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Abstract 

University of Huddersfield 

ABSTRACT OF THESIS submitted by Mr Daniel Adam Patten for the Degree of PhD 

The enteric microflora represents one of the densest microbial populations in the biological 

world; as a consequence, the intestinal immune system is constantly exposed to high 

concentrations of antigenic materials. One of the major frontline defences in the innate 

immune system is the intestinal epithelial layer, which presents both a physical barrier and an 

immune sensor to the antigens of the lumen. The latter function is performed by the 

expression of pattern recognition receptors, which recognise a wide variety of bacterial 

antigens, and the production of inflammatory cytokines, which stimulate, or inhibit, 

inflammation. The overall aim of the present study was to investigate the immunomodulatory 

potential of extracellular products, from non-pathogenic bacteria, with intestinal epithelial 

cells.  

Two in vitro human intestinal epithelial cell lines HT29-19A and Caco-2 were shown 

to exhibit different expression levels of Toll-like receptors (TLRs) and the inflammatory 

cytokines, interleukin (IL)-8 and IL-10. These differences were reflected in their sensitivity 

(monitored by IL-8 release) to known TLR agonists, isolated from pathogenic bacteria. Caco-

2 cells were also shown to form physiologically active tight junctions, with the formation and 

maintenance of domes. Both cell lines exhibited sensitivity to the cytotoxic extracellular 

products of the enteropathogen Clostridium difficile.  Extracellular products, in crude cell-

free supernatants and bacterial sonicates, from the commensal Gram-negative bacterium 

Escherichia coli C25, significantly increased IL-8 release in both cell lines. 

Lipopolysaccharides and membrane vesicles were shown to contribute to the 

proinflammatory effects of C25-derived extracellular products. These extracellular products 

were also shown to regulate bacterial internalisation in both cell lines. Crude cell-free 

supernatants and bacterial sonicates from two lactobacilli strains Lactobacillus acidophilus 

5e2 and Lactobacillus helveticus sp. Rosyjski were also found to be biologically active, 

stimulating IL-8 release and TLR expression modification in both intestinal epithelial cell 

lines. In addition, ultrapure EPSs, isolated from these lactobacilli strains, were also found to 

possess immunomodulatory potential. HT29-19A cells, pre-treated with EPSs, were found to 

be ‘primed’ to bacterial agonists, peptidoglycan and flagellin, with a significantly potentiated 

release in IL-8 observed. Finally, EPSs were also found to modify bacterial adherence and 

internalisation in both cell lines.  

In conclusion, data presented in this investigation has shown that the use of the 

intestinal epithelial cell lines, HT29-19A and Caco-2, presents a reasonable model for 

investigating the interaction of bacterial extracellular products with the intestinal epithelium. 

Additionally, it has demonstrated that extracellular products, isolated from non-pathogenic, 

enteric-associated bacteria, possess immunomodulatory potential in vitro. If these effects 

were also to occur in vivo, then they could potentially contribute to intestinal homeostasis and 

the innate ‘priming’ of the epithelial layer to pathogens and their products. 
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1.1 Aims 

Mammals have co-evolved with indigenous microbial populations, termed microflora, which 

inhabit a wide range of environmental niches on the body, including the expansive lumenal 

cavity of the intestine. The mammalian intestinal microflora is considered one of, if not the, 

densest microbial populations in the biological world and, consequently, the intestinal 

epithelial layer represents a key interface which is constantly exposed to these 

microorganisms. In healthy individuals, the microflora instils a number of physiological and 

immunological benefits on the host in return for a safe, nutrient-rich environment; however, 

the microflora also produces a number of microbial-associated molecular patterns (MAMPs) 

which, like their pathogen-derived contemporaries, possess the ability to stimulate an 

inflammatory response. Under normal physiological conditions, these microfloral-derived 

MAMPs are immunologically tolerated, however, they do have the potential to turn 

malevolent and the enteric flora has been heavily implicated in inflammatory bowel disease.  

The main aims of this literature review are three-fold; firstly, to describe the intestinal 

epithelium and its innate immune defences; secondly, to discuss the enteric microflora, its 

composition, role in intestinal development and its contribution to inflammatory bowel 

disease (IBD); finally, to explore the various extracellular products released by bacteria and 

their potential for eliciting an immune response in the intestine. 

 

1.2 An overview of the intestine 

1.2.1 The gastrointestinal tract 

The gastrointestinal (GI) tract is a complex collection of organs which are responsible for the 

mechanical and enzymatic digestion of nutrients, the absorption of nutrients, fluids and 

electrolytes and the preparation of unabsorbed materials for excretion. The organs which 

constitute the GI tract can be separated into two groups, those of the alimentary canal and 
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those outside the alimentary canal, termed the accessory organs, which aid the digestion and 

ingestion of nutrients. The alimentary canal spans from the mouth to the anus and comprises 

the mouth, oesophagus, stomach, small intestine, colon, rectum, anal canal and anus. The 

accessory organs include the liver, the gall bladder, and the pancreas (Colwell et al., 2004).  

 

1.2.2 The intestine 

The intestine is an umbrella term for a major part of the alimentary canal which is responsible 

for the absorption of nutrients, fluids and electrolytes and the excretion of waste products. 

The intestine consists of the small intestine (the duodenum, the jejunum and the ileum) and 

the large intestine (the colon, the rectum and the anal canal). The histological features of the 

intestine are fundamentally the same throughout its length and comprise of four main layers 

of tissue: the serosa, the muscularis, the submucosa, and the mucosa (Figure 1.1). The serosa 

is the outermost layer of the intestinal wall and consists of films of connective tissue which 

contain the intestine within the abdominal cavity. The muscularis is made up of layers of 

circular and longitudinal smooth muscles which are responsible for the peristaltic movement 

of the intestinal contents. The submucosal layer consists of connective tissue, nerve fibres 

and blood and lymph vessels. The innermost layer, the mucosa, consists of three distinct 

layers; the muscularis mucosae (a thin layer of circular muscle that separates mucosa from 

the submucosa), the lamina propria (a layer of connective tissue) and the epithelium (which 

forms a barrier between the contents of the gut and the rest of the body) (Colwell et al., 

2004).  

The lumenal surface of the small intestine is arranged into numerous microscopic 

finger-like projections (villi) and recesses (crypts) (Figure 1.1) which increase its surface area 

10-fold (DeSesso and Jacobson, 2001). The large intestine also contains crypts, which recede 

into the lamina propria, thus increasing its surface area. Additionally, intestinal epithelial 
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cells, or enterocytes, also possess thousands of microvilli on their lumenal surface which 

increase the surface area a further 20-fold (DeSesso and Jacobson, 2001). Consequently, the 

intestine represents the body’s largest surface area, with the adult human intestine estimated 

to cover an area of 100-400 m
2 

(Artis, 2008, Lievin-Le Moal and Servin, 2006, MacDonald 

and Monteleone, 2005). The large surface area of the intestine aids in absorption, however, 

paradoxically, it also represents the largest surface area of the body exposed to the 

environment and its high bacterial load (DeSesso and Jacobson, 2001). 

 

 

 

 

 

 

 

 

 

Figure 1.1 – A cross section of the intestinal wall 

 

1.2.3 The epithelial layer 

The entire mucosal surface of the GI tract is lined by a one-cell thick (~10 µm) layer of 

columnar epithelial cells, which acts to separate the lumenal contents from the rest of the 

body (Hooper et al., 2012). The epithelium consists mainly of absorptive (brush border) 

enterocytes, but also contains a small number of specialised cells, such as mucus-secreting 

goblet cells (section 1.3.3.2), antimicrobial peptide-producing Paneth cells (section 1.3.3.3) 

and hormone-releasing enteroendocrine cells (Fuchs and Segre, 2000). Multipotent stem 

Villi 

Mucosa 

Submucosa 

Muscularis 

Serosa 

Epithelium 

Lamina propria 

Crypts 



5 

 

cells, originating at the villus-crypt interface, mitotically divide, thus producing new cells 

which subsequently migrate towards the tip of the villus, differentiating into enterocytes, 

goblet cells or enteroendrocrine cells (Fuchs and Segre, 2000). These cells are constantly 

exposed to the mechanical and enzymatic stresses of the intestinal lumen and, consequently, 

are sloughed off after 2-3 days and are excreted in faecal matter (Creamer et al., 1961). 

Alternatively, epithelial stem cells migrate to the base of crypts and form Paneth cells (Fuchs 

and Segre, 2000). These crypt-sheltered epithelial cells have a much longer turnover period 

of 18–23 days and are individually removed by phagocytosis (Porter et al., 2002). 

 

1.2.4 Intestinal microflora 

Residing in the lumenal cavity is a dense population of microorganisms, termed the 

microflora. Estimates suggest that ~10
14 

bacteria inhabit the intestine, with 300-500 strains 

represented (Gill et al., 2006, Guarner and Malagelada, 2003); however, it is worth noting 

that that the intestinal microflora does not solely consist of bacteria, with methanogenic 

archaea, eukaryotes (yeasts) and viruses (mainly bacteriophages) also present (Lozupone et 

al., 2012).  

The population of the microflora alters throughout the intestine, and is highly 

dependent on locality. Within the small intestine, the duodenum has a relatively sparse 

bacterial content (10
4
-10

5
 CFU/ml lumenal fluid), due to the low pH of the digesta released 

from the stomach and the subsequent secretion of pancreatic juices and bile. Conversely, the 

jejunal microflora reaches levels of 10
5
-10

7
 CFU/ml, and the slower passage of digesta 

through the ileum allows an even denser bacterial population to flourish (10
7
-10

8 
CFU/ml). 

Nevertheless, the highest microfloral density is found within the lumen of the colon, with 

estimates of 10
10

-10
11

 CFU/g colonic contents (Ouwehand et al., 2002).  
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Although the composition of the intestinal microflora is highly variable between 

individuals (Lozupone et al., 2012), recent metagenomic analyses of human faecal bacteria 

have given an insight into the phylum- and genus-level composition of the average microflora 

(Arumugam et al., 2011). The main bacterial phylum represented in faecal microflora is that 

of Firmicutes, which is made up of genera such as ruminococci, clostridia and lactobacilli, 

and represents ~40 % of the bacterial flora. The next most abundant phylus is the 

Bacteroidetes, (e.g. Bacteroides and Prevotella) with ~20 % of the bacterial population, 

followed by Actinobacteria (e.g. bifidobacteria and faecalibacteria) with ~8 % and 

Proteobacteria (e.g. Escherichia/Shigella) making up ~2 % of the bacterial flora (Arumugam 

et al., 2011).  

Prior to metagenomic studies, traditional bacterial culturing (from intestinal isolates) 

was utilised to give a rudimentary indication of the regional variation of bacterial genera 

throughout the different environmental niches of the intestine. The duodenal microflora is 

highly influenced by the gastric microflora, and so comprises mainly of aciduric facultative 

anaerobes such as lactobacilli, streptococci, and Helicobacter pylori (Ouwehand et al., 2002). 

In comparison, the jejunal microflora is more diverse, with strains of streptococci, 

lactobacilli, corynebacteria, Bacteroides and Actinomyces all identified (Jutesen et al., 1984). 

Furthermore, the slower passage of the digesta through the ileum means its microflora spans 

an even wider range of bacterial genera, and both facultative anaerobes, such as, lactobacilli, 

enterococci and Enterobacteriacae, and obligate anaerobes, such as clostridia and 

Bacteroides, have been cultured from isolates (Jutesen et al., 1984; Ouwehand et al., 2002). 

Finally, in the colon, the number of strictly anaerobic bacteria out-weighs the number of 

aerobes or facultative anaerobes by a factor of 100-1000, with genera such as Bacteroides, 

bifidobacteria, clostridia, bacilli and ruminococci making up the vast majority of the bacterial 

inhabitants (Ouwehand et al., 2002).  
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1.3 Intestinal immune defences 

Due to the chronic immunological challenge posed by the vast microfloral population, a 

constant low-level of inflammation is hypothesised to be present in the intestine (Macpherson 

and Harris, 2004; Artis, 2008). However, healthy individuals are able to remain 

hyporesponsive to the commensal flora and simultaneously retain the ability to mount a rapid 

and potent effector response to pathogenic microorganisms (Duchmann et al., 1995). To 

achieve this, the intestinal immune defences are separated into two very distinct, yet 

inexplicably intertwined, elements; the innate and adaptive immune systems. Adaptive 

immunity represents the immunological memory and ultimately relies on the generation of a 

random and highly diverse repertoire of antigen-specific receptors on lymphocytes (T-cell 

receptors (TCRs) and B-cell receptors (BCRs)) subsequent to antigen challenge (Medzhitov, 

2001). Consequently, this system is not designed for immediate response to microbial 

antigens; therefore a more rudimentary detection mechanism, the innate immune system, 

exists. The innate immune system is an evolutionarily ancient host defence system that pre-

dates the split of the plant and animal kingdoms, and offers a more immediate reaction to 

infection (Janeway Jr. and Medzhitov, 2002). As with adaptive immunity, the innate system 

utilises lymphocytes and antigen-binding receptors, however the innate system is germline-

encoded and is not reliant on prior antigenic exposure.  

The major reaction mechanism employed by the innate system is the inflammatory 

response. Inflammation is a protective measure utilised by the body to ensure the effective 

removal of unfavourable stimuli (Takeuchi and Akira, 2010) and is characterised by 

increased vascular permeability, thus allowing immune cells and serum to infiltrate the site of 

stimulation (Larsen and Henson, 1983). 



8 

 

1.3.1 Intestinal adaptive immunity  

The adaptive immune system is largely represented in the intestine by the gut-associated 

lymphoid tissues (GALT), which consist of highly organised lymphoid structures, such as 

Peyer’s patches (PPs) and the mesenteric lymph nodes (MLNs) (Forchielli and Walker, 

2005). The GALT is the human body’s largest collection of lymphoid tissue, and 

consequently contains ~70 % of the body’s total immunocytes (Heel et al., 1997; Forchielli 

and Walker, 2005).  

  Peyer’s patches are aggregated clusters of sub-epithelial lymphoid follicles located 

throughout the small intestine (Heel et al., 1997). They consist of a follicle-associated 

epithelial layer (FAE), a sub-epithelial dome region and the underlying lymphoid follicles 

themselves (Artis, 2008). The FAE constitutes specialised epithelial cells, called microfold 

(M)-cells, which lack microvilli and a protective mucus layer (see Section 1.3.3.2), but are 

so-named due to their broadly folded apical membranes (Mowat, 2003). M-cells constantly 

sample the lumenal contents and deliver any pathogens, or antigens, to the underlying sub-

epithelial dome by vesicle transcytosis (Sharma et al., 2009). The sub-epithelial dome 

consists of antigen-presenting cells (APCs) of the innate immune system (see Section 1.3.2), 

which capture and process antigens presented by the M-cells and deliver them to the 

lymphoid follicles (Artis, 2008). The follicles themselves are comprised of a germinal centre 

surrounded by aggregates of T-cells and B-cells and are separated by interfollicular zones of 

helper T-cells (see below) (Heel et al., 1997). 

MLNs are the largest lymph nodes in the body and act as gatekeepers to the 

circulatory system (Mowat, 2003). They allow the passage of fully differentiated T-cells and 

B-cells, from the lamina propria to the circulatory system (where they reside until subsequent 

antigenic challenges), but prevent commensal-laden APCs from gaining access to the rest of 
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the body (Macpherson and Uhr, 2004). This produces an effective local immune response 

without needlessly triggering systemic immunity (Macpherson and Uhr, 2004).  

 The intestinal wall holds the body’s largest collection of T-cells (Heel et al., 1997), 

which exist within the lamina propria as part of the highly organised lymphoid tissues, such 

as PPs and MLNs, as freely dispersed moieties within the lamina propria (lamina propria 

lymphocytes (LPLs) (Davies and Parrott, 1981)) or as integrated epithelial components 

(intraepithelial lymphocytes (IELs) (Hayday et al., 2001)). Two major functions of T-cells 

are the regulation of development and activity of other leukocytes (helper T-cells (Th)), or as 

cytotoxic effectors (cytotoxic T-cells (Tc)) (Heel et al., 1997). Helper T-cells stimulate 

macrophages, promote antibody isotype switching (to IgA) in B-cells and activate cytotoxic 

T-cells (Heel et al., 1997). Cytotoxic T-cells act to suppress IgA production by B-cells and 

are strongly antagonistic towards APC-processed target cells (Heel et al., 1997). 

B-cells of the GALT produce pathogen- or antigen-specific antibodies that cover the 

mucosal surface and act to agglutinate pathogens, aiding in their phagocytosis (by 

granulocytes or monocytes) or their excretion in faecal matter (Heel et al., 1997). The 

predominant antibody in the intestine is immunoglobulin (Ig)A, which usually exists in the 

proteolysis-resistant dimeric form, IgA2 (Ouwehand et al., 2002). B-cells associated with the 

human intestine produce 3-5 g IgA/day (MacDonald and Monteleone, 2005), which accounts 

for ~70 % of body’s total antibody production (Macpherson and Uhr, 2004). IgA constitutes 

24-74 % of faecal matter and ~50 % of faecal anaerobic bacteria are coated in the antibody 

(van der Waaij et al., 1996). Unlike the major systemic antibody, IgG, IgA does not provoke 

an inflammatory response, alternatively it binds antigens and excludes them from the 

intestinal mucosa (Ouwehand et al., 2002). Also, it has previously been shown in mice that 

B-cell IgA response against commensal antigens is T-cell independent, whereas induction of 

IgA by pathogen-derived antigens requires costimulation by antigen-specific T-cells 
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(Macpherson et al., 2000; Hooper and Gordon, 2001). These mechanisms allow the mucosal 

immunity to react to autonomously, thus avoiding systemic immune stimulation.  

 

1.3.2 Innate immunity of the intestine 

The major functions of the innate immunity are three-fold; the rapid recognition of a diverse 

range of pathogens and antigens; the subsequent killing of pathogens and the presentation of 

antigens to the adaptive immunity; and the tolerance of ‘self’ cells and tissues (Medzhitov, 

2001, Beutler, 2004). The innate immune system largely relies on monocyte-derived antigen-

presenting cells (APCs), such as macrophages and dendritic cells (DCs), which subsequently 

initiate the adaptive system by presenting processed antigens to T-cells, via the class II major 

histocompatibility complex (MHC) antigen (Beutler, 2004), a mechanism which significantly 

increases the efficiency of immune stimulation (Banchereau and Steinman, 1998). APCs 

utilise phagocytosis to engulf microorganisms and initiate a killing pathway which digests 

them via hydrolytic enzymes, contained within lysosomes (Greenburg and Grinstein, 2002). 

Subsequently, microbial antigens are directed to MHC components for presentation to 

adaptive immune cells.  

The main function of macrophages is phagocytic killing of pathogenic 

microorganisms and neutralisation of their associated antigens (Beutler, 2004). However, 

killing of translocating (see Section 1.4.5) commensal bacteria by macrophages in the lamina 

propria helps to prevent unnecessary mucosal inflammation and immune response by the 

adaptive system (Macpherson and Uhr, 2004). Macrophages also release chemokines which 

attract other myeloid cells, in particular polymorphonuclear phagocytes, such as neutrophils 

(Beutler, 2004). 

DCs, on the other hand, function primarily to signal the presence of pathogens and 

their antigens, and exhibit diminished killing efficiency when compared to macrophages 
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(Nagl et al., 2002). DCs constantly sample intestinal lumen by extending intraepithelial 

dendrites (characteristic elongated cellular projections) to the apical surface. The epithelial 

integrity is unaffected due to the expression of tight junction (TJ) proteins (see Section 

1.3.3.1) in their dendrites which form TJ-like structures with adjacent epithelial cells 

(Rescigno et al., 2001). DCs help maintain intestinal homeostasis by preferentially triggering 

non-inflammatory Th2 cell and B-cell IgA responses (Rimoldi et al., 2005). 

In addition to professional immunocytes, a number of non-immune components, such 

as physico-chemical barriers (the epithelium itself, the mucus layer, antimicrobial peptides 

and the lumenal microflora) and epithelial pattern recognition receptors, play a significant 

role in the innate immunity of the intestine. These are discussed in further detail below. 

 

1.3.3 The intestinal epithelium 

1.3.3.1  Tight junctions complete the epithelial barrier 

The primary function of the intestinal epithelial layer is to operate as a surface for the 

dynamic exchange of water, ions and nutrients, however, it also plays an important role in the 

separation of the lumenal contents from the underlying mucosal tissues (Madara, 1989). 

Intestinal epithelial cells achieve this dual purpose by utilising intercellular bonds, called 

tight junctions (TJs) which both seal the epithelial layer and facilitate the regulated passage of 

small molecules (Gonzalez-Mariscal et al., 2003). TJs form a belt-like structure at the apical 

pole of epithelial cells which, in turn, form a network of close contacts between the 

membranes of adjacent cells, resulting in a continuous epithelial barrier (Popoff and Geny, 

2009). The permeability of TJs is regulated by its association with the intracellular actin 

cytoskeleton (Nusrat et al., 2000). 

TJs consist of a complex arrangement of over 40 proteins (Gonzalez-Mariscal et al., 

2003) and the first major breakthough in deciphering their structure came when Stevenson et 
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al. (1986) identified a conserved intracellular protein, zonula occludin (ZO)-1, in the TJs of 

hepatocytes. ZO-1 is a member of the membrane-associated guanylate kinase (MAGUK) 

family and forms a functional link between the TJ and the actin cytoskeleton (Fanning et al., 

1998). Subsequently, ZOs-2 and -3 were also found to form a complex with ZO-1 and bind 

the actin cytoskeleton (Gonzalez-Mariscal et al., 2003). In the in vitro characterisation of TJ 

formation, migration of ZO-1 to the apical pole of the epithelial cell is subsequently followed 

by the progressive accumulation of associated proteins, which eventually form the belt-like 

TJs (Gonzalez-Mariscal et al., 2003).  

In addition to the submembranous scaffolding of ZO proteins, membrane-bound 

extracellular proteins are clearly required for the formation of TJs in the paracellular space. 

The first transmembrane TJ protein to be identified was occludin, which was found to be 

localised in the TJs of epithelial and endothelial cells (Furuse et al., 1993). The abundance of 

occludin has been linked to the degree of sealing of TJs, as molecules from adjacent cells 

form homophilic bonds with each other in the paracellular space (Gonzalez-Mariscal et al., 

2003). However, occludin gene double knockout cells were seen to still possess well 

developed TJs, indicating occludin is not essential to TJ integrity and that other 

transmembrane proteins play a role in TJ maintenance (Furuse et al., 1998). This led to the 

further discovery of Claudins-1 and -2 (Furuse et al., 1998) and junctional adhesion molecule 

(JAM) (Martin-Padura et al., 1998). The cytoplasmic domains of Claudin-family proteins 

associate with ZOs-1, -2 and -3 while their extracellular loop regions span the paracellular 

space and interact with claudins from adjacent cells, forming the backbone of TJs (Gonzalez-

Mariscal et al., 2003). There is some evidence to suggest that Claudin proteins could also 

function as paracellular channels for metal ions, as Claudin-16 is selective to Mg
2+

 and Ca
2+ 

ions (Gonzalez-Mariscal et al., 2003). JAMs directly contribute to cell-cell adhesion in TJs 
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with their extracellular immunoglobulin domains forming homophilic interactions with those 

of neighbouring cells (Popoff and Geny, 2009).  

TJs are an obvious target for intestinal disease and number of stimuli can interfere 

with their integrity, and consequently, the integrity of the epithelium as a whole. Pro-

inflammatory cytokines, such as interferon (IFN)-γ, and enteropathogenic bacteria and their 

toxins have been shown to acutely impede junctional stability (Madara and Stafford, 1989; 

Capaldo and Nusrat, 2009; MacCallum et al., 2005; Nusrat et al., 2001). Augmented TJ 

permeability has also been shown in epithelia from chronically damaged intestinal tissues, 

resulting in exposure of the underlying tissues to the lumenal contents (Capaldo and Nusrat, 

2009). 

 

1.3.3.2  Mucus – a frontline defence 

Supporting the one-cell thick intestinal epithelial barrier is a gel-like layer of mucus 

(Deplancke and Gaskins, 2001). This mucus layer forms a protective coating over the 

epithelium, shielding it against chemical, enzymatic and mechanical damage and, very 

importantly, preventing lumenal bacteria from gaining direct access to the epithelial layer 

(Smirnova et al., 2003). Interestingly, the mucus layers of the small intestine and colon are 

quite contrasting in their physical properties. The mucus layer of the small intestine is a thin, 

permeable film interrupted by the mucus-free Peyer’s patches (see Section 1.3.1) (Deplancke 

and Gaskins, 2001). This is tailored to the physiological role played by the small intestine, in 

which large amounts of water and nutrients are absorbed. Also, the relatively low bacterial 

density in the small intestine means that the permeability of the mucus layer is of little 

consequence (Johansson et al., 2011). Conversely, the mucus of the densely inhabited colon 

is a continuous layer of increasing thickness (from the ascending colon to the rectum) which 

consists of an adherent inner layer and a non-adhered outer layer (Johansson et al., 2008). 
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The inner layer is tightly associated with the epithelium and has a very dense framework, thus 

presenting a sterile, impermeable barrier to lumenal bacteria (Johansson et al., 2011). 

Conversely, the outer layer presents the ideal habitat for bacteria (Kirjavainen et al., 1998), as 

it offers an easily accessible source of carbohydrates, peptides and exogenous nutrients 

(concentrated within the mucus) (Deplancke and Gaskins, 2001). However, the loose 

consistency of the outer layer which allows the adherence, encapsulation and habitation of 

commensal bacteria also results in a high turnover rate and the efficient extraction of 

invading pathogenic bacteria and waste matter (Kirjavainen et al., 1998).  

The intestinal mucus is composed of heterogeneous, highly glycosylated proteins 

called mucins, which are produced and secreted from the apical surface of a specialised sub-

type of epithelial cells, termed goblet cells (Smirnova et al., 2003). Goblet cells are 

distributed throughout the intestinal epithelial lining, in varying numbers, in a site-dependent 

manner, with the highest density residing in the rectal-terminus of the colon (Deplancke and 

Gaskins, 2001). Mucin-2 (MUC2) is the major mucin and primary structural constituent of 

the colonic mucus and is found in both the inner and outer layers (Johansson et al., 2008). 

MUC2 plays a major role in epithelial homeostasis, as MUC2-deficient mice exhibit 

increased proliferation and decreased apoptosis of intestinal epithelial cells, leading to the 

formation of intestinal tumours (Velcich et al., 2002). MUC2-deficent mice also lack the firm 

inner layer of mucus, allowing the lumenal bacteria direct contact with the epithelial layer, 

leading to increased bacterial translocation (see Section 1.4.5) and augmented epithelial 

inflammation (Johansson et al., 2008).  

 

1.3.3.3  Paneth cells and antimicrobial peptides 

Paneth cells (PCs) are pyramidally-shaped granulocytic cells that are found at the base of 

epithelial crypts of the small intestine, with each crypt containing, on average, 5-15 PCs 
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(Ouellette and Selsted, 1996; Porter et al., 2002). Epithelial stem cells, originating from the 

villus-crypt interface, migrate to the base of crypts and differentiate into PCs, which, upon 

maturation, produce intracellular apically-associated granules (Porter et al., 2002). PCs 

secrete immunoglobulin (Ig)A and PAP (pancreatitis-associated protein), which act to 

aggregate bacteria and promote their binding to host phagocytes, thus aiding the management 

of the microfloral population and the maintenance of sterility in crypts, especially around the 

vulnerable epithelial stem cell zones (Porter et al., 2002; Elphick and Mahida, 2005). 

However, the primary function of PCs is to release their cytoplasmic granule stores 

(degranulation) in response to acute stimulation by bacteria and their associated antigens, and 

host inflammatory cytokines, such as tumour necrosis factor (TNF)-α and IFN-α (Porter et 

al., 2002). 

 The granules of PCs contain antimicrobial peptides (AMPs), such as phospholipidase 

A2 (PLA2), lysozyme and defensins, which are all effective against a wide range of bacteria, 

fungi, protozoa and enveloped viruses (Ouellette and Selsted, 1996). Defensins, in particular 

α-defensins, such as human defensin (HD)-5 and HD-6, are the major AMP representatives in 

the intestine (Ouellette and Selsted, 1996), with crypt concentrations capable of reaching in 

excess of 10 mg/ml (Ganz, 2003). Cationic and amphiphilic by nature, defensins 

electrostatically bind the negatively-charged surface groups of target organisms and 

subsequently cause permeabilisation of the membrane by their insertion (Selsted and 

Ouellette, 2005). Loss of membrane integrity leads to the cessation of RNA, DNA and 

protein synthesis, and eventually results in the death of the target organism. In addition to 

their direct antimicrobial activity, defensins are capable of inducing the adaptive immune 

system as a result of their chemotactic attraction of monocytes, T-lymphocytes and immature 

dendritic cells (Ganz, 2003; Selsted and Ouellette, 2005).  



16 

 

1.3.4 Pattern recognition receptors 

Pattern recognition receptors (PRRs) are germline-encoded sensory molecules, constitutively 

expressed in all mammalian cell types, which represent a key component of the innate 

immune system (Akira et al., 2006). PRRs recognise a range of highly conserved microbial 

moieties, termed pathogen-associated molecular patterns (PAMPs). Mammalian PRRs have 

evolved to recognise PAMP motifs which are essential to microbial viability, thus 

significantly lowering the possible emergence of immune-evading pathogenic mutants 

(Medzhitov, 2001). However, the ability of PRRs to recognise these microbial products is not 

just limited to pathogens, and so a less used, but more accurate, form of terminology might be 

MAMPs (microbial-associated molecular patterns) (Medzhitov, 2001).  

Two major types of PRRs are Toll-like receptors (TLRs) and nucleotide-binding 

oligomerisation domain (NOD) receptors. TLRs and NOD receptors are both constitutively 

expressed on a range of intestine-associated immune cells, such as macrophages (Akira et al., 

2006), dendritic cells (Iwasaki and Medzhitov, 2004), B-cells and T-cells (Hornung et al., 

2002), and are even expressed in non-professional immune cells, such as intestinal epithelial 

cells (Furrie et al., 2005; Gribar et al., 2008; Bannon, 2008).  

 

1.3.4.1  Toll-like receptors 

The Toll family of PRRs is conserved in the innate immune systems of a vast range of 

multicellular eukaryotes, from the nematode worm (Caenorhabditis elegans), to higher order 

mammals, such as humans (Akira et al., 2006). The founding member of the Toll family, the 

Toll gene product in Drosophila, was first identified as an essential protein in the fly’s 

embryonic development (Anderson et al., 1985; Hashimoto et al., 1988). However, Lemaitre 

et al. (1996) discovered that the transmembrane protein also plays a central role in the fruit 

fly’s antifungal immunity. Their study showed that Toll-defective mutants demonstrated a  
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Table 1.1 – Human TLRs and their known agonists 

 

significantly reduced survival rate after infection with the fungal pathogen, Aspergillus 

fumigatus (Lemaitre et al., 1996). Just 12 months following the discovery of the Toll protein, 

a human homologue, now termed ‘Toll-like receptor (TLR)-4’, was identified and 

demonstrated the ability to induce the expression of several proinflammatory cytokines 

including interleukin (IL)-1 and IL-8 (Medzhitov et al., 1997). Since then, a set of 9 further 

proteins, structurally related to TLR-4, have been identified in humans and have been shown 

to confer responsiveness to a wide range of MAMPs (see Table 1.1).   

Pattern 

recognition 

receptor (PRR) 

Location(s) Ligand(s) Source(s) 

TLR-2 Plasma membrane Peptidoglycan  

Phospholipomannan 

Haemagglutinin 

protein 

Bacteria 

Fungi 

Measles virus 

TLR-2/TLR-1 Plasma membrane Lipoprotein 

Triacyl lipopeptides 

Bacteria 

Gram-negative bacteria 

TLR-2/ TLR-6 Plasma membrane Zymosan   

Diacyl lipopeptides 

Lipoteichoic acid 

Fungi  

Mycobacteria  

Gram-positive bacteria 

TLR-3 Endosomal membrane dsRNA Viruses 

TLR-4 Plasma membrane Lipopolysaccharide 

Mannan 

Gram-negative bacteria 

Fungi 

TLR-5 Plasma membrane Flagellin Bacteria 

TLR-7 Endosomal membrane ssRNA Viruses 

TLR-8 Endosomal membrane ssRNA Viruses 

TLR-9 Plasma & endosomal 

membranes 

CpG-DNA 

 

Bacteria 

Viruses 

Protozoa 

TLR-10 Endosomal membrane Unknown Unknown 
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TLRs are type I integral membrane glycoproteins which consist of 3 distinct domains 

(Botos et al., 2011); a MAMP-binding extracellular domain, which contains a variable 

number (dependent on TLR-type) of leucine-rich repeats (LRRs) (Bell et al., 2003); a 

transmembrane domain, which spans the host cell membrane, thus holding the receptor in 

place; and a cytoplasmic signalling domain, which is homologous to that of IL-1R, and 

consequently named the Toll/IL-1R homology (TIR) domain. The TIR domain is responsible 

for the intracellular transmission of the stimulatory signal (Akira et al., 2006).  

Binding of TLRs, by their respective agonist(s), triggers activation of intracellular 

signalling cascades which ultimately result in the induction of genes involved in 

antimicrobial defence, such as those encoding proinflammatory cytokines (Figure 1.2). 

Subsequent to ligand binding, TLRs dimerise in the host cell membrane and undergo the 

appropriate conformational changes required for the recruitment of TIR domain-containing 

adaptor protein (TIRAP). The TIR region of the adaptor molecule binds to its counterpart in 

the TLR receptor by homophilic interactions. Next, myeloid differentiation factor 88 

(MyD88), an adaptor molecule critical for intracellular signalling from all TLRs (except 

TLR-3), binds toTIRAP. This complex subsequently recruits IL-1R-associated kinases 

(IRAKs)-1 and -4, resulting in IRAK-4 activation. Activated IRAK-4 phosphorylates 

MyD88-associated IRAK-1, thus allowing it to further combine with the ubiquitin protein 

ligase, tumour necrosis factor receptor (TNFR)-associated factor (TRAF)-6. With the 

assistance of a ubiquitination enzyme complex, TRAF-6 catalyses the formation of a 

polyubiquitin chain both on itself and on IκB kinase (IKK)-γ/NF-κB essential modulator 

(NEMO). The complex of transforming growth factor (TGF)-β-activated kinase (TAK)-1 and 

its binding proteins (TBP-1, -2 and -3) are also recruited to TRAF-6 and TAK-1 

phosphorylates IKK-β. IKK-β, in turn, phosphorylates IκB, thus degrading the IκB/nuclear 

factor (NF)κB complex and freeing NF-κB to translocate into the nucleus and induce the  
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Figure 1.2 - TLR signalling pathway 

 

transcriptional expression of proinflammatory cytokines (Aderem and Ulevitch, 2000; Akira 

et al., 2006). 

