historic data is available,
or where behaviour is caused by anticipated circumstances,
these systems have proved very effective. For example it is
possible to train signal heads to learn traffic pattern for a
period of time. Such signal heads will be able to control
traffic as long as the traffic pattern is closed to the learned
pattern. It has been proven that learning based approaches
can improve the performance of Urban Traffic Control (UTC)
systems, by enabling centralized or decentralized learning
and decision making within the system [3], [4], [5], [6].
One of such approach is the Distributed W-Learning (DWL),
which in simulations outperforms widely-deployed fixed-
time and simple adaptive UTC controllers under a variety
of traffic loads and patterns [7]. These adaptive approaches
to traffic control are still not optimal during unforeseen sit-
uations such as road incidents, road works, car breakdowns,
and simply when traffic demand changes rapidly within a
short time interval. In such circumstances, the best that are
usually achieved is the use of some fixed signal timings
or set of default programmed behaviour, until the situation
reverts back to a recognized state [8]. To cope with such a
situation, a system needs to be able to consider the factors
affecting the situation at hand: the road network, the state
of traffic flows, the road capacity limit, availability of roads
within the network to mention a few. All these factors will

School of Computing and Engineering, University of Huddersfield

be peculiar to the particular set of circumstances causing the
problem [9]. Hence there is a need for a system that can
reason with the capabilities of the control assets, and the
situation’s parameters as sensed by road sensors and generate
a set of actions or decisions that can be taken to alleviate
the situation. In this paper, we argue and demonstrate that
systems that provide such dynamically created plans can be
obtained from the use of automated planning technology. The
field of Artificial Intelligence Planning, or AI Planning, has
evidenced a significant advancement in planning techniques
in the last 10 - 15 years, which has led to development of
efficient planning systems [10], [11], [12], [13] that can input
expressive models of applications. The existence of these
general planning tools has motivated engineers in designing
and developing complex application models which closely
approximate real world problems [14], [15], [16]. Hence,
AI Planning has a growing role in realisation of intelligent
control systems.

The long term goal of this research field is to exploit a
traditional control system architecture, which is based on
reactive reasoning, and embed it with situational awareness,
together with declarative representation of goals, actions and
states of its environment, and explore the possibility of using
planning engines to support deliberative reasoning within this
system.

In this paper, we explore the application of AI planning
technology to the problem of Urban Traffic Control(UTC)
system. We investigate the feasibility of using this approach
in an urban road traffic domain to generate plans dynam-
ically, where learnt or reactive behaviours fail because of
unforeseen situations. We show how this is accomplished by
the creation of a declarative representation of a road network
in a town center area in the United Kingdom. The task is to
effectively navigate cars through network of connected roads
during an unforeseen situation. As part of this effort, we
have embed the knowledge of UTC structure into a planning
domain and evaluate the possibility of reasoning with this
knowledge and optimising traffic flow in situations where a
given road within a network of roads becomes unavailable
due to unexpected situation such as road accidents. From this
simulation we demonstrate the advantages and shortcomings
of using AI Planning in UTC, i.e., navigating cars though
the road network and eventually diverting cars in case that
some unplanned circumstance causes a road blockage.

II. AUTOMATED PLANNING

Automated Planning also know has AI planning, deals
with the problem of finding a sequence or partially ordered
set of actions whose execution leads from an initial state

