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Abstract

In this thesis | present an investigation on the spin dynamics observed during
moment localisation, non-ergodic magnetic phase transitions, and weak itinerant

electron magnetism.

The pseudo-binary compound Y(Mni,Alx), has been investigated under the
influence of equivalent opposing chemical and mechanical pressures using Muon
Spin Relaxation. The results reveal the application of external mechanical pressure
(4.5 kbar) to destabilise the manganese moment, and produce a ground state
distinctly different to that seen under ambient pressure conditions. Short-range
nuclear and spin correlations have been studied via diffuse neutron scattering, and
through a combination of analysis techniques | have mapped the temperature
dependence of these correlations and their evolution due to the substitution of

manganese for aluminium.

Applying new models of hierarchical relaxation and non-extensive entropy | have
studied the slow relaxation dynamics of the spin glass phase using Neutron Spin
Echo spectroscopy. The results are developed further by applying the same analysis
to a variety of glassy magnetic phenomena: spin glass freezing (Y(MnyxAly), and
Y (Al1«Fey)2), speromagnetic freezing ((La;«Erx)Aly), and superparamagnetic
blocking (CrixFex). 1 have shown that within this framework the underlying
freezing mechanisms result in distinctly different responses, and that in the case of

spin glass relaxation an apparently universal scaling relationship is present.

Finally the results of a Muon Spin Relaxation study on the moment fluctuations in
Au,V above the Curie temperature are reported. The temperature dependence of the
muon spin relaxation rate is found to be similar to that of the archetypal weak

itinerant helimagnet, MnSi.
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INTRODUCTION

During the last century our understanding of real magnetic systems has
improved greatly, due to both significant theoretical advances and a constant
improvement of the experimental techniques available. Consequently convergence
between prediction and observation has grown, especially since the inclusion of
interactions enhanced by, and in addition to, the exchange between spins. Despite
this however our understanding of the dynamics of exchange coupled spins,
specifically how paramagnetic spin dynamics relate to the magnetic ground state,
remains decidedly poor. Fortunately the simultaneous improvement of experimental
techniques has led not only to increased accuracy but crucially opened a vast region
of momentum and frequency space over which scientists can investigate. Motivated
by this | present several investigations in to the spin dynamics of several evolving

magnetic systems using neutron scattering and muon spectroscopic techniques.

In YMn, the manganese moments, which are separated by distances close to that of
the pure metal, are found to localise at low temperature and adopt a complex anti-
ferromagnetic spin arrangement alongside a remarkably large lattice expansion. The
dynamics associated with this magnetic phase transition have previously been
studied using a range of experimental techniques. Partial substitution of aluminium
for manganese not only counteracts this lattice expansion but also promotes Curie-
Weiss-like behaviour, collapses the long-range magnetic order, and ultimately leads
to a spin glass phase at low temperatures. The first question addressed in this thesis
is whether using the application of external mechanical pressure the resulting change

in spin dynamics can be reversed, leading to a magnetic ground state comparable to



that of the undoped parent compound. To do this muon spin relaxation
measurements have been performed and the divergence in the relaxation rate
modelled using self-consistent spin fluctuation theory. This investigation is then
extended using neutron diffraction to study the evolution in nuclear and spin
correlations across the transition temperature as a function of aluminium

concentration.

As stated, in this system the addition of non-magnetic aluminium promotes a low
temperature spin glass phase largely due to the inherent geometric frustration of the
crystallographic structure. A spin glass phase is a disordered magnetic state
characterised by the slowing, and eventual freezing, of magnetic moments in
random orientation. The dynamics associated with this process follow an
unexplained but nonetheless apparently universal non-exponential form - hence this
glassy relaxation has intrigued scientists for many decades. Noble prize laureate

Philip Anderson has stated,

“The deepest and most interesting unsolved problem
in solid state theory is the nature of glass and the
glass transition”

Close analogy can be made between the relaxation dynamics of structural and spin
glasses, leading many scientists to believe a deeper understanding of the glass
transition should first be sought by establishing a theory for the spin glass transition.
Attempts to do so have had unforeseen implications in many fields of research:
neural networks, sociology, biological evolution, computer algorithms, artificial
intelligence, and economics, all of which to a greater or lesser extent fall under the
umbrella of what are known as complex evolving systems and as such the spin glass
problem is therefore often considered to be a precursor to the study of complexity

itself.

In the context of this research, it has recently been discovered a degree of
universality exists between the relaxation dynamics of several dilute spin glass

systems studied within the framework of Tsallis’ non-extensive entropy. Continuing



this work | present further investigations of this possibly universal relaxation

response via the Neutron Spin Echo technique.

Finally, discovered in the 1960s, weak itinerant magnetic systems are a fascinating
class of material which obey the Cure-Weiss law very precisely, yet have an ordered
moment significantly lower than the effective moment calculated for the Curie
constant. The intermetallic compound Au,4V is extremely unusual in that it is found
to be ferromagnetic despite neither gold nor vanadium carrying a magnetic moment,
yet has characteristics of both localised and itinerant electron systems. To resolve
this issues a Muon Spin Relaxation study has been performed of the spin
fluctuations above the Curie temperature, and comparison made to the archetypal

weak itinerant system MnSi using Moriya s unified theory as the framework.



Chapter 1
MAGNETISM

1.1 Introduction

Our understanding of magnetism, despite it being ubiquitous in modern day
life, is far from complete. This opening chapter will introduce several key concepts
such as symmetry, localised and itinerant models, and present a modern-day

description.

1.1.1 Symmetry

Transition to a low temperature ordered magnetic phase is accompanied by a
reduction of symmetry. A simple way to envisage this is by considering the
transition from liquid to solid state in condensed matter. A liquid has complete
translational and rotational symmetry, that is to say each point is identical averaged
over time. However when cooled below the melting point the resulting solid state
must sacrifice much of this symmetry. For example, a regular square lattice has only
four-fold rotational symmetry, and translational symmetry of integer combinations
of its lattice parameter. Similarly, during a ferromagnetic phase transition a
reduction in symmetry occurs due to the spins choosing a unique direction along

which to align (up or down). This can be illustrated by Landau s theory.

1.1.2 A Phenomenological Description

The Landau theory is a phenomenological model which calculates the free
energy of a system as a function of its magnetisation, (M). For a ferromagnet in the
absence of an external magnetic field the free energy is written as a polynomial

series,



F(M) = Fy + a(T)M? + bM* (1-1)

where (Fo) and (b) are positive constants and [a(T) = ao(T — T¢)] is a temperature
dependant parameter allowed to change sign passing the transition temperature,
(Tc). By minimising the free energy, (6F / 6M = 0), we find the ground state

solutions,

1

/

T -T2
M=OorM=iFier] (1-2)

Cleary the first condition is true for all temperatures but produces an unstable
equilibrium position with (T <T¢), shown in Figure 1:1. This instability is known
as spontaneous symmetry breaking. The second result is strictly only valid when
(T < Tc¢), thus the magnetisation is zero at all temperatures above the ferromagnetic
transition, since we cannot take the root of a negative number, and then proportional
to (Tc — T) ™ In this case there are two so-called broken symmetry solutions which
have the same free energy, one where the spins are aligned in the up direction and

the other where they are aligned down.

In a general sense the high temperature disordered paramagnetic phase is analogous
to the liquid state in the previous example, where each spin is equivalent average
over time, (M =0), and like the solid state the low temperature ordered phase has a
reduced symmetry once the magnetisation adopts a non-zero value. Magnetisation

is therefore the order parameter” of the ferromagnetic phase transition.

Unfortunately, the predictions of the Landau Theory ultimately fail when applied to
real systems. Experimental results are often more accurately described by the
relationship [M o (Tc —T)’], where the exponent takes a value in the range

(0.2 < p <0.4); significantly lower than that predicted.

“ A parameter associated with a phase transition that indicates the existence of a particular
symmetry. Above the transition temperature it takes a value of zero and below a non-zero value.
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Figure 1:1  Variation of the Landau free energy for a ferromagnet, F(M) for decreasing values of
temperatures starting above the Curie temperature, (T¢).

It is important to mention that the susceptibility, specific heat, and correlation length
are found to diverge at the critical point, meaning that each of these physical
properties tend towards infinity at (T¢). In an analogous way so does the reciprocal
of magnetisation. To model this critical behaviour simple power laws are usually
applied, such as the derivation above, where the indices are known as critical
exponents. These exponents not only contain valuable information on the nature of
the phase transition under investigation, but also reveal systematic trends between
microscopically different systems. The term universality is used to describe

circumstances where apparently different systems yield the same critical exponent.