The induction of proinflammatory cytokine expression by TLR-mediated pathways 

must undoubtedly be regulated in a highly stringent manner, as excessive release will 

inevitably lead to severe systemic inflammation and, ultimately, death (Takeda and Akira, 

2005). One of the major regulatory mechanisms is antigenic tolerance. Lotz et al. (2006) 
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demonstrated that antigenic tolerance is an acquired phenomenon and not an inherent feature 

instilled during foetal development. Their results showed that foetal, neonatal and adult 

intestinal epithelial cells (IECs) all constitutively expressed the LPS receptor complex, TLR-

4/MD-2, but found only foetal cells were responsive to LPS (Lotz et al., 2006). Furthermore, 

they showed that tolerance to LPS is acquired after exposure to the antigen during passage 

through the birth canal (individuals born under caesarean section did not exhibit tolerance) 

and is paralleled by the spontaneous activation of IECs (as represented by up-regulation of 

macrophage inflammatory protein (MIP)-2 mRNA) (Lotz et al., 2006). The mechanistic 

specifics of antigenic tolerance are, as yet, unknown; however, it is thought that anti-

inflammatory cytokines, such as interleukin (IL)-10 and transforming growth factor (TGF)-β 

are involved (Medzhitov, 2001).  

Another key regulatory mechanism is the expression of inhibitory proteins, such as 

Toll-interacting protein (Tollip). Tollip was originally identified as a key intermediate protein 

in IL-1 signalling (Burns et al., 2000), and it was subsequently hypothesised that the 

significant homology between the IL-1R and TIR cytoplasmic domains would result in Tollip 

also interacting with the TLR signalling pathway (Zhang and Ghosh, 2002). The study 

undertaken by Zhang and Ghosh (2002) demonstrated that Tollip does in fact interact with 

the TLR signalling pathway, inhibiting the TLR-2 and TLR-4-induced NF-κB activation by 

means of binding to, and inhibiting the kinase activity of, IRAK. Additional suppressor 

proteins, such as suppressor of cytokine signalling (SOCS)-1 and the macrophage IL-1R-

associated kinase (IRAK)-M, also limit cytokine release in response to TLR agonists, as both 

SOCS-1- and IRAK-M-deficient mice show significantly increased cytokine expression to 

bacterial infection (Kobayashi et al., 2002; Nakagawa et al., 2002).  

As detailed above, TLRs are undoubtedly inflammatory mediators involved in host 

defence; however, there is some evidence to suggest that TLRs also play a part in 
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autoimmunity and sterile inflammation (inflammation caused by molecules of dying host 

cells or products of tissue injury) (Kanzler et al., 2007). An additional, non-immune, function 

has also been suggested, as, following stimulation by commensal bacteria, TLRs are 

considered responsible for the induction of factors involved in processes such as 

cytoprotection, wound healing and angiogenesis (Rakoff-Nahoum et al., 2004).  

 

1.3.4.2  Cytoplasmic pattern recognition receptors – NOD receptors 

Intracellular pathogens, which could evade recognition by TLRs are detected by TLR-

independent, cytoplasmic PRRs, such as nucleotide-binding oligomerisation domain (NOD) 

receptors (Akira et al., 2006).  

NOD receptors, NOD-1 and NOD-2, belong to the NOD leucine-rich receptor (LRR) 

family (the NLR family) and are homologous to the evolutionarily ancient plant disease 

resistance proteins (Abreu et al., 2005). NOD-1 consists of 3 distinct domains, the C-terminal 

LRR domain, a central NOD domain and an N-terminal caspase recruitment domain 

(CARD). NOD-2 was identified through its structural similarity to NOD-1, however, its N-

terminus contains 2 CARDs (Takeda and Akira, 2005). NOD-1 plays an important role in the 

detection of Gram-negative intracellular pathogens, as it recognises γ-D-glutamyl-meso-

diaminopimelic acid (iE-DAP), a peptidoglycan derivative found exclusively in Gram-

negative bacteria (Girardin et al., 2003a; Chamaillard et al., 2003). Conversely, NOD-2 

exhibits a more universal recognition ability, binding to muramyl dipeptide (MDP), the 

minimal bioactive peptidoglycan motif found in both Gram-positive and Gram-negative 

bacteria (Girardin et al., 2003b; Inohara et al., 2003). Ligand binding to NOD-1 or NOD-2 

leads to oligomerisation of the receptors, which induces the recruitment of the 

serine/threonine kinase Rip2/RICK (Takeda and Akira, 2005). NOD-receptor-bound 

Rip2/RICK subsequently activates the NF-κB-mediated expression of proinflammatory  
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cytokines (Akira et al., 2006; Masumoto et al., 2006). 

 

1.3.5 Cytokines and chemokines 

Epithelial PRRs which detect and respond to enteric bacteria (and their associated antigens) 

necessitate a specific transduction mechanism to relay the stimulatory signal to the host’s 

immune system. This is achieved through expression of a comprehensive range of 

proteinaceous signal molecules, termed cytokines, which regulate the function of intestine-

associated immune cells found in the underlying mucosal tissues.  

Cytokines are a group of small, non-structural proteins produced by nucleated cells, 

whose primary function is to mediate the host response to environmental stresses, such as UV 

light, heat shock, hyperosmolarity, injury, infection and disease (Dinarello, 2000). There are 

two main types of cytokines; proinflammatory cytokines, which promote the host 

inflammatory response; and anti-inflammatory cytokines, which suppress the actions of their 

proinflammatory counterparts (Dinarello, 2000). A delicate balance between the two is 

required for the maintenance of homeostasis in the host. During infection, there is as 

significant increase in proinflammatory cytokines, however, they do not have any direct 

effect on the invading pathogen themselves, but rather divert blood flow and attract immune 

cells to the area of stimulation and increase the influx of professional immune cells (Beutler, 

2004). 

 Chemotactic cytokines, or chemokines, are a subset of cytokines which are 

responsible for the attraction of leukocytes, from circulation, to stress-stimulated tissues 

(Luster, 1998). Chemokines are subdivided and classified by the relative position of their 

cysteine residues. In α-chemokines, an amino acid (X) separates the cysteine (C) residues, 

giving the ‘CXC’ sequence, however, in β-chemokines the cysteine are adjacent to one 

another, giving the ‘CC’ sequence (Luster, 1998). Primarily, α- and β-chemokines are 
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characterised by their different chemotactic activities, α-chemokines are chemotactic for 

neutrophils and lymphocytes, whereas β-chemokines attract monocytes, eosinophils, 

basophils and lymphocytes with variable selectivity (Luster, 1998).  

Epithelial-derived cytokines and chemokines play a significant physiological role in 

the extent and length of the immune response to bacterial (both pathogenic and commensal) 

stimulation (Schuerer-Maly et al., 1994; Haller et al., 2000; Bahrami et al., 2010). 

 

1.3.5.1  Promoting inflammation – interleukin-8  

Interleukin (IL)-8 is an highly potent α-chemokine (CXC) which is responsible for the 

attraction and activation of neutrophils to the site of stimulated release (Baggiolini et al., 

1989). Also, a secondary chemoattractant activity to basophils (Oppenheim et al., 1991) and 

a physiological role in the stimulation of angiogenesis (Koch et al., 1992) have been 

suggested. IL-8 is synthesised by a wide variety of cell types, such as mononuclear cells 

(Yoshimura et al., 1987), fibroblasts (Larsen et al., 1989), keratinocytes (Larsen et al., 1989), 

endothelial cells (Strieter et al., 1989), hepatocytes (Thornton et al., 1990) and intestinal 

epithelial cells (IECs) (Lammers et al., 1994; Warhurst et al., 1998; Zhang et al., 2005). In 

IECs, IL-8 release is significantly increased in response to a range of stimuli, such as primary 

mediators (IL-1 and TNF) (Lammers et al., 1994), bacterial entry (Eckmann et al., 1993b) 

and bacterial antigens, such as LPS (Schuerer-Maly et al., 1994).  

Despite its important role in the protective inflammatory response, over-expression of 

IL-8 can have detrimental effects on the body. Excessive production of IL-8 in the intestine, 

has been linked to the pathophysiology of inflammatory bowel disease (Banks et al., 2003). 

Elsewhere in the body, IL-8 over-production has been implicated in the aetiology of 

autoimmune conditions, such as psoriasis and rheumatoid arthritis (Graves and Jiang, 1995). 
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Therefore, the proinflammatory pathways must be regulated by anti-inflammatory cytokines, 

such as IL-10.  

 

1.3.5.2  Suppressing the inflammatory response – interleukin-10 

Interleukin (IL)-10 was originally named ‘cytokine synthesis inhibitory factor’, on account of 

its inhibitory action against cytokine production in T-helper (Th)1 cells. Subsequently, 

numerous other immune functions of the chemokine were uncovered, leading to its name re-

evaluation (Moore et al., 2001). IL-10 is very potent anti-inflammatory mediator, and is a key 

ameliorator of excessive inflammation in response to pathogenic attack, with the strength of 

the regulatory IL-10 response reflecting the strength of the preceding inflammatory response 

(Williams et al., 2004; Couper et al., 2008). IL-10 is mainly secreted by professional immune 

cells, such as T-cells, B-cells, macrophages and dendritic cells, however, non-immune cells, 

such as epithelial cells, have also shown expression (Mosser and Zhang, 2008; Bahrami et al., 

2010; Gao et al., 2012). The main biological function of IL-10 is exerted on innate immune 

cells, such as dendritic cells and macrophages, acting as a potent inhibitor of antigen 

presentation (Mosser and Zhang, 2008) and actively destabilising the mRNA of 

proinflammatory chemokines, thus preventing their expression (Moore et al., 2001). 

Additionally, IL-10 prevents the mRNA degradation of other anti-inflammatory mediators, 

thus enhancing their expression (Moore et al., 2001). 

IL-10 undoubtedly plays a significant role in mucosal immune regulation as IL-10-

deficient mice develop enterocolitis (Moore et al., 2001). Further to this, IL-10 demonstrates 

prevention of inflammation and mucosal ulceration in murine colitis models (Steidler et al., 

2000; de Moreno de LeBlanc et al., 2011). 
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1.4 Intestinal microflora 

1.4.1 Acquisition of commensal bacteria 

In utero, the foetal intestine is sterile and bathed in amniotic fluid (Fanaro et al., 2003). 

However, prior to birth, the amniotic fluid is drained and, during the consequential passage 

through the birth canal, the intestine is colonised by microorganisms from the mother’s 

vaginal flora and the surrounding environment (Ouwehand et al., 2002). Bacteria appear in 

the faeces of a newborn infant within the first few hours after birth and the enteric commensal 

microflora progressively flourishes in the first week of life outside the uterus (Ouwehand et 

al., 2002). The neonatal intestine is firstly colonised by facultative anaerobes, such as 

streptococci, staphylococci and enterobacteriaceae (specifically E. coli) (Hooper, 2004). 

These early colonisers consume the oxygen within the (initially aerobic) intestinal lumen, 

reducing the oxidation-reduction potential, thus providing more favourable conditions for 

stricter anaerobes, such as lactobacilli, bifidobacteria and Bacteroides species (Fanaro et al., 

2003).  Upon introduction of solid foods to the diet, the commensal microflora undergoes 

significant shifts in its composition, and by the age of 2 years old the microflora begins to 

reflect that of an adult (Ouwehand et al., 2002). Interestingly, babies delivered by caesarean 

section exhibit delayed microfloral development in comparison to those born vaginally and 

bacterial compositional differences are evident between babies delivered by the two birth 

methods (Ouwehand et al., 2002; Fanaro et al., 2003). 

 

1.4.2 Roles and functions of the intestinal microflora 

The colonisation of the host intestine by the indigenous microbial population is the result of 

millions of years of co-evolution and, consequently, a highly complex symbiotic relationship 

has emerged (Hooper and Gordon, 2001; Artis, 2008). The intestine provides a hospitable, 

and relatively pathogen-free, environment for the bacteria, which is both temperature-stable 
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and nutrient-rich (Artis, 2008). In return, the commensal microflora performs two main 

functions which benefit the host; firstly, it provides an additional physical barrier between 

potential pathogens and the epithelial layer; secondly, and more importantly, it aids the 

overall development of the intestine.  

Studies utilising germfree mice have given a fascinating insight into the role the 

microflora plays in the morphological, immunological and metabolic development of the 

intestine. Germfree (gnotobiotic) mice are born by sterile caesarean section and are reared in 

sterile conditions, resulting in a complete lack of colonisation of the body by microorganisms 

(Gordon and Pesti, 1971). The word gnotobiotic is derived from the Greek words ‘gnotos’ 

and ‘biota’, and literally translates to ‘known flora’ (Gordon and Pesti, 1971), and so the term 

can also refer to ex-germfree mice colonised with a known single bacterium, or combination 

of bacteria. A number of distinct phenotypic differences are observed in germfree mice when 

compared to those conventionally raised.  

Morphologically, the intestinal wall of germfree mice varies quite considerably from 

that of their conventionally raised counterparts, with severe differences such as; hypoplasia of 

intestinal villi, including low levels of vascularisation (Syed et al., 1970, Hooper, 2004); 

shallowing of crypts in the ileum (Syed et al., 1970); and significantly reduced epithelial 

turnover (Savage et al., 1981). An absence of microflora also results in the accumulation and 

inspissation of epithelial mucus, as the degradation and clearance processes are significantly 

reduced (Neish, 2002).  

Colonisation of the intestine by non-pathogenic bacteria presents fierce competition 

for environmental niches and nutrients, thus excluding the majority of potentially pathogenic 

bacteria (Farthing, 2004). Additionally, the microflora plays an essential role in the 

maturation of the intestinal immunity as, at birth, the immune system is extremely naïve, as 

can be demonstrated in germfree animals. When contrasted with conventionally reared 
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animals, germfree animals exhibit significantly reduced production of antimicrobial peptides 

due to lower numbers of Paneth cells (Guarner and Malagelada, 2003). Additionally, their 

adaptive immunity displays considerably fewer intraepithelial lymphocytes (IELs) (Neish, 

2002), smaller Peyer’s patches due to slower development of lymphoid follicles (Forchielli 

and Walker, 2005) and lower levels of mucosal IgA resulting from diminished numbers of 

antibody-producing B-cells (Hooper et al., 2012). Consequently, circulatory levels of 

antibodies are also much lower in germfree mice, therefore oral tolerance of antigens only 

lasts a matter of days, whereas in conventional mice it subsists for months (Guarner and 

Malagelada, 2003). However, despite the extreme disparities, upon exposure to normal 

commensal microflora, ex-germfree animals are able to develop an immunity comparable to 

that of conventionally-raised animals (Ouwehand et al., 2002). The culmination of the 

morphological and immunological changes (due to the lack of microflora) seen in germfree 

animals results in a luminal surface that is significantly less efficient in absorption than its 

conventionally-raised counterpart and is considerably more likely to succumb to pathogenic 

attack. 

The term commensal originates from the Latin ‘commensalis’, which means ‘at the 

table together’, and indeed, the microflora represents a metabolically active entity that aids 

host nutrition (Hooper and Gordon, 2001). The microflora is responsible for the enzymatic 

degradation of substances that would otherwise be indigestible to the host, for example 

complex carbohydrates, such as cellulose, resistant starch, inulin and xylans (Hooper, 2004, 

Tremaroli and Bäckhed, 2012). These complex carbohydrates are fermented by the 

microflora, producing the short chain fatty acids (SCFAs), such as butyrate, propionate and 

acetate (Tremaroli and Bäckhed, 2012). Butyrate is utilised locally as an energy substrate for 

epithelial cells and also plays a role in epithelial integrity and homeostasis (Nicholson et al., 
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2012). Conversely, propionate and acetate are transported to distal organs (Nicholson et al., 

2012). 

The intestinal flora also assists host nutrition via the synthesis of vitamins, such as 

vitamin K, and the absorption of calcium, magnesium and iron (Neish, 2002, Guarner and 

Malagelada, 2003). The enteric microflora also triggers the storage of fat, a trait highly 

beneficial to the sporadic diet of ancient humans, but one that has become largely redundant 

and detrimental in a modern society of large portions and high-calorie food, thus predisposing 

to the prevalence of obesity (Bäckhed et al., 2004). Furthermore, microfloral shifts have been 

documented in obese mice and humans. Obese individuals exhibit significantly increased 

levels of Firmicutes and ~ 50 % fewer Bacteroidetes, resulting in a microflora more adept at 

releasing calories from food, which are thus absorbed by the host (Ley et al., 2006; 

Turnbaugh et al., 2006). 

 

1.4.3 Probiotics 

The term probiotic, is derived from the Greek words meaning ‘for life’, and was originally 

coined  to describe ‘substances secreted by one microorganism which stimulate the growth of 

another’ (Schrezenmeir and de Vrese, 2001). Subsequently, the probiotic idiom was often 

used in the context of bacteria-containing animal feeds, and the definition subtly evolved to 

‘organisms and substances which contribute to intestinal microbial balance’. However, this 

was significantly revised due to the implication that ‘substances’ could be referring to 

antibiotics (Fooks et al., 1999). Also, the health benefits of probiotic bacteria were found to 

supersede modifications of the intestinal microflora (Blum et al., 2002); thus, current 

definitions describe probiotics as ‘live microorganisms which, when orally administered in 

adequate amounts, confer a health benefit on the host’ (Wohlgemuth et al., 2010).  
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One of the major health benefits associated with probiotics is increased protection 

against pathogen attack. Probiotics often promote enhanced expression and redistribution of 

TJ proteins, thus increasing epithelial barrier integrity and limiting the passage of potential 

pathogens to the underlying mucosal tissues (O'Flaherty and Klaenhammer, 2010). Also, 

probiotic bacteria exploit the same epithelial binding site receptors as pathogenic bacteria and 

therefore present fierce competition for both environmental niches and nutrients, which often 

results in the competitive exclusion of the invading pathogen, from the intestine (Fooks et al., 

1999, Vinderola et al., 2005). Another mechanism often utilised against pathogens by 

probiotic bacteria is the production of antibacterial compounds, such as bactericidal proteins 

(bacteriocins) and lactic acid (Wohlgemuth et al., 2010). The host’s immune responses are 

also manipulated by probiotic bacteria in order to ensure pathogenic clearance, with immune 

functions, such as augmented defensin secretion by Paneth cells, increased production of 

secretory IgA and increased natural killer (NK) cell activity, previously observed (Erickson 

and Hubbard, 2000; Wohlgemuth et al., 2010).  

Within the intestine, health benefits imparted by probiotics include improved 

digestion of lactose in intolerant hosts, prevention of food allergies, lessening of diarrhoeal 

severity and reduction in symptoms of irritable bowel syndrome (IBS) (Galdeano et al., 2007; 

O'Flaherty and Klaenhammer, 2010). In addition to the local positive effects of probiotics in 

the intestine, more systemic benefits have also been characterised, with probiotics acting to 

lower blood cholesterol, decrease the severity of bronchial infections in infants and confer 

anticarcinogenic activity at sites distal to the intestine (O'Flaherty and Klaenhammer, 2010; 

Wohlgemuth et al., 2010).  It has also been suggested that probiotic bacteria could represent a 

novel delivery method for heterologous proteins of vaccinal, medical or technological interest 

(del Carmen et al., 2011). 
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1.4.4 Prebiotics and synbiotics 

The concept of prebiotics was originally conceived by Gibson and Roberfroid (1995), who 

defined them as ‘non-digestible food ingredients that beneficially affect the host by 

selectively stimulating the growth, and/or the metabolic activity, of a limited number of 

colonic bacteria which subsequently induce favourable lumenal or systemic affects’.  They 

also suggested the notion of combining probiotics and prebiotics to work synergistically in 

the growth promotion of beneficial bacteria in the host colon, forming synbiotics (Gibson and 

Roberfroid, 1995). 

 

1.4.5 Breaching the epithelial layer – bacterial translocation 

Bacterial translocation (BT) can be defined as ‘the passage of both viable and non-viable 

microbes and microbial products across an anatomically intact intestinal barrier’ (Alexander 

et al., 1990). Further to this, there are two major pathways of translocation; transcellular i.e. 

through the cells of the epithelium; and paracellular, in which microbes pass through the 

intercellular tight junctions (Balzan et al., 2007). BT in the intestine is traditionally associated 

with the presence of predisposing factors, such as bacterial overgrowth, damage to the 

epithelial layer or the infiltration of pathogenic bacteria (Balzan et al., 2007; Gatt et al., 

2007). However, Berg (1995) suggested that indigenous bacteria constitutively translocate 

transcellularly (thus not affecting epithelial integrity) from the intestinal lumen of healthy, 

immunocompetent individuals, but are killed en route or in situ once they reach the lymphoid 

organs. Furthermore, Lichtman et al. (2001) suggested that BT is required to allow the GALT 

to generate immunocompetent cells. There is some, albeit limited, evidence to support these 

theories, with a range of non-pathogenic commensal bacteria exhibiting (low) levels of BT 

and immune stimulation in vitro, in intestinal epithelial cell lines (Reddy et al., 2007; Ohkusa 

et al., 2009). Additionally, the translocation of the commensal microflora, and consequent 
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stimulation of the host immune system, has been heavily implicated in the pathophysiology 

of inflammatory bowel disease (see Section 1.4.6). 

 

1.4.6 Mutinous microflora – inflammatory bowel disease 

Inflammatory bowel disease (IBD) is an idiopathic chronic disorder, occurring in 

immunocompetent individuals (Cobrin and Abreu, 2005), which affects approximately 1 in 

every 350 people in the UK (NHS, 2011). The characteristic symptoms of IBD, such as 

abdominal pain, diarrhoea, rectal bleeding, malaise and weight loss (Strober et al., 2007, 

Reiff and Kelly, 2010), all arise from a non-infectious, cytokine-driven inflammation of the 

intestine (Cobrin and Abreu, 2005; Strober et al., 2007). The chronic inflammation associated 

with IBD has also been associated with an increased incidence of colorectal cancer (Atreya 

and Neurath, 2010). 

IBD exists in two major forms, Crohn’s disease (CD) and ulcerative colitis (UC). CD 

was first observed by the German surgeon, Wilhelm Fabry in the early 17
th

 century 

(Baumgart and Carding, 2007), however, it remained largely unknown until the condition 

was later described by, and subsequently named after, the American gastroenterologist, Burril 

B. Crohn in the early 1930s (Crohn et al., 1932). CD is characterised by transmural intestinal 

inflammation (Strober et al., 2007), and non-necrotising granuloma formation resulting from 

the aggregation of macrophages (Xavier and Podolsky, 2007). In more severe cases, the 

development of obstructing strictures of the intestine or inflammation of connections between 

the intestine and other organs can occur (Strober et al., 2007). CD may affect any site of the 

GI tract, but mainly occurs in the ileum and colon (Xavier and Podolsky, 2007). Conversely, 

ulcerative colitis was first described in the mid-19
th

 century by the British physician Sir 

Samuel Wilks, and was thus named due to the severe inflammation and extensive superficial 

mucosal ulceration observed (Wilks, 1859). UC occurs exclusively in the distal ileum and 
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colon (Bene et al., 2011) and is histopathologically characterised by the excessive presence 

of neutrophils in the lamina propria and crypts, resulting in micro-abscesses (Xavier and 

Podolsky, 2007).  

 

1.4.6.1  Pathophysiology of IBD 

Under normal physiological conditions, healthy individuals remain systemically impassive to 

the wide array of food and microfloral antigens within the intestine (Bene et al., 2011); 

however, in IBD this tolerance is lost and sufferers of the disease exhibit serological and T-

cell responses to commensal-derived antigens (Sartor, 2008). Excessive immune reaction to 

the microflora leads to the chronic inflammation of the intestinal mucosa classically 

associated with IBD (Bene et al., 2011). The exact aetiological mechanisms of IBD are still 

uncertain; however intense research in this area has uncovered a number of contributing 

factors, such as genetic susceptibility, the commensal microflora itself, immune abnormalities 

and environmental influences. 

In the 1930s, studies reported a familial aggregation of IBD (Baumgart and Carding, 

2007) and subsequent investigations in to genetic susceptibility utilised twin concordance 

studies (Tysk et al., 1988; Thompson et al., 1996). Monozygotic (identical) twins 

demonstrated a pooled systemic concordance of 37.3 % for CD and 10 % for UC, whereas 

dizygotic (non-identical) twins showed concordances of 7 % and 3 % for CD and UC, 

respectively (Baumgart and Carding, 2007). This indicated that genetic predisposition was a 

larger contributor to CD susceptibility than in UC. Genome-wide searches have identified 

over 70 genes within loci previously characterised in the susceptibility to CD (Barrett et al., 

2008, Franke et al., 2010). Interestingly, the IL-10 gene has been identified as a key 

susceptibility gene, with IL-10-knockout mice providing one of the best models for the study 

of IBD (Franke et al., 2010).  
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There is some evidence to suggest that the regulation and/or mutation of genes 

encoding pattern recognition receptors (PRRs) could potentially play a major role in IBD. 

Two independent, yet simultaneous, studies undertaken by Hugot et al. (2001) and Ogura et 

al., (2001) both found that mutations of the NOD-2 gene product confers significant 

susceptibility to CD. The mutants exhibited altered microbial antigen recognition through the 

NOD-2 receptor and/or over-activation of NF-κB in monocytes (Hugot et al., 2001). NOD-2 

has also been shown to be significantly up-regulated in young CD patients (Berrebi et al., 

2003). Additionally, the LPS receptor TLR-4 is typically scarcely detectable in intestinal 

tissue, however, its expression is greatly up-regulated in IBD-inflamed tissues (Cario and 

Podolsky, 2000). Furthermore, polymorphism mutations in the TLR-4 gene have been found 

in both CD and UC patients, and could potentially predispose individuals to IBD 

(Franchimont et al., 2004). Rakoff-Nahoum et al. (2006) have also shown that the adaptor 

molecule, MyD88, which is responsible for intracellularly transmitting TLR stimulation, 

could be a major contributing factor to IBD, as MyD88-deficiency results in colitis-free 

animals in inflammatory models, such as  IL-10
-/-

 mice.  

The loss of microfloral tolerance by the intestinal immunity was originally 

demonstrated by Duchmann et al. (1995), who challenged LPMCs (lamina propria 

mononuclear cells) from non-inflamed and IBD-inflamed intestinal tissues, with both 

heterologous and autologous microfloral sonicates. They found that immune cells from non-

inflamed intestinal tissue were reactive to non-indigenous microfloral sonicates, but were 

unresponsive to indigenous sonicates (ie. self-tolerance), whereas the equivalent cells isolated 

from an IBD-inflamed intestine were hyperresponsive to both sonicate samples (Duchmann 

et al., 1995). Further to this, ~50 % of CD patients show positive serological responses to 

enteric-origin antigens, for example, outer membrane proteins (OMPs) (Landers et al., 2002) 
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and flagellin (Lodes et al., 2004; Targan et al., 2005), which the host immune system would 

normally tolerate (Sartor, 2008).  

One theory for the loss of host immune tolerance is the dysbiosis of the commensal 

microflora. A pioneering metagenomic study by Frank et al. (2007) showed decreased levels 

of Firmicutes and Bacteroidetes in the microflora of IBD patients, suggesting a fundamental 

compositional change in the microflora. Additionally, a study by Rath et al. (2001) showed 

that some groups of enteric microflora have increased IBD-inducibility when compared to 

others. Another hypothesis suggests that microbial pathogens could elicit the induction of 

IBD, with an increase in adherent and invasive E. coli (AIEC) seen in IBD patients 

(Darfeuille-Michaud et al., 1998). In addition, Mycobacterium avium sp. paratuberculosis 

(MAP), the aetiological agent in spontaneous granulomatous enterocolitis in ruminants such 

as cattle and sheep (Harris and Barletta, 2001), presented a strong candidate, as it was 

isolated from inflamed tissue samples of CD patients (Chiodini et al., 1984, Autschbach et 

al., 2007). However, a long treatment course of antimycobacterial antibiotics did little to 

alleviate the symptoms in CD patients (Selby et al., 2007), thus dispelling the theory of MAP 

as a causative agent.  

 In contrast to this, there is ever-increasing evidence of innate defence abnormalities 

which result in susceptibility to IBD, via increased mucosal association of bacteria 

(Swidsinski et al., 2002). CD patients exhibit diminished physico-chemical barriers with a 

reduced colonic mucus layer (Cobrin and Abreu, 2005) and dramatically reduced expression 

of defensins HD-5 and HD-6 in the ileum (Wehkamp et al., 2005). This decreased 

antimicrobial activity results in loss of regulation of commensal microflora and increased 

epithelial exposure (Wehkamp et al., 2005). Moreover, the ‘leaky gut’ hypothesis proposes 

that loss of epithelial integrity predisposes to IBD (Schmitz et al., 1999; Soderholm et al., 
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2002); however, a later study by Collett et al. (2008) suggested that a ‘leaky’ epithelium 

develops only when the disease is established.  

Mucosal adaptive immunity also demonstrates malfunctions in IBD, with T-cells 

resistant to apoptosis found in CD, thus resulting in an increased and prolonged inflammatory 

response (Cobrin and Abreu, 2005). T-cell stimulation is also enhanced due to increased 

numbers of intraepithelial DCs which produce higher levels of proinflammatory cytokines, 

such as IL-12 and IFNγ, and possess increased class II MHC antigen in IBD-inflamed 

intestinal tissues (Bene et al., 2011). 

 Environmental factors have also been implicated in the pathophysiology of IBD, but 

with distinctive variability between the two major forms of IBD. For example, smoking has 

been suggested to double the likelihood of developing CD (Loftus, 2004), but, conversely, is 

associated with exacerbation of UC (Baumgart and Carding, 2007). Similarly, there is a 69 % 

decrease in risk of developing UC subsequent to undergoing an appendectomy (Loftus, 

2004), but significantly increased risk of stricture development in CD (Baumgart and 

Carding, 2007). 

Regardless of predispositions and pathogeneses, IBD culminates in the increased 

migration and activation of monocytes, macrophages, granulocytes and lymphocytes from the 

blood stream to the mucosa, leading to continued inflammation and perpetuation of disease 

(Banks et al., 2003; Atreya and Neurath, 2010). 

 

1.5 Bacteria and their extracellular products 

1.5.1 Bacterial cell walls 

Bacteria can be separated into two distinct categories: Gram-positive and Gram-negative 

bacteria (Madigan and Martinko, 2006). The original distinction between the two comes from 

the staining technique serendipitously discovered in 1884 by the Danish bacteriologist, 
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Christian Gram (Gram, 1884). Gram staining utilises two staining steps with crystal violet 

and saffranin, respectively, and an intermediary wash step with alcohol. The basis of the 

differentiation between to two types of bacteria relies upon the chemical composition and 

structural configuration of their cell walls (Salton, 1963). Gram-negative bacteria possess a 

lipid-rich outer membrane (OM) and a thin peptidoglycan layer and, as a result, the primary 

stain, crystal violet, is washed from the cells with the decolourising alcohol wash, leaving the 

secondary stain, saffranin, to colour the cells pink (Beveridge, 1999). In contrast, the thick 

peptidoglycan layer of Gram-positive bacteria retains the crystal violet stain, colouring the 

cells purple (Beveridge, 1999). Figure 1.3 highlights the difference in the two types of 

bacterial cell wall.  

The composition of the Gram-positive cell wall is relatively simple and consists 

mainly of the cytoplasmic phospholipid membrane and the characteristically thick layer of 

peptidoglycan (PGN) (Figure 1.3a), which accounts for 30-70 % of the mass of the cell wall 

(Schleifer and Kandler, 1972). However, a number of accessory molecules, such as surface 

proteins, teichoic and lipoteichoic acids and carbohydrates, also reside within the PGN layer 

(Navarre and Schneewind, 1999).  

Gram-negative cell walls are much more complex than their Gram-positive 

equivalents, as they constitute a multilayer structure consisting of two membrane bilayers 

which sandwich a concentrated gel-like matrix (the periplasm) and a layer of peptidoglycan 

(Beveridge, 1999) (Figure 1.3b). Compared to the Gram-positive cell wall, the peptidoglycan 

layer is thin and only accounts for <10 % of the whole cell wall (Schleifer and Kandler, 

1972). The intermediary periplasmic layer contains a diverse mix of periplasmic enzymes, 

trafficking proteins and outer membrane- or peptidoglycan layer-directed proteins 

(Beveridge, 1999), all of which contribute to its gel-like consistency. The inner of the two 

membrane bilayers, the cytoplasmic membrane (CM), is made up solely of phospholipids and  
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Figure 1.3 – Cross-sectional structures of bacterial cell walls. This illustrates the 

characteristic thick peptidoglycan layer, and its associated molecules, of the Gram-positive 

cell wall (A). On the other hand, the Gram negative cell wall exhibits its two membrane 

bilayers with the periplasm and thin peptidoglycan layer between them (B). PGN = 

peptidoglycan, NAG = N-acetylglutamic acid, NAM = N- acetylmuramic acid.  
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proteins and acts much like the cytoplasmic membrane of Gram-positive bacteria. However, 

the outer bilayer, the outer membrane (OM), is composed of mainly of lipopolysaccharides, 

phospholipids and small amounts of proteins and lipoproteins, and, thus, behaves very 

differently from typical phospholipid bilayer membranes (Beveridge, 1999). 

Lipopolysaccharide (LPS) molecules are negatively charged and require the sequestration of 

magnesium ions (Mg
2+

) to decrease electrostatic repulsions between them, thus 

maintaininingtight lateral interactions and, ultimately, OM integrity (Bishop, 2005).  LPS 

molecules also contain saturated acyl chains which decrease the fluidity of the membrane 

(Bishop, 2005). Tight lateral bonds and low fluidity result in a membrane permeable only to 

lipophilic solutes and detergents, however, transmembrane porins allow the selective 

bidirectional transportation of other molecules (Bishop, 2005). The asymmetric distribution 

of the OM components results in the presentation of highly antigenic LPS molecules on the 

bacterium’s external surface, whereas the majority of phospholipids are found on the 

periplasmic face (Beveridge, 1999). The lipoproteins are also located on the periplasmic 

surface and function to bind the thin peptidoglycan layer to the OM. Some of the major 

antigenic differences between Gram-positive and Gram-negative cell walls are discussed 

below.   