to a state in which a goal condition is satisfied. Actions
in plans are ordered in such a way that executability of
every action is guaranteed [17]. Hence, an agent is able to
transform the environment from an initial state into a desired
goal state [18], [19]. A planning problem thus involves
deciding “what” actions to do, and “when” to do them. The
“when” part of the problem refers to “scheduling” [20], [21].
In this work we are concerned particularly with temporal
domain modelling. For our purpose STRIPS representation
does not provide enough expressiveness because we have
to consider resources (e.g. road use) and time. A Planning
Domain consists of a set of predicates and numeric fluents
describing the environment and a set of planning operators.
A Planning Operator is specified via its precondition, effects
and duration. A precondition of a planning operator is repre-
sented by a set of relational and/or logical expressions. Every
expression has assigned its validity range which is one of the
following: ‘at start’ (the expression must be valid at time the
operator is executed), ‘at end’ (the expression must be valid
at time the operator finishes its execution) or ‘over all’ (the
expression must be valid at the time interval operator is being
executed). Effects are represented by a set of assignments
and/or set of literals (predicates or their negations). Every
assignment or literal has specified when it takes effect which
is one of the following: ‘at start’ or ‘at end’. Duration of a
planning operator is represented by a number which represent
the time needed for executing the operator. An action is a
ground instance of a planning operator. A Planning Problem
consists of a set of concrete objects, an initial state and
a goal situation. An initial state is represented by a set
of assignments and predicates. Moreover, timed-literals can
be included in the initial state as well which represent in
which time-stamp a predicate becomes true or false. A goal
situation is represented by a set of relational and/or logical
expressions. A plan is a list of couples 〈time-stamp,action〉
(an action is an instance of a planning operator). A plan is
a solution of a given planning problem if and only if every
action is applicable in the given time-stamp (its precondition
is fulfilled) and after all action are executed all expressions
specified in the goal situation are satisfied.

III. THE ROLE OF AUTOMATED PLANNING IN CONTROL
SYSTEMS

Technology in areas such as automated planning and
constraints processing have been developing rapidly, so
nowadays it is possible to deploy deliberative reasoning to
real-time control applications [22], [23], [24], [25].

The main difference between traditional and deliberative
control architecture is depicted in Figure 1. Traditionally,
a control loop consists of three steps: sense, interpret and
act [26]. In other words, data are gathered from the en-
vironment with the use of sensors, the system interprets
information from these sensors as the state of the environ-
ment. The system act by taking necessary actions which is
feedback into the system in other to keep the environment in
desirable state. Introducing deliberation in the control loop
allows the system to reason and generate effective plans in

Fig. 1. Comparison of traditional and deliberative controls in Urban
Transport Systems.

order to achieve desirable goals. Generally speaking, using
deliberative reasoning enables achieving more ‘distant’ goals
rather than immediate ones. Enabling deliberative reasoning
in UTC systems is important because of its ability to handle
unforeseen situations which has not been previously learnt
nor programmed into a UTC. This helps to reduce traffic
congestion and carbon emissions on our roads.

Thus, embedding automated planning into UTC systems
to enables deliberative reasoning in order for urban traffic
controllers to generate plans and schedules to manage them-
selves would be very beneficial in the realisation of self-
management in such systems.

IV. URBAN TRAFFIC CONTROL PROBLEM

Current traffic control systems approaches are still not
completely optimal during unforeseen situations such as
road incident, road re-construction, car breakdown and when
traffic demand changes rapidly within a short time interval. In
this situation, there arises the need for systems that can take
pro-active decision using deliberative reasoning to control
the road traffic situation in order to achieve desirable goals.

Ideally, the following abilities would be incorporated into
a road traffic control system.
• Ability to retrieve information on the current state of

traffic based on information from road sensors
• Ability to detect current traffic problems by evaluating

current traffic trends with the use of traffic control rules
on an existing ideal model of the surrounds

• Ability to estimate the next optimal cycle of signal
heads

• Ability to take decision and operate the entire traffic
control signals based on it generated plan with little or
no human intervention

• Ability to communicate with road users in real time.

A. Resources and Constraints

In every system design, there are resources available for
execution. These resources come with associated limitations
(constraints) which must be identified and optimised for
effective implementation of the system. In UTC we are deal-
ing with various resources often limited by constraints. For

Fig. 2. Map showing the network entry and exit points and the blocked
roads in a part of town center of Hudderfield, West Yorkshire, United
Kingdom. It is used for our empirical analysis.

example, we have road junctions, which can be understood as
bottlenecks of traffic, where we must ensure that cars are not
permitted to go through the junction in colliding directions.
Also, each road had its capacity, i.e., the maximum number
of cars on it. Situational awareness of the system can be
sustained by various sensors which are placed on roads,
intersections e.t.c.