1.2  Theories of Magnetism

The modern theory of magnetism started with the advent of quantum
mechanics, which from the outset lead to two distinct models: one initiated by
Heisenberg based on a picture of localised electrons ?, the other by Bloch based on
band theory in which the itinerant electrons are so-called magnetic carriers ®. These
mutually opposite models caused considerable controversy and ultimately although
the localised electron picture was able to describe the magnetism of Rare earth

metals and alloys both had limited success in accounting for the magnetic properties



of 3d metallic metals. Subsequently an alternative was developed in 1973 with the
aim of interoperating between these extremes of fully localised or itinerant electron
descriptions known as the Self-Consistent Renormalisation Theory, abbreviated to

simply SCR theory “.

1.2.1 The Exchange Interaction
Consider the simple case of a two electron system. The total eigenfunction

must be described by the following linear combinations,

1
Y = NG [Ya (DYp(2) + (D (2)]
and (1-3)

1
Y, = % [Va (DYp(2) — YD, (2)]

where (y,) and (yp) describe the space and spin quantum states of the particle (1)
and particle (2), respectively. The first is called the symmetric and the second anti-
symmetric total eigenfunctions, which despite taking different forms both describe
the same eigenvalue, a phenomenon called exchange degeneracy. However if both
particles were in the same quantum state the anti-symmetric expression would be

identical to zero.

¥y = = [ (Ve = YaDa (@] =0 (14
This is in fact the basis of the Exclusion Principle which states indistinguishable®
fermions cannot occupy the same quantum state, and by implication must be anti-
symmetric under particle exchange.

In this brief explanation labels (1) and (2) contained both the space and spin
variables of the electrons; three space and one spin quantum numbers. In a very
general way however it is possible to express the anti-symmetric total eigenfunction

as the product of these separate factors °,

" Particles such as electrons cannot be distinguished between if their wave functions overlap.
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(total eigenfunction) = (space eigenfunction) x (spin eigenfunction)

Due to the spin quantum number being a discrete variable there are subsequently
three valid symmetric spin eigenfunctions (triplet state), but still just one anti-
symmetric spin eigenfunction (singlet state) for non-interacting electrons. Since the
total eigenfunction must be anti-symmetric with exchange of particle labels this
leads to a coupling between the spin and space variables; they must have opposite
symmetry. There is no classical analogy for this exchange interaction; it is simply
an electrostatic force driven by quantum mechanical effects which manifests in

several ways.

This is called direct exchange, which occurs when electronic wave functions
overlap. However, when such overlap is negligible exchange interactions may still
be mediated via indirect mechanisms. For the purposes of this work only the
Rudderman-Kittel-Kasuya-Yosida (RKKY) interaction ®® need be discussed. The
RKKY exchange interaction is important when considering well localised magnetic
moments such as those of the Rare earth metals, or in situations where magnetic
impurities are well separated. Briefly, such magnetic moments have a polarising
effect on the surrounding sea of 6s- and 5d-conduction electrons leading to an excess
of spin-up electrons close to the magnetic moment. The spin density thus extends in
an oscillatory fashion away from the magnetic moment throughout the lattice,
polarising the surrounding magnetic moments, the magnitude and direction of which

subsequently varies with separation.

1.2.2 Localised Electron Model

An atom has an eigenstate defined by its spin and orbital angular momenta
given by the sum of its individual electrons: [S = Y sj] and [L = Ii], illustrated in
Figure 1:2. Assuming the electrons of the atom in question are fully localised the
ground state configuration can be determined by Hund’s empirically formulated

rules which state:



1. The spin quantum number (S) is maximised in a way to minimise the Coulomb
energy consistent with the Pauli Exclusion Principle.

2. The orbital quantum number (L) is maximised in a way that is compatible with
rule 1. Hence minimising energy further by making it easier for the electrons to
avoid one other.

3. For shells less than half full the magnitude of the total angular momentum
quantum number [J=|L-S][], whilst for shells more than half full
[J=|L+S|]. This final rule attempts to minimise the spin-orbit energy.

The total angular momentum can then be used to determine the local magnetic

moment of the atom,

m = g;ugJ (1-5)

where (g;) is the Landé g-factor and ug is the Bohr magneton (= ek / 2mg). To
derive the paramagnetic susceptibility we must consider a system of (N) non-
interacting local moments under the influence of an external magnetic field (B)
which will tend to align the direction in which they point. Thus each atom will

possess a potential energy equal to,

where (M;) is the magnitude of (J) projected along the direction of the applied field.
The probability of an atom being in state with energy (E) at temperature (T) is given
by Boltzmann statistics, which through a lengthy derivation leads to susceptibility of

the form,

Ng,%uoug)J+1) €
Ypara =g m =7 (1-7)
where (C) is the Curie constant. This is the well known Curie Law which often

incorporates an effective moment, [ues = 9;°[J(J + 1)] us] per magnetic atom.



In 1928 Heisenberg introduce a model to account for direct exchange interactions
taking place between neighbouring atomic spins. In his model the energy of the

system is given by the Hamiltonian,
H = —thjsi B (1-8)
ij

where (J) is now the so-called exchange integral which is positive for ferromagnetic
alignment and negative for anti-ferromagnetic alignment 2. The sum is taken over
all nearest neighbour spins, (S) located on lattice sites i and j. It is important to note
that these spins are three-dimensional vectors allowed to point in any direction,
(D = 3), however the dimensionality of the lattice on which they sit may be (d =1, 2,
3...n).

The most frequently used spin model is perhaps the Ising model °, where the spin
operator is one-dimensional and is therefore restricted to point only up or down
(D =1). However, regardless of the model chosen equation (1-8) presents a many-
body problem which is extremely difficult to solve exactly. In general we resort to
an amalgamated mean-field approach where the exchange between a finite number
of spins are solved whilst the remaining lattice interactions are replaced by an

effective field, (Besr).

This is highly analogous to the first successful theory of ferromagnetism developed
some 20 years earlier by Weiss °. Here it is assumed that the interactions
responsible for magnetic ordering of atomic moments can be wholly represented by

an effective mean-field given by,

where the constant (1) is called the molecular field coefficient.
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41" - shell

Figure 1:2

of electrons in the 4f subshell.

The result of Hund’s rules applied to the lanthanide series, where n represents the number

shell 1=3 2 1 0 -1 -2 -3 S L J
Ce 4t l 12 3 52
Pr 4 2 ! ! 1 5 4
Nd 4f ® l l l 32 6 92
Pm 4f ¢ ! ! l ! 2 6 4
Sm 4f ° ! ! l ! l 52 5 52
Eu 4f © ! ! l ! l ! 3 3 0
Gd 4t 7 l l l ! l ! Y /2 B 1/
Tb 4° 1 } } ! } ! l 3 3 6
Dy 4° 11t ! l ! | 52 5 1512
Ho A A S } ! 1 2 6 8
Er e K N N S I S ! l 32 6 1512
L0 T R e O A N A 1 1 5 6
Yb e A A A - B (7
Lu e A % A A N 0

Table 1:1 The spin, orbital, and total angular momentum quantum numbers derived from the use of

Hund’s rules.
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In this case the susceptibility follows the Curie-Weiss form,
y=— (1-10)

where (6) is the Weiss constant which defines the position of a transition below
which spontaneous magnetic ordering occurs. In the case (6 > 0) the moments adopt
ferromagnetic alignment, and when (@ < 0) anti-ferromagnetic alignment. However,
being prior to the arrival of quantum mechanics this phenomenological model could

not provide an explanation as to the origin of this internal molecular field.

1.2.3 Itinerant Electron Model

The nearly-free electron model offers a simple description of metals and
states at (T = 0) eigenstates are filled up to the Fermi wavevector (kf). If we take the
points in k-space to be separated by (2x / L), where (L%) is the volume, and the

number of states between (k) and (k + dk) to be equal to [4nk®dk],

Figure 1:3  The density of states in k-space is calculated by considering the volume of k-space
between wavevector (k) and (k + dk).
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The density of states can be easily derived;

Vk2dk

— (1-11)

gk)dk =

Thus, the number of electrons (N) filling eigenstates up to the Fermi wavevector is,

3
N = f kfg(k)dk _Vkp (1-12)
0 3m2

However, the occupancy of these states is governed by the Fermi-Dirac statistics,

1

) = o (E=E)kyT) + 1

(1-13)

where E is the energy of a given eigenstate and (Er) the Fermi energy. From this
equation it can be seen at absolute zero f(E) reduces to a step function, taking the

value of unity when (E < E;) and 0 when (E > Ey).

Eigenstates with different spin quantum number have the same energy, meaning in
the absence of an external field there exists a two-fold degeneracy. When an
external magnetic field is applied the electron’s energy is either lifted or lowered
depending on its relative spin alignment. In the first instance this gives rise to Pauli
paramagnetism; the largely temperature independent susceptibility of the electron

gas.