 

1.5.2 Endotoxins (lipopolysaccharides) 

The German bacteriologist, Richard Pfeiffer, coined the term ‘endotoxin’ in 1892 when he 

demonstrated that heat-killed bacteria of the cholera-inducing Vibrio cholera caused toxic 

shock in guinea pigs (Pfeiffer, 1892; Alexander and Rietschel, 2001). He subsequently 

theorised that the heat-stable toxin was present inside the bacterial cell and consequently 

named it ‘endotoxin’ to distinguish it from the already documented exotoxins of V. cholera 

(Alexander and Rietschel, 2001). It has since been discovered that endotoxic activity of 
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Gram-negative bacteria originates from lipopolysaccharides (LPS) which constitute the 

majority (~75 %) of their outer membrane (Rietschel et al., 1994). LPS is an amphiphilic 

membrane phospholipid (Fenton and Golenbeck, 1998) which is essential for cell viability  

and outer membrane permeability (Rietschel et al., 1994). It also plays a key role in 

protection of the bacterium against host immune defences, enzymatic degradation and 

antibiotic attack (Holst et al., 1996). Since only the Sphingomonas genus is found to lack LPS 

(Alexander and Rietschel, 2001), its ubiquitous expression in other Gram-negative bacteria 

presents the mammalian innate immune system with a major target (Erridge et al., 2002). 

However, LPS is not actively secreted by Gram-negative bacteria, and is normally only 

released in small amounts during mitotic division (Caroff and Karibian, 2003).  

 

1.5.2.1  General structure of LPS  

LPS is a glycolipid macromolecule consisting of three domains; the distal hydrophobic O-

specific chains, or O-antigens, which extend into the aqueous media; the interconnecting core 

region; and the hydrophobic lipid A region which acts as the membrane anchor (Bishop, 

2005) (Figure1.4).  

The O-specific chain regions of LPSs are highly diverse polymers of repeating 

saccharide subunits which vary greatly in different bacterial strains (Erridge et al., 2002). 

They are not essential for the viability of the bacterium, as not all Gram-negative LPSs 

possess O-antigens (Bishop, 2005). O-antigen-lacking strains of bacteria are termed rough 

(R-) serotypes due to their characteristic colony morphology which is distinct from the 

morphology of smooth (S-) serotype colonies (Alexander and Rietschel, 2001). Despite their 

non-essential nature, O-antigens have demonstrated a highly beneficial role in bacterial 

survival during infection of the host, aiding in the avoidance of phagocytosis by macrophages 

(Rietschel et al., 1994) and circumvention of the lytic action of the host complement system 
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and antibiotics (Caroff and Karibian, 2003). However, paradoxically, O-antigens present a 

major target for the host’s antibody response, as they represent the extreme outer limits of the 

bacterial cell (Erridge et al., 2002). 

 

 

 

 

 

Figure 1.4 – General structure of LPS from Gram-negative enterobacteria. GlcN = 

glucosamine, Kdo = 2-keto-3-deoxy-D-manno-octonate, Hep = D-glycero-D-manno-heptose. 

Adapted from Alexander and Rietschel, (2001). 
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a more diverse structure and typically consists of combinations of hexose sugars, such as 

glucose and galactose (Erridge et al., 2002). Both core sugars are often substituted with 

negatively charged groups such as phosphates and pyrophosphates, giving the LPS molecule 
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The glycolipid membrane anchor, lipid A, represents the biologically active moiety of 
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(Galanos et al., 1985). The lipid A domain consists of a phosphorylated β-1,6-linked 

glucosamine (GlcN) disaccharide (Netea et al., 2002), to which up to 4 acyl chains can be 

attached. Furthermore, the acyl chains can be substituted with fatty acids, giving a maximum 

of 7 acyl chains in the lipid A region (Erridge et al., 2002). The number and length of the 

constituent acyl chains determines the three-dimensional shape of lipid A, and is linked to the 

overall endotoxic potential of the LPS molecule (Schromm et al., 2000). High biological 

activity has been linked to non-cylindrical lipid A molecules (due to their favourable steric 

interactions with the LPS receptor), whereas cylindrical-shaped lipid A molecules have low 

or no endotoxic activity (Schromm et al., 2000).  

 

1.5.2.2  Immunostimulation by LPS 

In a healthy individual, the basal systemic concentration of LPS in the human body can be in 

the range of 3-10 pg/ml (Alexander and Rietschel, 2001). Accordingly, the highly evolved 

innate immune system can detect and, indeed, degrade these concentrations of LPS (Hoffman 

and Natanson, 1997; Ulevitch and Tobias, 1999) in a phenomenon known as ‘LPS tolerance’. 

LPS tolerance has been shown to aid in the defence against subsequent bacterial invasion by 

the parent strain (Hoffman and Natanson, 1997). However, larger quantities of LPS, often 

released by bacterial lysis during infection (Caroff and Karibian, 2003), can have a highly 

detrimental effect on the host, resulting in fever, increased heart rate, septic shock and, 

ultimately, death from multiple organ failure and systemic inflammatory response (Hoffman 

and Natanson, 1997; Caroff and Karibian, 2003).  LPSs do not elicit their toxic effect by the 

killing of host cells, or even by the inhibition of host cellular function, but via the active 

inflammatory responses of host cells (Rietschel et al., 1994).  

 The first stage in host recognition of LPS is the binding of the acute phase reactant, 

LPS-binding protein (LBP) (Hailman et al., 1994), which predominantly originates from the 
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liver and freely circulates in the blood (Fenton and Golenbeck, 1998). The main function of 

LBP is to opsonise and deliver LPS to the cluster of differentiation (CD)14 receptor, with 

each LBP molecule chaperoning 10 LPS molecules to the receptor (Hailman et al., 1994). 

CD14 is a member of the toll-like receptor (TLR) family (Triantafilou and Triantafilou, 2002) 

and exists in two forms, membrane-bound (mCD14) and soluble (sCD14), both of which are 

able to mediate the activation of host cells (Pugin et al., 1993). Guha and Mackman  (2001) 

suggested that mCD14 is important for LPS recognition, as CD14-deficienct mice showed 

LPS hyposensitivity, whereas overexpression resulted in LPS hypersensitivity and increased 

susceptibility to endotoxic shock.  However, despite being embedded within the cell 

membrane, mCD14 does not possess a cytoplasmic domain, and therefore CD14 lacks the 

ability to activate a transmembrane activation signal (Triantafilou and Triantafilou, 2002). 

This implies that another receptor confers responsiveness to LPS. Poltorak et al. (1998) 

suggested that Toll-like receptor (TLR)-4 was responsible for LPS sensitivity, as they found 

the human TLR-4 gene was homologous to the murine Lps gene, which was shown to control 

leukocyte response to LPS (Linder et al., 1988). Subsequently, Hoshino et al. (1999) 

demonstrated TLR-4 to be the translational product of the Lps gene and generated TLR-4-

deficient mice which, consequently, lacked responsiveness to LPS. There was some 

speculation that TLR-2 could also play a role in LPS responsiveness (Kirschning et al., 1998, 

Yang et al., 1998), however, this was soon nullified when meticulous repurification of LPS, 

removing any lipoprotein contaminants, showed that TLR-4 was responsible (Hirschfield et 

al., 2000).  However, TLR-4 does not work alone in LPS recognition, a co-factor, MD-2, 

forms a receptor complex, which induces an intracellular signal transduction cascade once the 

CD14-bound LPS is transmitted (Shimazu et al., 1999; Heumann and Roger, 2002).  

 The innate immune response to LPS is orchestrated by CD14-expressing immune 

cells such as monocytes and macrophages, which react to the presence of LPS by producing 
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proinflammatory cytokines such as TNF-α, IL-6 and IL-8 (Guha and Mackman, 2001). 

However, CD14-deficient cells, such as endothelial cells, are also able to respond to LPS in 

the presence of serum (Hailman et al., 1994). Intestinal epithelial cell lines have also revealed 

sensitivity to LPS with the stimulation of  the proinflammatory cytokine, IL-8, in both HT29 

cells (Schuerer-Maly et al., 1994; Smirnova et al., 2003) and Caco-2 cells  (Huang et al., 

2003). Conversely, Berg et al. (1995) demonstrated that, in murine models, LPS was also 

able to induce an increase in serum concentrations of the anti-inflammatory cytokine, IL-10, 

thus suggesting a role in LPS tolerance. However, the same study showed that LPS tolerance 

was not dependent on IL-10, but the process was potentiated by the cytokine (Berg et al., 

1995).  

 

1.5.3 Membrane vesicles (MVs) 

Membrane vesicles (MVs) are small (50-250 nm diameter), spherical, bilayered membranous 

structures (Beveridge, 1999) produced by Gram-negative bacteria. MVs have been found to 

be produced by every Gram-negative bacteria investigated to date (Ellis and Kuehn, 2010) 

and are consequently found in a diverse range of environments, from liquid and solid lab 

cultures to river beds and waste water pipes (Schooling and Beveridge, 2006). MVs have also 

been isolated in vivo, at both the site of bacterial infection (Fiocca et al., 1999; Keenan et al., 

2000) and in distant organs of infected hosts (Dorward et al., 1991). 

MVs are unique to Gram-negative bacteria as they originate from the outer membrane 

(OM), a feature absent from the cell wall of Gram-positive bacteria (see Section 1.5.1). The 

composition, conformation and surface chemistry of MVs represent the intact outer 

membrane of Gram-negative bacteria, but on a smaller scale (Beveridge, 1999, Schooling and 

Beveridge, 2006). Lipopolysaccharides (LPSs), outer membrane proteins (OMPs), 

phospholipids and periplasmic proteins all constitute MVs (Beveridge, 1999; Kesty and 
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Kuehn, 2004) and proteins such as transmembrane porins, murein hydrolases, transporter 

proteins, virulence factors and motility-related proteins  have all been identified in MVs by 

proteomic studies (Lee et al., 2008). 

 

1.5.3.1  Biogenesis of MVs 

The biogenesis of MVs is, as yet, unknown (Kulp and Kuehn, 2010), however they are not an 

artefact of cell division or lysis, nor simply a consequence of membrane instability 

(McBroom et al., 2006). Currently, there are three main hypotheses for the mechanism of 

MV formation. The first was influenced by a study undertaken by Wensink and Witholt, 

which demonstrated that MVs isolated from Escherichia coli contained little lipoprotein 

content and a lipoprotein-deficient mutant of E. coli showed excessive MV production 

(Wensink and Witholt, 1981). Consequently, they theorised that MVs are derived from areas 

of the Gram-negative outer membrane which have few lipoprotein links with the underlying 

peptidoglycan layer (Wensink and Witholt, 1981). However, this hypothesis implies a non-

homogeneous distribution of lipoprotein in the OM, which is, as Wensink and Witholt 

themselves stated, highly unlikely, as the OM contains a very high density of lipoprotein 

(50,000-100,000 molecules of lipoprotein/µm
2
 (Osborn and Wu, 1980)). Subsequently, they 

postulated a more likely scenario, in which the OM expands faster than the underlying 

peptidoglycan layer, resulting in membrane blebbing and subsequent pinching off of the OM, 

thus forming a membrane vesicle (Wensink and Witholt, 1981). The second hypothesis of 

MV biogenesis proposed that turgor pressure from the periplasm results in outer membrane 

blebbing and MV formation (Zhou et al., 1998). Zhou et al. stated that, during the mitotoic 

division of Gram-negative bacteria, the turnover of the peptidoglycan layer (underlying the 

OM) produces low molecular mass muramyl peptides which cannot penetrate the OM and so 

accumulate within the periplasmic space (Zhou et al., 1998). Furthermore, they hypothesised 
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that the accumulation of muramyl peptides exerts turgor pressure, herniating the OM and 

producing membrane blebs which subsequently pinch off forming MVs. However, their 

theory was based solely on the discovery of peptidoglycan-originating muramic acid in MVs 

of P. gingivalis. The third hypothesis of MV biogenesis proposes that a system analogous to 

budding mechanisms observed in eukarya and archaea is involved in MV formation (Kulp 

and Kuehn, 2010). This theory relies on curvature-inducing molecules aggregating and 

causing bulging of the OM, a process which would result in the enrichment of these 

molecules within the MVs. This model was upheld by the discovery that the outer leaf of the 

bilayer membrane of Pseudomonas aeruginosa MVs mainly consisted of the negative B-band 

LPS molecule, as opposed to the more neutral A-band LPS (Kadurugamuwa and Beveridge, 

1995). It was subsequently suggested that the electronegative charges between the B-band 

LPS molecules caused charge-to-charge repulsion, resulting in OM instability, blebbing and 

MV formation (Mashburn-Warren and Whitely, 2006). Currently, all three hypotheses are 

accepted as possible mechanisms and, despite their divergence, all three agree on the latter 

stages, i.e. the budding and pinching off of the OM to release the MVs (Figure 1.5).  

 

1.5.3.2  Biological roles of MVs  

A number of functions have been ascribed to MVs, with roles in fundamental cell processes 

such as periplasmic equilibrium maintenance and protein transport suggested (McBroom and 

Kuehn, 2007). However, a direct accountability in the virulence of Gram-negative bacteria is 

the most strongly supported proposal (Ellis and Kuehn, 2010), thus, the best characterised 

MVs are those originating from pathogens (Kuehn and Kesty, 2005) (see Section 1.5.3.3). 

However, in addition to virulence, Gram-negative bacteria could utilise MVs in a 

protective role, as Ciofu et al. (2000) found that the antibiotic-denaturating enzyme β- 

lactamase was preferentially packaged inside the MVs of P. aeruginosa. The same MVs were 
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Figure 1.5 – Formation of membrane vesicles. The specific mechanism of MV biogenesis 

is still unknown; however the general process is summarised above. The outer membrane 

(OM) of the Gram-negative cell wall (A) undergoes an unknown initiation process which 

results in the bulging out of the OM (B). The protuberance is subsequently pinched off (C) 

and the vesicle is released from the OM, which returns to its ‘normal’ state (D). 
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also seen to contain outer membrane porins which allowed the passage of β-lactam antibiotic 

molecules into the enzyme-containing lumenal cavities of the MVs, where they were 

subsequently digested within the MV lumen, thus greatly reducing their bactericidal activity. 

Additionally, Manning and Kuehn (2011) proposed that MVs represent a defence utilised by 

Gram-negative bacteria against outer membrane-acting bacterial antimicrobial peptides 

(AMPs), such as polymyxin B and colistin. They documented an up-regulation of MV 

production, in E. coli, in response to polymyxin B and colistin which subsequently 

neutralised the further effectiveness of the AMPs as they adsorbed to the MVs rather than the 

bacteria themselves. A similar effect was seen in T4 bacteriophage-challenged E. coli, with 

the infectivity of the phage reduced by ~90 % as it irreversibly bound to MVs.   

Mashburn-Warren and Whitely (2006) have suggested that MVs could also represent 

a cell- to-cell communication mechanism analogous to the vesicle trafficking system utilised 

by multicellular eukaryotic organisms. Their report showed that the extracellular signalling 

molecule, Pseudomonas quinolone signal (PQS), which induces the transcription of various 

virulence genes in P. aeruginosa, mediates its own packaging into MVs. The MVs then 

deliver the quorum sensing molecule from the parent bacterium to other bacteria in the 

surrounding area, inducing the production of virulence factors such as pyocyanin (Mashburn-

Warren and Whitely, 2006). 

Additionally, MVs could represent a novel mechanism of horizontal gene transfer 

between bacteria. Both plasmid and chromosomal DNAs have been found to subsist in MVs 

isolated from Neisseria gonorrhoeae (Dorward et al., 1989), E. coli (Yaron et al., 2000) and 

P. aeruginosa (Renelli et al., 2004). Additionally, Dorward et al. (1989) demonstrated the 

transformation, via MVs, of antibiotic resistance genes in strains of N. gonorrhoeae and this 

was followed by Yaron et al. establishing the transmission of virulence factor genes, from 

pathogenic to non-pathogenic strains of E. coli, through MVs (Yaron et al., 2000). However, 
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P. aeruginosa MVs did not transfer antibiotic resistance genes between strains of the 

pathogen, despite attaching and subsequently fusing with the OM (Renelli et al., 2004).  

MVs are also very likely to function as a bridging factor within sessile bacterial 

communities, called biofilms (Costerton et al., 1999), with their presence found in both lab-

grown P. aeruginosa monoculture biofilms and in naturally occurring mixed species 

biofilms, in which Gram-negative bacteria were present (Schooling and Beveridge, 2006). 

Interestingly, MVs were not only maintained in substantial numbers within the matrix, but 

were also actively released from the biofilm into the external milieu.       

 

1.5.3.3  Virulence of MVs 

As mentioned previously, only MVs isolated from pathogenic bacteria have been studied; in 

particular, MVs from the respiratory pathogen P. aeruginosa (Kadurugamuwa and 

Beveridge, 1995; 1996; 1997; Li et al., 1998; Bauman and Kuehn, 2006; 2009; Ellis et al., 

2010). In early studies of MVs, Kadurugamuwa and Beveridge proposed a predatory role for 

P. aeruginosa PAO1 MVs against other bacteria (Kadurugamuwa and Beveridge, 1996). 

Peptidoglycan hydrolase enzymes, found within the MVs, were shown to be delivered to the 

periplasm of other strains of P. aeruginosa, where they digested the thin peptidoglycan layer 

and catalysed cell lysis. Li et al. further confirmed this, showing P. aeruginosa PAO1 MVs 

to have lytic activity against a range of other Gram-negative and Gram-positive bacteria (Li 

et al., 1998). The same study also found that MVs from numerous other Gram-negative 

bacteria, such as Bacillus subtilis, Shigella flexneri and Proteus vulgaris, all showed similar 

lytic abilities over the same range of recipient bacteria (Li et al., 1998). Therefore, the 

production of MVs would be a very useful tool for the successful establishment of a bacterial 

species within an environmental niche (Unal et al., 2011) as the lysis of other strains of 
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bacteria would both remove the competition and liberate a rich source of nutrients (Li et al., 

1998).  

Previous to the recognition of MVs as a means to aid bacterial colonisation, 

Kadurugamuwa and Beveridge had first suggested the virulent nature of MVs due to the 

enrichment of antigenic LPS molecules and the inclusion of host tissue-destructive enzymes, 

such as elastases, in MVs isolated from P. aeruginosa (Kadurugamuwa and Beveridge, 

1995). The findings of Kesty et al. (2004) further supported this when they showed that 

enterotoxigenic E. coli (ETEC) MVs preferentially packaged heat-labile (LT) toxin in their 

lumenal space, protecting it from extracellular enzymatic activity, and later delivering it 

directly to the cytoplasm of target cells. A similar system was also seen in Helicobacter 

pylori, with its MVs encapsulating and transporting its major virulence factor, H. pylori 

vacuolating toxin (Parker et al., 2010). The immunomodulatory potential of MVs was 

recognised when Ismail et al. (2003) showed MVs isolated from H. pylori elicited IL-8 

release in human gastric epithelial cells. The immunostimulatory potential of P. aeruginosa 

MVs was uncovered shortly afterwards as it was demonstrated that MVs from the respiratory 

pathogen stimulated IL-8 in human lung epithelial cells (Bauman and Kuehn, 2006), 

following their attachment and internalisation (by endocytosis) (Bauman and Kuehn, 2009). 

Ellis et al. (2010) also showed P. aeruginosa MVs to be potent stimulators of pro-

inflammatory responses in murine macrophages. More recently, MVs isolated from H. pylori 

have been shown to elicit IL-8 responses in human gastric epithelial cell lines through the 

novel delivery of peptidoglycan to the intracellular MAMP receptor, NOD1 (Kaparakis et al., 

2010).  

Despite the high load of Gram-negative bacteria in the lumen, intestinal commensal 

strains have (to the author’s knowledge) yet to be considered in the study of MVs. Also, the 

interaction of MVs with intestinal epithelial cells have, surprisingly, been little studied, with 
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only Kesty et al. (2004) utilising them to demonstrate the toxin-delivering activity of MVs 

isolated from ETEC. 

 

1.5.4 Peptidoglycan 

Peptidoglycan (PGN) is an essential cell wall component in virtually all bacteria and is 

especially abundant in Gram-positive bacteria, accounting for 30-70 % of the cell wall mass 

(Schleifer and Kandler, 1972). It is a mesh-like polymer consisting of β(1–4)-linked N-

acetylglucosamine (NAG) and N-acetylmuramicacid (NAM), crosslinked by short peptides 

and  is responsible for the maintenance of cell morphology and resistance to osmotic forces 

(Dziarski, 2003). As a consequence of its ubiquity in bacteria, its substantial abundance in 

Gram-positive bacteria and its absence from eukaryotic cells, PGN presents the perfect target 

for the host innate immune system (Dziarski, 2003). Initially, it was hypothesised that TLR-2 

mediated cellular sensitivity to PGN in macrophages (Schwandner et al., 1999; Takeuchi et 

al., 1999; Wang et al., 2001), and that responsiveness was enhanced by the co-receptor CD14 

(Schwandner et al., 1999; Iwaki et al., 2002). Iwaki et al. (2002) also generated a soluble 

form of TLR-2 and demonstrated that PGN purified from Staphylococcus aureus directly 

bound to the receptor. However, an infamous study by Trovassos et al. (2004) challenged the 

proposed stimulation pathway, claiming TLR-4, not TLR-2 conferred cellular responsiveness 

to purified PGN. Nevertheless, the re-evaluation of the phenomenon that followed 

conclusively demonstrated that TLR-2 was essential for the stimulation of macrophages by 

PGN and suggested the results observed by Trovassos et al. (2004) were due to the 

destructive nature and non-completion of their purification methods (Dziarski and Gupta, 

2005). 

Due to its high release during infection (Dziarski and Gupta, 2005), and potent 

immunological activity (NF-κB activation and subsequent IL-8 release) in mouse and human 
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macrophages (Schwandner et al., 1999; Takeuchi et al., 1999; Wang et al., 2001), PGN is 

potentially a major virulence factor in Gram-positive bacterial infections. Melmed et al. 

(2003) observed that both colonic epithelial tissue and colonic epithelial cells lines (HT29, 

Caco-2 and T84 cells) constitutively expressed TLR-2 mRNA, suggesting a role in PGN 

detection in the intestine (Melmed et al., 2003). However, the epithelial cells lines were all 

largely unresponsive to TLR-2 ligands (such as PGN and lipoteichoic acid (LTA) (Section 

1.5.11)) and only TLR-2-transfected Caco-2 cells exhibited activation by TLR-2 agonists 

(Melmed et al., 2003). Furthermore, Furrie et al. (2005) showed TLR-2 mRNA expression in 

colonic epithelial tissue was restricted to crypt cells. However, they also showed that, in 

contrast to the findings of Melmed et al. (2003), TLR-2 mRNA was up-regulated in human 

colonic epithelial cell lines, HT29 and Caco-2 cells, in response to co-culture with Gram-

positive bacteria (Furrie et al., 2005).   

 

1.5.5 Lipoprotein 

Lipoproteins (LPs) are proteins which contain lipid moieties covalently bound to an N-

terminal cysteine residue (Braun and Wu, 1994). LPs are a key component in the cell wall of 

Gram-positive bacteria (Sutcliffe and Russell, 1995) and the outer membrane of Gram-

negative bacteria, particularly in bacteria of the Enterbacteriaceae family, such as E. coli 

(Zhang et al., 1998). Gram-negative bacteria naturally secrete LPs, from their outer 

membrane, into the surrounding media and lysis further increases the release (Zhang et al., 

1998). Brightbill et al. (1999) elucidated that cellular responsiveness to bacterial lipoproteins 

in human macrophages is imparted by Toll-like receptor (TLR)-2. This was subsequently 

confirmed by Wang et al. (2002), who demonstrated that pre-treatment of human monocytes 

with low concentrations of LP imparts TLR-2 tolerance that protects against subsequent 

treatment with higher concentrations of LP. However, it was later discovered that TLR-2 
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actually forms a heterodimer with TLR-1 to confer cell responsiveness to bacterial 

lipoproteins in murine macrophages (Takeuchi et al., 2002). 

LPs have been shown to elicit proinflammatory cytokine release in mouse and human 

macrophages (Zhang et al., 1998) and human whole blood (Karched et al., 2008), and can 

even activate human neutrophils (Soler-Rodriguez et al., 2000). Additionally, spirochetal 

LPs, from Treponema pallidum and Borrelia burgdorferi, have been implicated in the 

pathogenesis of syphilis and Lyme disease, respectively (Sellati et al., 1998). Consequently, 

bacterial LPs clearly present a significant antigenic threat, however, few, if any, studies have 

been undertaken to investigate lipoproteins with intestinal epithelial cells.  

 

1.5.6 Lipoteichoic acid 

Lipoteichoic acid (LTA) is a membrane-associated, amphiphilic polymer which extends from 

the cytoplasmic membrane, through the cell wall and to the outer surface of Gram-positive 

bacteria (Buckley et al., 2006). During normal growth, LTA regulates a number of autolytic 

enzymes, which allow the mitotic division of Gram-positive bacteria (Ginsburg, 2002), and 

has also been demonstrated to aid bacterial adhesion to intestinal epithelial cells (Granato et 

al., 1999). Naturally, LTA is only released in small amounts (Ginsburg, 2002); however cell 

lysis will inevitably increase its liberation into the surrounding media. Pathogen-derived LTA 

is well known to be immunologically active and has previously been demonstrated to 

stimulate pro-inflammatory cytokines, such as IL-8, from peripheral blood mononuclear cells 

(PBMCs), such as macrophages (Standiford et al., 1994). Additionally, LTA from potentially 

probiotic strains of Lactobacillus have also been shown to elicit a proinflammatory cytokine 

response in PBMCs (Vidal et al., 2002). Despite this, Vidal et al. (2002) also showed that the 

same lactobacilli LTAs were unable to stimulate a proinflammatory response in the intestinal 
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epithelial cell line, HT29 cells, and actively inhibited E. coli- and LPS-induced IL-8 release 

in these cells. 

There is some debate as to which of the Toll-like receptors (TLRs) confers host 

cellular responsiveness to LTA, as two very highly cited articles tell contrasting stories. 

Schwandner et al. (1999) demonstrated that human embryonic kidney cells were activated via 

TLR-2, however, Takeuchi et al. (1999) disputed this, suggesting that TLR-4 was responsible 

as they showed that TLR-2-deficient mice were still responsive to LTA, whereas TLR-4-

deficient mice were not.  

 

1.5.7 CpG-DNA 

Bacterial DNA contains a ~20-fold greater frequency of unmethylated 2'–deoxyribo(cytidine-

phosphate-guanine) (CpG) dinucleotides than vertebrate DNA (Ewaschuk et al., 2007), 

predisposing it to microbial-associated molecular pattern (MAMP) activity in mammalian 

immune cells (Bauer et al., 2001). Methylated bacterial DNA loses its stimulatory potential 

(Ewaschuk et al., 2007), thus confirming that its MAMP activity is attributable to a greater 

expression of unmethylated CpG motifs. In addition, the stimulatory effects of bacterial 

DNA, on mammalian immune cells, can be mimicked by CpG-containing synthetic 

oligodeoxynucleotides (CpG-ODNs) (Dalpke et al., 2006). Dalpke et al. (2006) also showed 

that the immunomodulatory potential of bacterial DNA is genera specific and dependent on 

the CpG content of the bacterial genome. For example, DNA from the pathogenic 

Pseudomonas aeruginosa, whose genome contains a 12.21 % CpG frequency, elicits a higher 

IL-8 release from HEK-TLR9 cells than the 3.50 % CpG-containing genomic DNA from the 

commensal bacterium, Enterococcus faecalis (Dalpke et al., 2006).  

Hemmi et al. (2000) demonstrated that TLR-9 confers responsiveness to bacterial 

DNA in splenocytes, B-cells and macrophages, as their counterparts isolated from TLR-9-
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deficient mice were not susceptible to the physiological effects elicited by CpG-DNA. 

Subsequently, human intestinal epithelial cell lines (HT29, Caco-2 and T84 cells) were 

shown to constitutively express TLR-9 mRNA and an increased secretion of the 

proinflammatory cytokine IL-8, from intestinal epithelial cells, was observed in response to 

CpG-DNA, via a NF-κB-independent pathway (Akhtar et al., 2003). This suggested a 

divergence from the IL-8 stimulatory pathway previously characterised in macrophage cells 

(Chuang et al., 2002). In stark contrast to the system previously reported in mammalian 

macrophage (where TLR-9 was found to subsist intracellularly, as the immunostimulatory 

action of CpG-DNA was markedly increased with intracellular delivery of the DNA (Dalpke 

et al., 2006)), Ewaschuk et al. (2007) described an up-regulation of apical surface expression 

of TLR-9 in intestinal epithelial cells in response to pathogenic bacterial DNA. Dalpke et al. 

(2006) suggested that stimulation of TLR-9 would be difficult in in vivo infections, however, 

their work was undertaken utilising the macrophage model, therefore, only intracellular TLR- 

9 was considered. Surface expression of TLR-9 in intestinal epithelial cells presents a very 

real possibility for bacterial DNA to play a role in epithelial immunity. 

 

1.5.8 Flagellin 

Flagellin is the highly antigenic, monomeric subunit of bacterial flagella (Ramos et al., 

2004). Flagella are rotary motor-like structures, which are expressed by the majority of 

motile bacteria in the intestine (Berg, 2003). Hayashi et al. (2001) determined that bacterial 

flagella possess Toll-like receptor (TLR)-5 stimulatory ability, and it was confirmed shortly 

afterwards that TLR-5 exclusively confers cellular responsiveness to extracellular, flagellin 

(Gewirtz et al., 2001). Monomeric flagellin is naturally released by bacteria, either by 

leakage due to uncapping or by active depolymerisation (Ramos et al., 2004); however, it can 
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also be sheared from the bacterial surface by host proteases or detergents (Ramos et al., 

2004).   

Flagellin plays an important and complex role in intestine homeostasis, having been 

implicated both as a major antigen in Crohn’s disease (Lodes et al., 2004) and as a regulatory 

moiety in immune responses to commensal bacteria, protecting against spontaneous colitis 

(Vijay-Kumar et al., 2007). Flagellins from both pathogenic and non-pathogenic bacteria 

have the potential to stimulate an immune response from the intestinal epithelial layer 

(Streiner et al., 2000). However, Gewirtz et al. (2001) demonstrated that to be able to do this, 

the flagellin must be translocated from the apical to the basolateral domain of the epithelial 

layer, despite TLR-5 exhibiting both basolateral and apical expression (Cario and Podolsky, 

2000). A significant level of translocation is normally considered a trait of pathogenic 

bacteria (Ljungdahl et al., 2000); therefore the intestinal epithelium is able to distinguish 

between commensal and pathogenic flagellins by the physical exclusion of commensal 

bacteria. Epithelial responses to commercially available flagellin (isolated from Salmonella 

typhimurium) have been well characterised with intestinal epithelial cell lines, HT29 and 

Caco-2 (Bannon, 2008). 

 

1.5.9 Exopolysaccharides 

Extracellular polysaccharides, or exopolysaccharides (EPSs), are long-chain polysaccharides 

released by Archaebacteria and Eubacteria (both Gram-positive and Gram-negative) during 

growth (Badel et al., 2010). EPSs exist in two forms; as membrane-bound moieties, termed 

capsular polysaccharides (CPSs), or as an unbound polymers which exist freely in the 

extracellular media (Ruas-Madiedo et al., 2002). This section focuses on the free form of 

EPSs.  
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EPSs are separated into two categories; homosaccharides and heterosaccharides (Laws et al., 

2001). Homosaccharides, such as cellulose, dextran and levan, are made up of only one type 

of monosaccharide (Laws et al., 2001), and are all extracellularly synthesised by 

glucansucrase enzymes (Badel et al., 2010). Glucansucrases degrade sucrose from the 

surrounding media and catalyse the formation of glycosidic bonds between monosaccharides, 

to form polysaccharide chains (Badel et al., 2010). Conversely, heterosaccharides consist of 

multiple repeats of oligosaccharides, which themselves are comprised of 3-7 sugar residues 

(Figure 1.6) (Laws et al., 2001). These oligosaccharide precursors typically contain D-

glucose, D-galactose and L-rhamnose sugars (De Vuyst and Degeest, 1999) and occasionally 

include amino-sugars, such as N-acetyl-D-glucosamine and N-acetyl-D-galactosamine (Badel 

et al., 2010). The oligosaccharide subunits of heterosaccharides are constructed 

intracellularly, by glycosyltransferase enzymes, from sugar nucleotides taken from the 

surrounding media (Badel et al., 2010). The oligosaccharides translocate out from the 

bacterial cell and are subsequently polymerised (Ruas-Madiedo et al., 2002). 

Heterosaccharides are mainly produced by mesophilic and thermophilic bacteria such as  

lactic acid bacteria (LAB) (De Vuyst and Degeest, 1999) and bifidobacteria (Ruas-Madiedo 

et al., 2006b, 2010). 

 

1.5.9.1  EPSs in bacterial biofilms 

It has been suggested that EPSs play a major role in biofilm formation, and their importance 

in the initial surface attachment is highlighted by the fact that EPS-deficient mutants 

completely lack the ability to form biofilms in vitro (Watnick and Kolter, 1999). Also, EPSs 

are likely to stabilise the 3-D structure of biofilms, enabling them to withstand shear forces 

(Sutherland, 2001). It is theorised that EPSs confer this stability through the minimisation of 

intercellular repulsions between bacteria by shielding the electrostatic charges on their 
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Figure 1.6 – Repeating units of EPSs from L. acidophilus 5e2 and L. helveticus sp. 

Rosyjski. L. acidophilus 5e2 EPS consists of a heptasaccharide repeat unit of D-glucose 

(Glu), D-galactose (Gal) and N-acetyl-D-glucosamine (GlcNAc) in the molar ratio 3:3:1 (A), 

whereas L. helveticus sp. Rosyjski EPS constitutes a pentasaccharide repeat unit of D-glucose 

(Glu), D-galactose (Gal) and N-acetyl-D-mannosamine (ManNAc) in the molar ratio 2:2:1 

(B). Structures taken from Laws et al. (2008) and Leivers (2011), respectively. 

 

surfaces (Watnick and Kolter, 1999). Although EPSs do not exist alone within biofilms, 

asvarious proteins, lipids and other polysaccharides are also present, it is noteworthy that 

excessive EPS production by one strain of bacteria can significantly enhance the stability of 

biofilms of other, non-EPS-producing bacteria (Sutherland, 2001). In addition to astructural 

role in biofilms, EPSs are thought to be responsible for the enhancement of bacterial nutrient 

and water entrapping ability (Poulsen, 1999). Furthermore, EPSs are thought to play a key 

role in protection of biofilm-contained bacteria and have been shown to shield against 

bacteriophages, antibiotics, lysozyme enzymes and metal ions (Looijesteijn et al., 2001; 

Durlu-Ozkaya et al., 2007). 
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 However, in stark contrast to the evidence presented above, a study by Kim and 

colleagues demonstrated a significant anti-biofilm activity of EPS isolated from Lactobacillus 

acidophilus A4, against a range of Gram-positive and Gram-negative pathogenic bacteria 

(Kim et al., 2009).  