Each action has its own duration in which is being
executed. For instance, the duration of action for vehicle
movement from a head to a tail of the road depends on the
road’s length and the speed of the vehicle.

V. THE ROAD TRAFFIC DOMAIN MODEL

In order to explore the role of automated planning in
enabling some of the requirements described in the sections
above, this section describes the design of a Road Traffic
Domain Model (RTDM). From the automated planning per-
spective we have to compromise between making RTDM
realistic and the computational resources for solving RTDM
planning problems. A very realistic RTDM should be able to
reason about continuous processes (e.g. cars are moving on
the road continuously), uncertainty (e.g. a driver can decide
its own way) and unexpectable events (e.g. traffic accidents).
Continuous planning without reasoning about uncertainty is
not well developed. On the other hand, classical planning (the
simplest form of planning) is very well developed, however,
not very suitable for RTDM since classical planning does not
reason about time (i.e. effects of actions are instantaneous).
Hence, the reasonable compromise is using temporal plan-
ning which can in addition to classical planning reason about

time (i.e. executing actions takes some time).
RTDM consists of two main parts – static and dynamic.

The static part represents road network topology, i.e., roads,
their capacity, length and junctions connecting the roads. The
dynamic part stands for how many cars are on each road
(and where) and whether the road is operational. The term
’operational’ means that the road is available and accessible
within the road network system. Clearly, the dynamic part
is changing through the time as cars are moving through the
road network.

A. RTDM Specification

A Road Network can be represented by a directed graph,
where edges stand for roads and vertices stand for either
junctions, entry or exit points. Entry points are places where
cars enter the network, while exit points are places where
cars exit the network. In junctions, we must take into account
the fact that in some directions cars cannot go through the
junction simultaneously. Hence, we have to specify sets of
mutually exclusive (mutex) directions by which cars cannot
go though the junction simultaneously. Every road has its
own length (determining how long it takes for a car to
through it) and capacity (i.e. a maximum number of cars it
can serve). The network model is enhanced by considering
time intervals when a road is not operational (e.g. closed due
to an accident).

Let (V,E) be a directed graph such that ∀v ∈ V :
(indeg(v) = 0 ⇒ outdeg(v) = 1) ∧ (outdeg(v) = 0 ⇒
indeg(v) = 1). Edges in E represent one-way (or one
direction of two-way) roads. A vertex v ∈ V represents:
• entry point if indeg(v) = 0
• exit point if outdeg(v) = 0
• junction otherwise

LetM = {M1, . . . ,Mn} be a set of sets of conflicting ways
such that Mi is defined as a set of triples in form (eix , vi, eiy)
such that a junction vi is a tail of eix and a head of eiy .
Let C : E → N be a function representing road capacity
and l : E → R be a function representing road length.
Let O be a mapping from edges (E) to sets of time
intervals representing operationality of the road. Then N =
〈V,E,M, C, l, O〉 is a Road Network.

Given the definition of the Road Network, which gives us
constraints referring to a static part of the environment, we
have to specify a dynamic part of the environment which is
related to traffic. We define a function use : E × T → N0

which refers to a number of cars on the road in a given time-
stamp. Clearly, it must hold that ∀t ∈ T, r ∈ E : use(r, t) ≤
C(r). It is also necessary to distinguish whether cars are on
the head or the tail of the road. For this purpose we define
functions head and tail such that head : E × T → N0 and
tail : E × T → N0.