This spontaneous splitting of the spin states may also explain the non-integer us
measurements of the magnetic moment per atom in metals such as iron (~ 2.2 ug).
By analogy with the Weiss model, Stoner ™ proposed that electron-electron
exchange interactions may be described using a molecular mean-field where each
spin experiences an average exchanged field generated by all its neighbouring spins,

taking the form,

Bg =yM (1-14)
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This molecular field magnetises the electron gas due to Pauli paramagnetism, which
in turn causes the molecular field. This feedback mechanism is however strictly
dependent on both the molecular field constant (y) and the Pauli susceptibility (xo)
being large enough for the system as a whole to save energy by becoming

ferromagnetic.

9(E) 9(E)

Figure 1:4  The density of states, g(E), showing a spontaneous splitting of the spin bands.

The model is as follows: in the absence of an external field a number of spin-down
electrons are elevated by a small amount (6E) from the Fermi energy, changing spin
state as they do so. Hence spin-down electrons between (E: — 6E) and (Ef) now
occupy eigenstates between (Er) and (Es + SE) in the spin-up band. The number of
electrons moved is equal to the density of states at the Fermi energy multiplied by

half the energy change, [g(Er) 6E / 2]. The energy costs is therefore given by,

1
AEgp =3 9(E;)8E? (1-15)
However the interaction between the magnetisation and molecular field may give an

energy reduction greater that (AExg). To illustrate this first the magnetisation is

written in terms of the number density of up and down spins respectively,
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M = pp(ny —ny) (1-16)

Note that the magnetic moment predicted by this equation is not necessarily an
integer value of the Bohr magneton. The change in molecular field energy is

therfore,

M
AEy = — [ oyM dM
1
= — - Hotgy(ny — ny)? (1-17)

= 3 U(g(E)sE)"

with [U = uouzy] essentially a measure of the mean exchange per electron driving
the molecular field. Figure 1:5 shows the calculated values of (U) and g(Es) as a
function of atomic number. The total energy exchange (AE) is therefore the sum of

the kinetic and molecular field energies:
1
p— —_—— 2 —_ -
AE = ABgs + ABy = 5 g(Ef)SE2 (1 - Ug(E;)) (1-18)

Clearly with [Ug(Ef) > 1] the change in energy given by this equation is negative,
implying that spontaneous ferromagnetism is possible since it is energetically
favourable for the system as a whole. This condition not only requires strong
Coulomb interactions but a high density of states at the Fermi energy, and is referred
to as the Stoner Criterion. With this in mind it is apparent that, at least for 3d
transition metals, the band structure close to the Fermi energy is vital in determining

the magnetic properties of the material.

Thus under the influence of an applied external magnetic field the paramagnetic

susceptibility is given by,

poM _ porg(Er) X
B 1-Ug(E) 1-Ug(E)

_M (1-19)
X=g~
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Figure 1:5
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Top: the Stoner parameter as a function of atomic number Z. Middle: the density of states
as a function of atomic number. Bottom: The Stoner criterion given by the product of the density of
states and the Stoner parameter. It can be seen that only the elements iron, cobalt, and nickel are capable
of spontaneous ferromagnetism, however calcium, scandium, and palladium are very close. Recreated
from Solid-State Physics, Ibach & Liith 12
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and so the Pauli susceptibility is enhanced by the denominator if (U < 1), a
phenomenon called the Stoner enhancement which is especially evident in systems

which are close to ferromagnetism such as palladium and platinum.

1.2.4 A Unified Theory

The localised electron model holds true at least for isolated atoms or for
substances where the unpaired electrons are not perturbed too greatly by interatomic
interactions, for example insulators and 4f-metals. However its predictions are not
consistent with empirical evidence, which reveals the saturation moment, (us), of
many metal’s does not take an integer value of the Bohr magneton despite obeying
the Curie-Weiss Law, equation (1-10). This is largely because the localised electron
model does not account of the way chemical bonding significantly alters the

electronic structure of atoms in the solid state, i.e. alters the conduction band.

On the other hand, the itinerant electron model successfully predicts that
spontaneous ferromagnetism exists only for three elements: iron, cobalt, and nickel
which fulfil the Stoner criterion, and furthermore accounts for the observed
saturation moment per atom being a non-integer value of the Bohr magneton.
However compared with experimental results it fails in determining the
susceptibility of transition metals above absolute zero, and predicts transition
temperatures which are several orders of magnitude too high. Most importantly it is

unable to explain the Curie-Weiss Law.

Insight as to a system’s degree of itinerancy was provided by the Rhodes &
Wohlfarth **, who by plotting the ratio between the effective and saturation moment
(et / us) as a function of the Curie temperature obtained the plot recreated in Figure
1:6. Since under a localised picture the moment does not change greatly across the
transition temperature this ratio should be close to one (dashed line). The itinerant
limit is realised where (e > ps) since the saturation moment is independent of the
Curie constant. The plot clearly implies that the vast majority of systems are neither
fully localised nor itinerant in nature but instead evolve continuously between the

two mutually opposite extremes.
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Figure 1:6 ~ The Rhodes-Wohlfarth plot recreated from Spin Fluctuations in Itinerant Electron
Magnetism, Téru Moriya 1)

Subsequently Stoner’s theory was extended to include thermally induced spin flip
excitations at the Fermi surface in the hope it would extend the model to finite
temperatures . By definition a spin flip excitation occurs when an electron is
elevated above the Fermi energy, resulting in an electron-hole pair of opposite spin.
This mechanism causes a smearing at the Fermi surface and an imbalance between
the spin-up and spin-down bands, commonly referred to as a spin density
fluctuations or Stoner excitations. However, even with the inclusion of spin density
fluctuations the model still fails when compared to experimental observations.
Significant improvements arrived in the 1970s when theoreticians began to consider
exchange-enhanced spin fluctuations*, which were known to greatly enhance Stoner

excitations.

Moriya developed a unified theory of spin density fluctuations for itinerant electron
systems incorporating exchange-enhanced effects which, by calculating the

equilibrium state and spin density spectrum in a self-consistent manner, allows both

7 The scattering of electron-hole pairs by exchange interaction.
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local and itinerant magnetism to exist within the same framework and has greatly
improved our current understanding of magnetism “*°. A detailed discussion of SCR
theory is beyond the scope of this work but a comprehensive account may be found
in reference . Perhaps the most significant results are the prediction of Curie-Weiss
susceptibility without a local moment, and reasoning for the disparity between
effective and saturation moment observed in weakly ferro- and anti-ferromagnetic

metals is also accounted for.

According to SCR theory the magnetic properties of a system are determined via the
nature of their spin density fluctuations. In the local electron limit the amplitude of
the spin density is fixed and fluctuations are regarded as local in real space.
Alternatively, in the itinerant electron limit the average spin density amplitude of
spin fluctuation at low temperature is localised in reciprocal space, therefore
extended in real space. However, as shown in Figure 1:6 many magnetic materials
occupy an intermediate range. A general theory of Curie-Weiss susceptibility is
developed in terms of a stiffness constant for spin fluctuations, (To), which is a

measure of the stiffness against a change in amplitude of the spin fluctuation.

1 4U? T Tc
Xo NT, Z <1/)(0 +2V(0)—2V(g) 2v(0) - 2V(q)> (1-20)

q

where V(q) = [U / S.%(@)]. In the local limit (T; — 0) and thus the general

expression for magnetic susceptibility reduces to,

NS}

T3T-T) .

Xo

In the opposite limit (Ty) is large, indicating that the spin fluctuations are “soft”, and,

1  4NUZSA(T
g ANUZSL(T) (T —T,) (1-22)
Xo 3Ty T¢

In this case the susceptibility arises due to the linear increase of the squared spin

density fluctuation amplitude S *(T).
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Figure 1:7  Possible examples of the temperature variation of S, *(T), taken from Moriya Y Lineais
the local moment case where the mean-square local amplitude of spin fluctuations is constant. Lines b
and c represent intermediate vales of stiffness constant, large and small respectively, and line d is for
weakly ferromagnetic metals. The vertical arrows represent the position of Tc.

For weak itinerant ferromagnets the theory predicts a Curie temperature far lower
than those of the Stoner theory, moreover Curie-Weiss behaviour is predicted above.
The spontaneous magnetic moment per atom is dependent on the band structure at
the Fermi surface, and is independent of the Curie constant. Finally, it is expected

that the spontaneous magnetisation follows the relationship,

M (TC% _ T4/3) (1-23)

20



Chapter 2
THE SPIN GLASS PHASE

In this, the second preliminary chapter, a chronological account along with
the salient properties of the spin glass phase are presented. Key concepts are
highlighted in order to aid inspection of several attempts to establish a general
mean-field theory in the limit of static moments, before finally the dynamics of these
systems are discussed in the wider context of non-exponential relaxation,
emphasising two ‘new’ and analogous relaxation functions derived independently in
recent years from the works of Weron and Tsallis.