 

1.5.9.2  EPSs in the food industry 

Lactic acid bacteria (LAB) are commonly utilised by the food industry for their preservative 

effects, as their metabolism of sugars releases lactic acid which restricts further microbial 

contamination (Laws et al., 2001). Also, LAB starter cultures have been used for generations 

in the production of traditional fermented food goods, such as the Scandinavian milk drink, 

Kefir, which is produced by the fermentative action of LAB, acetic acid bacteria and yeasts 

trapped in a complex of EPS and protein (kefir grains) (Vinderola et al., 2006). The Finnish 

fermented milk drink, viili, also uses a similar process (Ruas-Madiedo et al., 2006a).  

LAB are well characterised in their production of EPSs (Cerning, 1990), with over 30 

EPS-producing strains described to date (Badel et al., 2010). EPS-producing LAB starter 

cultures are used in the maturation of cheeses, with the moisture retention of EPSs thought to 

significantly contribute to the freshness of the cheese (Bhaskaracharya and Shah, 2000). 

Also, the use of LAB EPSs themselves is increasingly widespread in food products, with 

EPSs used as biothickening agents in yoghurts, to improve the texture, ‘mouth-feel’ and 

stability (Marshall and Rawson, 1999; De Vuyst and Degeest, 1999). However, the 

consequential increase in viscosity from EPSs can also have a negative impact on food goods, 

with their secretion, by LAB starter cultures, during the production of wine and cider being 

implicated in the spoiling of these products (de Nadra and de Saad, 1995; Duenas et al., 

1995).  
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1.5.9.3  Prebiotic potential of EPSs 

It has been theorised that EPSs are unlikely to serve as a bacterial nutrient reserve, as most 

EPS-producing bacteria are unable to catabolise their own EPSs (Cerning, 1990; Looijesteijn 

et al., 2001). However, there is evidence that EPSs could possess prebiotic tendencies. This 

was first proposed by Ruijssenaars et al. (2000) when they tested the biodegradability of 

food-grade EPSs by human faecal bacteria. Their study demonstrated that mixed bacterial 

cultures could indeed degrade these EPSs. An investigation by Korakli et al. (2002) 

developed the concept, reporting that EPS isolated from Lactobacillus sanfranciscensis could 

be metabolised by several monocultures of bifidobacteria strains, thus promoting their 

growth. Nevertheless, the strongest case for the prebiotic potential of EPSs was presented by 

Salazar et al. (2008; 2009), who showed that EPSs isolated from enteric bifidobacteria 

increased the overall population of in vitro faecal bacteria cultures. Additionally, their studies 

showed an obvious shift in the microbial composition of the cultures, promoting growth of 

beneficial commensal genera such as bifidobacteria, enteroccci and Bacteroides, thus 

satisfying a major stipulation of prebiotics set by Gibson and Rotherford (1995). 

Gibson and Roderfroid (1995) also hypothesised that the best prospective prebiotic 

candidates were non-digestible carbohydrates, such as inulins and fructooligosaccharides, 

which are able to arrive in the colon intact (Gibson and Roberfroid, 1995). Therefore, for 

EPSs to function as prebiotics, they must initially be able to survive the mechanical and 

enzymatic rigours of the GI tract. There has been mixed success in this area of research, with 

some EPSs, isolated from Lactococcus lactis and strains of bifidobacteria, seen to be resistant 

to gastric enzymes and simulated gastric juices (Looijesteijn et al., 2001; Salazar et al., 

2009), while other EPSs, isolated from Streptococcus thermophilus and Lactobacillus casei, 

were shown to undergo partial degradation (Mozzi et al., 2009). 
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1.5.9.4  Physiological influences of EPSs 

Kefiran, an EPS produced by a number of strains of lactobacilli in the fermented milk drink 

Kefir, has been shown to possess a number of systemic physiological activities; these include 

wound-healing properties, reduction of blood pressure and cholesterol levels, and the 

retardation of tumour growth in experimental models (Vinderola et al., 2006). Kefiran also 

exhibits a potential role in intestinal homeostasis, stimulating increased release of lumenal 

IgA and  pro- and anti-inflammatory cytokines, such as IFN-γ, TNF-α, IL-6 and IL-10, 

observed in the small and large intestine (Vinderola et al., 2006). Additionally, murine 

macrophages challenged with various EPSs, isolated from strains of lactobacilli and 

bifidobacteria, demonstrate augmented release of both pro- and anti-inflammatory cytokines, 

such as TNF-α, IL-6 and IL-10 (Chabot et al., 2001; Bleau et al., 2009; Wu et al., 2010). The 

mitogenic activity of EPSs isolated from strains of lactobacilli and bifidobacteria is also well 

characterised, with studies showing the promotion of human, murine, porcine and bovine 

macrophage proliferation (Kitazawa et al., 1998; Chabot et al., 2001; Wu et al., 2010).  

With the high proportion of EPS-producing bacteria naturally residing in the intestine, 

it is surprising that very little research has been undertaken regarding the interaction of EPSs 

with the intestinal epithelial layer itself. EPSs, from lactobacilli and bifidobacteria, have 

previously shown antiproliferative and anticytoxic activities with bacterial toxin-challenged 

in vitro intestinal epithelial cell (IEC) lines (Ruas-Madiedo et al., 2010; Liu et al., 2011), 

however, the immunostimulatory effects of EPSs on IECs is a relatively novel concept. To 

the author’s knowledge, the first study to consider this was undertaken by Lebeer et al. 

(2012); however, it must be noted that this was a very minor component of their 

investigation. Their results demonstrated that EPS isolated from the probiotic L. rhamnosus 

GG had no significant effect on IL-8 mRNA expression in Caco-2 cells. Conversely, a recent 

review article by Hidalgo-Cantabrana et al. (2012) showed preliminary data in which EPS-
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producing strains of bifidobacteria were seen to differentially modulate the secretion of 

inflammatory cytokines, including IL-8, in the Caco-2 intestinal epithelial cell line.  

The evidence presented above confirms that EPSs directly associate with host cells in 

the intestine, however, the molecular mechanisms by which they interact with these cells is, 

as yet, unknown. Chabot et al. (2001) suggested EPSs could exert their action via the 

mannose receptor. Additionally, a recent study by Ciszek-Lenda et al. (2011) demonstrated a 

cross-tolerance between LPS and EPSs in macrophages, with LPS ‘priming’ of cells lowering 

the TNF-α release in subsequent EPS challenges, indicating the possibility of a prospective 

TLR-4 pathway. However, an elegant study by Lin et al. (2011) provides the strongest 

candidate for an EPS receptor. Their investigation identified a novel EPS, TA-1, from the 

thermophilic marine bacterium, Thermus aquaticus and, subsequently, they showed the 

release of proinflammatory cytokines, TNF-α and IL-6, from murine macrophages in 

response to challenge with this EPS (Lin et al., 2011). They then utilised the TLR-deficient 

human embryonic kidney cell line, HEK293T, and its subsequent transfection with various 

TLRs, to determine which, if any, TLR confers responsiveness to TA-1 EPS, and TLR-2 was 

considered a possibility. Lin and colleagues then used anti-TLR-2 antibodies on murine 

macrophages prior to stimulation with TA-1 EPS, and subsequently observed a significant 

decrease in TNF-α and IL-6 release (Lin et al., 2011). These results strongly suggest that 

TLR-2 confers EPS responsiveness. This is consistent with  the fact that TLR-2 is well 

characterised in its interactions with a highly diverse range of microbial components (Takeda 

et al., 2003; Akira et al., 2006). 

 

1.5.10 Exotoxins and enterotoxins 

Pathogenic bacteria have evolved numerous methods for evading the host’s defences and for 

disrupting the functionality of host cells; for example, toxin production (Balfanz et al., 1996). 
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In microbiological terms, ‘toxins’ are products of microbial metabolism that have a 

detrimental effect on host cell function (Balfanz et al., 1996). Proliferating pathogenic 

bacteria often produce extracellular toxin (exotoxin) proteins, which are generally secreted 

into the surrounding environment at a site of infection, however, they can also cause damage 

at distant sites (Madigan and Martinko, 2006). Exotoxins can be separated into 3 distinct 

categories: membrane-damaging, receptor-targeting and internalising toxins (Balfanz et al., 

1996). The main effect of membrane-damaging toxins is disruption of the cell membrane, 

leading to increased permeability and cell death by lysis (Balfanz et al., 1996). Receptor-

targeting toxins target specific physiological surface receptors and modulate the resultant 

intracellular reaction cascades (Balfanz et al., 1996). Internalising toxins require the process 

of receptor binding and internalisation by endocytosis before they can implement their  

intracellular toxic effect (Balfanz et al., 1996).  

 Enterotoxins are a class of exotoxins which are specific in their action in the intestine 

(Binder and Powell, 1970).  Their modes of action vary, but can generally be separated into 

two categories; cytotoxic, which cause cell damage and physically disrupt the epithelial layer; 

or cytotonic, which function to induce active chloride ion (Clˉ) secretion and inhibit sodium 

ion (Na
+
) absorption, to, and from, the intestinal lumen, by enterocytes (Farthing, 2000). The 

interference in barrier function or ion transfer results in excessive fluid secretion into the 

intestinal lumen, generally leading to diarrhoea (Madigan and Martinko, 2006).  

 

1.5.10.1  C. difficile and its enterotoxins 

Clostridium difficile is a spore-forming, anaerobic, Gram-positive pathogen implicated as the 

main causative agent in pseudomembranous colitis (PMC) (Davies et al., 2011, Canny et al., 

2006). PMC is characterised by inflammation of the colonic mucosa and the formation of a 

‘pseudomembrane’ (comprised of sloughed epithelial cells, mucin and polymorphonuclear 
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cells) which covers the mucosal layer (Mahida et al., 1996). Furthermore, C. difficile is 

responsible for 15-20 % of all cases of antibiotic-associated diarrhoea (AAD) (Genth et al., 

2008, Janvilisri et al., 2010) and can lead to toxic megacolon, shock and, in severe cases, 

death (Clements et al., 2010). The virulence of C. difficile stems mainly from its two major 

cytotoxic enterotoxins; toxin A (TcdA) and toxin B (TcdB) (Carter et al., 2011, Lica et al., 

2011, Zemljic et al., 2010). However, some strains also produce a binary toxin, CDT, which 

has also demonstrated independent cytotoxic activity (Sundriyal et al., 2010).  

 TcdA and TcdB are monoglucosyltransferases which intracellularly inactivate Rho 

family guanosine triphosphate hydrolyses (GTPases), such as Rho, Ras, Ral and Cdc42 

(Carter et al., 2011). Rho GTPases are molecular switches which control the regulation of the 

actin cytoskeleton within epithelial cells (Davies et al., 2011). However, before the toxins can 

implement their activity, they must first gain access to the host cell cytoplasm. The process 

initiates with TcdA or TcdB binding to unknown, non-proteinaceous cell surface receptors 

(Voth and Ballard, 2005). Receptor-binding triggers endocytosis of the toxins and, once 

internalised, the endosome acidifies due to an influx of hydrogen (H
+
) ions (Voth and 

Ballard, 2005). The decrease in pH stimulates conformational changes in the toxins, exposing 

their hydrophilic domains and allowing their insertion into the endosomal membrane (Voth 

and Ballard, 2005). The resultant pore in the endosomal membrane allows the 

glucosyltransferase domain to migrate to the cytosol where the Rho GTPases reside (Genth et 

al., 2008). The glucosylating activity of both TcdA and TcdB causes the degradation of 

filamentous (F-) actin to the monomeric conformation (G-actin) and, at a cellular level, this 

leads to changes in cell morphology (cell rounding) and loosening of intercellular tight 

junctions (Nusrat et al., 2001). The consequences of TcdA and TcdB at the organ level 

include increased epithelial permeability and augmented epithelial production of cytokines 



64 

 

and chemokines, which in turn triggers neutrophil infiltration, mast cell activation and direct 

damage to the intestinal mucosa (Voth and Ballard, 2005).  

 C. difficile binary toxin, CDT, is an AB-toxin consisting of the enzymatically active 

A-subunit, CDTa, and the catalytically inert transport component, the B-subunit, CDTb 

(Davies et al., 2011). CDTb delivers CDTa to the host cell cytoplasm via receptor-mediated 

endocytosis (Barth et al., 2004). However, to achieve this CDTb must first be proteolytically 

cleaved from CDTa, activating it and allowing it to form heptamers which then bind specific 

cell surface receptors (Barth et al., 2004). CDTa re-binds to the transporter domain and 

undergoes endocytosis. Once internalised, the endosome acidifies and CDTb forms a pore in 

the endosomal membrane, delivering CDTa to the cytosol (Barth et al., 2004). The CDTa 

subunit is an actin-ADP-ribosylating toxin which acts to transfer a ribose moiety from 

nicotinamide adenine dinucleotide (NAD), or its oxidised form, NADH, to monomeric (G-) 

actin, thus preventing polymerisation to the filamentous configuration (F-actin) (Sundriyal et 

al., 2010). The role of CDT in the pathogenesis of C. difficile infection is yet to be 

established, however, it has been implicated in TcdA- and TcdB-independent cytotoxic 

activity (Sundriyal et al., 2010), thus suggesting a role in the aetiology of C. difficile 

infection. 

 

1.6 Project aims and objectives 

It is apparent that enteric bacteria are a vast potential source of a wide range of antigenic 

products; however, under normal physiological conditions, the intestinal mucosal immunity 

remains hyporesponsive, yet, it also retains the innate ability to rapidly respond to pathogens 

and their respective antigens. Despite this, the specific immunomodulatory activities of the 

extracellular products from non-pathogenic, enteric-associated bacteria have been little 
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studied, as previous investigations have been heavily reliant on pathogenic-derived antigens 

to study epithelial interactions.  

 

Specific objectives of the current project were to: 

a) Characterise and compare the two in vitro intestinal epithelial cell lines HT29-19A 

and Caco-2 in their suitability for modelling epithelial interactions with bacterial 

extracellular products.  

b) Investigate the inflammatory properties of the extracellular products of the Gram-

negative commensal Escherichia coli C25.  

c) Examine the inflammatory activities of extracellular products, specifically ultrapure 

EPSs, of the previously unstudied Lactobacillus acidophilus 5e2 and Lactobacillus 

helveticus sp. Rosyjski. 

d) Investigate possible protective effects of non-pathogenic extracellular products 

against those from the enteropathogenic bacterium C. difficile. 

  



66 

 

 

 

 

 

 

 

 

Chapter 2 

 

Materials and methods 
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2.1 Materials 

Cell culture media ingredients, supplements and related solutions were all purchased from 

Gibco
® 

Invitrogen™ Life Technologies Ltd., Paisley, UK, with the exception of fetal bovine 

serum (FBS) and 0.25x trypsin/EDTA solution which were sourced from Biosera Ltd., East 

Sussex, UK and Sigma-Aldrich Company Ltd., Dorset, UK, respectively. All 25 and 75 cm
2
 

cell culture flasks, 12- and 24-well culture plates and 35 x 10 mm and 100 x 20 mm culture 

dishes were from Cellstar
®
 Greiner Bio-One Ltd., Stonehouse, UK. 96-well cell culture plates 

were purchased from Matrix
®
, Thermo Fisher Scientific UK Ltd., Loughborough, UK. HT29-

19A (Augeron and Laboisse, 1984) and Caco-2 (ATCC No. HTB-37) cell lines were kindly 

donated by Prof. G. Warhurst, Salford Hope Hospital, Royal NHS Foundation Trust & 

University of Salford, UK. All bacterial agar and broth powders were purchased from Lab M 

Ltd., Bury, UK. All bacterial strains were kindly provided by Dr. P. Humphreys, Department 

of Chemical and Biological Sciences, University of Huddersfield, UK. Ultrapure lactobacilli 

EPSs were kindly supplied by Prof. A. Laws, Department of Chemical and Biological 

Sciences, University of Huddersfield, UK. 96-well ELISA-treated microplates were 

purchased from Greiner Bio-One Ltd., Stonehouse, UK. IL-8 and IL-10 Human Antibody 

Pairs and stabilised chromagen (tetramethylbenzidine (TMB)) solution were purchased from 

Invitrogen, Paisley, UK. The DC Protein Assay kit was purchased from Bio-Rad Laboratories 

Ltd., Hemel Hempstead, UK. The Ultraclean
®

 Soil DNA Isolation Kit and LPS Extraction 

Kit were both from Chembio Ltd., Hertfordshire, UK. The QIAquick
®
 PCR Purification Kit, 

RNeasy
®
 Mini Kit and RNase-free DNase Set were all from Qiagen, Crawley, UK. The 

iScript™ cDNA Synthesis Kit was purchased from Bio-Rad Laboratories Ltd., Hemel 

Hempstead, UK. All PCR primers used were purchased from Eurofins MWG Operon, 

Ebersberg, Germany. Universal ProbeLibrary probes and Lightcycler
®
 Taqman

®
 Mastermix 

were purchased from Roche Diagnostics Ltd., West Sussex, UK. REDTaq
®
 ReadyMix

™
 PCR 
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Reaction Mix was purchased from Sigma Aldrich Company Ltd., Dorset, UK. Peptidoglycan 

isolated from Bacillus subtilis, lipopolysaccharide from E. coli 0111:B4 and 

deoxyribonucleic acid (DNA) sodium salt from Escherichia coli strain B were purchased 

from Sigma Aldrich. Flagellin from Salmonella typhimurium strain 14028 was from Enzo 

Life Sciences Ltd., Exeter, UK. DNA sequencing was undertaken by Eurofins MWG Operon, 

Ebersberg, Germany. All other reagents were purchased from Sigma Aldrich. 

 

2.2 Culturing of intestinal epithelial cells 

2.2.1 HT29-19A and Caco-2 

The HT29-19A (passages 41-70) and Caco-2 (passages 39-68) cell lines were grown in a 

media of high glucose (4500mg/l) Dulbecco’s Modified Eagles Media (DMEM), 10 % foetal 

bovine serum (FBS), 4 mM glutamine and a mixture of 50 IU/ml penicillin and 50 µg/ml 

streptomycin (PenStrep). In addition to this, HT29-19A cells were supplemented with 20 mM 

HEPES solution and Caco-2 cells had 0.1 mM MEM NEAA (non-essential amino acids) 

added. The cell lines were incubated at 37 °C, with 5 % carbon dioxide (CO2) and constant 

humidity, and the media was replaced every 2-3 days. 

 

2.2.2 Freezing/thawing cell lines 

In preparation for freezing, cells were fed 24 h previously. Cells were trypsinized and 

incubated at 37 °C to detach them from the surface of the culture flask. 0.05% trypsin/EDTA 

solution was deactivated by the addition of fresh culture media. The cell suspension was 

centrifuged (1000 g for 3 min) and the supernatant was removed. The cell pellet was 

resuspended in cold cell culture media (supplemented with 10 % DMSO (dimethyl 

sulphoxide) and 20 % FBS) at a density of 3 x 10
6
 cells per cryo-vial. The cryo-vials were 

placed in a ‘Mr Frosty’ freezing container at  -80 °C overnight and were transferred to a 
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liquid nitrogen store (-176 °C) until required. The ‘Mr Frosty’ contained isopropanol, which 

cools at 1 °C/min, thus avoiding the formation of ice crystals, and subsequent cell lysis. 

DMSO is toxic to the cells at 4 °C+, therefore, rapid thawing of the cells was required 

to avoid toxicity. Cryo-vials were quickly thawed by placing in a 37 °C water bath. Once 

cells were completely thawed, cold cell culture media was added, cell suspensions were 

centrifuged (1000 g for 3 min) and the supernatant was removed. The pellet was resuspended 

in fresh media and transferred to a 25 cm
2
 culture flask, which was incubated at 37 °C, 5 % 

CO2 and constant humidity. Once confluent, the entire cell population of the 25 cm
2 

flask was 

transferred to a 75 cm
2
 flask and normal passage procedure was followed. 

 

2.2.3 Cell passage 

Cell lines were sub-cultured to 80 % confluence or greater in 75 cm
2
 culture flasks, at which 

point they were transferred to new culture flasks or plates. The spent media was removed and 

cells were washed 2-3 times with Hank’s Buffered Salt Solution (HBSS) (-Mg
2+

 and -Ca
2+

) to 

remove any traces of serum. Once the cells had been washed, they were exposed to 0.05% 

trypsin/EDTA solution at 37 °C for 5–10 min, or until all the cells had completely detached 

from the surface of the flask. The trypsin was subsequently deactivated with the addition of 

fresh cell culture media (containing 10 % FBS). The resultant cell suspension was 

homogenised with repeated pippetting, spilt into a relevant number of aliquots and transferred 

to new culture flasks or plates with fresh media. Continuation flasks were normally seeded at 

a 1 in 8 dilution to give a confluent flask after incubation for 7 days. 

 

2.2.4 Seeding cell culture plates 

For experimental work HT29-19A and Caco-2 cells were seeded on 12- and 24-well cell 

culture plates at a cell density of 0.5 x 10
5
 cells/cm

2
, however, 96-well plates were seeded at 
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0.5 x 10
3
 cells/cm

2
. The cells were grown to 100 % confluence over 7 days and cell culture 

media was replaced every 2-3 days. 

 

2.2.5 Cell counting/viability  

Cells were removed from the surface of the culture plate with the use of a cell scraper 

(Thermo Fisher Scientific UK Ltd., Loughborough, UK). The resultant cell suspension was 

aspirated off and the plate was washed with fresh media, to ensure all cells were removed. 

The total volume of the cell suspension was recorded, the cell suspension was homogenised 

by repeated pippetting and an aliquot was taken and added in a 1:1 ratio with trypan blue dye. 

Trypan blue distinguishes viable and non-viable cells by penetrating the cell membrane of 

dead cells and staining the cell contents blue, whereas viable cells do not absorb the dye. An 

Improved Neubauer haemocytometer (Thermo Fisher Scientific UK Ltd., Loughborough, 

UK) was used to count the cells. The average cell counts, for both dead and alive cells, from 

the four corner squares on the haemocytometer were taken and the resultant cell count was 

multiplied by 2 (for the dilution by the trypan blue) and then by 10
4
, to calculate the cell 

number per millilitre of cell suspension. Cell viability was then calculated. The expected 

viability from a ‘normal’ culture plate was 85-100 %. 

 

2.2.6 Dome counting 

Caco-2 cells were grown to confluence (7 days) on 24-well cell culture plates. The domes 

were quantified in the wells of the culture plate by counting the number of domes in ten low 

power fields of view (100x magnification), taking an average and then multiplying by the 

number of fields of view equivalent to the surface area of the wells (in this case 56.37). 

Domes were identified as small circular patches of out-of-focus cells (due to sitting on a 

different geometrical plane to the rest of the plate of cells), as shown in Figure 2.1. 
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Figure 2.1 – Dome structures on Caco-2 monolayers. Domes exist in a different geometric 

plane to the monolayer and so appear out-of-focus. 

 

2.2.7 Cell challenge experiments 

Epithelial cells were fed with fresh cell culture media prior to confluence (6 days in culture) 

and incubated for 24 h at 37 °C, 5 % CO2 and constant humidity. Subsequently, confluence 

was reached and the spent media supernatant was removed. The cells were incubated with the 

appropriate challenge sample for 24 h at 37 °C, 5 % CO2 and constant humidity. All 

challenge samples were serially diluted in standard cell culture media (unless stated that FBS-

free media was used) and media alone served as control. The supernatants were collected and 

frozen at -80 °C until ELISA analysis (see Section 2.8) could be performed. The cell layers 

were also stored at -80 °C until protein analysis (see Section 2.9) or RNA isolation (see 

Section 2.10.2) could be performed. 
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2.3 Bacteria 

2.3.1 Clostridium difficile cell-free supernatant 

C. difficile (NCTC 13366, Ribotype 027) was cultured in tryptone soy broth (TSB) with 5 % 

lysed horse blood for 14 days in strict anaerobic conditions. Subsequently, the culture was 

centrifuged at 6000 x g for 10 min, and the supernatant was sequentially filtered using 0.80 

μm and 0.22 μm vacuum-driven bottle top filter systems (Nalgene
®
, Thermo Fisher Scientific 

UK Ltd., Loughborough, UK and Millipore UK Ltd., Watford, UK, respectively). The cell-

free supernatant was serially diluted in cell culture media and used for cell challenge 

experiments. 

 

2.3.2 Escherichia coli C25 cell-free supernatant 

E. coli C25 was cultured on tryptone soy agar (TSA) overnight at 37 °C. DMEM, 

supplemented with 4 mM glutamine was inoculated with E. coli C25 and incubated overnight 

(~18 h), until the culture reached the stationary phase of growth (~1 x 10
9
 CFU/ml). 

Subsequent to incubation, the culture was centrifuged at 6000 x g for 10 min to pellet out the 

bacteria. The supernatant was poured off, had its pH returned to 7.4 and was subsequently 

filtered using a 0.45 μm syringe-driven filter (Millex
®
, Millipore UK Ltd., Watford, UK.). 

The cell-free supernatant was serially diluted in cell culture media and used in cell challenge 

experiments.  

 

2.3.3 Lactobacilli cell-free supernatant 

Lactobacillus acidophilus 5e2 and Lactobacillus helveticus sp. Rosyjski  were cultured on de 

Man, Rogosa and Sharpe (MRS) agar, supplemented with 0.05 % L-cysteine hydrochloride, 

for 48 h at 37 °C in strict anaerobic conditions. The plate cultures were washed off in to 2 ml 

maximum recovery diluent (MRD) and used to inoculate 500 ml MRS broth. Resultant broth 
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cultures were incubated for 24 h at 37 °C in anaerobic conditions. The cultures were 

centrifuged at 6000 x g for 10 min to pellet out the bacteria and the supernatant was poured 

off, had its pH adjusted to 7.4 and was filtered through a 0.45 μm syringe-driven filter. The 

supernatants were serially diluted in cell culture media for cell challenge experiments.  

 

2.3.4 Sonicated bacteria 

10 ml aliquots of bacterial cultures were sonicated, using a Vibracell VCX 130 (Sonics and 

Materials Inc., Newtown, CT, USA) at 85 % amplitude for a 5 x 6 s pulse program. The 

cultures were sonicated on ice and with a 24 s cooling step between pulses (to prevent 

denaturation of proteins, DNA etc.). Resultant solutions were filtered through a 0.45 µm 

syringe-driven filter, serially diluted in cell culture media and used in cell challenge 

experiments. 

 

2.4 Ultrapure Lactobacillus exopolysaccharides 

The multistep extraction and ultrapurification of exopolysaccharides (EPSs) from bacterial 

cultures was described by Marshall and Rawson (1999). Briefly, L. acidophilus 5e2 and L. 

helveticus sp. Rosyjski were cultured in 10% (w/v) skimmed milk solution (St. Ivel Ltd., 

Swindon, UK) supplemented with 0.166 M glucose for 24 h at 42 °C. The resultant culture 

was used to inoculate, at 1% (v/v) concentration, a greater volume of skimmed milk solution, 

supplemented with 0.166 M glucose. The culture was fermented for 48 h at 42 °C. 

Fermentation was stopped with the addition of 80% (w/v) trichloroacetic acid (TCA), giving 

a final concentration of 14 % (v/v) of TCA, and the resulting solution was stored overnight at 

4 °C. The solution was then centrifuged at 25,000 g (Avanti J-26 XPI centrifuge, Beckman 

Coulter Ltd UK, High Wycombe, UK) for 35 mins at 4 °C in order to remove bacteria and 

precipitated proteins. The solution was then filtered through grade 4 filter paper (Whatman 
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UK Ltd, Kent, UK), and crude EPS was precipitated by the addition of an equal volume of 

chilled absolute ethanol; this was stored overnight at 4°C. The sample was then centrifuged at 

25,000 g for 35 mins at 4°C. The recovered pellet was re-dissolved in deionised water (~50 

ml). Gentle heating in a water bath at 50 °C was required for complete dissolution of the 

pellet. The dissolved crude EPS was subjected to another precipitation step, followed by 

subsequent centrifugation as described above. The pellet obtained was then re-dissolved in a 

minimum of deionised water (~10 mL); again gentle heating in a water bath at 50°C was 

required for complete dissolution of the pellet. Small neutral sugars were then removed by 

dialysis, for 72 h at 4°C, against three changes of deionised water per day. After three days, 

the contents of the dialysis tubing was collected in a round-bottom flask and lyophilised using 

an Edwards freeze-drier (Northern Scientific, York, UK). The dry weight of the EPS 

produced was then determined. EPS purity was subsequently confirmed by size exclusion 

chromatography using a multi-angle laser light scattering detector and highly intensive NMR 

analysis (Leivers, 2011). 

 

2.5 Bacterial outer membrane vesicle isolation  

Outer membrane vesicle isolation method was adapted from Kadurugamuwa and Beveridge 

(1995). 250 ml E. coli C25 cultures were centrifuged at 6000 x g for 10 min to pellet out the 

bacteria. The supernatant was sequentially filtered through 0.80 and 0.45 μm pore size 

vacuum-driven bottle top filters. The filtrate was ultracentrifuged at 150,000 x g for 1.5 h, at 

5 °C, to pellet out the membrane vesicles. The supernatant was removed and the MV pellet 

was resuspended in 50 mM HEPES buffer (pH 6.8) and ultracentrifuged again for 30 min at 

120,000 x g, 5 °C. The supernatant was again removed and the MV pellet was resuspended in 

50 mM HEPES buffer (pH 6.8), filtered through a 0.45 μm syringe filter and stored at 4 °C. 
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2.6 Lipopolysaccharide isolation  

The LPS Extraction Kit (Chembio Ltd., Hertfordshire, UK) was used to isolate the 

lipopolysaccharide (LPS) from gram-negative bacteria. Pre-made lysis and purification 

buffers were provided with the kit. The protocol provided by the manufacturer was followed. 

In brief, E. coli C25 was cultured in TSB to an OD525 of 1.0. Subsequently, 5 ml bacterial 

culture was centrifuged for 10 min at ≥ 10,000 x g, to pellet out the bacteria. The supernatant 

was removed, 1 ml lysis buffer was added and the mixture was vortexed vigorously until the 

bacterial pellet disappeared. 200 μl chloroform was added and the mixture was vortexed for 

10-20 s and incubated at room temperature for 5 min. The mixture was centrifuged for 10 

min at ≥ 10,000 x g, 4 °C, separating it into two distinct layers, a colourless layer on top of a 

blue layer. 400 μl of the colourless layer was pippetted off, added to 800 μl purification 

buffer and homogenised by repeated pippetting. The mixture was incubated at -20 °C for 10 

min and centrifuged for 15 min at ≥ 10,000 x g to pellet out the LPS. The supernatant was 

removed and the pellet was washed in 1 ml 70 % ethanol. The mixture was centrifuged for 3 

min at ≥ 10,000 x g and the supernatant was removed. The LPS pellet was left to dry at room 

temperature and resuspended in 10 mM Tris-HCl (pH 8.0). A typical 5 ml bacterial culture is 

estimated to yield ~30 μg LPS. 

 

2.7 Bacterial translocation assay 

The method for this assay was developed from the technique described by Macutkiewicz et 

al. (2008).  Epithelial cells were cultured to confluence (7 days) and fed 24 h in advance of 

the assay. 10 ml sterile tryptone soy broth (TSB) was inoculated with E. coli C25 and 

incubated at 37 °C overnight (18 h), giving a culture in the stationary phase of growth and at 

a density of ~1 x 10
9
 CFU/ml (serial dilutions and plating out in to tryptone soy agar (TSA) 

gave exact numbers). The culture was centrifuged at 10,000 x g for 10 min and the bacterial 
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pellet was resuspended in 10 ml HBSS supplemented with 10 mM sodium bicarbonate and 

180 mg/dl glucose (Trans-HBSS). Trans-HBSS reduces growth of bacteria 1000-fold when 

compared to bacterial growth in cell culture media (Clark et al., 2003). Epithelial cells were 

washed twice in sterile Trans-HBSS, had ~1 x 10
9
 CFU C25 in 2 ml Trans-HBSS added and 

were incubated at 37 °C for 4 h. After incubation, the supernatant was removed, serially 

diluted to 10
-6

 and 10
-7

 dilutions and plated out in TSA to give an indication of bacterial 

growth during the incubation period. Epithelial cells were again washed twice with Trans-

HBSS, thus removing any bacteria not adhered to, or been internalised by, the epithelial cells. 

1 ml Trans-HBSS/50 µg/ml gentamicin was added to the cells and incubated at room 

temperature for 15 min, thus killing all but the internalised bacteria (the antibiotic cannot 

enter the epithelial cells and therefore did not affect the bacteria which had been internalised). 

To investigate numbers of bacteria which had translocated and adhered, the incubation with 

gentamicin was left out. The supernatant was removed and plated out neat, in TSA, to 

observe if the antibiotic had killed the extracellular bacteria. The epithelial cells were lysed 

by osmotic pressure with the addition of 1 ml sterile deionised water, and by sheer force by 

repeated pipetting, thus releasing the bacteria present inside the cells. A serial dilution of the 

lysate was performed to give 10
-3

 and 10
-4

 dilutions (10
-6

 and 10
-7

 dilutions in adherence and 

translocation), which were subsequently plated out, in TSA, using the agar pour plate 

method. All resultant plates were incubated overnight at 37°C and bacterial colonies were 

observed and quantified. 

 

2.8 ELISA analysis 

2.8.1 Interleukin (IL)-8 

The concentration of IL-8 released in to the culture media by epithelial cells was quantified 

using a commercial IL-8 enzyme-linked immunosorbant assay (ELISA) antibody pair 
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(BioSource™, Invitrogen, Paisley, UK). Coating buffer A, washing buffer and assay buffer 

were all made up to manufacturer’s specifications. 96-well microplates (Greiner Bio-One 

Ltd., Stonehouse, UK) were coated with the human IL-8-specific coating antibody (1 μg/ml), 

which had previously been diluted in coating buffer A, for 18 h at 4 °C. The wells of the pre-

coated microplate were aspirated and rinsed with washing buffer (3x). Blocking was 

undertaken by addition of 400 μl assay buffer in to each well, and the plate was subsequently 

incubated at room temperature for 1 h. The lyophilised IL-8 standard was reconstituted in 

ultrapure water and serially diluted to give concentrations of 800, 400, 200, 100, 50, 25 and 

12.5 pg/ml. Subsequent to blocking, 100 μl of the standards and a blank (0 pg/ml of IL-8) 

were added, in duplicate, into appropriate wells. 100 μl of the samples being assayed were 

also loaded into the relevant wells. 50 μl detection antibody was immediately added to the 

wells and the plate was incubated at room temperature, for 2 h, on a shaker bed set to 500-

700 rpm. The plate was washed 3x with washing buffer, after which, 100 μl streptavidin-

horse radish peroxidise (HRP), which had previously been diluted to a concentration of 1 in 

2500 in assay buffer, was loaded into each well and the plate was incubated for 30 min, at 

room temperature and on a shaker bed set to 500-700 rpm. Following incubation, the wells 

were washed three times with washing buffer. 100 μl stabilised chromagen 

(tetramethylbenzidine  (TMB)) solution (Invitrogen, Paisley, UK) was added to each well and 

the plate was incubated for a final time, at room temperature on a shaker bed set to 500-700 

rpm, for 30 min (Note: with the addition of the TMB, a blue colour was evident). After 

incubation, 100 μl stop solution (1 M sulphuric acid) was added to each well, inducing a 

colour change, from blue to yellow. The absorbance of the resulting mixture was read at 450 

nm within 30 min of stopping the reaction. The absorbance value obtained from the ELISA 

analysis was converted to concentration of IL-8, with the aid of a calibration curve (Figure 
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2.2). In all experiments IL-8 concentration was normalised and subsequently expressed as pg 

IL-8 per mg of total protein present on the cell culture plate (pg/mg total protein). 