A RTDM Planning Problem addresses the problem of
effective navigation of cars through a given Road Network
from entry points to exit points. To achieve this we have
to take two types of decisions, i.e., which way cars should
take and when traffic lights should be set to green or red.
Initially, it is given the number of cars in each entry point

and frequency of their releasing. This can be represented by
a set time-stamps in which the entry points are ‘opened’. The
goal situation is determined by numbers of cars in exit points
while minimising ‘makespan’, the time needed to navigate all
the cars through the road network. In our model we consider
four planning operators which are defined as follows. Note
that ∆t stands for operator’s execution time which might
differ for different operators’ instances (e.g driving through
different roads may take different amount of time).
• In a given time-stamp t, an operator release-cars(r, n, t)

releases n cars to the head of the road r ∈ E if r is
an outgoing edge from a given entry point and ∀t′ ∈
〈t; t+ ∆t) : C(r) ≥ use(r, t′) + n and r is operational
in t′. The effect of this operator is that use(r, t+∆t) =
use(r, t) + n and head(r, t+ ∆t) = head(r, t) + n.

• An operator drive-through-junction(r1, v, r2, n, t) navi-
gates n cars from the road r1 ∈ E through the junction
v ∈ V to the road r2 ∈ E if tail(r1, t) ≥ n, ∀t′ ∈
〈t; t + ∆t) : C(r2) ≥ use(r2, t

′) + n, r2 is opera-
tional in t′ and no instance of operator drive-through-
junction(rx, v, ry, nx, tx) is executed such that tx ∈
〈t, t + ∆t〉 and 6 ∃M ∈ M : {(r1, v, r2), (rx, v, ry)} ⊆
M . The effect of this operator is that tail(r1, t) =
tail(r1, t) − n, head(r2, t + ∆t) = head(r2, t) +
n, use(r1, t) = use(r1, t) − n and use(r2, t) =
use(r2, t) + n.

• An operator drive(r, n, t) moves n cars from a head of
r to its tail in a time-stamp t. That is if head(r, t) ≥ n,
then head(r, t + ∆t) = head(r, t) − n and tail(r, t +
∆t) = tail(r, t) + n.

• An operator exit-cars(r, n, t) allows n cars to leave the
network in a given exit point (r is an incoming edge to
the exit point) in a time-stamp t. If tail(r, t) ≥ n, then
tail(r, t+ ∆t) = tail(r, t)− n.

B. Modeling RTDM in PDDL

Planing Domain Description Language(PDDL)[27] is cur-
rently a standard language for describing planning domains
and problems and it is widely accepted by state-of-the-art
planning engines.

For our purpose we have use PDDL 2.1 [17] since it
encapsulates features needed for representing temporal plan-
ning domains and problems. The environment of RTDM is
modelled by using predicates or fluents. Predicates refers
to relations between objects, for example, if a predicate
(operational r1) is present in some state, then in this state
the road r1 is operational, otherwise not. Fluents can operate
with more (numerical) values, for instance, a fluent (use r1)
represents a current use of the road r1 which is in range
〈0, C(r1)〉.

Figure 3 depicts the planning operator drive (in PDDL
2.1 planning operators are called ‘durative actions’). Time-
stamps in which the operator can be executed are not explic-
itly modelled as operator’s parameter in PDDL, only duration
of operator’s execution is defined :duration (= ?duration
(length ?r)). Time-stamps are, therefore, modelled relatively.
Given the notation from the previous subsection, i.e., the

(:durative-action DRIVE
:parameters (?r - road ?n - num)
:duration (= ?duration (length ?r))
:condition
(and

(at start (>= (head ?r) (val ?n)))
(over all (operational ?r)

)
:effect
(and
(at start (decrease (head ?r) (val ?n)))
(at end (increase (tail ?r) (val ?n)))

)
)

Fig. 3. The PDDL encodings of the drive planning operator.

operator is executed in a time-stamp t and the duration of
its execution is ∆t, at start refers to t, at end refers to
t + ∆ and over all refers to the interval 〈t, t + ∆t〉 (note
that over all can be only used for preconditions). To keep
the consistency of the environment we cannot apply effects at
the same time the precondition is being checked (e.g. apply
(at start (decrease (head ?r) (val ?n))) at the same time
when (at start (>= (head ?r) (val ?n))) is being checked).
This issue is handled by applying the effect just after the
precondition has been checked, so for a very small ε the
effects are applied in t + ε (at start) or in t + ∆t + ε (at
end). Another issue in PDDL 2.1 is impossibility to have a
numeric parameter (all the parameters must be object types).
This issue can be handled by introducing a special object
type num and a fluent (val ?n) which maps a numerical
values to num objects.