2.1 Introduction

Louis Néel first investigated the materials which, some 40 years later, led to
the discovery of the spin glass phase . He hoped that by studying dilute alloys of
transition metal impurities suspended in a noble metal matrix he could better
understand the nature of magnetism in the pure transition metal itself. By the 1950s,
advancements in cryogenics made it possible to reach much lower temperatures,
revealing unusual magnetic behaviour unlike that of a ferromagnet or anti-
ferromagnet *®. Most early interpretations did not consider the existence of a phase
transition, however the name ‘spin-glass’ was coined at the end of the 1960s to
represent a new class of random magnetic alloy in which the magnetic structure is
unrecognisable from that of the pure metal . In 1971, at a conference on

magnetism and magnetic materials, Cannella, Mydosh & Budnick revealed the
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discovery of a sharp cusp in the susceptibility of dilute AuFe alloys ** #. Thus
interest in these new novel materials grew. In 1975 the first attempt at establishing a
theory behind the spin glass phase was proposed by Edwards & Anderson ** %,

which will be discussed in more detail in the following sections.

Subsequently many hundreds of different magnetic systems have been identified as
having spin-glass-like properties. This is perhaps not unexpected since almost all
physical systems possess different types of interactions which compete to adopt
different ordered states. In a general sense, such competition is uncovered when due
to a change in an external parameter (temperature, pressure, or magnetic field) the
system undergoes a phase transition, indicating that the external impulse favours one
interaction type over the others. It is therefore not surprising that systems displaying
spin glass properties are often fundamentally different, which prompted Mydosh to

construct a broad scheme by which several discrete families could be identified *.

Spin glass family Example

Noble metal — Transition metal alloys AuFe, CuMn, AgMn

Transition metal — Transition metal alloys PbMn, MoMn, RhMn, VFe

Rare earth alloys L8y, GAAl, Lag.CeRu

LagoThgoce

Y(Mnyx My)2, (Laiy ER)Al,
Rare earth compounds (Ti V)05
Amorphous semiconducting (Sh2Ss)« (Sbls)y Fe,

Eu,Sr..S, Eu,..Gd,S,

Crystalline insulating and semiconducting Fe,,Mg,Cl
1-x x~12

The following sections are not intended to give an exhaustive account of this vast
field, but instead present a general overview in order to highlight the most important

concepts relevant to this work.
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2.1.1 Spin Glass Properties

|I|||||I|I|I|I|
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Figure 2:1  Left: A basic representation of magnetic moments placed at random on a non-magnetic
cubic lattice. Right: the RKKY exchange (J;) plotted as a function of distance (R).

Communication between randomly located impurity spins is mediated
indirectly through the conduction electrons via the RKKY interaction, illustrated
above, and due to the long-range oscillatory nature of this exchange some spin-spin
interactions are positive, therefore favouring parallel alignment, whilst others are
negative and favour anti-parallel alignment. Subsequently, there is no mean
ferromagnetic or anti-ferromagnetic order across the sample. On the contrary, upon
cooling to sufficiently low temperature the spins freeze in random orientations, and a
disordered ground state is entered below a critical temperature (T;). As mentioned,
the dynamics of this freezing process are analogous to those of structural glasses,
and it is therefore hoped that in developing a model to understand the transition to
the spin glass state a better understanding of the transition from supercooled fluid to

amorphous structural glasses might be realised.
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On a qualitative level at least, the physical behaviour of the different spin glass
families is quite universal despite the diversity of mechanisms involved. The
aforementioned cusp in the low temperature susceptibility is commonly accepted to
be the hallmark behaviour of a spin glass material, and its position is considered to
identify (Ty). In a small static field, the temperature dependence of susceptibility
obeys the Curie-Weiss Law, indicating the spins are weakly coupled. In the
paramagnetic phase, above (Ty), the magnetisation responds rapidly to changes in

magnetic field, whereas in the spin glass phase the response is extremely slow.

Other measurements, such as Muon Spin Relaxation (§ 3.4), also shown similar
sharp anomalies. Surprisingly however specific heat, a common indicator of a phase
transitions, shows no distinct anomalies but only a broad peak at temperatures above
the freezing point together with a low temperature linear term similar to that of a
structural glass.  This ‘smeared behaviour’ is also present in resistivity

measurements %.

2.1.2 The Frustration Effect

It has been said that extensive investigation on so-called spin systems only
began in earnest with the introduction of a new concept called frustration, circa
1977. In his seminal paper Gérard Toulouse presented an analysis of disorder in the
context of spin-glasses, identifying that the spin glass phase is a consequence of
“serious disorder” borne of “frustration effects”, as opposed to simply a flipping of

interaction signs on sites chosen at random on a regular lattice *.

Here the term frustration denotes a situation where a spin, or ensembles of spins,
cannot orientate in a way to satisfy all the neighbouring interactions. The plaquette,
shown Figure 2:2, is perhaps the simplest example, where a single and double bond
represent ferromagnetic and anti-ferromagnetic interaction, respectively. Clearly, no

configuration of orientations exists whereby all the
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Figure 2:2  Left: A frustrated plaquette where single and double bonds represent a ferromagnetic
interaction, and an anti-ferromagnetic interaction, respectively. Right: Square lattice where the contour
(bold line) represents two possible paths between A and B.

- ?

Figure 2:3  Left: Topological frustration for near-neighbour Ising spins on a triangular lattice with
anti-ferromagnetic interactions. Right: Topological frustration in tetrahedral coordination.

25



interactions can be satisfied. Furthermore, a parameter to measure the effect can be

defined on any closed contour across a lattice (c), Figure 2:2.

By taking (Jij = + 1) to denote ferromagnetic alignment, and (J; = — 1) anti-

ferromagnetic alignment, the frustration parameter is defined,

0= ﬁ]ij (2:1)

Hence, when it is possible to orient the spins between points (A) and (B) (&= + 1),
and the system is not frustrated. If however (A) sends contradictory signals to (B)
along the two paths (@ = — 1), and the system is frustrated. In this simple example it
should be noted that the frustration is established solely by competition between
ferromagnetic and anti-ferromagnetic exchange interactions, since the inherent

geometry of a regular square lattice is bipartite or unfrustrated.

In contrast, a triangular plaquette with only anti-ferromagnetic near-neighbour
interactions exhibits geometrical frustration, Figure 2:3. As a result an anti-
ferromagnetic triangular lattice is fully frustrated since each individual plaquette has
a negative frustration parameter. The ground state must therefore be a compromise,

which often gives rise to complicated non-collinear magnetic structures (8 4.2).

2.1.3 Mean-Field Theories

As previously mentioned, the first attempts to construct a spin glass model
were made by Edwards & Anderson, who in 1975 proposed a mean-field approach
to the spin glass problem *. To characterise the onset of spin glass order they

proposed the following parameter,

Q) = [(S:(®)  $:(0))*]avy (2:2)

where the angular brackets denote the thermal average of spin (S;j), and the average
of this square over the distribution of interactions (Ji) is given by the square

brackets. It simply states that in the spin glass phase there is a non-vanishing
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probability that the orientation of a spin remains unchanged after time (t). Assuming
classical spins and a Gaussian distribution of exchange interactions it was shown
that with (T > Ty) the order parameter Q(t) = 0, whilst for T =0, Q(t) =1 %. As will
be discussed (8 3.1.3), such correlation functions can be equated to the intermediate
scattering function, S(Q, ), which is attained via neutron spin echo spectroscopy
(8 3.2). Edwards and Anderson further obtained expressions for the zero-field
magnetic susceptibility and specific heat, predicting sharp cusps at the freezing
temperature. Again, this has only ever been observed in magnetic susceptibility
data; however their model did correctly identify the liner dependence in specific heat

at low temperatures.