 

 

Figure 2.2 – A typical IL-8 ELISA standard curve. Lyophilised IL-8 standard (provided 

with the ELISA kit) was reconstituted to a concentration of 800 pg/ml. This was serially 

diluted and ELISA analysis was undertaken. Data shown is mean of duplicates of each 

concentration. 

 

2.8.2 Interleukin (IL)-10 

IL-10 released by epithelial cells was quantified using a commercial IL-10 ELISA antibody 

pair (BioSource™, Invitrogen, Paisley, UK). The same protocol was used as for the IL-8 

ELISA assay, with the exception of a different antibody pair and different serial dilutions of 

the lyophilised standard. The IL-10 standard was resuspended and serially diluted in ultrapure 

water to concentrations of 2000, 1000, 500, 250, 125, 62.5, 31.25 pg/ml. A typical calibration 

curve is shown in Figure 2.3. 
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Figure 2.3 – A typical IL-10 ELISA standard curve. Lyophilised IL-10 standard (provided 

with the ELISA kit) was reconstituted to a concentration of 2000 pg/ml. This was serially 

diluted and ELISA analysis was undertaken. Data shown is mean of duplicates of each 

concentration. 

 

2.9 Protein analysis 

The DC Protein Assay (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK), a technique 

based on the Lowry assay (Lowry et al., 1951), was used to estimate the protein content of 

layers of epithelial  cells. The resultant absorbance gained from the assay was compared to a 

standard curve produced from bovine serum albumin (BSA) and converted to protein 

concentration (mg/ml). The standard curve was prepared using serial dilutions of BSA 

resuspended in ultrapure water at concentrations ranging from 0-1.5 mg/ml.  

Prior to protein analysis, epithelial cells were lysed by addition of 1 ml sterile water. 

100 μl aliquot of the lysate was added to 500 μl Reagent A (an alkaline copper tartrate 

solution). The mixture was vortexed and 4 ml Reagent B (the Folin reagent) was added to the 

mixture. The copper tartrate, which reacts with the peptide bonds present in the protein 

suspension, reduces the Folin reagent, inducing a colour change from yellow to blue. The 

depth of the blue is representative of the number of peptide bonds, and therefore the amount 
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of protein, present in the suspension. The absorbance of the mixture was measured at 750 nm 

and this was converted, using the BSA standard curve, to a concentration of protein in the 

suspension (mg/ml).  

 

2.10 DNA/RNA isolation and analysis 

2.10.1 DNA isolation from bacteria 

The Ultraclean® Soil DNA Isolation Kit (Cambio Ltd., Cambridge, UK) was used to isolate 

the DNA from the bacteria. All solutions were made up to the manufacturer’s specifications 

and all consumables were provided with the kit. An inoculating loopful of bacteria was added 

to the 2 ml bead solution tubes provided with the kit and the mixture was briefly vortexed. 60 

μl solution S1 was added and the tube was vortexed again. 200 μl inhibitor removal solution 

(IRS) was added and the bead solution tube was secured horizontally on a vortex with the Mo 

Bio Vortex Adapter tube holder (Cambio Ltd., Cambridge UK). The tube was vortexed at 

maximum speed for 10 min. Subsequent to vortexing, the tube was centrifuged at 10,000 x g 

for 30 s. The supernatant was transferred to a 2 ml collection tube and 250 μl solution S2 was 

added. The mixture was vortexed for 5 s and incubated at 4 °C for 5 min. The mixture was 

centrifuged for 1 min at 10,000 x g and the supernatant was transferred to a clean 2 ml 

collection tube. 1.3 ml solution S3 was added and the mixture was vortexed for 5 s. 700 μl of 

mixture was loaded on to a spin filter column and centrifuged at 10,000 x g for 1 min. The 

flow though was discarded and the process was repeated until all the sample has passed 

through the filter. 300 μl solution S4 was added to the filter and was centrifuged at 10, 000 x 

g for 30 s. The flow through was discarded and the spin column was centrifuged again at 

10,000 x g for 1 min. The spin column was transferred to a clean 2 ml collection tube and 50 

μl solution S5 was added to the centre of the filter membrane. The spin column was 

centrifuged at 10,000 x g for 30 s, the DNA eluted and the spin column was discarded. The 



81 

 

ultraviolet (UV) absorbance was measured at 260 and 280 nm to determine purity and 

concentration of the DNA (Section 2.10.3 and 2.10.4). The bacterial DNA sample was stored 

at -80 °C until required.  

 

2.10.2 RNA isolation from adherent human cell lines 

RNA was isolated using the RNeasy
®

 Mini Kit (Qiagen, Crawley, UK) in conjunction with 

the RNase-free DNase Set (Qiagen, Crawley, UK). All tubes, buffers and solutions (except 

ethanol) were provided by the manufacturer, as part of the kits. HT29-19A and Caco-2 cells 

used for RNA extraction were cultured on 35 mm x 100 mm cell culture dishes. Post-

challenge, the cell supernatant was aspirated off and the cells were lysed with the addition of 

600 μl RLT buffer. The cells were removed from the surface of the plate with a cell scraper 

and the mixture was homogenised by repeated pippetting. 600 μl 70 % ethanol was added to 

the homogenate and was mixed by pippetting. 600 μl sample was loaded on to an RNeasy
®

 

spin column placed inside a 2 ml collection tube and spun at ≥8000 x g for 15 s. The flow 

through was discarded and the remaining 600 μl sample was loaded on to the spin column 

and centrifugation was repeated. On-column DNA digestion was used to clean the RNA 

sample of DNA contamination. Prior to DNA digestion, the lyophilized DNase I (1500 

Kunitz units) was resuspended in 550 μl of RNase-free water to give a DNase I stock 

solution. 350 μl Buffer RW1 was added to the spin column,centrifuged at ≥8000 x g for 15 s 

and the flow through was discarded. 10 μl DNase I stock was added to 70 μl Buffer RDD and 

the mixture was added to the spin column and incubated at room temperature for 15 min. 350 

μl Buffer RW1 was added to the spin column and centrifuged at ≥8000 x g for 15 s and the 

flow through was discarded. 500 μl Buffer RPE was added to the spin column and 

centrifuged ≥8000 x g for 2 min. The 2 ml collection tube and flow through were discarded 

and the spin column was placed inside a new 2 ml collection tube and centrifuged at ≥8000 x 
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g for 1 min. The collection tube and flow through were discarded and replaced by a new 1.5 

ml collection tube. 50 μl RNase-free water was added to the spin column and centrifuged at 

≥8000 x g for 1 min. A further 50 μl RNase-free water was added to the spin column and the 

centrifugation was repeated. The UV absorbance was measured at 260 and 280 nm to 

determine purity and concentration of the RNA (Section 2.10.3 and 2.10.4). The RNA sample 

was stored at -80 °C until required.  

 

2.10.3 DNA/RNA quantification by UV spectrometry  

To quantify the DNA/RNA in a sample, the ultraviolet (UV) absorbance was measured at 260 

nm (A260). An absorbance of 1 unit at this wavelength corresponds to 44 μg of DNA/RNA 

per ml, therefore the concentration or DNA/RNA can be calculated by: 

Concentration of DNA/RNA sample = 44 μg/ml x A260 x dilution factor          (Equation 2.1) 

The amount of RNA in the sample was calculated by: 

Amount of DNA/RNA = concentration x volume (ml)          (Equation 2.2) 

 

2.10.4 DNA/RNA purity 

The purity of the DNA/RNA samples was estimated by calculating the ratio of the UV 

absorbance readings at 260 and 280 nm (A260/A280). This ratio gives purity with respect to 

contaminants, such as protein and organic compounds, which absorb light in the UV 

spectrum. Pure DNA gives an A260/280 ratio of ~1.8 and pure RNA gives a ratio of ~2. 

 

2.10.5 Isolation and purification of the 16S gene from bacteria for sequencing 

The Ultraclean
®
 Soil DNA Isolation Kit (Cambio Ltd., Cambridge, UK) is used to isolate the 

DNA from E. coli C25. All solutions are made up to the manufacturer’s specifications and all 
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consumables are provided with the kit. The method was described previously in Section 

2.10.1. 

The bacterial DNA was subjected to PCR, in order to amplify the 16S ribosomal gene. 

The following PCR mix was used: 25 μl REDTaq
®

 ReadyMix
™

 PCR Reaction Mix (Sigma-

Aldrich Company Ltd., Dorset, UK), 1 μl 10 pmol/μl forward and reverse primers, 2 μl 

bacterial DNA and 21 μl PCR-grade water. The primers used for this reaction are given in 

Table 2.1. 

Primer Sequence 

8f (F-primer) 3’-CACGGATCCAGAGTTTGATYMTGGCTCAG-5’ 

1510r (R-primer) 3’-GTGAAGCTTACGGYTACCTTGTTACGACTT-5’ 

Table 2.1 – Universal primers used in the PCR amplification of the 16S gene 

 

PCR amplification of the 16S gene was carried out on a Techne TC-312 thermo cycler 

(Bibby Scientific Limited, Staffordshire, UK). After an activation step of 3 min at 94 °C, 

PCR was carried out for 30 cycles under the following conditions: denaturation at 94 °C for 

30 s, annealing at 52 °C for 30 s and extension at 68 °C for 30 s. After the 30 cycles, a final 

extension step was carried out at 68 °C for 7 min followed by termination by holding at 4 °C.  

 Copies of the target gene produced by the PCR reaction were purified using the 

QIAquick
®
 PCR Purification Kit (Qiagen, Crawley, UK). All solutions were made up to the 

manufacturer’s specifications and all consumables were provided with the kit. 5 volumes of 

Buffer PB were added to 1 volume of the PCR sample and the colour of the pH indicator I 

was checked to be yellow (indicates a pH of ≤ 7.5). The sample was added to a QIAquick 

spin column and centrifuged at 17, 900 x g for 45 s. The flow through was discarded and 750 

μl Buffer PE was added to the column and centrifuged at 17,900 x g for 45 s. The flow 

through was discarded and the column was centrifuged 17,900 x g for 1 min. The QIAquick 
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column was added to a clean 1.5 ml microcentrifuge tube and 30 μl Buffer EB was added to 

the middle of the QIAquick membrane. The column was left to stand for 1 min and 

subsequently centrifuged at 17, 900 x g for 1 min. The purified PCR sample was stored at – 

80 °C until required.  

To test that the sample contained the target gene, gel electrophoresis was utilised. A 1 

% agarose/tris borate EDTA (TBE) gel was used (2 g agarose in 200 ml of 0.5x TBE) with 

the addition of 20 μl SYBR
®

 safe DNA gel stain (Invitrogen™ Life Technologies Ltd., 

Paisley, UK) to help visualise the bands of DNA. 5 μl of the purified PCR product was, along 

with 1 μl of blue/orange loading dye (6x) (Promega UK, Southampton, UK), loaded on to the 

gel.  1 kbp and 50 bp DNA step ladders (Figure 2.4) were also loaded on to the gel (6 μl and 

2 μl respectively, with 8 μl PCR-grade water and 2 μl blue/orange loading dye added to the 

50 bp ladder). The gel was run at 125 V and 200 mA for approximately 4 h, until the orange 

dye had reached the end of the gel. The resultant gel was visualised using a BioDoc-It 

Imaging System with an M20 (20x20cm filter) transilluminator (Ultra-Violet Products Ltd, 

Cambridge, UK) and the DNA band gained for PCR product sample was compared to the 

DNA ladders to determine the length of the DNA strands.  

Once the gene was confirmed to be present, the sample was sent, along with the 8f 

and 1510r primers to Eurofins MWG Operon (Ebersberg, Germany) for custom DNA 

sequencing. The gene was sequenced forwards the utilising 8f primer and backwards using 

the 1510r primer. The two sequencing results were pieced together to give the whole gene 

sequence. The whole gene sequence was subjected to a BLASTn search of the ‘Nucleotide 

collection (nr/nt)’ database, with the ‘megablast’ option chosen. The results were sorted by 

‘% match’ to give the best matches. 
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Figure 2.4 – DNA step ladders used in the gel electrophoresis of the PCR product 

sample. 1 kbp (A)) and 50 bp (B)) DNA step ladders were used to determine the length of the 

DNA strands in the PCR product sample. 

 

2.10.6 cDNA production by reverse transcription (RT)-PCR  

RNA isolated from epithelial cells was converted, by reverse transcription (RT) reaction, to 

cDNA for use in quantitative real-time (qRT)-PCR using the iScript™ cDNA Synthesis Kit 

(Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). 2 μg template RNA was added to 8 μl 

5x iScript reaction mix and 2 μl iScript reverse transcriptase and the volume was made up to 

40 μl with nuclease-free water. The complete reaction mix was incubated in a Techne TC-312 

Thermocycler, using the following program: 5 min at 25 °C, 30 min at 42 °C, 5 min 85 °C  

and the reaction mix was held at 4 °C. 

 

2.10.7 Relative quantification real-time (qRT)-PCR 

Relative quantification real-time (qRT)-PCR was performed to investigate the relative fold 

change in gene mRNA expression in response to cell challenges, when compared to control 

conditions. qRT-PCR was performed on the carousel-based system of the Lightcycler
®

 2 

machine (Roche Diagnostics Ltd., West Sussex, UK) and utilising custom PCR assays from 

the Human Universal ProbeLibrary set coupled with the gene-specific primers (Table 2.2).  

 

A) B) 
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Gene Pubmed 

Accession No. 

Primer Sequence Universal 

Probe No. 

β-actin NM_001101 F – ccaaccgcgagaagatga R – tccatcacgatgccagtg #64 

GAPDH NM_002046 F – gctctctgctcctcctgttc R – acgaccaaatccgttgactc #60 

IL-8 NM_000584 F – agacagcagagcacacaagc R – aggaaggctgccaagagag #72 

IL-10 NM_000572 F – tgccttcagcagagtgaaga R – gcttggcaacccaggtaa # 65 

TLR-1 NM_003263 F – aaacaacattgaaacaacttggaa R – cacgtttgaaattgagaaatacca # 65 

TLR-2 NM_003264 F – ctctcggtgtcggaatgtc R – aggatcagcaggaacagagc #56 

TLR-4 U88880 F – gaaggttcccagaaaagaatgtt R – cctgattgtccttttcttgaatg # 75 

TLR-5 NM_003268 F – ctccacagtcaccaaaccag R – cctgtgtattgatgggcaaa # 72 

TLR-9 NM_017442 F – tgtgaagcatccttccctgta R – gagagacagcgggtgcag #56 

CD14 AB446505 F – ggaagacttatcgaccatggag R – acaaggttctggcgtggt # 74 

NOD1 AF113925 F – tcagggacagagtcctggtt R – acccctcaggaaatgattga # 79 

Table 2.2 – Primers and Universal probes used in qRT-PCR. Gene-specific primer pairs 

were linked to a Universal ProbeLibrary probe by the online ProbeFinder software. F- 

indicates forward primer and R- indicates reverse primer. 

 

The Universal ProbeLibrary consists of a set of 165 short (8-9 nucleotides) hydrolysis 

probes which are labelled at the 5' end with a reporter dye, fluorescein (FAM), and at the 3' 

end with a dark quencher dye. Custom-designed PCR assays are produced using the web- 

based ProbeFinder Software (http://qpcr.probefinder.com/organism.jsp) which optimally 

combines an appropriate Universal ProbeLibrary probe with a gene-specific primer pair. 

Where possible, the PCR amplicon selected by the software will span an exon-exon junction, 

reducing the risk of false positive results from genomic DNA contamination.  

qRT-PCR reactions were carried out in a final volume of 20 μl with the following 

reaction mix: 0.5 μl 20 μM forward and reverse primers,  0.5 μl Universal ProbeLibrary 

probe, 4 μl of 5x Lightcycler
® 

Taqman
®
 Master mix, 13 μl PCR-grade water and 1.5 μl 

cDNA sample. The PCR program used was an activation step at 95 °C for 10 min followed 

by 45 cycles of amplification at 95 °C for 10 s, 60 °C for 30 s and 72 °C for 1 s, and finally a 

cooling step at 40 °C for 30 s.  When hydrolysis probes are intact, the quencher blocks the 

http://qpcr.probefinder.com/organism.jsp
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Figure 2.5 – Typical amplification curves of qRT-PCR. Serial dilutions of cDNA were 

subjected to qRT-PCR and the characteristic sigmoidal curves were evident. The amount of 

cDNA was a) 1x, b) 0.1x, c) 0.01x and d) 0.001x. This was reflected in the Ct values as a) 

gave a Ct value of 22.82, b) was 26.37, c) was 30.26 and d) was 33.39. The negative controls 

contained no cDNA and no reaction mix (just mRNA and water), respectively.  

 

fluorescence of the reporter dye, however, when the Taq polymerase cleaves the probe, the 

dyes separate, allowing the reporter to fluoresce. Fluorescence was measured at 530 nm. The 

Lightcycler
®
 1.5 software was used to calculate the threshold cycle (Ct) value (the point at 

which the fluorescence exceeds the background fluorescence) (Figure 2.6) and the 2
-ΔΔCt

 

method (Livak and Schmittgen, 2001) was used to analyse the fold change in mRNA 

expression in comparison with control conditions. In this method of analysis, genes of 

interest were normalised to the housekeeping genes (in this case, β-actin and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH)) to allow comparison between control and challenge 

conditions. Results were expressed as fold change in mRNA expression. 

 

  

 

 

 

a b c d 

Negative controls 
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2.10.8 Validating PCR primers 

PCR primer pairs, and indeed PCR reaction mixtures as a whole, underwent efficiency tests 

before use to confirm they fell within the acceptable limits of PCR efficiency (90-110 %). 

Briefly, the template cDNA sample was serially diluted and each concentration was subjected 

to qRT- PCR (Section 2.10.7). The Ct value was plotted against the log10 of the dilution (e.g. 

for a 10x dilution, the log100.1 was taken) and a linear trend line was fit to the resultant graph 

(Figure 2.7). The efficiency of the PCR reaction was calculated utilising the slope of the trend 

line and the following equation: 

 

Efficiency of PCR Reaction = 10
(-1/slope)

                (Equation 2.3) 

 

 

Figure 2.6 – Primer efficiency assessment. cDNA samples were serially diluted (in this 

case 1, 0.1, 0.01 and 0.001x were used) and subjected to qRT-PCR. The resultant Ct values 

were plotted against the log10 of the dilution. Results show the efficiency of the IL-8 primers 

(see Table 2.2). 
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2.11 Statistical analysis 

Results were all expressed as mean ± standard error of the mean (SEM) for the specified 

number of experimental repeats (n). Statistical significance was resolved using unpaired 

Student’s t-test or ANOVA analysis (used where multiple comparisons are required within an 

experiment) and defined as a p-value ≤ 0.05 and/or p-value ≤ 0.01. All statistical analyses 

were undertaken using PASW
®
 Statistics 17 (IBM, Armonk, NY, USA). Statistical difference 

is indicated by * or **, where p ≤ 0.05 or 0.01, respectively. 
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Chapter 3 

 

Characterisation of the HT29-19A and Caco-2 intestinal epithelial cell 

models  
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3.1 Introduction 

Immortalised in vitro cell lines offer a very robust and easily reproducible alternative to 

animal models (in vivo) or primary cell explants (ex vivo). Caco-2 cells and the 19A clonal 

derivative of the HT29 cell line offer a highly simplified model of the in vivo intestinal 

epithelial layer, as both originate from human colonic adenocarcinomas. Nevertheless, both 

cell lines are phenotypically distinct (Warhurst et al., 1998) and have previously been used in 

a wide variety of different physiological investigations (LeFerrec et al., 2001). For example, 

the Caco-2 cell line is often used in the pharmaceutical industry for drug development (Bailey 

et al., 1996) and intestinal absorption modelling (Artursson et al., 2001; Sambuy et al., 2005; 

Hilgers et al., 1990), whereas HT29-19A cells have previously been used in studies of protein 

transport (Terpend et al., 1998), epithelial differentiation (Cohen et al., 1999) and chemokine 

secretion (Warhurst et al., 1998). Additionally, both cell lines have also been used to model 

bacterial interactions with the intestinal epithelium, with Caco-2 cells extensively used in 

studies of bacterial adherence (Coconnier et al., 1993; Coconnier et al., 1997; Tuomola and 

Salminen, 1998) and translocation (Cruz et al., 1994; Clark et al., 2003; Clark et al., 2005) 

and HT29-19A cells used in inflammation stimulatory studies (Lammers et al., 2002; Bannon 

et al., 2009).  

The two intestinal epithelial cell lines HT29-19A and Caco-2 were characterised, in 

terms of their pattern recognition receptor expression, expression of IL-8 and IL-10 and their 

sensitivity to commercially available bacterial TLR agonists. Additionally, disruption of the 

epithelial barrier function and stimulation of the proinflammatory response by factors 

released by the enteric pathogen Clostridium difficile were investigated.  
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3.2 A quantitative comparison of mRNA expression of Toll-like receptors (TLRs) 

involved in bacterial antigen recognition in intestinal epithelial cell lines (IECs) 

A quantitative analysis of the expression of PRRs, specifically TLRs, was undertaken. TLR 

expression in HT29-19A and Caco-2 cells has previously been qualitatively investigated by 

reverse transcription (RT)-PCR by Bannon (2008), who reported constitutive expression of 

TLRs 1-10 in both cell lines. However, analysis undertaken in this study was limited to TLR-

1, TLR-2, TLR-4, TLR-5, and TLR-9, and was semi-quantitative in nature.  

This initial study demonstrated that both cell lines express a range of TLRs required 

for the recognition and response to a wide range of bacterial antigens, with TLR-1, TLR-2, 

TLR-4, TLR-5, and TLR-9 all exhibiting a detectable signal (Table 3.1). These show the 

phenotypic differences between the two cell lines, as Caco-2 cells had a significantly higher 

expression of TLR-2 mRNA than HT29-19A cells (~700-fold; p ≤ 0.01; Figure 3.1). In 

contrast, HT29-19A cells exhibited much greater expression of TLR-4 mRNA than the Caco-

2 cell line (~340-fold; p ≤ 0.01; Figure 3.1). TLRs-1, -5 and -9 were all constitutively 

expressed at similar levels in the two cell lines (Figure 3.1). However, it is worth noting that, 

upon observation of the raw Ct-values (Table 3.1), TLR-5 mRNA appeared to be present in 

moderately increased levels in both cell lines, when compared to the mRNA expression of 

both TLR-1 and TLR-9 (NB. Ct-values are logarithmic).  
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Gene 
Ct value p-value 

HT29-19A Caco-2 ≤ 0.05 ≤ 0.01 

Actin 16.06 ± 0.24 15.44 ± 0.23 - - 

GAPDH 18.83 ± 0.12 18.56 ± 0.17 - - 

TLR-1 32.32 ± 0.16 32.75 ± 0.25 - - 

TLR-2 36.67 ± 0.29 26.53 ± 0.12 + + 

TLR-4 28.02 ± 0.26 35.73 ± 0.29 + + 

TLR-5 28.50 ± 0.33 28.14 ± 0.22 - - 

TLR-9 35.15 ± 0.38 36.12 ± 0.65 - - 

Table 3.1- Raw Ct values of TLR mRNAs in IECs. The raw threshold (Ct) values were 

taken from qRT-PCR and cell lines were compared for statistical significance. Results are 

mean ± SEM, n = 4. 
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Figure 3.1 –Relative expression of TLR mRNA in Caco-2 vs. HT29-19A cells. Results 

were normalised to housekeeping genes, β-actin and GAPDH, and expressed as a fold 

difference in Caco-2 cells when compared to HT29-19A cell line. Results are mean ± SEM, n 

= 4. 
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3.3 Constitutive expression of IL-8 and IL-10 in IECs 

To examine whether the HT29-19A and Caco-2 cell lines spontaneously expressed IL-8 and 

IL-10, ELISA and qRT-PCR analyses were employed to measure the levels of the cytokines 

at the protein and mRNA levels, respectively.  

The cells lines exhibited different profiles of IL-8 release, over 24 h. Both cell lines 

released detectable levels of IL-8 at the 1 h time point, however the release in HT29-19A 

cells was ~12-fold higher than in Caco-2 cells. Subsequently, HT29-19A cells released IL-8 

in a time-dependent manner, whereas Caco-2 cells exhibited little change from 1 to 12 h, and 

only showed a small increase between the 12 and 24 h time points. At the 24 h, the IL-8 

release by HT29-19A cells was ~64-fold higher than Caco-2 cells (Figure 3.2). In 

concordance with these data, HT29-19A cells were seen to express a significantly higher 

level of IL-8 mRNA than Caco-2 cells (~73-fold; Figure 3.3). 

Neither cell line released any detectable amounts of IL-10 (data not shown). 

Furthermore, HT29-19A cells did not express detectable levels of IL-10 mRNA within the 45 

cycles of amplification during qRT-PCR, however, IL-10 mRNA expression was detected in 

Caco-2 cells. For purposes of quantitative comparison, the Ct-value for HT29-19A cells was 

taken as 45, thus allowing a minimum fold difference to be calculated. IL-10 mRNA 

expression was demonstrated to be >227-fold greater in Caco-2 cells when compared to 

HT29-19A cells (Figure 3.3). 
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Figure 3.2 – Basal level release of IL-8 is significantly higher in HT29-19A cells than 

Caco-2 cells. Results are normalised to protein concentration from cell lysates and expressed 

as mean ± SEM, n = 4. 
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Figure 3.3 – Quantitative comparison of chemokine mRNA expression in IECs. Results 

were normalised to the actin and GAPDH housekeeping genes. Results are expressed as a 

fold difference in the Caco-2 when compared to HT29-19A cell line and are mean ± SEM, n 

= 4.  
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3.4 Interaction of TLR-agonists with IECs  

Cells were challenged with commercially available bacterial antigens to explore the 

expression of IL-8 under stimulatory conditions. HT29-19A cells demonstrated a much 

higher capacity for IL-8 production than Caco-2 cells, with significantly more IL-8 released 

in response to maximal concentrations of peptidoglycan (~42-fold), lipopolysaccharide (~61-

fold), flagellin (~27-fold) and CpG DNA (~61-fold), respectively (Figure 3.4). Additionally, 

the relative sensitivities were varied between the two cell lines. Caco-2 cells were 

significantly (100-fold; p ≤ 0.01) more sensitive to peptidoglycan than HT29-19A cells, with 

a threshold level of 5 μg/ml, compared to 500 μg/ml (Figure 3.4a). Conversely, Caco-2 cells 

were unresponsive to the concentration range of LPS tested, whereas HT29-19A cells showed 

a relatively low threshold level of 10 ng/ml, thus demonstrating >100-fold reactivity (Figure 

3.4b). In response to flagellin and CpG DNA, both cell lines showed similar thresholds of 1 

ng/ml (Figure 3.4c) and 10 μg/ml (Figure 3.4d), respectively. These results suggest that, due 

to their variations in TLR expression patterns (see Section 3.2), the two cell lines exhibit 

different sensitivities to the range of TLR agonists.  

To investigate if the potentiation of IL-8 protein secretion, in response to the bacterial 

antigens, was paralleled by the mediation of transcriptional expression, IL-8 mRNA levels 

were measured by qRT-PCR. In the HT29-19A cell line, cells incubated with peptidoglycan 

(500 μg/ml), lipopolysaccharide (1000 ng/ml), flagellin (100 ng/ml) or CpG DNA (50 μg/ml) 

exhibited significantly (p ≤ 0.05) more IL-8 mRNA expression than unstimulated controls 

(Figure 3.5a), when normalised to the housekeeping genes. Caco-2 cells showed a similar 

pattern, with IL-8 mRNA significantly up-regulated in all challenges (Figure 3.5b). 

Changes in expression of TLRs in response to bacterial antigens were also 

investigated. In HT29-19A cells, incubation with peptidoglycan, lipopolysaccharide and 

flagellin all resulted in significant (p ≤ 0.05) up-regulation of their cognate receptors (Figure 
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3.5). Additionally, mRNA expression of CD14 appeared to be up-regulated (14.11 ± 6.49-

fold) in response to lipopolysaccharide; however, the variability in expression meant that the 

result was not significantly different from the expression level in control cells. Conversely, in 

reaction to CpG DNA, a considerable (p ≤ 0.01) down-regulation of TLR-9 was observed, 

with no detectable levels present in the challenged cells.  

 In Caco-2 cells, significant (p ≤ 0.05) augmentations of TLR-1 and TLR-2, TLR-4, 

TLR-5 and TLR-9 mRNAs were demonstrated in response to peptidoglycan, 

lipopolysaccharide, flagellin and CpG DNA, respectively. In contrast to this, expression of 

CD14 mRNA was significantly (p ≤ 0.01) diminished, in response to lipopolysaccharide. 
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Figure 3.4 – Known TLR agonists elicit IL-8 release from IECs in a dose-dependent manner. Epithelial cells were challenged with either 

peptidoglycan (PGN) from B. subtilis (A), lipopolysaccharide (LPS) from E. coli O111:B4 (B), flagellin from S. typhimurium strain 14028 (C) or 

deoxyribonucleic acid sodium salt (CpG DNA) from Escherichia coli strain B (D), for 24 h. IL-8 release was measured and is expressed as mean ± SEM, n = 

3.           = HT29-19A cells,            = Caco-2 cells. 
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Figure 3.5 – TLR agonists up-regulate IL-8 and cognate TLR mRNA expression in 

IECs. HT29-19A (A) and Caco-2 (B) cells, were challenged with either 500 μg/ml 

peptidoglycan (PGN), 1000 ng/ml lipopolysaccharide (LPS), 100 ng/ml of flagellin or 50 

μg/ml of deoxyribonucleic acid sodium salt (CpG DNA) for 24 h. Results are normalised to 

the actin and GAPDH housekeeping gene and expressed as a fold difference in Caco-2 cells, 

compared to HT29-19A cells. Results are mean ± SEM, n = 3. ND = not detected.l;;  
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3.5 IL-8 expression in IECs, in response to factors released by C. difficile  

Inflammatory effects of C. difficile on HT29-19A cells were dose-dependent, with HT29-19A 

cells challenged with a 1 in 10 dilution of C. difficile crude cfs demonstrating a significant 

increase in IL-8 release (~15-fold; p ≤ 0.01), when compared to secretion by vehicle control 

(HB media)-challenged cells (19642 ± 1896.7 compared to 1322 ± 115.7 pg/mg total 

protein). The effects were also evident at the 1 in 100 and 1 in 1000 dilutions, but lost at a 1 

in 10,000 dilution (Figure 3.6a). A similar 15-fold increase in IL-8 secretion, in response to 1 

in 10 dilution of C. difficile cfs, was also observed in Caco-2 cells; however, more dilute 

challenge samples had no effect (Figure 3.6b). 

To explore whether the protein level results were reflected at the transcriptional level, 

IL-8 mRNA expression, in response to a 1 in 10 diluction of C. difficile cfs, was measured by 

qRT-PCR. The results showed significant increases, of comparable magnitude, in IL-8 

mRNA in both cell lines, with ~113- and ~98-fold increases, respectively (Figure 3.7).  
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Figure 3.6 – C. difficile cell-free supernatant stimulates IL-8 release from IECs. HT29-

19A (A) and Caco-2 (B) cells were challenged with 1 in 10 to 1 in 10,000, dilutions of C. 

difficile cell-free supernatant and 1 in 10 dilution of horse blood media (vehicle control) for 

24 h. Supernatants were analysed for IL-8. Results are mean ± SEM, n = 6. ** indicates 

significance from HB media control.  
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Figure 3.7 – C. difficile cell-free supernatant elicits significant up-regulation of IL-8 

mRNA expression in IECs. Cells were challenged with a 1 in 10 dilution of C. difficile cell 

free supernatant, for 24 h, and IL-8 mRNA was analysed. Results are mean ± SEM, n=3. 
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3.6 High concentrations of C. difficile cell-free supernatant irreversibly disrupt the 

barrier function of Caco-2 monolayers 

HT29-19A cell layers were unable to polarise sufficiently to form dome structures (Figure 

3.8), however, Caco-2 cells readily polarised to the extent that a considerable number of 

dome structures were maintained from day 7 to day 18 (Figure 3.8). Subsequent to day 18, 

the dome count halved, with the number dropping from 104.9 ± 9.4 on day 18 to 51.9 ± 9.6 

on day 19 (Figure 3.2). The decline in dome number could, in all probability, be attributed to 

a natural weakening of the tight junctions or death of the cells, due to their age. These data 

indicate that studies to be undertaken on barrier function in Caco-2 cells should be done so on 

monolayers aged 7-18 days. 

7-day old monolayers of Caco-2 cells were challenged with varying concentrations 

(neat to 1 in 100,000) of C. difficile cell-free supernatant (cfs), and its vehicle control, horse 

blood (HB) media, for 24 h. All domes were lost immediately following the challenge (Figure 

3.9). In the subsequent 96 h, cells challenged with neat cfs showed no recovery of domes. 

Additionally, cell monolayers challenged with 1 in 10 and 1 in 100 dilutions of cfs showed 

very few domes, with numbers significantly (p ≤ 0.01) lower than control cells. However, 

after 48 h, cells challenged with greater dilutions of cfs (1 in 1000, 1 in 10,000 and 1 in 

100,000) all showed a return to dome numbers comparable to control levels. 