In all considered models, the goal of the planning problem
is to route a certain number of vehicles through the network
to the exit points, whilst minimising the makespan of the plan
irrespective of any disruption in the network of connected
roads.

A typical RTDM problem requires a method of releasing
cars at the entry points at given (periodic) time-stamps.
Releasing cars can be understood as an event, however,
events are not supported in PDDL 2.1. Releasing cars by
the operator release-cars is executed in any time when its
precondition is met. This issue can be overcome by using
timed initial literals which is a feature supported by PDDL
2.1. We introduce a fluent (ready ?x) for each entry point,
representing the number of cars which are ready to enter the
road network.

Therefore, several statements of the form:

(at 0 (= (ready a) 5))
(at 10 (= (ready a) 5))

....

can be added to the initial state. We believe that this is an
attractive approach as it ensures the flow of traffic into the
system in a more realistic way rather than simply adding all
vehicles at time 0. Also, we might use timed initial literals
for defining temporary road blockages.

0.000: (release-cars w) [1.000]
1.001: (drive w nn1) [10.000]
1.002: (drive w nn1) [10.000]
1.003: (drive w nn1) [10.000]
1.004: (drive w nn1) [10.000]
1.005: (drive w nn1) [10.000]
11.002: (drive-through-junction w j13 y2 nn1) [1.000]
12.003: (drive y2 nn1) [7.000]
12.003: (drive-through-junction w j13 v2 nn1) [1.000]
13.004: (drive v2 nn1) [5.000]
18.005: (drive-through-junction v2 j12 u nn1) [1.000]
18.006: (drive-through-junction w j13 v2 nn1) [1.000]
19.004: (drive-through-junction y2 j4 e1 nn1) [1.000]
19.006: (drive u nn1) [3.000]
19.007: (drive v2 nn1) [5.000]
19.007: (drive-through-junction w j13 y2 nn1) [1.000]
20.005: (drive e1 nn1) [5.000]
20.008: (drive y2 nn1) [7.000]
22.007: (drive-through-junction u j10 zz nn1) [1.000]
23.008: (drive zz nn1) [7.000]
24.008: (drive-through-junction v2 j12 z nn1) [1.000]
24.009: (drive-through-junction w j13 v2 nn1) [1.000]
25.006: (drive-through-junction e1 j3 d1 nn1) [1.000]
25.009: (drive z nn1) [7.000]
25.010: (drive v2 nn1) [5.000]
26.007: (drive d1 nn1) [3.000]
27.009: (drive-through-junction y2 j4 e1 nn1) [1.000]
28.010: (drive e1 nn1) [5.000]
29.008: (drive-through-junction d1 j2 b nn1) [1.000]
30.009: (drive b nn1) [10.000]
30.009: (drive-through-junction zz j2 b nn1) [1.000]
30.011: (drive-through-junction v2 j12 u nn1) [1.000]
31.010: (drive b nn1) [10.000]
31.012: (drive u nn1) [3.000]
32.010: (drive-through-junction z j3 d1 nn1) [1.000]
33.011: (drive d1 nn1) [3.000]
34.013: (drive-through-junction u j10 zz nn1) [1.000]
35.014: (drive zz nn1) [7.000]
36.012: (drive-through-junction d1 j2 b nn1) [1.000]
36.013: (drive-through-junction e1 j3 d1 nn1) [1.000]
37.013: (drive b nn1) [10.000]
37.014: (drive d1 nn1) [3.000]
40.015: (drive-through-junction d1 j2 b nn1) [1.000]
41.016: (drive b nn1) [10.000]
42.015: (drive-through-junction zz j2 b nn1) [1.000]
43.016: (drive b nn1) [10.000]

Fig. 4. The plan generated by the Optic planner for Problem 1 without
considering blockages.