Further progress was made by Sherrington & Kirkpatrick who applied the Edwards-
Anderson theory to an infinite ranged Ising square (hyper-cubic) model #. To begin,

they took a regular lattice of sites, labelled i,
M= Z]ij(Si '8;),  Si=x1 (2:3)
i#j

where the sum is taken over all spin pairs, interacting via exchange (J) given a priori

from the same Gaussian probability distribution,

P(Jij) = exp (— M) (2:4)

21)2 (2/%)

Thus, by means of the so-called replica symmetry method (RS), they were able to
find an exact solution, and by evaluating the average partition function of n identical
replicas, discovered a re-entrant region of the magnetic phase diagram, so named
since the system appears to re-enter a less magnetically ordered state upon cooling

between the limits (1 <Jo/ J < 1.25), shown in the figure below.
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Figure 2:4  The Sherrington and Kirkpatrick phase diagram for infinite ranged Ising spins, with a
mean and variance exchange interaction Jq and J, respectively. Note, for 1 <Jy/J <1.25 the system
exhibits three distinct phases upon cooling: paramagnetic, ferromagnetic and finally a so-called re-
entrant spin glass phase, indicated by the shaded region. Recreated from Sherrington & Kirkpatrick 27,

Unfortunately at (T = 0) the calculated entropy was negative, violating the third law
of thermodynamics. Thouless later avoided use of the replica method® and found
the Sherrington-Kirkpatrick model to be correct close to or above the transition
temperature; although the solution was still unstable at low temperatures even in the

presence of an external magnetic field %,

This instability was crucial as it suggested a breaking of symmetry between replicas.
This brought about several attempts to construct a low temperature solution via so-
called replica symmetry breaking (RSB), the most comprehensive of which was
offered in a series of papers by Parisi *** In short, provided the necessary
restrictions are applied, Parisi’s model yields seemingly realistic results in the static
limit, however the legitimacy and necessity for these restrictions is still not fully

understood *.
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2.2 Spin Glass Dynamics

Bantilan & Palmer introduced the term broken ergodicity in 1980 to portray
the onset of the spin glass state as a sequence of bifurcations in phase space,
resulting in many similar but mutually inaccessible microstates *. This is shown
schematically in Figure 2:5. It can be seen that as the temperature is reduced distinct
valleys appear, separated by infinitely high energy barriers. Once trapped in a
branch of the bifurcation cascade the system is unable to jump from one microstate
to another, even if it were more energetically favourable to do so. In effect, with
(T > Ty) a spin glass remains ergodic and given sufficient time can explore all points
in phase space, whereas below (T) the system becomes non-ergodic. Analogy can
therefore be drawn with structural glasses which, on experimental time scales, are
also effectively non-ergodic since the maximum relaxation time, although finite, is

far larger than is conceivably measurable.
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Figure 2.5  Schematic plot of the free energy density as a function of a phase space coordinate for a
spin glass at low temperature; partially recreated from ® Note there are many equivalent components or
“valleys”, each of which corresponds to a ground state, |<I>J-(')|, or low-lying excited state.

The fact that these numerous microstates are not related to one another by symmetry,
rather appear due to the inherent degeneracy of the system, is a direct consequence
of frustration in the system *. Therefore, the broken symmetry between replicas in

the Sherrington-Kirkpatrick model is seen as a special case of broken ergodicity ¥,
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and as such any model which attempts to predict the properties of a non-ergodic

system must first account for this inherent characteristic.

Palmer approached this by partitioning phase space into a set of mutually
inaccessible components (valleys). This transition occurs suddenly; first order in the
Ehrenfest sense, although for some structural glasses this need not be the case *.
Ergodicity within each component holds, which leads to a clear distinction between
intra- and inter-component relaxation timescales. Intra-component relaxation is that
which occurs between the many metastable states within a given valley, and is often
so fast as to only be included in the system’s entropy. Inter-component relaxation on
the other hand occurs on extremely long timescales and is therefore effectively
frozen i.e. non-ergodic. Ultimately, if we accept this doctrine we much infer that all
glassy systems can break ergodicity if the timescale of the observation is much

shorter than the characteristic relaxation time of the system.

2.2.1 Non-exponential Relaxation

With this in mind, three hundred years of empirical evidence including that
of mechanical *, electrical * and magnetic * relaxation, has shown slow non-
exponential behaviour to be a fundamental feature of many diverse materials *.
Moreover, for the past 150 years it has been customary to evaluate such anomalous
relaxation via the so-called stretched exponential first suggested by Kohlrausch *,
and later derived by Williams & Watts *. This behaviour is also observed in the spin
relaxation dynamics of spin-glasses, where early measurements above (Ts) quickly
reported finding stretched exponential decay in both the remnant magnetisation and

spin-spin autocorrelation function .

¢ (t) < exp [—(%)B], 0<p<1 (2:5)

Accordingly, several theories arose in the hope of explaining this ubiquitous
behaviour, each based on different interpretations of the physical mechanisms
driving it. Each is successful in deriving a stretched exponential of the form given
by the equation above, however rather that clarify the situation (as was intended) the
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Figure 2:6 ~ The time dependence of the stretched exponential formula, Eq.(2:5), with t=1s,
calculated for several (5) values, plotted on a logarithmic time axis.

results caused considerable controversy *. In the first instance, it was found the
simplest derivation was based on taking a statistical distribution of relaxation times,
(), representing different atoms, or clusters of atoms. This clearly implies the co-
existence of many independent or parallel relaxation channels, each with
characteristic relaxation time (zj). However, it was argued by Palmer et al. that such
a model was unrepresentative of glassy systems “. Any legitimate model would
have to incorporate and satisfy three prerequisites: broken ergodicity, interaction
constrains, and hierarchy; not simply rely on this statistical and somewhat
microscopically arbitrary approach. In short, a hierarchically constrained model was
put forward whereby faster degrees of freedom, such as the dynamics of single
atoms successively constrain the slower. To some degree this is the antithesis of a
parallel picture, but nonetheless still derives at the same functional form. Cleary,

equation (2:5) cannot give any physical insight as to the mechanisms involved, and
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besides, in many cases the stretched exponential is unable to adequately describe

spin glass relaxation at, or close to, the transition temperature.

This was clearly demonstrated by Ogielski, who in 1985 performed extensive Monte
Carlo simulations, shown in Figure 2:7, from which he was able to show the time
dependent spin-spin autocorrelation function is more accurately described by a

stretched exponential incorporating a power law pre-factor *,

P(t) o t™ exp [—(%)ﬁ] (2:6)

This phenomenological result revealed for the first time several interesting features
in the time dependence of the exponents, (f) and (x). Firstly, at temperatures
relatively far above the glass transition temperature, ~ 4Ty, the stretching exponent
(8 — 1); this essentially means the exponential term is equivalent to simple Debye
relaxation (exponential decay). Upon cooling, (8 — 1/3) as the transition
temperature is approached. At the same time the characteristic relaxation time (z),
diverges. Secondly (x) is predicted to increase from a negligible value at the
transition temperature up to approximately 0.5 at high temperatures.

In recent years these predictions have largely been supported by neutron spin echo
measurement *°, however despite its apparent success Ogielski’s power law still does
not distinguish between parallel or hierarchical relaxation processes and therefore
we cannot hope to clarify the fundamental question as to what mechanism, or
mechanisms are driving this non-exponential decay. Moreover, the power law pre-

factor can lead to unphysical values at short times i.e. (Q(t) > 1) as (t — 0).

A new model is therefore needed to explain this seemingly universal power law
response. To this end, the remaining sections of this chapter will present two closely
related candidates and discuss how these general relaxation equations have recently
been extended by Cywinski & Pickup to neutron spin echo measurements on several

spin glass materials *" %2,
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Figure 2:7  Simulated dynamic autocorrelation function above T; taken from Ogielski . From right
to left, the temperatures are T = 2.50, 2.00, 1.80, 1.70, 1.60, 1.50, 1.45, 1.40, 1.35, and 1.30. The solid

lines represent least square fits to the data using Eq. (2:6).
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2.2.2 A Probabilistic Mechanism

The challenge now for both theoretical and experimental physicists alike is
to develop and apply a model which gives physical meaning and indeed an insight to
the mechanisms responsible for these peculiar dynamics. In 1991 Karina Weron et
al. proposed just such a model based on a probabilistic interpretation of dielectric
relaxation which, like that of spin-glasses, departs strongly from conventional Debye
behaviour *. A schematic representation of the Weron model is offered in Figure
2:8.

Based on the correlated cluster model of Dissado & Hill *, it is proposed that the
relaxation of complex systems originates from co-operative positional or
orientational relaxation over portions of spatially limited regions, i.e. clusters of
atoms, molecules or aggregates, and that the scale of the relaxation of each
individual entity is constrained such that small clusters relax first via intra-cluster
dynamics. As discussed earlier, it has long been argued that such a framework is
physically more realistic, albeit a radical departure from previous derivations.
Hence, by depicting a material in terms of cluster-type geometry the model

inherently fulfils the requirement of hierarchical constraints on the dynamics.

Although the main motivation of Weron’s work was to understand the universal
power-law behaviour of dielectric susceptibility the resulting relaxation function was
constructed in such a way as to be applicable to any relaxing system where the
relaxation of the entire system can be related to a characteristic relaxation rate,
(A=1/7). This generality has made it possible to apply this stochastic model to

wide range of phenomena, including spin glass relaxation * %,

This rigorous probabilistic approach introduces two independent, non-negative
random variables: a random waiting time (#;) and a dispersion rate (f;). This waiting
time is associated with the relaxation rate of each individual entity, whilst the
dispersion rate is an adjustment time for the local environment to move back to

equilibrium.
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Figure 2:8 2D representation of the cluster geometry used by the Weron Model, possessing both
intra- and inter-cluster interactions.