These results showed that high concentrations of C. difficile cfs irreversibly eradicated 

domes in Caco-2 cells. Conversely, the acute disruptive effect of lower concentrations of cfs 

diminished after 48 h and a temporary, but significant, increase in dome numbers was 

observed before they returned to control level. The suitability of C. difficile cell-free 

supernatant in barrier function studies in Caco-2 cells was established. 
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Figure 3.8 – Caco-2 monolayers polarise sufficiently enough to form domes. Results are 

expressed as number of domes per well and are mean ± SEM, n = 10–12. 
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Figure 3.9 – C. difficile cell-free supernatant significantly diminishes barrier integrity of 

Caco-2 monolayers. Caco-2 cells were challenged with neat to 1 in 100,000 dilutions of 

horse blood (HB) media and C. difficile cell-free supernatant samples for 24 h. Results are 

expressed as a % of number of domes observed in the HB media vehicle control. Results are 

mean ± SEM, n=6. ** indicates significance from 100 %. 
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3.7 Summary 

This chapter explored differences between the two intestinal epithelial cell lines HT29-19A 

and Caco-2 with the overall aim of selecting the most appropriate for subsequent 

experimentation in this investigation.  

A quantitative comparison of the TLRs, undertaken by qRT-PCR, showed significant 

differences in TLR-2 and TLR-4 mRNA between the two cell lines, with HT29-19A cells 

exhibiting significantly higher expression of TLR-4, but considerably less expression of 

TLR-2, than Caco-2 cells. Conversely, the two cell lines exhibited comparable transcriptional 

expression of TLR-1, TLR-5 and TLR-9. Proinflammatory and anti-inflammatory cytokines 

(IL-8 and IL-10, respectively) were also investigated, with HT29-19A cells demonstrating a 

larger capacity, at both the transcriptional and translational levels, for IL-8 expression than 

the Caco-2 cell lines, but, in contrast to Caco-2 cells, they did not exhibit expression of IL-10 

mRNA.  

Having established constitutive expression of TLRs and IL-8, modulatory effects 

following cell stimulation were explored. The HT29-19A cell line showed significantly 

higher maximal release of IL-8 in response to all stimulants tested compared to Caco-2 cells. 

Nevertheless, the two cell lines were shown to exhibit similar sensitivity thresholds to both 

flagellin and CpG DNA. Conversely, owing to their TLR-2 and TLR-4 mRNA profile, HT29-

19A cells were significantly more reactive to LPS, but considerably less sensitive to 

peptidoglycan, than Caco-2 cells. Additionally, the bacterial antigens tested were shown to 

up-regulate the mRNA expression of both IL-8 and their cognate TLR receptors in both cell 

lines. C. difficile cell-free supernatant was also shown to elicit the expression and release of 

IL-8 from both cell lines.  

Finally, the ability of the two cell lines to polarise, forming dome structures, was 

investigated, and subsequently showed that Caco-2 cells were able to form and maintain a 
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significant number for ~14 days post-confluence. In contrast, HT29-19A cells were unable to 

form domes at all. Dome loss in response to C. difficile cell-free supernatant was utilised to 

explore its disruptive effects on integrity of Caco-2 monolayers. 

Taken altogether, the results of this preliminary characterisation of the HT29-19A and 

Caco-2 intestinal epithelial cell lines demonstrated that the two cell lines are phenotypically 

divergent, but highly complementary in modelling the interaction of bacterial products with 

the intestinal epithelium. Therefore, both cell lines were utilised in the study of enteric-

associated bacterial products considered in subsequent chapters.  
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Chapter 4 

E. coli C25: investigating the inflammatory potential of a Gram-negative 

commensal  
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4.1 Introduction 

Although the intestinal microflora is, potentially, a vast source of a wide range of 

immunostimulatory material (see Section 1.5), there has, to date, been little work undertaken 

with commensal-derived extracellular products. Most characterisation studies utilise 

commercially available bacterial antigens (as were used in the previous chapter (see Section 

3.4)), which are typically isolated from pathogenic bacteria. The inflammatory potential of 

antigens produced by the Gram-negative commensal bacterium, Escherichia coli C25, was 

tested. 

 E. coli are among the first bacteria to colonise the human neonatal intestine (Hooper, 

2004) and offer an early defence against enteropathogens, such as Salmonella typhimurium 

(Hudault et al., 2001).  E. coli C25 was originally isolated from the faeces of a healthy 

individual in the mid-1950s (Freter and Hentges, 1956), and has long been considered a 

commensal bacterium, with early studies demonstrating its antagonistic activities against the 

growth the enteric pathogen, Shigella flexneri (Hentges and Freter, 1962; Freter, 1962). 

Moreover, C25 lacks the traditional virulence genes found in pathogenic strains of E. coli, 

such as extraintestinal pathogenic (ExPEC), enterohaemorrhagic (EHEC) and 

enteropathogenic (EPEC) (Zareie et al., 2005; Macutkiewicz et al., 2008), and is a poor 

recipient of plasmid transfer (Freter and Brickner, 1983), so is unlikely to acquire such genes 

from other bacteria. Despite this, studies utilising live C25 have demonstrated its ability to 

initiate a proinflammatory response in intestinal epithelial cell lines (Michalsky et al., 1997; 

Zareie et al., 2005), however, the immunostimulatory ability of the extracellular products 

from C25 have only been briefly considered previously (Bannon, 2008).  
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4.2 E. coli C25 cell-free supernatant stimulates a proinflammatory response in IECs 

In response to a 1 in 10 dilution of E. coli C25 cell-free supernatant, HT29-19A cells 

exhibited a significant (~3-fold; p ≤ 0.01) increase in IL-8, from the basal level (3201 ± 34.1 

compared to 1076 ± 114.6 pg/mg protein; Figure 4.1a), whereas Caco-2 cells showed a 1.5-

fold increase, in comparison to the control (25.1 ± 0.6 vs. 16.7 ± 0.2 pg/mg protein; Figure 

4.2a). A 1 in 100 dilution of the cell-free supernatant also induced a statistically significant (p 

≤ 0.01) IL-8 release in HT29-19A cells (2061.5 ± 184.9 pg/mg protein), but by the 1 in 1000 

dilution, no increase was observed (Figure 4.1a). Conversely, Caco-2 cells, the control level 

of IL-8 was reached at the 1 in 100 dilution (Figure 4.2a). No detectable traces of IL-10 

protein release were observed in either cell line (data not shown).  

In parallel to IL-8 release, significant (p ≤ 0.01) up-regulation of IL-8 mRNA was 

observed in both HT29-19A (~12-fold; Figure 4.1b) and Caco-2 cells (~8-fold; Figure 4.2b), 

in response to a 1 in 10 dilution of C25 cfs. Interestingly, both cell lines also demonstrated 

significant (p ≤ 0.01) up-regulation of the key anti-inflammatory mediator IL-10, at the 

mRNA level, in response to the same dilution of C25 cfs. In constrast to unchallenged HT29-

19A cells (which exhibited no detectable levels of IL-10 expression within the 45 

amplification cycles of qRT-PCR), IL-10 mRNA was observed with a Ct value of 33.74 ± 

0.47, in cells challenged with C25 cfs (Figure 4.1c). Caco-2 cells showed a ~12-fold increase 

in IL-10 mRNA, compared to the constitutive expression (Figure 4.2c).  

To investigate if the elicitation of increased IL-8 expression, in response to C25 cfs, 

was associated with changes in expression of TLR-1, TLR-2, TLR-4, TLR-5 and TLR-9, the 

fold change in mRNA expression of the receptors was quantified following cell challenges. A 

1 in 10 dilution of C25 cfs provoked a significant (p ≤ 0.05) up-regulation of TLR-1 mRNA 

in HT29-19A cells and Caco-2 cells (Table 4.1). Additionally, up-regulation in expression of 

TLR-4 and TLR-9 mRNA was also observed in both cell lines (Table 4.1). The expression of 
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TLR-2 and CD-14 did not deviate significantly from the transcriptional levels seen in 

unchallenged controls of both cell lines. 
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Figure 4.1 – E. coli C25 cell-free supernatant significantly stimulates IL-8 release in 

HT29-19A cells. HT29-19A cells were challenged with 1 in 10 to 1 in 1000 dilutions of E. 

coli C25 cell-free supernatant (cfs) for 24 h. Secretion of IL-8 (A) and transcriptional 

expression of IL-8 (B)  and IL-10 (C), were measured. Results are mean ± SEM, n=3-6.  
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Figure 4.2 – E. coli C25 cell-free supernatant significantly potentiates IL-8 release in 

Caco-2 cells.  Caco-2 cells were challenged with 1 in 10 to 1 in 1000 dilutions of E. coli C25 

cell-free supernatant (cfs) for 24 h. Secretion of IL-8 (A) and transcriptional expression of IL-

8 (B)  and IL-10 (C), were measured. Results are mean ± SEM, n=3-6. 
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Gene 

Fold difference in mRNA 

HT29-19A Caco-2 

TLR-1   1.93 ± 0.39*      2.76 ± 0.37** 

TLR-2 1.79 ± 0.37 1.25 ± 0.20 

TLR-4     2.79 ± 0.48**   3.21 ± 0.98* 

TLR-9   11.22 ± 3.56**   22.55 ± 4.53** 

CD14 0.75 ± 0.11 0.73 ± 0.19 

Table 4.1 – E. coli C25 cell-free supernatant differentially modifies TLR expression in 

IECs. IECs were challenged with 1 in 10 dilutions of E. coli C25 cell-free supernatant and 

mRNA expression of TLRs was investigated. Results are mean ± SEM, n = 3.  
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4.3 E. coli C25 sonicates potentiate IL-8 expression in IECs 

Ultrasonic disruption of the bacterial cell wall was used to increase the release of antigenic 

material, which would normally be released in very low quantities. Intestinal epithelial cells 

challenged with a 1 in 10 dilution of C25 sonicate were shown to elicit significantly (p ≤ 

0.01) more IL-8 than control cells. Challenged HT29-19A cells produced ~4-fold more IL-8 

(4413.3 ± 828.4 compared to 1076.4 ± 114.6 pg/mg protein; Figure 4.3a), while challenged 

Caco-2 cells nearly doubled the IL-8 release (30.8 ± 0.3 compared to 16.7 ± 0.2 pg/mg 

protein; Figure 4.3b). In comparison to earlier data of IL-8 release in response to a 1 in 10 

dilution of C25 cfs (Section 4.2), the IL-8 release in response to C25 sonicate was higher in 

both cell lines, but only statistically significant (p ≤ 0.01)  in Caco-2 cells (Figure 4.3b). A 

113.6-fold (HT29-19A cells; Figure 4.3c) and 19.9-fold (Caco-2 cells; Figure 4.3d) increase 

of IL-8 mRNA also occurred. 

Having established the proinflammatory potential of E. coli C25 sonicates, the 

modulatory effects of the lysed bacteria on TLR receptor expression in the two cell lines was 

investigated. A 1 in 10 dilution of C25 sonicate stimulated significant up-regulation of TLRs-

2 and -4 mRNA in both the HT29-19A (~188- and ~44-fold, respectively; p ≤ 0.05) and 

Caco-2 (~3.2- and ~28.7-fold, respectively; p ≤ 0.05) cell lines (Table 4.2). TLR-1 mRNA 

expression was also significantly (p ≤ 0.01) increased in Caco-2 cells, and appeared to be up-

regulated in HT29-19A cells, however, this was not statistically significant due to the large 

variance in data (Table 4.2). In HT29-19A cells, CD14 mRNA expression in response to C25 

sonicate did not significantly differ from the control expression, but, in Caco-2 cells, the 

expression was significantly (p ≤ 0.05) diminished (Table 4.2). Challenge by C25 sonicates 

also caused significant down-regulation of TLR-9 mRNA in both cell lines, so much so that 

no detectable traces were present (Table 4.2). 
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      HT29-19A           Caco-2   

     

  

Figure 4.3 – E. coli C25 sonicates up-regulate IL-8 mRNA expression and secretion in 

IECs. IECs were challenged with a 1 in 10 dilution of sonicated E. coli C25 preparation (C25 

Son.) or C25 cell-free supernatant (cfs). IL-8 release (A and B) and mRNA expression (C and 

D) were measured. Results are mean ± SEM, n=3.  
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Gene 

Fold difference in mRNA 

HT29-19A Caco-2 

TLR-1  21.36 ± 12.46 11.05 ± 4.11** 

TLR-2 188.20 ± 88.29* 3.21 ± 1.19* 

TLR-4   43.74 ± 21.01*   28.74 ± 10.90** 

TLR-9 ND ND 

CD14 0.99 ± 0.39 0.43 ± 0.15* 

Table 4.2 – E. coli C25 sonicates differentially modify mRNA expression of TLRs in 

IECs. Both cell lines were challenged with a 1 in 10 dilution of E. coli C25 sonicates for 24 h 

and expression of TLR and CD14 mRNAs were investigated. Results were normalised to the 

housekeeping gene mRNAs, expressed as a fold difference compared to control cells and are 

mean ± SEM, n = 3. ND = not detected. 
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4.4 Extracellular products from E. coli C25 do not protect IECs against the cytotoxic 

effects of C. difficile cell-free supernatant 

It was investigated whether or not the extracellular products from C25 predisposed the cell 

lines to any variance in response to challenge with C. difficile cell-free supernatant. Cells 

were pre-treated with 1 in 10 to 1 in 1000 dilutions of C25 cfs or 1 in 10 dilution of C25 

sonicate for 24 h and were subsequently challenged with a 1 in 10 dilution of C. difficile cfs 

for a further 24 h. No significant differences in IL-8 release were observed in any of the pre-

treated cells of either cell line (Figure 4.4). 
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Figure 4.4 – Pre-treatment with E. coli C25 cell-free supernatant does not affect C. 

difficile cell-free supernatant-stimulated IL-8 in IECs. HT29-19A (A)  and Caco-2 cells 

(B) were challenged with 1 in 10 to 1 in 1000 dilutions of E. coli C25 cell-free supernatant 

(C25 cfs) or a 1 in 10 dilution of sonicated E. coli C25 (C25 son.) for 24 h. Subsequently, 

supernatants were removed and cells were challenged with a 1 in 10 dilution of C. difficile cfs 

for 24 h. IL-8 release was analysed. Results are mean ± SEM, n = 3.  

0 

10000 

20000 

30000 

1 in 10 1 in 100 1 in 1000 

Control Control C25 cfs C25 son. 

C. difficile cfs 

IL-8 release 
(pg/mg 

total protein) 

A) HT29-19A 

0 

100 

200 

300 

1 in 10 1 in 100 1 in 1000 

Control Control C25 cfs C25 son. 

C. difficile cfs 

IL-8 release 
(pg/mg 

total protein) 

B) Caco-2 



122 

 

4.5 Membrane vesicles (MVs) isolated from E. coli C25 elicit IL-8 expression in IECs 

Both cell lines were challenged with a concentration range of MVs isolated from E. coli C25. 

HT29-19A cells produced significantly (p ≤ 0.05) increased amounts of IL-8, in response to 

C25 MVs (Figure 4.5a), and were sensitive to the culture concentration (1x) of MVs. Cells 

challenged with a 1x MV concentration, elicited a ~1.5-fold increase in IL-8 release in 

comparison to control cells (2234 ± 291.6 compared to 1491 ± 236.1 pg/mg total protein). At 

a 5x MV concentration, HT29-19A cells appeared to reach saturation point, with no further 

significant increases in IL-8 release observed, however, maximal release of IL-8 was seen in 

response to the 10x MV concentration (6347 ± 523.0 pg/mg). Caco-2 cells also responded to 

C25 MVs, however, they were markedly less sensitive than HT29-19A cells. A 5x MV 

concentration was required to stimulate a significant (p ≤ 0.05) increase of IL-8 in Caco-2 

cells (55 ± 9.3 compared to 15 ± 7.9 pg/mg total protein). Saturation appeared not to be 

reached in the MV concentration range tested and maximal IL-8 release (125 ± 19.2 pg/mg 

total protein) was reached at a 25x MV concentration (Figure 4.6a). The proinflammatory 

effects of C25 MVs was also demonstrated at the transcriptional level as both cell lines 

demonstrated a significant (p ≤ 0.01) increase in IL-8 mRNA in response to C25 MVs. In 

HT29-19A cells, a 10x MV concentration of gave a ~5.6-fold increase in IL-8 mRNA (Figure 

4.5b), whereas in Caco-2 cells, a 25x concentration elicited a ~2.1-fold increase (Figure 

4.6b). 

 In response to a 10x MV concentration, HT29-19A cells exhibited a small, but 

statistically significant (p ≤ 0.01), increase in transcriptional expression of TLR-4, with a 

~1.3-fold increase evident (Table 4.3). Additionally, there was a suggestion of up-regulation 

of TLR-2 and NOD1 mRNAs (~4.9- and ~1.5-fold increases, respectively; Table 4.3); 

however, due to variance of results, these were not statistically significant. Conversely, MV-

challenged HT29-19A cells demonstrated a significant decrease in TLR-9 mRNA expression, 
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with no detectable levels present. There was a suggestion that TLR-9 mRNA was up-

regulated in Caco-2 cells, in response to a 25x MV concentration, with a ~1.9-fold increase 

observed, however, this result was not statistically significant. Additionally, in Caco-2 cells, 

the mRNA levels of TLR-4 and CD14 were found to be significantly (p ≤ 0.05) decreased, 

with ~0.2- and ~0.8-fold down-regulations in expression, respectively (Table 4.3). 

 



124 

 

 

 

Figure 4.5 – E. coli C25 MVs stimulate IL-8 expression in HT29-19A cells. HT29-19A 

cells were challenged with serial dilutions (0.5-25x) of E. coli C25 MVs for 24 h and IL-8 

release was measured (A). In cells, challenged with 10x MVs, IL-8 mRNA expression was 

investigated (B). Results are mean ± SEM, n = 3-6.  
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Figure 4.6 – E. coli C25 MVs stimulate IL-8 expression in Caco-2 cells. Caco-2 cells were 

challenged with serial dilutions (1-25x) of E. coli C25 MVs for 24 h and IL-8 release was 

measured (A). In cells, challenged with 10x MVs for 24 h, IL-8 mRNA expression was 

investigated (B). Results are mean ± SEM, n = 3-6. 
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Table 4.3 – TLR expression modulation, in IECs, in response to MVs isolated from E. 

coli C25. Epithelial cells were challenged with a 10x culture concentration of E. coli C25 

MVs for 24 h and PRR mRNA expression was measured. Results are mean ± SEM, n = 3. 

ND = not detected. 

  

Gene 
Fold difference in mRNA 

HT29-19A Caco-2 

TLR-1 0.94 ± 0.06 0.77 ± 0.07 

TLR-2 4.93 ± 1.97 0.84 ± 0.06 

TLR-4     1.29 ± 0.06**   0.21 ± 0.08* 

TLR-9      ND ND 

CD14 1.26 ± 0.13   0.78 ± 0.08* 

NOD1 1.50 ± 0.16 1.03 ± 0.05 
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4.6 E. coli C25 LPS stimulates IL-8 release from HT29-19A cells 

LPS was isolated from E. coli C25 and its antigenicity was tested against the two intestinal 

epithelial cell lines. HT29-19A cells were sensitive to C25 LPS at all concentrations tested 

and consequently displayed a significant (p ≤ 0.01) increase in IL-8 release, when compared 

to control cells (Figure 4.7a). Additionally, a threshold level of value of 100 ng/ml was 

observed. In contrast, Caco-2 cells were unresponsive to C25 LPS, with no significant change 

in IL-8 release evident, in reaction to ≤ 1000 ng/ml LPS (data not shown). Neither cell line 

showed any detectable release of IL-10 in response to C25 1000 ng/ml LPS.  

The proinflammatory activity of C25 LPS with HT29-19A cells was also observed at 

the transcriptional level, with a 5.1-fold increase (p ≤ 0.01) in IL-8 mRNA, when compared 

to control level expression (Figure 4.7b). However, exposure to the commensal-derived LPS 

did not cause any significant differences in TLR-4 (Figure 4.7c), or its co-factor, CD14 

(Figure 4.7d), at the trancriptional level.  

The stimulatory effects of LPS on HT29-19A cells were shown to require the 

presence of serum (FBS), as, in its absence, no significant difference in IL-8 release was 

observed (Figure 4.8). Additionally, in the absence of serum, the stimulatory activity of 1 in 

10 and 1 in 100 dilutions of E. coli C25 cell-free supernatant, on HT29-19A cells, was 

significantly lower than in its presence (Figure 4.9). This effect was lost at the 1 in 1000 

dilution.  
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Figure 4.7 –C25-derived LPS stimulates increased IL-8 at both the transcriptional and 

translational level, in HT29-19A cells. LPS was isolated from E. coli C25 cultures at 

approximately 30 μg/ml. HT29-19A cells were challenged with 100-1000 ng/ml LPS for 24 h 

and IL-8 release (A) was determined. Additionally, in cells challenged with 1000 ng/ml LPS, 

mRNA expression of IL-8 (B), TLR-4 (C) and CD14 (D) was analysed. Results are mean ± 

SEM, n = 3.  
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Figure 4.8 – LPS requires the presence of serum to exact its activity on HT29-19A cells. 

HT29-19A cell layers were cultured to confluence, challenged with 1000 ng/ml LPS in the 

presence (+) and absence (-) of serum (FBS), for 24 h and IL-8 levels were measured. Results 

are mean ± SEM, n = 3-6. 
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Figure 4.9 – LPS is a significant contributor to the immunomodulatory activity of C25 

extracellular products. HT29-19A cell layers were challenged with 1 in 10 to 1 in 1000 

dilutions of E. coli C25 cfs, in the presence (+) or absence (-) of FBS, for 24 h and IL-8 

release was measured. Results are mean ± SEM, n = 6. 
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4.7 E. coli C25 does not acutely modulate its own adherence or internalisation in IECs 

In both HT29-19A and Caco-2 cell lines, adherence and internalisation increased 

proportionally to the number of bacteria in the original inoculum (Figure 4.10). However, 

when the numbers of bacteria adhered or internalised were expressed as a percentage of the 

original inoculum, it was observed that the increasing numbers of bacteria had no significant 

modulatory effects (Table 4.4). 
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Figure 4.10 – Adherence and internalisation of E. coli C25 increase relative to the 

inoculum bacterial density. HT29-19A (A) and Caco-2 (B) cell layers were cultured to 

confluence and challenged with inocula of varying bacterial densities for 4 h. Adherent and 

internalised bacteria were plated out and counted. Conversely, non-internalised bacteria were 

killed off by washing with 50 μg/ml gentamicin and internalised bacteria were plated out and 

counted. Results are mean ± SEM, n = 3-6. 
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Original 

suspension 

(CFU/ml) 

Adherence (% of orig. sus.) Internalisation (% of orig. sus.) 

HT29-19A Caco-2 HT29-19A Caco-2 

1.00E+07 33.73 ± 11.57 8.63 ± 3.73 0.0028 ± 0.0008 0.0029 ± 0.0008 

1.00E+08 37.53 ± 1.65 10.57 ± 2.25 0.0024 ± 0.0002 0.0025 ± 0.0005 

1.00E+09 31.81 ± 4.38 6.50 ± 0.57 0.0023 ± 0.0003 0.0030 ± 0.0005 

 

Table 4.4 – E. coli C25 does not acutely promote its own adherence or internalisation. 

Cell layers were cultured to confluence and co-cultured with ~1 x 10
9 cfu/ml cultures of E. 

coli C25 for 4 h. Adherent and internalised bacteria were plated out and counted. Conversely, 

non-internalised bacteria were killed off by washing with 50 μg/ml gentamicin and 

internalised bacteria were plated out and counted. Results were expressed as a % of the 

original bacterial inoculum and were normalised to the control. Results are mean ± SEM, n = 

3-6. 
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4.8 Extracellular products from E. coli C25 have differential effects on bacterial 

internisation  

Having shown the immunostimulatory effects of extracellular products from E. coli C25 on 

epithelial cells (see Sections 4.2, 4.3, 4.4 and 4.5), their effects on the internisation of the 

bacterium were considered. Epithelial cells were pre-treated with the various extracellular 

products for 24 h and subsequently subjected to the translocation assay (see Section 2.7).  

 Following pre-treatment with a 1 in 10 dilution of E. coli C25 cfs, both HT29-19A 

and Caco-2 cells, demonstrated significant (p ≤ 0.01) increases in the numbers of bacteria 

undergoing internalisation, with 1.6- and 1.9-fold increases observed, respectively (Figure 

4.11). In Caco-2 cells, pre-treatment with a 1 in 10 dilution of C25 sonicate was able to 

induce a significant (4.1-fold; p ≤ 0.01) increase in internalisation of C25 (Figure 4.11b). 

Also, pre-treatment of HT29-19A cells with C25 sonicate appeared to modulate 

internalisation, as a 2.2-fold increase was evident; however, variance between replicates 

meant this result was not statistically significant (Figure 4.11a). Conversely, pre-treatment 

with a 10x MV concentration significantly (p ≤ 0.05) inhibited bacterial internalisation, 

giving a 70 % decrease in the HT29-19A cell line (Figure 4.11a) and a 30 % decrease in 

Caco-2 cells (Figure 4.11b). Pre-treatment with E. coli C25 LPS did not exhibit any 

significant effects on bacterial internalisation in either cell line (Figure 4.11).  
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Figure 4.11 – E. coli C25 extracellular products differentially modify bacterial 

internalisation in IECs. HT29-19A (A) and Caco-2 (B) cells were challenged with the 

various extracellular products isolated from E. coli C25 for 24 h. Subsequently, the 

supernatants were removed and cell layers were co-cultured with ~1 x 10
9
 CFU of E. coli 

C25 for 4 h. Non-internalised bacteria were killed and epithelial cells were lysed, releasing 

internalised bacteria. Lysates were serially diluted, plated out and incubated for 24h. Colonies 

were counted and expressed as a % of the original inoculum. Results are mean ± SEM, n = 4-

6.     
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4.9 Summary  

Stimulation of both HT29-19A and Caco-2 cells with cell-free supernatant (cfs) from the 

Gram-negative, commensal bacterium, E. coli C25, caused a significant increase in the 

expression and release of the proinflammatory chemokine IL-8. C25 cfs was also shown to 

up-regulate the mRNA expression of several TLRs in both cell lines. Similar patterns were 

observed in response to C25 sonicates, as both cell lines again exhibited significant increases 

in expression and release of IL-8 and modulation of TLR mRNA expression. Interestingly, 

C25 cfs was also able to up-regulate mRNA expression of the potent anti-inflammatory 

mediator, IL-10, in both cell lines; however, this effect was not paralleled by actual release of 

the cytokine, as no detectable levels were apparent.  

MVs isolated from cultures of E. coli C25 were shown to elicit IL-8 secretion from 

both cell lines, in a concentration-dependent manner; however, HT29-19A cells demonstrated 

a 5-fold higher sensitivity than Caco-2 cells. Stimulation of the proinflammatory response 

was mirrored at the transcriptional level, with significant increases in IL-8 mRNA exhibited, 

in both cell lines, in response to challenge with MVs. However, qRT-PCR analysis of the 

mRNA expression of PRRs (TLRs-1, -2, -4, -5 and -9 and NOD1) following challenge with 

MVs showed no significant changes.  

Caco-2 cells were unresponsive to E. coli C25 LPS at the concentration range tested, 

whilst HT29-19A cells were shown to elicit significant levels of IL-8, with increases in both 

transcriptional and translational expression observed. It was also found that the presence of 

serum was required for the antigenicity of LPS with HT29-19A cells, and its absence in the 

challenge of HT29-19A cells with C25 cfs caused a significant reduction in IL-8 secretion. 

Having established the inflammatory activity of E. coli C25 extracellular products, 

their potential for modifying the internalisation of C25 was tested. It was found that C25 did 

not acutely modulate its own internalisation in control conditions; however, pre-treatment of 
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both cell lines, with C25 cfs, caused a significant increase in the number of bacteria 

internalised. Additionally, Caco-2 cells pre-treated with C25 sonicate demonstrated a ~4-fold 

increase in bacterial internalisation. Conversely, pre-treatment of both HT29-19A and Caco-2 

cells with C25 MVs caused a significant decrease in internalisation. 

 In conclusion, these results indicate that the extracellular products of E. coli C25 have 

a proinflammatory effect on intestinal epithelial cells, with MVs and LPS both contributing.    
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Chapter 5 

 

Epithelial interactions with uncharacterised strains of EPS-producing 

lactobacilli 
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5.1 Introduction 

Lactobacilli are a large heterogeneous group of Gram-positive, non-sporulating, facultative 

anaerobes that belong to the Firmicutes phylum (Lebeer et al., 2008, Wells, 2011). The 

lactobacillus genus is so-named as its members constitute cells of the bacilliform morphology 

that produce lactic acid as the major end-product in their metabolism of lactose and other 

fermentable carbohydrates (Slattery et al., 2010). In addition to fermentable carbohydrates, 

lactobacilli require a complex mixture of amino acids, peptides, fatty acids, esters, salts, 

nucleic acids derivatives and vitamins to sustain their growth (Lebeer et al., 2008). However, 

despite their fastidious nutritional needs, lactobacilli are found in a wide range of 

environmental niches, from plants, water, soil and sewage, to the commensal microflora of 

the human oral, intestinal and vaginal cavities (Stiles and Holzapfel, 1997). In the adult 

human intestine, lactobacilli are present in relatively low numbers, representing just 0.01-0.6 

% of the total faecal bacteria (Lebeer et al., 2008). However, their population can be 

artificially boosted, as lactobacilli are found in a wide range of fermented food products, such 

as milk drinks, cheeses and fruit juices, either as members of the natural bacterial content, or 

as commercially administered probiotic cultures (Turpin et al., 2010).  Lactobacilli are also 

well characterised in their production of EPSs (Badel et al., 2010), which are increasingly 

utilised in food products (Marshall and Rawson, 1999, De Vuyst and Degeest, 1999). 

Lactobacillus acidophilus, an enteric species of the lactobacillus genus, was originally 

isolated in the early 20
th

 century, from the faeces of a healthy infant, and  was thus named 

due its aciduric nature (Stiles and Holzapfel, 1997). Subsequently, L. acidophilus cultures 

have been heavily utilised as a starter cultures in the production of fermented food products, 

such as milk drinks (Gilliland, 1989, Stiles and Holzapfel, 1997) and yoghurts (Anderson and 

Gilliland, 1999), and a number of strains, such as NCFM (Sanders and Klaenhammer, 2001), 

M92 (Kos et al., 2003) and LA1 (Bernet et al., 1994, Bernet-Camard et al., 1997) have 
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exhibited strong probiotic qualities. Subsequently, a closely related, yet non-enteric 

lactobacilli species, Lactobacillus helveticus, has been isolated from Emmental cheese 

(Slattery et al., 2010), and is itself now widely used as a starter culture in the production of 

Emmental and a number of other cheeses (Slattery et al., 2010).  

L. acidophilus 5e2 (5e2) and L. helveticus sp. Rosyjski (Rosy) are two novel EPS-

producing lactobacilli identified by a European Union International Scientific Cooperation 

Project (IC15-CT98-0905; http://imol.vub.ac.be/IMDO/projects/EPSLAB.html), that  

have only previously been regarded in the context of the chemical composition of their EPSs 

(Laws et al., 2008, Leivers, 2011). The aim of this chapter was the investigation of the 

immunomodulatory activity of extracellular products, particularly EPSs which were isolated 

and ultrapurified from cultures of 5e2 and Rosy.  

 

 

 

  

http://imol.vub.ac.be/IMDO/projects/EPSLAB.html
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5.2 Crude lactobacilli cell-free supernatants stimulate a low level proinflammatory 

response in IECs 

To test the immunomodulatory potential of the extracellular products from 5e2 and Rosy, the 

HT29-19A and Caco-2 intestinal epithelial cells lines were initially challenged with crude 

cell-free supernatants (cfs) and IL-8 and IL-10 release were investigated.  

In HT29-19A cells, a 1 in 10 dilution of 5e2 cfs was able to elicit a statistically 

significant increase in IL-8 release (1.4-fold; p ≤ 0.01), when compared to the MRS broth 

(vehicle) control (2033 ± 16.8 compared to 1442 ± 82.9 pg/mg total protein); however, the 

stimulatory effects were lost as the cfs reached dilutions of 1 in 100 and 1 in 1000 (Figure 

5.1a). On the other hand, Rosy crude supernatant demonstrated no statistically significant 

effect on IL-8 production in HT29-19A cells (Figure 5.1b). Additionally, neither strain of 

Lactobacillus demonstrated any detectable stimulation of IL-10 in the HT2-19A cell line 

(data not shown). 

 In contrast to the minimal stimulatory effects seen in the HT29-19A cell line, Caco-2 

cells appeared more responsive to the lactobacilli crude supernatants.  A 1 in 10 dilution of 

5e2 cell-free supernatant was able to elicit a 3.5-fold increased secretion of IL-8 when 

compared to levels in the MRS broth (vehicle) control in Caco-2 cells (222 ± 8.9 compared to 

63 ± 1.2 pg/mg total protein), however; as in the HT29-19A cell line, the stimulatory effect 

was lost as the supernatant reached dilutions of 1 in 100 and 1 in 1000 (Figure 5.2a). 

Additionally, Rosy cell-free supernatant was able to potentiate the release of IL-8 ~3-fold 

(from the basal 41 ± 1.3 to 122 ± 3.5 pg/mg total protein), but, again, this activity was only 

evident at the 1 in 10 dilution level (Figure 5.2b). It is also worth noting that the MRS vehicle 

control media itself had a mild proinflammatory activity in the Caco-2 cell line at a 1 in 10 

dilution, but this was lost in the 1 in 100 and 1 in 1000 dilutions of supernatant, as the level of 

IL-8 returned to that of the unchallenged control (Figure 5.2). Additionally, neither strain of 
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Lactobacillus was able to stimulate detectable levels of IL-10 release in Caco-2 cells (data 

not shown). 