Prob.no. Blockages Crikey Optic
runtime makespan runtime makespan

1 No 0.16 156 0.19 53
1 Yes 0.14 156 0.16 64
2 No 1.22 122 0.35 43
2 Yes 1.28 170 0.40 52
3 No 36.84 299 1.79 57
3 Yes 51.52 446 1.54 70

TABLE I
OUR EXPERIMENTAL RESULTS SHOWING PLANNERS’ PERFORMANCE IN

GIVEN SETTINGS. RUNTIME (IN SECONDS) STANDS FOR A TIME NEEDED

BY A PLANNER TO PRODUCE A PLAN. MAKESPAN STANDS FOR A

DURATION IN WHICH THE PLAN CAN BE EXECUTED.

VI. PRELIMINARY EVALUATION

For evaluation purposes we selected known planning en-
gines Crikey [11], Optic [28] and LPG-td [10] which are
capable to handle PDDL 2.1 features (including timed initial
literals). LPG-td, however, is not very useful for our problem
by two reasons. Firstly, it does not successfully complete
preprocessing when the problem has more than a few objects
(e.g. roads). Secondly, it cannot handle well concurrency
from actions sharing some fluent(s), i.e., actions having the
same fluent in their descriptions are never considered as
concurrent.

The experimental setting consists of several ‘specific’
problems which are defined on the top of the road network
depicted in Figure 2. Uncertainty is not considered in our
experiments. Problem 1 addresses the problem of navigating
five cars from Lord Street (bottom right corner of the map)
to Wood Street (upper part of the map). Problem 2 addresses

the problem navigating cars (two at each entry point) through
the network such that they are evenly distributed at south,
north and east exit points (individual vehicles are not dis-
tinguished). Problem 3 has the same settings as but has five
cars at each entry point. Problems 1-3 are considered in two
different variants, i.e., without blockages and with blockages.
Experiments were run on Intel Core i7 2.9GHz, 5GB RAM,
Ubuntu 12.04.1 LTS.

Table I shows the results of our preliminary experimental
settings using the Crikey and Optic planners. We can see that
Optic clearly outperforms Crikey in both criteria - makespan
(a time needed for executing the plan) and runtime (a time
needed by a planner to provide a plan). Moreover, Optic is
an incremental planner, i.e., after finding a plan it searches
for a better one (with lower makespan) until a given time
limit is reached.

The results of Optic are very promising given the fact that
plans have been retrieved in a very reasonable time (at worst
slightly above one second) and their quality (makespan)
is satisfactory. Cars can be therefore navigated reasonably
through the road network even in case of some unexpected
event which could lead to road blockage. Also, given the
fact that in the real-world environment cars are entering the
road network contiguously, which we have not been able
to reasonably model (it is discussed later), good quality of
plans (in terms of makespan) can somehow ensure that the
traffic flow remains continuous and roads will not become
congested.

A plan depicted in Figure 4, a solution of Problem 1 (no
blockage) given by the Optic planner, shows some interesting
aspects. Firstly, despite going from the same entry point
to the same exit point cars are split during the way such
that some cars are navigated through Northumberland Street
(e1) and some cars are navigated through St. Peter Street
(v2). This might be useful when some unexpected event
occurs (e.g. an accident on St. Peter Street) and there is
no time to redirect traffic. Secondly, the Optic planner is
not much able to consider more than one car in a single
action (nn1) even though it is possible. This is a shortcoming
because it does not lead to optimal (or very nearly optimal)
solutions. Basically, such a plan when executed allows one
car to go through the junction, then the other cars have to
wait until that car drives through the following road. This is
quite counter-intuitive and consequently to this plans are not
optimal.

Another observation is that both Crikey and Optic do not
handle timed-initial literals well. For example, if a road is
blocked only for a given time interval, then the planners
conclude that there does not exist a solution despite the fact
that a solution exist for the same problem whenever it is
blocked for entire planning duration.