Essentially, their sum describes the time needed to reach equilibrium, and through

this Weron derives,

1

so=1vk ()] @

where (0 < a < 1) is a measure of the level of self-similarity within the system, and
(k>0) is an effective interaction parameter connected with the waiting time
associated with both inter and intra-cluster relaxation processes. Hence the latter
expresses the strength of interactions and accordingly the degree of hierarchical
constraint on the overall dynamics. Moreover, in the limit (k — 0), equation (2:7)
reduces to the stretched exponential form, in which case (« — 1) reproduces Debye

relaxation,
lim ¢(6) — exp [~(4/2)”] 29)
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This highlights the significance of the interaction parameter (k) in determining the
nature of the relaxation process. Furthermore, the relationship between the stretched
exponential and Weron model in this limit indicates that the stretching parameter (5)
is equivalent to the self-similarity or fractal paramter () between the metastable

phases within an ergodic valley.

Self-similarity and fractal geometry have received a great deal of attention over
recent decades, and the link between this and the complex non-exponential
relaxation exhibited in systems of broken ergodicity is attracting more and more
interest. Recent research suggests that Boltzmann-Gibbs statistical mechanics can
no longer be used to describe the thermodynamic properties of such systems. This
departure has led many to consider a model constructed by Constantino Tsallis, who
has defined a generalised form of entropy commonly referred to as non-extensive.

The following section will introduce the salient ideas of his work.

2.2.3 Non-Extensive Entropy

An ever growing catalogue of evidence has, in recent years, led many
scientists to apply the ideas of non-extensive statistical mechanics to: computer
science *%%; Earth, life and social sciences, geography and climate models **;
economic and financial patterns ®®™; and many more complex natural and artificial
phenomena. The idea stems from the belief that Boltzmann-Gibbs (BG) statistics,
despite apparently being eternal (valid always), and ubiquitous (valid everywhere) is
by no means universal (valid for all phenomena) ™, and although the precise
definition of the domain in which BG-statistic remains valid is as yet an unsolved
problem, the current consensus is that it may only be applied when the relevant
phase space is smooth ™. Already from Figure 2:5 we know that this is not the case

in broken- or non-ergodic glassy systems which have a multi-fractal nature.

Crucially the definition of standard thermodynamic entropy is not in question,
having first been introduced nearly one and a half centuries ago by Clausis and later
interpreted in the seminal works of Boltzmann and Gibbs from statistical mechanics.

A suitable definition of entropy in non-ergodic systems is however a highly
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contentious issue. Nonetheless it should be mentioned how truly remarkable it is
that Boltzmann-Gibbs statistical mechanics can bridge a link between microscopic
laws and the macroscopic world of classical thermodynamics. Hence Tsallis took
this construct as his starting point, with entropy being related to the probability, (pi),

of the total number of possibilities (W),

w
Spe = _kBZpi Inp; (2:9)

i=1

In this form entropy is an extensive property, such that for two independent systems,
(A) and (B),

Sp(A+ B) _ Spe(4) + Spe(B)

2:10
kg kg kg (2:10)

He then constructed a generalisation which considers the possible lack of additively

between these systems by introducing an extensivity parameter (q*),

Sqt(A+B) _5x(4) N S+ (B) N S+ (4) Sy» (B)

2:11
ks ks kp Ty kg (1

Clearly when (g* — 1) this formalisation recovers the usual Boltzmann-Gibbs
entropy whereas the other limits, (g* >1) and (g* < 1), both sub-extensive and
super-extensive states exist respectively. Hence, equation (2:9) is written in

generalised non-extensive form,

q*
1- Yy, (2:12)
*

Sq*(Pi) =kp 1

where (W) is still the number of microscopic possibilities of the system, and (kg) is

still the Boltzmann constant.
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Figure 2:9  Values of the entropy for typical values of q* extensivity parameter (shown with curve).
It can be seen that S,/ k diverges if g* <1, and saturates at Sq =kg / (9™ - 1) when g* > 1, in the limit
W — oo,

To grasp this particularly difficult concept it is useful to consider a practical example
of non-extensivity. A tornado is perhaps most intuitive. It seems legitimate to
assume that the individual air molecules are independent of one another, and they
interact only with other molecules in the immediate vicinity (i.e. short ranged
interactions); this is the normal extensive statistical mechanics view. However, it is
clear that the formation of a tornado is an event that requires the highly correlated
motion of trillions of entities over macroscopic distances, ultimately leading to an
ordered vortex despite its microscopically disorder nature. With this in mind it
becomes easier to appreciate that the entropy of the system as a whole may be less
than the entropy of its parts. In such a case the Tsallis extensivity parameter would
be (q* > 1), saturating towards [Sq = ks / (q* - 1)] in the limit of (W — ), as shown
in Figure 2:9.
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Using this principle Brouers & Sotolongo-Costa derive a two-power-law relaxation
function ™ | identical in form to that of Weron’s purely stochastic theory. As such
it gives a greater physical meaning to the mathematical parameters, («) and (k). In
the first instance this phenomenological model begins in the normal way, by taking a

weighted average of Debye decay using a distribution of relaxation times, w.(z),
#©) = | we@) exp [-(t/2)] dr @13
0

The relaxation is again assumed to be the collective response of clusters, and as such
dependent on their interactions and geometric structure. Smaller clusters relax first,
whilst long-range inter-cluster interactions take place on longer time scales. The
overall process is seen from a macroscopic perspective and derived in terms of two
global parameters, one defining the time and space fractal nature of the relaxation,
(o), and the other, (q), characterising the hierarchical structure of the cluster

geometry though a the maximisation of non-extensive entropy.

The cluster size distribution therefore needs to be related to the relaxation rate
distribution in order for it to scale in an appropriate way with the number of relaxing
entities within a cluster. To do this the relaxation time is equated to the normalised

volume of a cluster (v) via the following expression,
T=ype (2:14)

where (0 < a < 1). Then by maximising the generalised entropy of Tsallis """,

1-— fooo pq* (x)dx

(2:15)
q* -1

Sq*(x) = kB

the probability, p(x) of the system being in a state between (x) and (x + dx) is

obtained. From this the cluster size distribution function can be found,
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1
. A
P(v)=[1—;_2v] o (2:16)

where (1 <q < 2) is the normalised version of (q*) as derived by Tsallis et al. in "%,
Together these equations make it possible to write a relaxation function in terms of

the distribution of relaxation rates,

oo

Pag () = f pa(a, @) exp [ (tA)] dA (2:17)
0
where [A=1/1] and,
(N ey = (2:18)
o) = ;) ‘z_q(z)

which leads to the relaxation function,

B(6) = [1 ¥ (%) . (g)“]_ﬁ (219)

Through comparison with Weron’s function, equation (2:7), it is clear to see that the

interaction parameter is equivalent to,

k = (%) (2:20)

and therefore must give a direct link to the non-extensivity of the system.

This model has been simulated in Figure 2:10 for typical experimental time-scales to

indicate its behaviour as a function of both (q) and (a).

40



%Wﬁuﬂﬂ/i/;ﬂ/l;/{/ﬂm;ﬂ”

7

N
NN
N

N

W

RN
NN

s

W\
M

|
Il

\

=

/ﬂm
//2{///{{(//// l#///////////

\

n

7

)
7

N
RN

l.

S

N

N
N

\\t
-4 \

B

(/

QB

[< "D

I

i

Uil

/7////////////// Il

—_—

Z

\
\
\\\ N

\
\
\
\

%

\
\

\
N\

—

/////// // i il //

\

\
D
N\

/ /
7

N
K

‘i\\\

1

7

‘/ I
!

7
_

\
///// //‘/////////ll/////

f///r/f/.i/f//tlf/:/:/:rifif;:‘{i;'lx'fi i
G

- &
Time 100 L0

Figure 2:10 Simulated results for the Tsallis relaxation function. Each plot reveals the variation of
Q(t) with extensivity parameter for a = 1.0, 0.6 and 0.33; top, middle and bottom respectively. .
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Recently the Weron-Tsallis relaxation function has been applied to Neutron Spin
Echo measurements performed on a range of spin-glass, as well Random Anisotropy
systems *+ %% 8 |t has been found to provide a more accurate and self-consistent
description of the evolution of the relaxation dynamics as the transition temperature

is approached form above.

A range of canonical systems, such as CuMn and AuFe, have been shown to follow
a general pattern, Figure 2:11. At high temperatures the non-extensivity parameter is
close to one, which essentially indicates the dynamics are dominated by the parallel
relaxation of clusters. Upon a reduction in temperature the non-extensivity
parameter is then seen to decrease continually and consistently took a value of
(g=5/3) at the transition temperature. This value has been shown to mark a
transition called the strong-disorder limit, where the dynamics are predominantly
governed by the power law tails of the cluster size distribution function given in

equation (2:16).

Investigations on several Random Anisotropy Magnets have reached quite different
conclusions.  The non-extensivity parameter is found to be independent of
temperature and take a value of approximately 1.5, Figure 2:12. This suggests that
in this case the dynamics are not cooperative in nature, and that the behaviour of
these systems is dominated by the local random anisotropy axis which causes the

random distribution of moments.