To investigate if the cytokine release was paralleled at the transcriptional level, the 

mRNA expression of IL-8 and IL-10 was investigated. Consistent with the IL-8 protein level 

expression, a 1 in 10 dilution of the crude supernatant from 5e2 stimulated a 2.5-fold increase 

in IL-8 mRNA in the HT29-19A cell line, whereas Rosy had no significant effect (Figure 

5.3a). In the Caco-2 cell line, the transcriptional expression also mirrored the protein level 

expression with 2.3- and 2.5-fold increases in IL-8 mRNA in response to 1 in 10 dilutions of 

5e2 and Rosy cfs, respectively (Figure 5.3b). Additionally, neither strain of Lactobacillus was 

able to stimulate the expression of IL-10 mRNA in HT29-19A cells with their cell-free 

supernatant, as expression remained undetectable in the 45 cycles of qRT-PCR (data not 

shown). Conversely, in the Caoc-2 cell line, 5e2 cfs caused a significant decrease (0.2-fold: p 

≤ 0.05) in IL-10 mRNA expression, whereas its expression also remained unchanged in 

response to Rosy cfs (Figure 5.3c). 
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Figure 5.1 – L. acidophilus 5e2 cell-free supernatant stimulates IL-8 release in HT29-

19A cells, but cell-free supernatant from L. helveticus sp. Rosyjski does not. HT29-19A 

cells were challenged with 1 in 10-1 in 1000 dilutions of cell-free supernatant, from cultures 

of L. acidophilus 5e2 (5e2; A) and L. helveticus sp. Rosyjski (Rosy; B), for 24 h. Cells were 

also challenged with a 1 in 10 dilution of MRS broth (vehicle control) and IL-8 release was 

measured. Results were normalised to total protein. Results are mean ± SEM, n = 3.  
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Figure 5.2 – Lactobacilli extracellular products elicit IL-8 from Caco-2 cells. Caco-2 

cells were challenged with 1 in 10 to 1 in 1000 dilutions of cell-free supernatant from 5e2 (A) 

and Rosy (B) and a 1 in 10 dilution of the MRS broth vehicle control for 24 h. Supernatants 

were collected and analysed for IL-8. Result are mean ± SEM, n = 3.  
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HT29-19A      Caco-2 

 

 

Figure 5.3 – IL-8 up-regulation in response to lactobacilli cfs is also shown at the 

transcriptional level. IECs were challenged with a 1 in 10 dilution of 5e2 or Rosy cfs, and a 

1 in 10 dilution of the vehicle control (MRS broth) (Control) for 24 h. mRNA expression 

levels of IL-8 (A & B) and IL-10 (C) were measured. Results were normalised to 

housekeeping genes and are expressed as mean ± SEM, n = 3.  
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5.3 Lactobacilli sonicates have an immunomodulatory effect on Caco-2 cells, but not 

with HT29-19A cells 

The HT29-19A cell line did not exhibit any significant changes in IL-8 release in response to 

1 in 10 dilutions of the lactobacilli sonicates (Figure 5.4). In contrast to this, both 5e2 (Figure 

5.5a) and Rosy (Figure 5.5b) sonicates elicited significant (p ≤ 0.01) increases in IL-8 release 

from Caco-2 cells, in comparison to vehicle control cells (4.2- and 3.4-fold increases, 

respectively). The proinflammatory effects on Caco-2 cells were also mirrored at the 

transcriptional level, with both sonicates triggering a significant up-regulation of IL-8 mRNA 

expression (4.4- and 11.9-fold, respectively; p ≤ 0.01) (Figures 5.5c & 5.5d). When compared 

to the effects of cfs’s, sonicates from both strains of lactobacilli exhibited greater 

proinflammatory activity on Caco-2 cells, with higher levels of IL-8 secretion evident (Figure 

5.5).  
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Figure 5.4 – HT29-19A cells are unresponsive to lactobacilli sonicates. HT29-19A cell 

layers were challenged with 1 in 10 dilutions of 5e2 (A) and Rosy (B) sonicates and MRS 

broth vehicle control for 24 h and IL-8 secretion was measured. Results are mean ± SEM, n = 

3.  
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5e2       Rosy 

        

 

Figure 5.5 – Lactobacilli sonicates stimulate IL-8 expression in Caco-2 cells. Epithelial 

cells were challenged with a 1 in 10 dilution of 5e2 or Rosy sonicates and a 1 in 10 dilution 

of the MRS vehicle control for 24 h. IL-8 release (A, C) and mRNA expression (B, D) were 

analysed. Results are mean ± SEM, n = 3. 

  

0 

100 

200 

300 

IL-8 
release 
(pg/mg 

total 
protein) 

A) Protein  

0 

60 

120 

180 

IL-8 
release 
(pg/mg 

total 
protein) 

B) Protein  

0 

2 

4 

6 

Relative 
IL-8 

mRNA 
expression 

C) mRNA 

0 

5 

10 

15 

Relative 
IL-8 

mRNA 
expression 

D) mRNA  

** 

 

** 

 

** 

 

** 

 



149 

 

5.4 Lactobacilli extracellular products differentially alter TLR expression in HT29-19A 

cells 

Incubation with 5e2 cfs induced a significant (p ≤ 0.01) potentiation of TLR-1 and TLR-2 

mRNA expression in HT29-19A cells. In contrast, the mRNA expression of TLR-9 was 

considerably attenuated to undetectable levels in 45 cycles of qRT-PCR. However, there were 

no demonstrable effects on TLR-4 and TLR-5 mRNA (Table 5.1).   

Challenge of HT29-19A cells with Rosy cfs also resulted in a significant (p ≤ 0.01) 

up-regulation of TLR-2 mRNA, however, TLR-1, TLR-4 and TLR-5 exhibited no significant 

change in expression (Table 5.1). As was observed in response to 5e2 EPS, expression of 

TLR-9 mRNA was significantly (p ≤ 0.01) attenuated, exhibiting down-regulation to such an 

extent that no detectable levels were present (Table 5.1). 

mRNA expression of TLRs in the Caco-2 cell line remained largely unchanged by the 

presence of the crude supernatants from either strain of lactobacilli, with the exception of 

TLR-9 mRNA which showed significantly (p ≤ 0.01) decreased mRNA expression levels in 

response to 5e2 cfs, (Table 5.1). Additionally, in response to a 1 in 10 dilution of 5e2 

sonicate, Caco-2 cells exhibited a statistically significant (p ≤ 0.05) augmentation of TLR-2 

mRNA, when compared to expression in control cells (Table 5.1). TLR-1 mRNA also 

appeared to be up-regulated; however, variance between the replicates meant that the result 

was not statistically significant from the control. Conversely, TLR-9 mRNA was significantly 

down-regulated (p ≤ 0.01), in comparison to constitutive expression. A 1 in 10 dilution of 

Rosy sonicate also had a regulatory effect on TLR mRNA expression in Caco-2 cells, with 

TLRs-1 and -2 both significantly (p ≤ 0.01) up-regulated. TLR-9 expression showed a 

suggestion of down-regulation; however, the decrease was shown not to be statistically 

significant (Table 5.1). 
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Table 5.1 – Lactobacilli cell-free supernatants differentially modify TLR mRNA expression in IECs. IECs were challenged with 1 in 10 

dilutions of cfs or sonicates (son.) from both 5e2 and Rosy, for 24 h and mRNA expression levels of TLRs were determined. Results were 

normalised to the β-actin and GAPDH housekeeping genes and are mean ± SEM, n = 3. ND = not detected. 

Gene 

Fold difference in mRNA 

HT29-19A  Caco-2 

5e2 cfs Rosy cfs  5e2 cfs Rosy cfs 5e2 son. Rosy Son 

TLR-1     5.09 ± 1.25** 0.97 ± 0.06  1.84 ± 0.41 0.81 ± 0.09 1.50 ± 0.20    5.86 ± 1.41** 

TLR-2   148.92 ± 45.17**   29.98 ± 10.03*  1.02 ± 0.15 1.89 ± 0.78  1.54 ± 0.23*    2.01 ± 0.39** 

TLR-4 1.22 ± 0.23      0.90 ± 0.04  1.54 ± 0.27 0.88 ± 0.11 - - 

TLR-5        0.85 ± 0.16 0.92 ± 0.05  1.29 ± 0.18 1.22 ± 0.13 - - 

TLR-9 ND ND      0.27 ± 0.07** 0.83 ± 0.09    0.26 ± 0.03** 0.80 ± 0.28 
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5.5 Pre-treatment of IECs with lactobacilli cfs does not protect against inflammatory 

response to C. difficile cfs  

Pre-treatment of HT29-19A and Caco-2 cells with MRS broth (vehicle control), prior to 

challenge with a 1 in 10 dilution of C. difficile cfs, caused a statistically significant (p ≤ 0.05) 

increase in IL-8 release, when compared to the release observed in cells with no pre-

treatment (Control). However, pre-treatment with a 1 in 10 dilution of 5e2 cfs had no 

significant effect on IL-8 secretion, compared to the MRS vehicle control in either cell line 

(Figure 5.6). In contrast, Rosy cfs significantly (p ≤ 0.05) attenuated IL-8 release in both cell 

lines, in response to C. difficile cfs, compared to the MRS vehicle control. Nevertheless, 

despite the reduction in IL-8, the release was still comparable to control cells that did not 

undergo pre-treatment (Figure 5.6). 
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Figure 5.6 – Pre-treatment of IECs with lactobacilli cell-free supernatants do not 

protect against the inflammatory effects of C. difficile cell-free supernatant. HT29-19A 

(A) and Caco-2 (B) cells were pre-treated with 1 in 10 dilutions of 5e2 cfs, Rosy cfs, MRS 

broth (vehicle control) or cell culture media (control) for 24 h. Subsequently, the supernatant 

was removed and cells were challenged with a 1 in 10 dilution of C. difficile cfs for a further 

24 h and IL-8 release was determined. Results are mean ± SEM, n = 3. 
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5.6 Lactobacillus EPSs elicit IL-8 secretion from HT29 cells, but have no effect on IL-10 

The immunomodulatory effects of EPSs isolated and purified from cultures of 5e2 and Rosy, 

on intestinal epithelial cells, were tested by challenging cells with 20 μg/ml EPSs for 24 h. In 

HT29-19A cells, both EPSs stimulated significant (p≤0.01) secretion of IL-8 (Figure 5.7a). 

Incubation with 5e2 EPS elicited a 1.6-fold rise in IL-8 secretion (2305.8 ± 250.1 pg/mg total 

protein) and Rosy EPS stimulated a 1.4-fold increase (2005.1 ± 138.4 pg/mg total protein), 

when compared to constitutive IL-8 release (1438.7 ± 133.4 pg/mg total protein). No 

deviation from the basal level of IL-8 was seen in Caco-2 cells (Figure 5.7b). No IL-10 

release was detected from control or EPS-challenged cells, in both cell lines (data not shown).  

HT29-19A cells showed a ~4-fold increase of IL-8 mRNA in response to both EPSs 

investigated (Figure 5.7c). Additionally, despite the effect not being reflected at the protein 

level, Caco-2 cells also exhibited a doubling of mRNA in response to 5e2 EPS (Figure 5.7d).  

No detectable levels of IL-10 mRNA were observed in HT29-19A cells, in control or 

EPS-challenge experiments (data not shown). Additionally, no significant change in IL-10 

mRNA was seen in Caco-2 cells in response to EPSs (Figure 5.7e).   
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      HT29-19A               Caco-2 

    

  

 

Figure 5.7 – Modification of inflammatory cytokine release and expression, in IECs, by 

EPSs from L. acidophilus 5e2 and L. helveticus sp. Rosyjski. IECs were challenged with 

20 μg/ml EPSs for 24 h and IL-8 (A, B) and IL-10 (data not shown) release were measured. 

mRNA expression of IL-8 (C, D) and IL-10 (E) were also explored. Results are mean ± 

SEM, n = 3-6.  
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5.7 Lactobacillus EPSs modify the mRNA expression of TLRs in IECs  

Modifications in mRNA expression of TLRs-1, TLR-2, TLR-4, TLR-5 and TLR-9, in 

response to EPSs, were explored. TLR-1 (Figure 5.8a), TLR-2 (Figure 5.8b), TLR-5 (Figure 

5.8d) and TLR-9 (Figure 5.8e) were all significantly (p ≤ 0.05) up-regulated, in reponse to 

5e2 EPS, in HT29-19A cells. In contrast, a ~3-fold increase in TLR-4 mRNA (Figure 5.8c) 

was not significantly different from control expression, due to variance in results. HT29-19A 

cells were also challenged with Rosy EPS and, consequently, TLR-1 (Figure 5.8a), TLR-2 

(Figure 5.8b), TLR-4 (Figure 5.8c) and TLR-5 (Figure 5.8d) were significantly (p ≤ 0.05) up-

regulated. However, TLR-9 mRNA expression was down-regulated (p ≤ 0.01) to the extent 

that detectable levels were no longer discernible (Figure 5.8e). 

Caco-2 cells were also challenged with 5e2 EPS and TLR-5 and TLR-9 mRNA was 

significantly (p ≤ 0.01 and p ≤ 0.05, respectively) up-regulated by ~5-fold (Figure 5.9d) and 

~21-fold (Figure 5.9e), respectively. Conversely, TLR-4 mRNA was significantly (p ≤ 0.05) 

down-regulated, exhibiting a 1.7-fold decrease in expression (Figure 5.9c). Moreover, no 

significant modification of TLR-1 and TLR-2 was observed (Figure 5.9a and b) in response 

to the EPS. Rosy EPS showed a similar pattern with up-regulation of TLR-5 (Figure 5.9d) 

and TLR-9 (Figure 5.9e) by 5.4-fold and ~28-fold, respectively. However, unlike 5e2 EPS, 

Rosy EPS did not provoke a down-regulation of TLR-4 mRNA, as no significant effects were 

seen (Figure 5.9c). Equally, no significant change was detected in the mRNA expression of 

both TLRs-1 and -2 (Figure 5.9a and 5.9b). 
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Figure 5.8 – Modification of TLR mRNA expression, in HT29-19A cells, by EPSs from L. acidophilus 5e2 and L. helveticus sp. Rosyjski. 

HT29-19A cells were challenged with 20 μg/ml ultrapure EPSs for 24 h. mRNA levels of TLR-1 (A), TLR-2 (B), TLR-4 (C), TLR-5 (D) and 

TLR-9 (E) were analysed. Results are mean ± SEM, n = 3-4. ND = not detected 
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Figure 5.9 – EPSs isolated from L. acidophilus 5e2 and L. helveticus sp. Rosyjski modify TLR mRNA expression in Caco-2 cells. Caco-2 

cells were challenged with 20 μg/ml ultrapure EPSs for 24 h. mRNA expression of TLR-1 (A), TLR-2 (B), TLR-4 (C), TLR-5 (D) and TLR-9 

(E) levels was investigated. Results are mean ± SEM, n = 3-4. 
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5.8 Lactobacilli EPS-mediated ‘priming’ of HT29-19A cells potentiates IL-8 release in 

response to TLR agonists 

To assess whether the up-regulation of TLRs by ultrapure EPSs represented a ‘priming’ of 

intestinal epithelial cell lines to TLR agonists, pre-treatment with EPSs prior to challenging 

epithelial cells was undertaken. Cells were challenged with maximal agonist concentrations 

used previously in Section 3.4. 

 HT29-19A cells pre-treated with EPSs showed a small, but statistically significant (p 

≤ 0.05), increase in release of IL-8, in response to peptidoglycan (500 μg/ml) compared to 

control cells ‘pre-treated’ with cell culture media alone (Figure 5.10a). Additionally, cells 

pre-treated with Rosy EPS and subsequently challenged with flagellin (100 ng/ml) 

demonstrated a significantly augmented release of IL-8 (Figure 5.10a). Conversely, cell 

layers pre-treated with 5e2 EPS, followed by challenge with flagellin, showed no significant 

deviation from the control. Moreover, pre-treatment with EPSs did not significantly modify 

IL-8 release in reaction to LPS (1000 ng/ml) and ODN (50 μg/ml) (Figure 5.10a). Caco-2 

cells pre-treated with EPSs did not show any significant modulation in IL-8 release in 

response to the subsequent challenge with flagellin or ODN (Figure 5.10b). 
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Figure 5.10 – HT29-19A cells show ‘priming’ by pre-treatment with EPSs. Cells were 

challenged with 20 μg/ml EPSs for 24 h. EPS-containing media was removed and HT29-19A 

cells (A) were challenged with peptidoglycan from B. subtilis (500 μg/ml), LPS from E. coli 

C25 (1000 ng/ml), flagellin from S. typhimurium (100 ng/ml) or unmethylated CpG 

oligonucleotides (ODN) from E. coli strain B (50 μg/ml) for 24 h. Caco-2 cells (B) were 

challenged with flagellin (100 ng/ml) and ODN (50 μg/ml) for 24 h and IL-8 secretion was 

meaured. Results are mean ± SEM, n = 3.  
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5.9 Lactobacilli EPSs do not modify the proinflammatory effects of C. difficile cell-free 

supernatant 

The potential for EPSs to modulate IL-8 release stimulated by a 1 in 10 dilution of C. difficile 

cell-free supernatant was tested, however, pre-treatment with EPSs did not significantly 

modulate the proinflammatory response in either HT29-19A (Figure 5.11a) or Caco-2 (Figure 

5.11b) cells. 
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Figure 5.11 – Lactobacilli EPSs do not affect IL-8 release stimulated by C. difficile cell-

free supernatant. HT29-19A (A) and Caco-2 (B) cells were challenged with 20 μg/ml EPSs 

for 24 h. Subsequently, the EPS-containing supernatant was removed, cells were challenged 

with a 1 in 10 dilution of C. difficile cfs for 24 h and IL-8 was analysed. Results are mean ± 

SEM, n = 3.  
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5.10 Lactobacillus EPSs do not protect against the loss of barrier function in Caco-2 

cells in response to C. difficile cell-free supernatant  

To test if the EPSs had any effects on the tight junctions, and ultimately the barrier function, 

of Caco-2 cells, dome numbers were monitored during challenge experiments.  5e2 EPS did 

not induce any significant deviation from the number of domes seen in the unstimulated 

control cells over the 144 h observation period (Figure 5.12).  In contrast, Rosy EPS caused 

an acute disruption of the barrier function immediately following the challenge, with the 

dome numbers significantly decreased compared to the control numbers. However, 24 h after 

the initial cell challenge, the dome numbers recovered to a level comparable to the control 

and no further deviation was seen (Figure 5.12).  

 The potential of EPSs in protection against decrease in barrier function, stimulated by 

a 1 in 100 dilution of C. difficile cfs, was investigated, however, neither EPSs could prevent 

the significant (p ≤ 0.05) loss of domes in response to C. difficile cell-free supernatant (Figure 

5.13). 
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Figure 5.12 – Effect of ultrapure EPSs on barrier function of Caco-2 cells. Caco-2 cells 

were challenged with 20 μg/ml of 5e2 and Rosy EPSs, for 24 h. Dome numbers were counted 

post-challenge and at 24 h intervals thereafter. Results were normalised to the control and 

expressed as a %. Results are mean ± SEM, n = 6-9. 
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Figure 5.13 –Lactobacillus EPSs do not protect against loss of barrier integrity by C. 

difficile cell-free supernatant. Caco-2 cells were cultured until confluent and domes are 

apparent. The epithelial cells were pre-treated with 20 μg/ml of lactobacilli EPSs and 

incubated for 24 h. Cells were subsequently challenged with 1 in 100 dilutions of C. difficile 

cell-free supernatant and its horse blood media control. Results are expressed as a % of 

number of domes observed prior to pre-treatments and cell challenges. Results shown are 

mean, n = 6. ** indicates significance from 100 %. 

  

0 

100 

200 

0 h 24 h 48 h 72 h 96 h 

No. of domes  
(% of pre- 
challenge) 

Time after challenge 

Control 

HB media 

C. diff. cfs 

C. diff. cfs + 5e2 EPS 

C. diff. cfs + Rosy. EPS ** 

** ** 

** 



165 

 

5.11 L. helveticus sp. Rosyjski EPS modulates bacterial adherence and internalisation in 

IECs 

The modulatory effects of EPSs on bacterial adherence and internalisation were explored. 

Pre-treatment of HT29-19A and Caco-2 cell lines with 5e2 EPSs had no significant effect on 

the adherence (Figure 5.14a) or internalisation (Figure 5.14b) of E. coli C25. Similarly, pre-

treatment of HT29-19A cells with Rosy EPS resulted in little deviation from the basal level 

of bacterial adherence (Figure 5.14a), however, the number of bacteria undergoing 

internalisation was significantly (p ≤ 0.01) increased (Figure 5.14b). Conversely, Caco-2 cells 

pre-treated with Rosy EPS demonstrated a significant increase in bacterial adherence (Figure 

5.14a), but did not exhibit modulation of bacterial internalisation (Figure 5.14b).    
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Figure 5.14 – L. helveticus sp. Rosyjski EPS significantly increases bacterial adherence 

in Caco-2 cells and bacterial translocation in HT29-19A cells. Epithelial cells were 

challenged with 20 μg/ml EPSs for 24 h. Subsequently, the cells were co-cultured with ~1 x 

10
9
 CFU E. coli C25 for 4 h. Adherent and internalised bacteria (A) were plated out and 

counted. Alternatively, adherent bacteria were killed and bacteria inside epithelial cells (B) 

were plated out and counted. Results were expressed as a % of the original bacterial inoculum 

and were normalised to the control. Results are mean ± SEM, n = 6-8. 
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5.12 Lactobacilli EPSs do not modulate growth of E. coli C25  

Incubation of E. coli C25 in Trans-HBSS gave a ~1.5-fold increase in the number of bacteria 

compared to the original inoculum and the presence of EPSs failed to significantly modify 

this figure (Figure 5.15). 
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Figure 5.15 – Lactobacilli EPSs do not significantly modulate the growth of E. coli C25. 

1 x 10
9
 CFU E. coli C25 were incubated for 4 h, in the presence of 20 μg/ml EPSs. 

Subsequently, cultures were serially diluted and plated out in TSA. Plates were incubated 

overnight and the resultant colonies were counted. The post-incubation colony count is 

expressed as a fold change in bacteria, compared to the original inoculum. Results are mean ± 

SEM, n = 4-6.  
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5.13 Summary 

This chapter investigated the immunomodulatory activity of extracellular products from two 

uncharacterised EPS-producing lactobacilli strains, L. acidophilus 5e2 and L. helveticus sp. 

Rosyjski.  

HT29-19A cells appeared largely unreactive to cell-free supernatants and sonicates 

from both strains of lactobacilli, with only a minimal, yet statistically significant, increase in 

IL-8 expression exhibited in response to a 1 in 10 dilution of 5e2 cell-free supernatant. 

Nevertheless, cell-free supernatants from both strains of lactobacilli were found to 

differentially regulate the mRNA expression of TLRs. Caco-2 cells were more responsive to 

the two strains of lactobacilli, exhibiting significant potentiation of IL-8 in response to 1 in 10 

dilutions of cell-free supernatants and sonicates. However, cell-free supernatants had little 

effect on TLR expression in Caco-2 cells, with only TLR-9 down-regulated by 5e2 cfs. 

Conversely, sonicates from both strains of lactobacilli showed significant modulatory activity 

on the expression of TLR-1, TLR-2 and TLR-9. Cell-free supernatants from both lactobacilli 

strains were unable to stimulate expression or release of IL-10 in either cell line, but 5e2 cfs 

was seen to actively down-regulate transcriptional expression of the anti-inflammatory 

mediator in Caco-2 cells. 

 Extracellular products from both strains of lactobacilli were unable to modulate the 

IL-8 release stimulated by C. difficile cell-free supernatant. 

 Both 5e2 and Rosy EPSs demonstrated proinflammatory activity in the HT29-19A 

cell line, provoking significant release and expression of IL-8. However, in Caco-2 cells, only 

5e2 EPS was able to stimulate a small, but significant up-regulation in IL-8 mRNA. 

Additionally, EPSs exhibited significant modulation of TLR expression in both HT29-19A 

and Caco-2 cell lines. In contrast, neither EPS was able to modulate the expression, or 

release, of IL-10. 
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 Pre-treatment of HT29-19A cells with EPSs resulted in the potentiation of IL-8 

release in response to both peptidoglycan and flagellin, however, IL-8 release in response to 

lipopolysaccharide and CpG DNA was unaffected. Caco-2 cells pre-treated with EPSs 

exhibited no significant modulation of IL-8 secretion in response to either flagellin or CpG 

DNA. Moreover, neither EPS was able to regulate IL-8 secretion in either cell line, or the 

decrease of epithelial barrier function in Caco-2 cells, as stimulated by C. difficile cell-free 

supernatant.  

 Pre-treatment with Rosy EPS significantly increased bacterial adherence in Caco-2 

cells and internalisation of E. coli C25 in the HT29-19A cell line, however, neither of these 

effects were due enhancement of bacterial proliferation.   

 

  



171 

 

 

 

 

 

 

 

 

Chapter 6 

 

Discussion 
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6.1 Phenotypic differences in the HT29-19A and Caco-2 cell lines 

The effectiveness of in vitro cell models is limited by the loss of important anatomical and 

biochemical features of the in vivo organ; therefore, extrapolating data back to an in vivo 

system is very difficult (LeFerrec et al., 2001). However, in vitro models can provide vital 

insights in to metabolism and immunity at a cellular level and are thus used extensively in the 

preliminary stages of drug development (Alley et al., 1988; Artursson et al., 2001). The 

rationale for utilising the HT29-19A and Caco-2 in vitro human intestinal epithelial cell lines 

in this investigation was their previous use in modelling bacterial interactions with the 

intestinal epithelium (Coconnier et al., 1993; Coconnier et al., 1997; Tuomola and Salminen, 

1998; Lammers et al., 2002; Bannon et al., 2009).  

The phenotypic differences and basic properties between the two immortalised 

intestinal epithelial cell lines HT29-19A and Caco-2 were investigated, with the aim of 

selecting the most appropriate with which to continue. Expression of Toll-like receptors 

(TLRs), a major group of pattern recognition receptors (PRRs) found in intestinal epithelial 

cells, and the inflammatory cytokines interleukin (IL)-8 and IL-10 were studied. 

Additionally, the ability of the cell lines to form tight junctions, and thus form an epithelial 

barrier, was tested (discussed in Section 6.3.2). 

 

6.1.1  Toll-like receptors 

TLRs are a group of membrane glycoproteins which recognise and bind a wide range of 

highly conserved microbial-associated molecular patterns (MAMPs) and mediate an immune 

reaction in response to binding of their respective ligand(s) (Medzhitov, 2001). Qualitative 

analysis of TLR expression, via reverse transcription (RT)-PCR, has previously been 

undertaken with the HT29-19A and Caco-2 cell lines (Bannon, 2008). This preliminary work 

has been expanded upon in this study, with differences in expression measured utilising 
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quantitative real-time (qRT)-PCR. TLR mRNA levels were calculated relative to 

transcriptional expression of housekeeping genes (genes which are expressed in all nucleated 

cells of the body and allow direct comparison between different cell types), in this case, β-

actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).  

In concordance with the qualitative comparison undertaken by Bannon (2008), HT29-

19A and Caco-2 cells demonstrated transcriptional expression of all TLRs tested (TLR-1, 

TLR-2, TLR-4, TLR-5 and TLR-9), suggesting both cell lines possessed the capability to 

produce receptors which respond to a wide variety of known bacterial antigens. The two cell 

lines exhibited little variation in their expression of TLR-1, TLR-5 and TLR-9 mRNA, 

relative to the housekeeping genes; however, they demonstrated marked differences in the 

mRNA expression of TLR-2 and TLR-4. HT29-19A cells were shown to express ~700 times 

less TLR-2 mRNA than Caco-2 cells, thus suggesting significantly less potential for 

responsiveness to TLR-2 agonists, such as peptidoglycan (PGN) and lipoprotein (LP), in 

comparison to the Caco-2 cell line. In contrast to this, the HT29-19A cell line exhibited ~340 

times higher expression of TLR-4 mRNA than Caco-2 cells, suggestive of potential for an 

increased reactivity to lipopolysaccaride (LPS), compared to Caco-2 cells. Should this be the 

case in response to the bacterial agonists, then the two cell lines would effectively be reactive 

to bacterial products that the other is not, thus covering the range between them. 

 

6.1.2  Inflammatory cytokines 

In this study, the capacity for the HT29-19A and Caco-2 cell lines to spontaneously produce 

inflammatory cytokines was investigated, with the expression and release of the major 

proinflammatory mediator IL-8 and the anti-inflammatory immunoregulator IL-10 compared 

between the two cell lines.  
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IL-8 is commonly used in stimulatory studies of intestinal epithelial cell lines with 

bacteria (Eckmann et al., 1993b; Jung et al., 1995) and bacterial products (Schuerer-Maly et 

al., 1994; Streiner et al., 2000; Akhtar et al., 2003), as it plays a key role in the initiation of 

the innate immune system in both health and disease (Baggiolini et al., 1989; Harada et al., 

1994; Daig et al., 1996). Previous studies have demonstrated that the HT29-19A and Caco-2 

cell lines possess different capacities for IL-8 release, with HT29-19A able to secrete much 

higher levels than Caco-2 cells (Warhurst et al., 1998; Bannon, 2008).  

In the present investigation, and in accordance with previous studies, HT29-19A cells 

were shown to express significantly higher levels of IL-8 than Caco-2 cells. At maximal 

release, HT29-19A cells secreted ~64 times more IL-8 than Caco-2 cells and this was 

paralleled at the transcriptional level, with HT29-19A cells expressing ~74-fold more IL-8 

mRNA than Caco-2 cells. It is thought that the variation in IL-8 release between the two cells 

lines is likely to relflect phenotypic differences, rather than other factors, such as level of 

differentiation of the cell layers (Warhurst et al., 1998). It has been speculated that the HT29 

and Caco-2 cell lines were isolated from populations of different cell types within the in vivo 

epithelial layer, with HT29 cell lines thought to originate from intestinal epithelial crypt cells 

(Huet et al., 1987; Velcich et al., 1995; Warhurst et al., 1998), whereas Caco-2 cells were 

potentially derived from absorptive villus enterocytes (Delie and Rubas, 1997; Yee, 1997; 

Warhurst et al., 1998). In vivo, crypts exist in a state of sterility to protect the highly 

vulnerable epithelial stem cells (Porter et al., 2002; Elphick and Mahida, 2005); therefore, the 

high basal release of the potent proinflammatory chemokine IL-8 in HT29-19A cells is 

potentially representative of highly primed intestinal crypt cells, in vivo. Conversely, Caco-2 

cells exhibit a much lower capacity for constitutive IL-8 release. Low basal IL-8 production 

is potentially a trait typical of absorptive villus enterocytes, which must remain relatively 

hyporesponsive, thus preventing excessive inflammation and the pathogenesis of chronic  
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diseases, such as IBD (Otte et al., 2003). 

IL-10 is a key immunoregulator in intestinal homestasis, with its absence heavily 

linked with the pathogenesis of IBD (Steidler et al., 2000; Mosser and Zhang, 2008; de 

Moreno de LeBlanc et al., 2011) and it also plays an important role in the suppression of 

excessive inflammation during infection (Couper et al., 2008). Expression of IL-10 is rarely 

considered in non-immune cells, such as epithelial cells, however, both the HT29 and Caco-2 

cells lines have been shown to express IL-10 at the transcriptional level (Bahrami et al., 

2010). Additionally, a recent study by Gao et al. (2012) demonstrated novel expression and 

release of IL-10 in HT29 cells, in response to challenge with Clostridium butyricum, thus 

demonstrating the capacity of these cells to produce the immunosuppressor. Nevertheless, 

HT29-19A subclone cells, used in this investigation, appeared unable to spontaneously 

produce IL-10, as no detectable levels, or indeed, transcriptional expression, was observed. In 

contrast, Caco-2 cells exhibited a discernible mRNA signal, thus suggesting that IL-10 is 

potentially inducible in these cells; however, no detectable levels of IL-10 protein were 

found. It is possible that any protein produced was rapidly degraded in solution, however, IL-

10 is relatively stable (Kenis et al., 2002), therefore, this is unlikely. An alternative 

explanation is that, in Caco-2 cells, IL-10 mRNA could be present in a state of quiescence 

within processing (P) bodies (Parker and Sheth, 2007). P bodies are aggregates of 

untranslating mRNAs (Texeira et al., 2005) and proteins involved in mRNA repression and 

degradation (Ingelfinger et al., 2002, Cougot et al., 2004), in which mRNAs can be 

sequestered until required for translational expression (Parker and Sheth, 2007). Furthermore, 

it is possible that the primers are not specific to the IL-10 gene and are falsely causing 

positive results in qRT-PCR. Genetic sequencing of the primers would determine whether 

they were in fact specific to the IL-10 gene.  
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6.2 Intestinal epithelial cell responses to pathogenic TLR agonists  

TLR-mediated immunity in the intestinal epithelial cell lines HT29, Caco-2 and T84 is 

relatively well characterised, with previous studies documenting IL-8 release in response to 

pathogenic bacterial products, such as flagellin (Streiner et al., 2000; Gewirtz et al., 2001), 

LPS (Schuerer-Maly et al., 1994) and CpG DNA (Ewaschuk et al., 2007). This study utilised 

commercially-sourced bacterial TLR agonists in order to investigate changes in expression of 

TLRs and IL-8 in HT29-19A and Caco-2 cells, in response to stimulation. A 24 h incubation 

period was utilised in an attempt to mimic the chronic exposure to these agonists in the in 

vivo intestine. 

 Consequently, the results of this investigation showed that HT29-19A cells were 

responsive to the range of agonists tested, with significant augmentation of IL-8 observed at 

both the transcriptional and translational levels. The Caco-2 cell line also showed 

responsiveness to the agonists with the exception of LPS, which, in accordance with a study 

by Eckmann et al. (1993a), did not provoke any significant increase in IL-8 release. 

However, quite curiously, the lack of IL-8 release was contrasted at the transcriptional level, 

with a significant increase in IL-8 mRNA expression observed in response to LPS. This 

phenomenon could be due to LPS-mediated inhibition of IL-8 mRNA translation, with the 

extra copies of IL-8 mRNA possibly being sequestered in the aforementioned P bodies. 

Additionally, having shown earlier that constitutive release of IL-8 was significantly higher 

in HT29-19A cells; it was unsurprising that they also showed a greater capacity for maximal 

stimulated release, compared to the Caco-2 cell line.  

As hypothesised earlier, the mRNA expression of TLRs in the two cell lines appeared 

to have a profound influence on their sensitivity to the bacterial antigens tested. Having 

shown similar expression levels of TLR-5 and TLR-9 mRNA, both cell lines demonstrated 

comparable sensitivities to both flagellin and CpG DNA, respectively. However, Caco-2 
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cells, which were found to express ~700 times more TLR-2 mRNA than the HT29-19A cells 

(Section 3.2), were sensitive to 100-fold lower concentrations of PGN; nevertheless, HT29-

19A cells did still exhibit a moderate degree of responsiveness to PGN. Interestingly, 

previous studies have shown PGN has no stimulatory effects on HT29 and Caco-2 cell lines 

(Melmed et al., 2003; Furrie et al., 2005); however, this discrepancy could be due to 

differences in protocol, as the previous studies employed only 3 h (Furrie et al., 2005) and 5 h 

(Melmed et al., 2003) cell challenges, respectively, while the present study utilised a 24 h 

exposure. In contrast to the sensitivity to PGN, HT29-19A cells were >100-fold more 

sensitive to LPS than Caco-2 cells, a trait consistent with their ~340 times higher expression 

of TLR-4 mRNA. Indeed, Caco-2 cells appeared totally unresponsive to the range of LPS 

concentrations tested, with no significant changes in IL-8 release observed. These findings 

suggested that it was beneficial to use both cell lines as they possess different, but 

complementary, phenotypes, which are, in all probability, reflective of their respective 

origins.  