In summary, embedding planning component into the UTC
might be beneficial since it enables (centralised) reasoning in
the given area which, for instance, can more easily overcome
non-standard situation (e.g. road blockage after an accident).
Our results showed that the makespan of the plans (given
by the Optic planner) did not increase much even though

some roads were blocked. Minimising makespan, which
is a goal of any UTC system, will help to reduce road
congestion and pollution in the environment. However, as
we demonstrated using state-of-the-art domain-independent
planning engines does not lead to optimal solutions even in
quite simple cases. Also, it is questionable whether planners’
performance will not significantly decrease on larger road
networks. On the other hand, developing a domain-dependent
planner specifically tailored to RTDM might overcome (some
of) these issues.

VII. CONCLUSION
In this paper, we addressed the idea of introducing

Automated Planning into UTC which, moreover, can re-
route traffic flow when a road becomes unavailable due to
unexpected circumstances. As part of this effort, we have
embed the knowledge of UTC structure into a planning
domain and evaluate the possibility of reasoning with this
knowledge and optimising traffic flow in situations where a
given road within a network of roads becomes unavailable
due to unexpected situation such as road accidents. This
allows us to navigate cars throughout the road network.
Our preliminary experimental evaluation showed that our
approach is able to provide plans in a reasonable time.
In a real-world scenario where data such as road queues
are uploaded in real-time from road sensors with traffic
signals connected to a planner, we believe that our approach
can divert road traffic from a blocked road without human
intervention.

In future, we plan to embed our model into a road traffic
simulation environment. We also plan to provide a deeper
evaluation of our approach, especially to compare it with
traditional traffic control methods, and assess the effort and
challenges required to embody the model within a real-world
environment. Other aspects of improvement would include:
incorporating the actual road policies; increase interaction
with road users; build a knowledge base from generated (op-
timal) plans; consider various speed limits; consider weather
conditions and priority vehicles.

REFERENCES

[1] D. A. Roozemond, “Using intelligent agents for pro-active, real-
time urban intersection control,” European Journal of Operational
Research, vol. 131, no. 2, pp. 293–301, 2001.

[2] D. De Oliveira and A. L. C. Bazzan, Multiagent Learning on Traffic
Lights Control: Effects of Using Shared Information, 2009, pp. 307–
322.

[3] Z. sheng Yang, X. Chen, Y. shan Tang, and J.-P. Sun, “Intelligent
cooperation control of urban traffic networks,” in Machine Learning
and Cybernetics, 2005. Proceedings of 2005 International Conference
on, vol. 3, 2005, pp. 1482–1486 Vol. 3.

[4] A. Salkham, R. Cunningham, A. Garg, and V. Cahill, “A
collaborative reinforcement learning approach to urban traffic
control optimization,” in Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology - Volume 02, ser. WI-IAT ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 560–566. [Online]. Available:
http://dx.doi.org/10.1109/WIIAT.2008.88

[5] F. Daneshfar, J. RavanJamjah, F. Mansoori, H. Bevrani, and B. Z.
Azami, “Adaptive fuzzy urban traffic flow control using a cooperative
multi-agent system based on two stage fuzzy clustering,” in Vehicular
Technology Conference, 2009. VTC Spring 2009. IEEE 69th, 2009,
pp. 1–5.

[6] A. L. Bazzan, “A distributed approach for coordination of traffic
signal agents,” Autonomous Agents and Multi-Agent Systems,
vol. 10, no. 1, pp. 131–164, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10458-004-6975-9

[7] I. Dusparic and V. Cahill, “Autonomic multi-policy optimization in
pervasive systems: Overview and evaluation,” ACM Trans. Auton.
Adapt. Syst., vol. 7, no. 1, pp. 11:1–11:25, May 2012. [Online].
Available: http://doi.acm.org/10.1145/2168260.2168271

[8] X.-F. Xie, S. Smith, and G. Barlow, “Schedule-driven coordination
for real-time traffic network control,” in International Conference
on Automated Planning and Scheduling, 2012. [Online]. Available:
http://aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4701/4744

[9] F. Jimoh, L. Chrpa, P. Gregory, and T. McCluskey, “Enabling auto-
nomic properties in road transport system,” in The 30th Workshop of
the UK Planning And Scheduling Special Interest Group, PlanSIG
2012, 2012.