2.2.4 Summary
A historical review of the spin glass problem has been presented highlighting
many of the important concepts and stages in reaching our current understanding. A

general two-power law relaxation function is derived of the form,

oo =[] ey

where () is associated with the fractal geometry of the system which Brouers &

Sotolongo-Costa have related to the normalised cluster volume distribution.
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Furthermore their model, based on Tsallis entropy, gives a physical interpretation of
the mathematical parameters of Weron’s purely stochastic theory founded on the
survival probability of the initial state in any relaxing non-equilibrium system. Both
however can be seen as a derivative of stretched exponential or Kohlrausch decay
law in the limit (¢ — 0), in which case («) equates to the stretching parameter,
(«<1), and is said to be a measure of the non-idealness of the relaxing process, i.e.

variations in interaction and intra-cluster size °.

Function parameter Limits
Weron interaction parameter k>0
Tsallis non-extensivity parameter 1<g*<2
Normalised Non-extensivity 1<qg<?2

Given that the functional form of each theory is identical, despite their respective
origins being unrelated, it may be assumed the parameter (&) is fundamentally
equivalent. In essence this parameter provides a measure of the level of constraint
on the relaxation dynamics of the system, which for glassy systems is the direct

consequence of broken-ergodicity.
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Chapter 3

EXPERIMENTAL TECHNIQUES
& INSTRUMENTS

This final preliminary chapter is presented as a review of the techniques and
instruments which have been employed during this project.

3.1 Introduction to Neutron scattering

In order to observe detail on an atomic scale we must use radiation with a
wavelength comparable to the interatomic separation of atoms (~ 10° m). Visible
light is several orders of magnitude too large, and so alternative forms must be
sought.  Fortunately, electrons, atoms, and x-rays are all suitable candidates;
however it is the neutron’s unique set of physical properties that make it the

outstanding choice for many condensed matter studies:

Energy: using the de Broglie - Einstein postulates we are able to calculate the

energy associated with a given neutron wavelength.

h 21T
A=—, k=— (3:1)
mv A
1 h2k?
= _mp? = (3:2)
E zmv m
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Thus we find appropriate wavelengths correspond to the energies of many naturally
occurring excitations (2 A = 25 meV). Ultimately, this makes two distinct modes of
neutron scattering experiment possible, one in which the positions of atoms are
obtained (diffraction), and a second to study their dynamics are revealed

(spectroscopy).

Zero electronic charge: unlike many atomic probes neutrons are able to penetrate
deeply into most types of matter. In the first instance this is because a neutron
interacts via the strong nuclear force (~ 10™ m). If we consider that the separation
between nuclei (in solids) is in the order of 40,000 times their typical diameter
(~ 5 fm) it quickly becomes clear that, at least from the neutrons perspective, matter

is relatively transparent.

Neutron-nuclei interaction: the strength with which neutrons are scattered or
absorbed varies in a non-systematic manner with isotope, as shown in Figure 3:1 and
Figure 3:2 respectively. Not only does this allow neighbouring atoms in the periodic
table, or indeed isotopes of the same atomic species, to be easily distinguished
between, but neutrons often scatter equally strongly from light atoms, unlike x-ray

scattering.

Magnetic moment: a neutron has a spin of ¥ and therefore possesses an intrinsic
magnetic moment (y = -1.913 py) which, only four years after Chadwick®
discovery of the neutron, Bloch® recognised could be exploited for the study of
magnetism ®2. Put simply, in addition to the short-range nuclear potential, magnetic
atoms also exert a dipole interaction potential from which neutrons will scatter.
Although theoreticians such as Schwinger® ® and Halpern & Johnson 8% quickly
explored the prospects of using neutrons to probe magnetic phenomena, it took over
a decade before such an experiment was feasible. Shull® and his colleagues had by
1951 developed these techniques, and were able for the first time provide

experimental proof of anti-ferromagnetic order in MnQO ¥,

§ Nobel Prize laureate in Physics
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3.1.1 The Production of Neutrons for Science
Famously neutrons were first detected by Chadwick in 1932, when he used
alpha particles released from Polonium-210 to produce neutrons from nearby

Beryllium %;

He* + Be? — C'2 4+ n + 5.7 MeV

Today several large scale central facilities operate worldwide dedicated to neutron
scattering studies. In general there are three methods through which neutrons are
produced: Spallation, Fusion, and Fission. Here the methods employed at ISIS and

ILL are presented.

ISIS: Spallation of neutrons at the ISIS facility is driven by a pulsed beam of
protons which originate from an ion source feeding negative hydrogen ions into a
linear radio-frequency accelerator or LINAC. This accelerator contains four

accelerating tanks inside which are a series of drift tubes.

These ions travel though the tanks accelerating between the drift tubes when the
field is in the correct direction and being shielded by them when the field reverses.
The subsequent 200 ps pulse of ions, at 70 MeV, is then stripped of its electrons by
an aluminium oxide foil and injected into a 24 m radius synchrotron. The remaining
protons are gathered into two orbiting bunches and are accelerated by voltages
reaching 140 kV to energies of 800 MeV. The whole process is repeated 50 times
per second producing a double pulsed beam with a mean current of 200 pA on the

spallation target.

This target is comprised of thick tungsten plates housed in a water cooled pressure
vessel from which 18 beam lines link to the instruments. Neutrons are produced
when a proton impinges the target and is absorbed by a target nucleus, elevating it to
a highly excited state. This causes the expulsion of high energy nucleons which on
the whole are reabsorbed and the process repeated, emitting close to 40 slow
neutrons per proton as well as photons and neutrinos. The neutrons’ energy is

subsequently controlled by moderators placed before the entrance of the beam line.
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The ILL research site; credit: Peter Ginter, ESRF

ILL: Fission reactors such as the ILL are usually powered by Uranium-235, an
isotope that is present in only 0.7 % of naturally occurring Uranium. By fission with
thermal neutrons on average 2.5 fast neutrons and approximately 180 MeV of

energy is produced,

Nthermat + Uz3s — 2fragments + 2.5Nfqsc + 180 MeV

The reaction is regulated by boron loaded control rods and becomes self-sustaining
when on average %2 a neutron is absorbed by material other than the core, one
neutron triggers a further fission event, and one neutron leaves the core for use at an
instrument. The energy spectrum of the neutrons produced in this way has three
distinct regions, the first being a peak around 1-2 MeV which is referred to as the
lamb distribution, these are the fast or high energy neutrons. The next is an
intermediate or epithermal region where the energy gradually decreases
characterised by a 1/E distribution in intensity. Finally the thermal peak which is
characterized by a Maxwell-Boltzmann distribution of energies centred on
approximately 25 meV. Again the neutron’s energy is controlled by moderators

prior to entering the beam lines.
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3.1.2 Kinematics Approximation

First consider a monochromatic beam of neutrons characterised by an initial
wavevector, (k;) incident on a solid sample as depicted in Figure 3:3. Since for the
reasons already mentioned most samples are largely transparent to neutrons it is
unsurprising that a large percentage of the beam’s initial intensity is transmitted
without being affected. The remaining beam fraction undergoes absorption or

scattering.

@® Detector

Figure 3:3  The scattering geometry in a generic neutron experiment; the incident beam, travelling in
the x-direction, interacts with a scattering system located at the origin. A detector counts the number of
neutrons scattered into the solid angel dQ).

Absorbed neutrons form highly excited compound states with the parent nucleus,
which under normal circumstances decay extremely rapidly (~ 10™* s) expelling

nucleons (n, p, «) or, more likely emitting gamma radiation.

Scattered neutrons on the other hand are characterised by a second wavevector (k)

and can be counted in a detector a large distance from the sample. The number of
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counts per second (C) is proportional to the initial beam intensity (¢,), humber of
scattering centres at the target (N), and the solid angle subtended by the detector to

the scattering system (dQ).

No energy transfer: |kj| = |Kq|

_ Scattered direction

gzk,-sine

Incident direction

Energy given to neutron: Kk; < Kq

kg ’

26

Figure 3:4  Scattering triangles for elastic and inelastic scattering events.

Consequently, a sample specific constant of proportionality known as the differential

cross section can be derived,

do _ C
dQ ¢, Ndn

(3:3)

essentially quantifying the number of neutrons scattered into the solid angle (d<2),
independent of any energy being transferred from or to the neutron. Therefore this

definition is not applicable to inelastic scattering. The so-called double differential
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cross section addresses this by counting neutrons within a given interval of energy

exchange (dE),

d?c C

= (3:4)
ddE ¢NdOdE

To quantify the momentum (mAv) and energy (AE) transferred, equation (3:1) can be

rearranged, with (k;) and (ks) substituted into equation (3:2) to yield
mAv = h(k; — k) = hQ (3:5)
h? )
=—(k? — k2 3:6
AE =5 (k? — k2) (3:6)

where the scattering vector is defined as,

Q = ki - ks (37)

Note that the total number of neutrons scattered by the system every second is
defined as the total scattering cross section, and is related to equations (3:1) and

(3:4) through integration.

da_j‘o d?*c dE 3:8)
dqo ) \dodE '
0
do _
Ototal — I(E) dQ (3:9)
i

Returning to Figure 3:3, the scattered beam is isotropic (s-wave scattering),
expanding in spherical wavefronts or radius (r). This is because neutrons interact
with the nucleus at an incredibly short range making the target appear point-like, and
also that the neutron wavelength is such that the internal structure of the nucleus is
unseen. Accordingly, scattering from a single nucleus may be represented as a plane

wave at large distance,
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—-b
p = ;exp(iksr) (3:10)

where (b/r) is the scattering amplitude, characterised by the scattering length
constant (b). Importantly, during the scattering process the target nucleus, with spin
(8), and neutron combine to form a compound system having spin [S§ + %] or
[§ —Y2]. Each of these spin states have a different scattering length denoted by (b..)
and (b_) respectively, and it is this spin-dependence that results in two different
types of scattering effect when scattering from many nuclei ®. The first is coherent
scattering, which is due to interference between neutron waves which have a phase
corresponding to the interatomic distances between the nuclei. This contribution can

be shown to be proportional to the square of the average scattering length,

Tcon = 41(b)? (3:11)

The second type is incoherent scattering, and is the direct result of there being a
distribution of scattering lengths within the sample. This might be due to the spin
state of the neutron-nucleus system, or simply the presence of more than one isotope
within the sample. Both cause incoherently scattered waves which, since their
relative phases are uncorrelated, simply add together and give rise to a flat
background signal. This contribution is proportional to the average square deviation

of the scattering length constant,

Oincon = 47T[<b2> - <b>2] (3:12)

Thus, the total scattering cross section is the sum of both terms,

Ototal = Ocoh T+ Tincon (3:13)

However, this is not strictly the quantity measured during neutron scattering

experiments. It is generally the intensity of the scattered beam as a function of
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scattering vector (Q) and energy (w) which is measured, leading to a function

S(Q, w), referred to as the scattering function.

3.1.3 Scattering & Pair Correlation Functions

The scattered neutron measures both the angular dependence and frequency
spectrum simultaneously, and so the function S(Q,w) contains all the scattering
properties of the system under investigation. What's more, Van Hove defined a
general expression for the angular and energy dependence of Born approximation”
scattering in terms of a pair-correlation function, G(r, t) which he showed to be the
Fourier transform of S(Q,w) *. Classically this function can be interpreted as the
probability of finding a particle at position (r) at time (t), and a particle (possible the

same particle) at the space and time origin, (O, Oy).

1

G(T,t) = W

fdQ exp(—iQ - r)f dw exp(iwt) S(Q, w) (3:14)
This pair-correlation function can be shown to be equivalent to a density-density

correlation function, such that,

G(T', t) = (P (OT' Ot)P(r' t)) (315)

where (p) is the density operator of all the nuclei, each nucleus given by a o-

function,

1023
p(r,t) = Z 8[r— R;(®)] (3:16)
j=1
Given equation (3:15), we are able to describe the two modes of neutron scattering
experiment not only in terms of the scattering law and pair-correlation functions, but
also the more intuitive density-density correlation function. Diffraction is the

angular dependence of elastic scattering, and is written as the energy-integrated

" Valid when the scattering is weak, the scattered wave is represented by a plane wave.
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intensity of S(Q,w), which is the Fourier transform of the density-density correlation

function,

5(Q) = f S(Qw) dw = f p(r — 0,)p(0,)dr) (3:17)

Spectroscopy on the other hand measures the change in velocity of the scattered
neutron, leading to the frequency spectrum S(w), which is equivalent to the time-

dependence of the density function,

S(w) = (p(t —0.)) (3:18)
More rigorous derivation may be found in the following texts %,

3.1.4 Nuclear Scattering
To make quantum mechanical predictions for the double differential cross
section * * the interaction potentials from an assembly of nuclei at positions (R;),

with scattering lengths (b;), are substituted by a Fermi pseudo-potential of the form,

m

2mh?
V) == Z bé(r — R;) (3:19)
i

where (m,) is the neutron mass and 4(r) is a Dirac delta function, taking the value of
unity at (r = R;) and zero everywhere else. Upon scattering both the wavevector and
spin state of the neutron change (kioi — ksos). So too does the quantum state of the
nuclei from which it scatters (1; — 1s). Clearly the detector count rate (C) may be
replaced by the rate at which this transition occur (W), and so the differential cross

section given by equation (3:4) may be rewritten as,

(—da> L w (3:20)
= kioiAi—~ksosAs :
df kioiAi—~ksogAs ¢0Nd.(2 g “

Using Fermi’s Golden Rule the transition rate can be expressed as,

55



21
Whioidi—ksons = 5 (ki 0 2:|V | k505 A5)|? Py, (E:) (3:21)

where the probability density of the transition occurring is given by the modulus
squared of the matrix element, and py . (E;) is the density of final neutron state
(ksos) per unit energy. Setting periodic boundary conditions the incident flux and
density of final states can be normalised * * to express the differential cross section

as,

), = ()R Wamt it a2
dQ kiﬂiliﬁksasls_ k; \2mh? i sOsAs (3:22)

By conserving the energy transferred between the neutron and nuclei,

E = Eki - Eks = Els - EAL‘ (3:23)

and summing over all final nuclei and neutron-spin states, weighted to the
probability of the initial and final states occurring, (pi) and (ps) respectively, we
obtain the double differential cross section, or so-called Master equation of neutron

scattering,

d?c kg
(deE> (—)k—(mhz X Z pipsl{kioi AV ksosAs)|? 8(E; — Es + E) (3:24)

As0s

3.1.5 Magnetic Scattering
The magnetic analogue of equation (3:24) is far more complicated to derive,

but nonetheless has a very similar form,

d?c 1 5
(d()dE) - (N_)_(m) 325)
szzpsun ANAID o 1A) (B, — Eg + E) |

where (Np) is the number of magnetic ions in the sample, (ro) is the classical

electron radius which determines the strength of the interaction, (y) is the
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gyromagnetic ratio of the neutron, and (D) is magnetic interaction operator. For a
detailed derivation please consult Methods of Experimental Physics — Neutron
Scattering: Part A *.

As with the nuclear case however the magnetic double differential cross section is
defined by evaluating the matrix element (k|V|k;), where the interaction potential
between a neutron’s magnetic dipole moment (Bp) and the magnetisation density

(Me) of unpaired electrons is expressed as a dipole interaction potential of the form,

1
V= F‘S(,Me(r) - B,(1) (3:26)

Furthermore, the magnetisation density at position (R) for a single electron with

momentum (p), may be expressed as two terms,

:ﬂ[( luexR)_Z#BpxR]

3:27
¢ 4n IR|3 h |R|3 (3:27)

the first accounting for the spin angular, and the second orbital angular momentum
respectively. (uo) is the permeability of free space and (u.) is the electron’s

magnetic moment.

The salient features of magnetic neutron scattering are that the neutron is acted upon
by the perpendicular component of the sample magnetisation to the scattering vector
(Q), and secondly, since the volume occupied by a local atomic field is comparable
in linear extent to the neutron’s wavelength the magnetic scattering amplitude is

anisotropic.

Due to the latter, magnetic scattering is Q-dependent and must therefore include a
term referred to as the magnetic form factor f(Q), accounting for this angular
dependency. For this purpose, analytical expressions for approximating the atomic
form factor in K, x-ray crystallography * were adopted by neutron scattering
community, which were originally based on a two-term Gaussian expansion, but are
currently based on a three term expansion for increase accuracy. In contrast to x-ray

scattering however, the magnetic form factor is governed by the unpaired electrons
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only, and is expressed as the sum of two independent contributions: one associated
with the spin (j,), and the other orbital (j,) angular momentum of the magnetic
atom. Weighting of these contributions is enabled via the Landé-splitting factor (g),

such that f(Q) is given by the formula,

2
F@ = o@) +(1-2) (2@ (3:29)
which has been calculated for several manganese ions in Figure 3:5

Where the spin contribution follows a form derived by Forsyth & Wells in 1959 ¥,

(Jo(s)) = A exp(—as?) + B exp(—bs?) + C exp(—cs?) + D (3:29)

and the orbital contribution follows the expansion,

(J,(s)) = s?[A exp(—as?) + B exp(—bs?) + C exp(—cs?) + D]  (3:30)

derived by Lisher & Forsyth in 1971 . In both cases,

(3:31)

1 4m

and the coefficients (A, B, C, D, a, b, ¢) are obtained by least-square fitting to

Hartree-Fock calculations of the magnetisation density, (M) *.
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