[10] A. Gerevini, A. Saetti, and I. Serina, “An approach to temporal plan-
ning and scheduling in domains with predictable exogenous events,”
J. of AI Research, vol. 25, pp. 187–231, 2006.

[11] A. I. Coles, M. Fox, D. Long, and A. J. Smith, “Planning with
problems requiring temporal coordination,” in Proc. 23rd AAAI Conf.
on Artificial Intelligence, July 2008.

[12] G. D. Penna, B. Intrigila, D. Magazzeni, and F. Mercorio, “Upmurphi:
a tool for universal planning on pddl+ problems,” in Proc. 19th Int.
Conf. on Automated Planning and Scheduling (ICAPS), 2009, pp. 19–
23.

[13] P. Eyerich, R. Mattmüller, and G. Röger, “Using the Context-enhanced
Additive Heuristic for Temporal and Numeric Planning,” in Proc. 19th
Int. Conf. on Automated Planning and Scheduling (ICAPS), 2009.

[14] J. Hoffmann and S. Edelkamp, “The deterministic part of ipc-4: An
overview,” J. Art. Int. Res. (JAIR), vol. 24, pp. 519–579, 2005.

[15] M. Fox and D. Long, “Modelling mixed discrete-continuous domains
for planning,” J. Art. Int. Res. (JAIR), vol. 27, pp. 235–297, 2006.

[16] P. Haslum and H. Geffner, “Heuristic planning with time and re-
sources,” in Proc. 6th European Conference on Planning (ECP’01),
2001, pp. 121–132.

[17] M. Fox and D. Long, “PDDL2.1: An extension of PDDL for
expressing temporal planning domains,” J. Art. Int. Res. (JAIR),
vol. 20, pp. 61–124, 2003. [Online]. Available: http://www.jair.org

[18] S. K. Gupta, D. S. Nau, and W. C. Regli, “IMACS: A case study in
real-world planning,” IEEE Expert and Intelligent Systems, vol. 13,
no. 3, pp. 49–60, 1998.

[19] A. Garrido, E. Onaindia, and F. Barber, “A temporal planning system
for time-optimal planning,” in Progress in AI, ser. LNCS, vol. 2258,
2001.

[20] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners,” Art. Int. (AIJ),
vol. 173, no. 5-6, pp. 619–668, 2009.

[21] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” J. Art. Int. Res. (JAIR), vol. 14,
pp. 253–302, 2001.

[22] J. Lhr, P. Eyerich, T. Keller, and B. Nebel, “A planning based
framework for controlling hybrid systems,” 2012. [Online]. Available:
http://aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4708/4726

[23] D. F. Ferber, “On modeling the tactical planning of oil pipeline
networks.” in ICAPS, L. McCluskey, B. Williams, J. R. Silva, and
B. Bonet, Eds. AAAI, 2012.

[24] E. Burns, J. Benton, W. Ruml, S. Yoon, and M. Do,
“Anticipatory on-line planning,” in International Conference on
Automated Planning and Scheduling, 2012. [Online]. Available:
http://aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4696/4745

[25] S. Kiesel, E. Burns, C. Wilt, and W. Ruml, “Integrating
vehicle routing and motion planning,” 2012. [Online]. Available:
http://aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4709/4723

[26] M. Gopal, Control systems: principles and design. London: McGraw-
Hill, 2008.

[27] McDermott D. et al., “PDDL–the planning domain definition lan-
guage,” Available at: www.cs.yale.edu/homes/dvm, Tech.
Rep., 1998.

[28] J. Benton, A. J. Coles, and A. Coles, “Temporal planning with
preferences and time-dependent continuous costs,” in ICAPS, 2012.