The expression of TLRs is not static, but highly modulated in response to various 

stimuli, such as cytokines and environmental stresses (Akira et al., 2006) and previous 

studies have reported that antigen binding to professional immune cells results in the up-

regulation of their cognate TLR receptors (Nomura et al., 2000; Visintin et al., 2001; 

Hornung et al., 2002). The present investigation sought to investigate if this phenomenon also 

occurred in the non-immune intestinal epithelial cells. Consequently, this is the first study to 

show a wide range of TLR agonists stimulating an up-regulation of their respective cognate 

receptor(s) in intestinal epithelial cells. However, in reaction to CpG DNA (50 μg/ml), a 

complete down-regulation of TLR-9 mRNA was observed in HT29-19A cells, with no 

detectable levels present, a result which contrasts the significant up-regulation in TLR-9 

expression observed in a study by Ewaschuk et al. (2007). Nevertheless, these data suggested 
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desensitisation, or tolerance, of the epithelial cell line to subsequent challenge with TLR-9 

agonists, a homeostatic phenomenon previously described with HCA-7 intestinal epithelial 

cells, in a key study by Lee et al. (2006). This effect could be important in an in vivo system, 

as it would potentially act to prevent excessive inflammation in response to high 

concentrations of CpG DNA in the intestinal lumen. Additionally, in response to LPS, Caco-2 

exhibited a small, but statistically significant, transcriptional down-regulation of the LPS-

binding co-factor, CD14.  

In this investigation, the expression of TLRs was studied semi-quantitatively, with 

relative fold differences between the two cell lines calculated; however, fully quantitative 

comparisons could have been made by calculating the concentration of TLR mRNA present 

in the cells. This could be achieved by comparing the resultant Ct value from the target 

sample to a standard curve created from serial dilutions of a standard of known concentration 

(giving concentration vs. Ct value). Additionally, TLR expression was explored exclusively 

at the transcriptional level, and, given that transcriptional expression has a relatively weak 

correlation (r=0.4) to translational expression (Schwanhäusser et al., 2011), the level of 

mRNA is not necessarily directly proportional to the amount of protein expressed. Therefore, 

although the variation in TLR mRNA expression reported in this investigation was, to an 

extent, representative of differences in functionality, protein quantification (via Western blot 

analysis or flow cytometry) is required for a more definitive change in TLR expression in 

response to the different bacterial agonists. Furthermore, given that TLRs signal through a 

common intracellular pathway (Aderem and Ulevitch, 2000; Akira et al., 2006), investigation 

of expression changes in non-cognate TLR receptors (via a feedback mechanism 

hypothesised by Viszoso Pinto et al., (2009)) in response to the various bacterial agonists 

would be an interesting development on the current study. 
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6.3 Activity of C. difficile cell-free supernatant on intestinal epithelial cells  

6.3.1  Immunostimulatory activity 

Previous studies investigating the immunomodulatory activity of C. difficile extracellular 

products, on HT29 and T84 intestinal epithelial cell lines, have generally utilised purified 

toxins (TcdA and TcB) (Feltis et al., 2000; Nusrat et al., 2001; Lica et al., 2011). The host 

cell surface receptor(s) that confer responsiveness to these toxins are currently unknown; 

however, there is evidence to suggest that they are non-proteinaceous, but likely to be 

carbohydrate-based moieties (Krivan et al., 1986; Tucker and Wilkins, 1991). Therefore, it 

can be speculated that any immunological activity will be mediated via a TLR-independent 

pathway.  

In the present study, C. difficile crude cell-free supernatant (cfs) was utilised to give a 

more accurate representation of the full range of extracellular products secreted by the 

enteropathogen in vivo, which include, but are not limited to, the toxins, TcdA, TcdB and 

CDT. Potential stimulatory effects of the untreated horse blood broth were investigated; 

however, no significant changes in IL-8 release were observed, thus facilitating this work. 

Both HT29-19A and Caco-2 cell lines showed sensitivity to the inflammatory effects of C. 

difficile cfs, with significant increases in both transcriptional and translational expression of 

IL-8 induced. These results concur with those gained in a study by Canny et al. (2006), which 

showed C. difficile crude cell-free supernatant (cfs) elicited IL-8 from HT29 and T84 

intestinal epithelial cell lines. Additionally, IL-8 release by the HT29-19A cell line was much 

higher than that observed in Caco-2 cells; however, the magnitude of augmentation was 

comparable in the two cell lines, relative to their respective basal levels. Nevertheless, HT29-

19A cells did appear more sensitive to the inflammatory effects of C. difficile cfs, with more 

dilute samples stimulating significant IL-8 release than in Caco-2 cells. This was possibly 

related to the difference in origins of the two cell lines, as; in vivo, sterile crypt cells (HT29-
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19A cells) would likely be much more responsive to the presence of products from C. difficile 

than enterocytes (Caco-2), which are continuously exposed to the microfloral milieu. 

 

6.3.2  Disruption of barrier function of Caco-2 cells 

Generally, the ability of in vitro cell lines to form tight junctions, and the consequential 

integrity of cell layers, is tested by monitoring the trans-epithelial electrical resistance 

(TEER) during cell challenges (Canil et al., 1993; Balda et al., 1996). However, since the 

facilities to perform such experimentation were not available in this study, an alternative was 

sought. A number of in vitro cell lines are able to polarise to such an extent that the 

unidirectional flow of ions and water molecules, from the culture media, results in an 

accumulation of fluid between the cell monolayer and surface of the culture vessel 

(Toyoshima et al., 1976; Rabito et al., 1980; Su et al., 2007). Consequently, local elevation 

of cells, from the geometric plane of the culture vessel, occurs and a multicellular hemicyst, 

or dome, forms (Figure 2.1). The presence of domes requires physiologically intact 

intercellular tight junctions; therefore, the maintenance of these structures can be indicative 

of the monolayer’s integrity. HT29-19A cells were not able to form domes; conversely, once 

confluence had been reached, Caco-2 cells formed significant numbers of domes, and 

maintained them for up to 14 days subsequent to this. These results emphasise the increased 

ability of Caco-2 cells to form tight junctions, compared to HT29-19A cells. 

In response to higher concentrations (neat, 1 in 10 and 1 in 100) of  C. difficile cell-

free supernatant, the number of domes present on Caco-2 cell monolayers was significantly, 

and irreversibly, diminished. These results suggest that barrier integrity of the monolayers 

was significantly decreased, a result which is consistent with the data gained by Sutton et al. 

(2008), who showed that C. difficile cell-free supernatant is capable of decreasing TEER in 

Caco-2 cells. The decrease in barrier integrity is due to morphological changes in the 
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epithelial cells in response to the toxins released by C. difficile. Cell rounding, in response to 

purified C. difficile toxins, was first observed in human amnion cells by Chang et al. (1979) 

and have since been described in human intestinal epithelial cell lines (HT29, Caco-2 and 

T84 cells) and in primary colon epithelial cells (Mahida et al., 1996). C. difficile toxins cause 

degradation of filamentous (F-)actin to monomeric (G-)actin (Carter et al., 2011), via the 

inactivation of Rho GTPases, the molecular switches which normally control the regulation 

of the F-actin cytoskeleton within epithelial cells (Davies et al., 2011). Degradation of the F-

actin cytoskeleton ultimately results in rounding of the cells, loosening of the intercellular 

tight junctions and an overall decrease in the integrity of monolayers of intestinal epithelial 

cells (Nusrat et al., 2001; Berkes et al., 2003; Zemljic et al., 2010).  

 

  



182 

 

6.4 Immunomodulatory activity of E. coli C25 extracellular products 

A chronic low level of inflammation, induced by the commensal microflora, is thought to be 

characteristic of intestinal homeostasis, thus ‘priming’ the intestinal immunity for a more 

efficient inflammatory response to the presence of pathogens (Macpherson and Harris, 2004; 

Artis, 2008). However, the significance of microfloral extracellular products in this process 

has not previously been explored. As one of the first species of bacteria to colonise the 

human neonatal intestine (Hooper, 2004), it can be hypothesised that E. coli potentially play a 

key role in the establishment of the homeostatic equilibrium within the intestine. The 

immunostimulatory ability of cell-free supernatant (cfs) and sonicates from the enteric 

commensal bacterium, E. coli C25, have previously been considered by Bannon (2008), who 

showed significant IL-8 release elicited from HT29-19A cells, in a 4 h challenge experiment. 

This study sought to further explore the inflammatory potential of C25 extracellular products, 

and utilised a much extended (24 h) exposure protocol. 

In concordance with the results gained by Bannon (2008), C25 cfs provoked a 

significant increase in IL-8 release in HT29-19A cells. This was also paralleled at the 

transcriptional level, with a significant increase in IL-8 mRNA expression. A similar pattern 

was also observed in Caco-2 cells, with both transcriptional and translational expression 

elicited in response to C25 cfs. Also, an mRNA up-regulation of the anti-inflammatory 

cytokine, IL-10, was observed in both cell lines, in response to C25 cfs, a result particularly 

significant in HT29-19A cells, since no constitutive expression was previously detected. 

These data were potentially suggestive of a role in the homeostatic balance of inflammation 

and its suppression, in the intestine, for the commensal bacterium, however, stimulated levels 

of IL-10 transcription were still representative of relatively low levels of mRNA and, 

consequently, the protein was not detected. C25 cfs also showed modulatory effects on the 

mRNA expression of TLR-1, TLR-4 and TLR-9, stimulating significant increases of all three 
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receptors. The modulation of TLR-1 and TLR-4 mRNA is consistent with earlier data which 

indicated that binding of their respective agonists causes their up-regulation; however, the 

increase in TLR-9 mRNA contradicts the data obtained in response to pathogenic CpG-DNA 

(see Section 3.4). It is possible that CpG content differences between the pathogenic and C25 

CpG-DNA have different modulatory effects on TLR-9 expression, however, it is more likely 

that the up-regulation is caused indirectly, via stimulation by LPS, a phenomenon previously 

described in murine macrophages (An et al., 2002). 

Subsequently, ultrasonic disruption of bacteria was utilised in an attempt to increase 

the release of bacterial cellular components, thus going someway to mimicking the increased 

lysis of bacteria in the intestinal lumen, in response to the host immunity. In both HT29-19A 

and Caco-2 cells, the proinflammatory IL-8 response to challenge with C25 sonicate showed 

a similar pattern to C25 cfs challenge, with a significant up-regulation of both expression and 

release observed. However, the stimulatory effects of C25 sonicate were greater than the cfs, 

suggesting ultrasonic disruption did in fact increase the concentration of antigenic material in 

solution. Additionally, mRNA expression of TLR-2 and TLR-4 was up-regulated to a greater 

degree, in both cell lines, when compared to the effects of C25 cfs, thus indicating a greater 

presence of TLR-2 agonists, such as PGN and LP, and the TLR-4 agonist, LPS. However, a 

key modulatory difference between C25 sonicates and C25 cfs was the complete down-

regulation of TLR-9 mRNA, in both cell lines, in response to challenge with the C25 

sonicate. This effect was potentially attributable to the increased concentrations of C25 CpG-

DNA in solution binding TLR-9 and subsequently down-regulating the receptor’s 

transcriptional expression, as occurred in HT29-19A cells, in response to pathogenic CpG-

DNA earlier in the investigation (Section 3.4). Attempts were made to extract CpG-DNA 

from cultures of C25, to confirm this effect; however, sufficient concentrations for cell 

challenge experimentation could not be isolated.  
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Live C25 has previously been shown to stimulate the proinflammatory cytokine TNF-

α in both monoassociated rat models (in vivo) and in the Caco-2 cell line (in vitro), 

(Michalsky et al., 1997). Additionally, C25 has been shown to exhibit pathogenic tendencies, 

such as loosening of tight junctions in T84 intestinal epithelial cells (Zareie et al., 2005). 

However, when the inflammatory effects of C25 extracellular products, observed in this 

investigation, were compared with the effects in response to cell-free supernatant from the 

enteropathogen, C. difficile (Figure 6.1), it was evident that the stimulation of IL-8 release 

was relatively low. Therefore, it was hypothesised that this low-level inflammatory response 

could potentially prime the intestinal epithelial layer to pathogenic attack, giving a larger, 

more effective immune response. To test the hypothesis, HT29-19A and Caco-2 cells were 

pre-treated with C25 cfs and sonicate and subsequently challenged with C. difficile cfs. 

However, the results indicated this was not the case, as no significant differences in IL-8 

release were observed in response to the pre-treatments. 

 

6.4.1  Modulation of bacterial translocation 

Translocation across the intestinal epithelium is often associated with pathogenic bacteria 

(Balzan et al., 2007); however, it has previously been theorised that a constitutive level of 

translocation of commensal bacteria, via the transcellular pathway (thus leaving the 

epithelium intact), is involved in mucosal immune development (Berg, 1995). E. coli C25 has 

previously been used a model organism for bacterial translocation (Deitch et al., 1991; Cruz 

et al., 1994; Michalsky et al., 1997; Mattar et al., 2001) and it was this bacterium’s capacity 

for a relatively low level of translocation, via the transcellular pathway, that was utilised here. 

In control conditions, C25 adhered to, and was internalised by, both HT29-19A and 

Caco-2 cell lines, in an inoculum density-dependent manner, i.e. the number of adherent and 

internalised bacteria increased directly proportional to the increase of inoculum density. 
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However, when the numbers of adherent and internalised bacteria were expressed as a 

percentage of the inoculum population, there was little deviation between the range of 

bacterial densities tested. Therefore, C25 did not appear to acutely promote its own adherence 

or internalisation. However, in the protocol utilised here, the bacteria are resuspended in fresh 

Trans-HBSS solution prior to co-incubation with epithelial cell layers; therefore, the exposure 

of the cell layers to C25-derived extracellular products is likely to be quite low. 

Consequently, it was decided upon to investigate the effects of pre-treating the epithelial cells 

with C25 cfs and sonicate prior to the translocation assay.  

Previously, it has been shown that pre-treatment of Caco-2 cells, with high levels of 

proinflammatory cytokines, such as IFN-γ and TNF-α, can increase the translocation of C25 

by ~100-fold (Clark et al., 2003; Clark et al., 2005; Macutkiewicz et al., 2008). The effects 

observed in this investigation were much more modest, with ~2-fold and ~4-fold increases in 

bacteria translocation, in response to pre-treatment of Caco-2 cells with C25 cfs and 

sonicates, respectively. Additionally, a ~2-fold increase in translocation was observed, in 

HT29-19A cells, in response to pre-treatment with C25 cfs. The low magnitude of 

internalisation modification, observed in this investigation, is possibly due to the much lower 

proinflammatory potential of the C25-derived extracellular products, compared to the 

cytokines used in previous studies. Nevertheless, the data obtained here does show the 

potential for commensal-derived products to promote the translocation of the parent 

bacterium across the epithelial layer. Should these effects also be seen in vivo, they could 

represent a mechanism for the development of immune tolerance to the commensal flora 

(Mowat, 2003). Moreover, the promotion of bacterial internalisation by commensal-derived 

products could also contribute to antibiotic-associated diarrhoea (Bartlett, 2002) induced by 

bacteriolytic antibiotics, such as ampicillin, amoxicillin and cephalosporins. 
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6.5 Interactions of commensal-derived MVs and intestinal epithelial cells 

6.5.1  Immunomodulatory activity 

As spheres of outer membrane from Gram-negative bacteria, membrane vesicles (MVs) are, 

in effect, miniature representations of their parent bacterium  (Beveridge, 1999). Therefore, it 

is little surprise that MVs from pathogens such as P. aeruginosa and H. pylori have 

previously been shown to elicit IL-8 release from host lung (Bauman and Kuehn, 2006; Ellis 

et al., 2010) and gastric (Ismail et al., 2003; Kaparakis et al., 2010) epithelial cell lines, 

respectively. However, despite the high load of Gram-negative bacteria in the intestine, MVs 

derived from commensal bacteria are yet to be reported. Additionally,the interaction of MVs 

with intestinal epithelial cells have received little attention, with only one study, undertaken 

by Kesty et al. (2004), utilising MVs from ETEC, demonstrating toxin delivery to host cells, 

via MVs.  

In this study, concentrates (up to 25x) of MVs isolated from the enteric commensal 

bacterium, E. coli C25, were used to challenge HT29-19A and Caco-2 cells. The rationale for 

utilising MVs at concentrations markedly higher than the culture concentrations was the fact 

that, in vivo, the overall number of Gram-negative bacteria present in the intestine is, at least, 

two orders of magnitude higher than that found in the bacterial mono-cultures used in this 

study. Therefore, MV concentrations in vivo are hypothesised to be much higher than those 

reached in in vitro culture systems. Nevertheless, C25-derived MVs were found to stimulate a 

significant increase in IL-8 expression, at both the transcriptional and translational levels, in 

the two cell lines, but appeared to lack anti-inflammatory activity, as they did not stimulate 

any detectable translational expression of IL-10.  

The mechanism of interaction of MVs and host cells is currently unknown; however 

there are a number of possible receptors which could mediate their immunostimulatory 

effects. MVs are not microbe-associated molecular patterns (MAMPs) per se, but rather 
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represent a collection of MAMPs; therefore any number of cell surface PRRs, such as TLRs, 

could confer host cell responsiveness. The stimulation of intracellular receptors also presents 

a possibility, with a study by Parker et al. (2010) demonstrating that H. pylori MVs were 

internalised by gastric epithelial cells via clathrin-mediated endocytosis. Indeed, a recent 

study by Kaparakis et al. (2010) demonstrated that MVs isolated from H. pylori stimulate 

significant release of IL-8 from the AGS gastric epithelial cell line, via the delivery of iE-

DAP, a constituent of peptidoglycan, to the intracellular NOD1 receptor.  

In the present study, TLR-1, TLR-2, TLR-5 and NOD1 all showed little deviation in 

their mRNA expression in response to the presence of C25 MVs compared to control levels. 

However, C25 MVs did stimulate a complete down-regulation of TLR-9 mRNA in HT29-

19A cells, a result similar to that observed earlier in the investigation, in response to 

pathogenic CpG DNA and to C25 sonicate (Sections 3.4 & 4.3). This effect was potentially 

caused by extracellular CpG-DNA, as MVs isolated from P. aeruginosa have previously 

exhibited CpG-DNA on their surface (Kadurugamuwa and Beveridge, 1995, Renelli et al., 

2004). Surface-associated CpG-DNA possibly contributed to the IL-8 release observed in 

response to C25 MVs; however, it is unlikely that it was solely responsible for the level of 

IL-8 stimulation provoked. Another result of interest was the down regulation of TLR4 and 

its co-receptor, CD14, in Caco-2 cells, in response to MVs. Desensitisation to further 

challenge with the TLR-4 agonist, LPS, was curious as Caco-2 cells had already been shown 

to lack the capacity to respond to challenge by the, LPS (Section 3.4).  

Although very little modification of the mRNA expression of the receptors tested here 

was observed, it is possible that MVs bind the receptors, but do not affect their expression at 

the transcriptional level; therefore, the translational expression should also be explored via 

Western blot analysis. Alternatively, to investigate whether or not TLRs and/or NOD 

receptors mediate the IL-8 secretion in response to incubation with C25 MVs, TLR and NOD 
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knockout cells (utilising RNA interference (RNAi)) could be utilised to screen which 

receptor(s) confer responsiveness to the MVs (as would be evident by a decrease in IL-8 

release). However, it is possible that the process of MV internalisation is responsible for the 

elicitation of IL-8, in much the same way that bacterial internalisation stimulates IL-8 release 

via an unknown mechanism (Eckmann et al., 1993b). A protocol similar to that utilised by 

Bauman and Kuehn (2009) could be followed to investigate the extent of MV internalisation. 

They challenged lung epithelial cells with fluorescently labelled P. aeruginosa MVs and 

compared the fluorescence of challenged cells with that of control cells, where higher 

fluorescence was indicative of larger numbers of internalised MVs (Bauman and Kuehn, 

2009).  

This is the first study to consider the immunomodulatory activity of non-pathogenic 

MVs; therefore, their significance in the in vivo intestinal milieu is still very much unknown. 

At its maximum, IL-8 release in response to C25 MVs was relatively low compared to the 

level of stimulation by factors released by C. difficile (Figure 6.1), therefore, it can be 

speculated that the inflammatory response to MVs is part of the chronic low level 

inflammation characteristic of intestinal homeostasis. Nevertheless, to gain a more accurate 

representation of the extent of IL-8 stimulation by C25 MVs, they should be compared to the 

response to MVs isolated from Gram-negative enteropathogens, such as enterotoxigenic E. 

coli (ETEC) (Kesty et al., 2004) or toxigenic Bacteroides fragilis (Patrick et al., 1996).  

 

6.5.2  Modulation of bacterial internalisation 

Despite the fact that the intestinal epithelial cells were somewhat stressed (with moderate 

increases in IL-8 release observed), and the fact that increased bacterial translocation was 

observed in response to C25 cfs and sonicates (in Caco-2 cells), pre-treatment of cell layers 

with C25 MVs was shown to cause a significant decrease in transcellular bacterial 
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translocation. The mechanism for this is likely to be competitive inhibition, i.e. the MVs are 

physically blocking the receptors which mediate the internalisation of C25. However, further 

experimentation is required to confirm this.  Additionally, it would be interesting to explore 

whether the inhibitory effects of pre-treatment with C25 MVs are evident with a pathogenic 

bacterium which possesses a greater propensity to cellular internalisation. 
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6.6 Commensal-derived LPS and intestinal epithelial cells 

TLR-4 was previously found to be the receptor which mediates host cell responses to LPS 

(Poltorak et al., 1998; Hoshino et al., 1999; Hirschfield et al., 2000), therefore, its modulation 

in the presence of cell-free supernatant, sonicated bacteria and MVs all suggest that LPS 

plays an important role in immunomodulatory effects of E. coli C25.  

Previous studies have revealed the sensitivity of intestinal epithelial cell lines to LPS 

isolated from pathogenic bacteria, with the stimulation of IL-8 in both HT29 cells (Schuerer-

Maly et al., 1994; Smirnova et al., 2003) and Caco-2 cells  (Huang et al., 2003).  However, 

this is the first study to utilise LPS isolated from a non-pathogenic, Gram-negative bacterium. 

Consequently, these data are the first to show the immunostimulatory ability of commensal-

derived LPS with intestinal epithelial cells, with E. coli C25 LPS eliciting a significant 

increase of IL-8 expression, and release, in HT29-19A cells. Conversely, this effect was not 

observed in the Caco-2 cell line. The hyporesponsiveness to LPS, observed in Caco-2 cells, is 

concordant with results from a previous study, also undertaken in Caco-2 cells, by Abreu et 

al. (2001), and is likely to be attributable to the relatively low level of TLR-4 mRNA 

expression (Abreu et al., 2001; Naik et al., 2001). 

 Interestingly, despite stimulating a greater release in IL-8, in comparison to 

pathogenic LPS (Section 3.4), C25 LPS does not appear to induce up-regulation of TLR-4 

mRNA as pathogenic LPS did (Section 3.4). With the shape of LPS lipid A regions 

previously being shown to be related to endotoxic activity (Schromm et al., 2000; Netea et 

al., 2002), it is possible that commensal and pathogenic bacteria express LPSs with different 

lipid A conformations, leading to differences in immunomodulatory activity. To investigate 

the structure of the lipid A moieties of LPS molecules, previous studies have utilised 

analytical techniques, such as nuclear magnetic resonance (NMR) spectroscopy (Strain et al., 

1983; Ribeiro et al., 1999), matrix-assisted laser desorption/ionization time-of-flight mass 
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spectrometry (MALDI-TOF MS) (Lindner, 2000), small angle X-ray diffraction (SAXD) 

(Schromm et al., 2000). Therefore, these techniques could be used in further experimentation, 

aiming to discern the structure of C25 LPS and could compare it to LPSs from known 

pathogenic strains of E. coli. Conversely, is unreasonable to exclude the potential for such 

contamination to be a contributing factor in the immunostimulatory activity of C25 LPS. 

Previous studies have reported stimulation of human macrophages and embryonic kidney 

cells by LPS, via TLR-2 (Kirschning et al., 1998; Yang et al., 1998), which was subsequently 

found to be attributable to contamination of LPS samples with endotoxic proteins 

(Hirschfield et al., 2000). Due to time restrictions, this was not explored in the present study, 

however, any such contaminating proteins could be removed by a multi-step precipitation 

process (Hirschfield et al., 2000).  

A study undertaken by Berg et al. (1995) demonstrated that, in vivo, LPS isolated 

from pathogenic E. coli was able to induce the secretion of the anti-inflammatory cytokine, 

IL-10, suggesting a mechanism for the phenomenon of LPS tolerance. Nevertheless, this 

effect was not observed in the in vitro system of this investigation, as no detectable levels of 

IL-10 were released by either cell line in response to C25 LPS.  

Host cell responsiveness to LPS requires the presence of serum (Patrick et al., 1992), 

specifically LPS binding protein (LBP), which opsonises LPS molecules chaperones LPS to 

the CD14 co-factor (Hailman et al., 1994). CD14 subsequently presents the bound LPS 

molecules to TLR-4, which consequently mediates the cellular immune response 

(Triantafilou and Triantafilou, 2002). In serum-free conditions, the IL-8 release observed in 

C25 LPS-challenged HT29-19A cells was comparable to levels in control cells (also treated 

with serum-free media), thus confirming that the proinflammatory activity of C25 LPS was 

serum-dependent. Additionally, in the absence of serum, a significant reduction in IL-8 

release (compared to challenge in the presence of serum) was observed in HT29-19A cells 
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challenged with C25 cfs, thus suggesting that LPS, or indeed another serum-dependent 

antigen, was a major contributing factor in the proinflammatory activity of C25 cfs. In vivo, 

this effect could have major implications in the pathogenesis of IBD. Increased lumenal 

concentrations of serum proteins, such as LBP, resulting from the ‘leaky’ epithelium, often 

associated with IBD (Schmitz et al., 1999; Soderholm et al., 2002), could potentially result in 

augmented immune responses to commensal-derived LPS molecules, thus providing a 

mechanism to drive the inflammatory disease.  

Despite its inflammatory nature, pre-treatment with C25 LPS did not cause any 

significant differences in bacterial translocation in either of the two cell lines. These data 

indicate that the ability to stimulate an increase in bacterial translocation is more complex 

than inflammatory activity, as previously alluded to (see Section 6.4.1). 
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6.7 Probiotic potential of extracellular products from two previously uncharacterised 

lactobacilli strains 

Lactobacilli naturally reside in the adult human intestine (Lebeer et al., 2008) and are found 

in a wide range of fermented food products, such as milk drinks, fruit juices and cheeses, 

either as members of the natural bacterial content, or as deliberately administered probiotic 

cultures (Turpin et al., 2010). One of the major health benefits of probiotic lactobacilli is their 

anti-inflammatory activity (Nandakumar et al., 2008; Moorthy et al., 2010; Seifert et al., 

2010; Stober et al., 2010). This beneficial immunomodulatory activity could be ascribed to 

probiotics inhibiting receptor sites within the intestine, thus blocking further bacterial 

binding; however, it seems unlikely that this could account for the alleviation of excessive 

inflammation in pre-existing conditions, such as IBD (Madsen et al., 1999; Mimura et al., 

2004; McCarthy et al., 2003). Therefore, it is hypothesised that probiotics possess more 

specific anti-inflammatory properties, nevertheless, most studies in this field have only 

utilised the live organisms themselves, and have not considered the extracellular products 

secreted by these bacteria. The initial experiments in this study were designed to investigate 

if the soluble factors isolated from the previously unstudied lactobacilli strains L. acidophilus 

5e2 and L. helveticus sp. Rosyjski (Rosy), had immunomodulatory activity on intestinal 

epithelial cell lines HT29-19A and Caco-2.  

The effects of the untreated MRS broth were initially investigated, and, although a 

stimulation of IL-8 release was observed in Caco-2 cells, there was a distinct qualitative 

difference between the untreated broth and the cell-free supernatants (cfs’s) from the two 

strains of lactobacilli, therefore, this approach was pursued. Lactobacilli cfs’s were shown to 

elicit a small, but significant, increase in both expression and release of IL-8, from the Caco-2 

cell line; however, only the 5e2 strain exhibited this activity with HT19-19A cells. 

Extracellular products from either strain of Lactobacillus were unable to stimulate the release 
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of IL-10, and this was also reflected at the transcriptional level. Indeed, the 5e2 cell-free 

supernatant actively down-regulated IL-10 mRNA expression in Caco-2 cells.  

Due to its abundance in the Gram-positive cells (Schleifer and Kandler, 1972), the 

primary antigen likely to be released by ultrasonic disruption of lactobacilli would be 

peptidoglycan (Section 1.5.8); however, other antigens, such as CpG DNA (Section 1.5.9), 

lipoproteins (Section 1.5.10) and lipoteichoic acid (Section 1.5.11), would also be liberated. 

In response to lactobacilli sonicates, IL-8 release was stimulated in Caco-2 cells and was of 

greater magnitude than that elicited by cell-free supernatants, thus further supporting the 

hypothesis that ultrasonic disruption increases antigenic release from bacteria. However, 

HT29-19A cells appeared unresponsive to sonicates of either strain Lactobacillus, indicating 

either that the IL-8-stimulating antigen in the 5e2 cell-free supernatant was denatured or an 

additional factor was released by sonication and was attenuating the release of IL-8.  

The up-regulation of TLR-1 and TLR-2 mRNAs in HT29-19A cells, in response to 

challenge with 5e2 cfs, suggested that these receptors were directly stimulated by agonists, 

such as peptidoglycan and liproteins. Furthermore, the complete down-regulation of TLR-9 

mRNA also observed was characteristic of CpG-DNA binding (Section 3.4); therefore, 

HT29-19A cell stimulation was also potentially mediated via TLR-9. Conversely, and 

consistent with the lack of IL-8 release,  HT29-19A cells exhibited a much diminished 

modulation of TLR mRNA in response to Rosy cfs, compared to that observed in response to 

5e2 cfs. Nevertheless, in concordance with the effects of 5e2 cfs, TLR-2 mRNA was 

significantly up-regulated and TLR-9 was completely down-regulated. These results implied 

that TLR-2 and TLR-9 agonists were present in Rosy cfs, thus provoking the up-regulation of 

their respective receptors, but were not subsequently stimulating IL-8 release. Should these 

results be paralleled in an in vivo system, then they could imply inflammation-independent 

priming (via the modulation of TLR expression) of the epithelial layer by certain food-bourne  
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bacteria. 

In response to challenge with 5e2 or Rosy cfs, Caco-2 cells exhibited very little 

deviation from control level of TLR mRNA. The exception to this was a significant down-

regulation of TL-9 mRNA in response to 5e2 cfs, a result consistent with stimulation by 

CpG-DNA, and concordant with the effects of 5e2 cfs in HT29-19A cells. It is likely that 

peptidoglycan, the major constituent of the Gram-positive cell wall, contributed to the 

stimulation of Caco-2 cells, but the cell line’s high constitutive expression of TLR-2 meant 

that they were likely to be less susceptible to up-regulation. However, in response to 

challenge with 5e2 sonicate, Caco-2 cells did exhibit a small, but statistically significant, up-

regulation of TLR-2 mRNA; nevertheless, the hypothesised increased concentrations of 

soluble peptidoglycan could account for this.  Additionally, a similar pattern was also 

observed in response to Rosy sonicate.  

The use of probiotic bacteria, particularly strains of lactobacilli, has previously shown 

success in the treatment of patients suffering antibiotic- and C. difficile-associated diarrhoea 

(Hickson et al., 2007; Doron et al., 2008; Gao et al., 2010). Additionally, a study undertaken 

by Banerjee et al. (2009) demonstrated that the secretory products of Lactobacillus 

delbrueckii sp. bulgaricus were able to attenuate the cytotoxic activity of C. difficile toxins 

when Caco-2 cells were challenged with various cocktails of cell-free supernatants from 

cultures of both bacteria. The data presented by Banerjee et al. (2009) showed that the 

extracellular products from non-pathogenic bacteria can directly reduce the effects of 

pathogens via a mechanism independent from out-competition by the live bacteria. The 

potential of the strains of lactobacilli, investigated in the present study, acting in this manner, 

was explored utilising sequential treatment of epithelial cells with lactobacilli cell-free 

supernatant, followed by challenge with C. difficile cell-free supernatant. However, there was 
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no indication that either strain of lactobacilli had any protective effects against the 

inflammatoryactivity of C. difficile cell-free supernatant. 

Taken all together, these results suggested that extracellular products from L. 

acidophilus 5e2 and L. helveticus sp. Rosyjski did not demonstrate probiotic potential. 

However, to some extent, this study was confounded by the stimulatory effects of the MRS 

broth on the Caco-2 cell line. Nevertheless, this study has concentrated on just two of the 

numerous inflammatory cytokines expressed in intestinal epithelial cells, and therefore 

further investigation is required to confirm this.  
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6.8 EPSs and intestinal epithelial cells 

6.8.1  Immunomodulatory activity 

Having previously observed the confounding effects of the MRS broth on the Caco-2 cell 

line, it was decided to investigate the immunomodulatory effects of purified EPSs produced 

by L. acidophilus 5e2 and L. helveticus sp. Rosyjski. The immunomodulatory effects of EPSs 

on intestinal epithelial cells have little been studied thus far, with only Hidalgo-Cantabrana 

and colleagues, recently considering the concept and preliminarily demonstrating differential 

effects of EPS-producing bifidobacteria on the release of inflammatory cytokines, such as IL-

6 and IL-8, in the Caco-2 cell line (Hidalgo-Cantabrana et al., 2012).  

The purified EPSs tested in this investigation were shown to provoke a small, yet 

statistically significant, increase in IL-8 expression and release in HT29-19A cells. 

Additionally, 5e2 EPS was able to significantly up-regulate IL-8 mRNA in Caco-2 cells, 

although this was not paralleled at the translational level. In contrast to this, neither EPS was 

able to stimulate IL-10 expression, at either the transcriptional or translational level, in either 

of the two cell lines. These initial results indicate that EPSs are able to stimulate a low-level 

proinflammatory response in cultured intestinal epithelial cells. If this effect was also to occur 

in vivo, it would suggest a potential mechanism of action in intestinal homeostasis. For 

example, the low level inflammation casued by these EPSs could compete with more potent 

inflammatory mediators, thus protecting against excessive inflammation. In concordance with 

this hypothesis, a study by Sengül et al. (2006) demonstrated that EPS-producing bacteria 

were able to significantly attenuate the inflammation of an experimental colitis model, 

induced via intracolonic administration of acetic acid, in rats. Alternatively, the low level of 

IL-8 secretion reported here could contribute to the theorised epithelial ‘priming’ effect of the 

commensal microflora, in vivo, which allows elicitation of a more controlled and rapid host 

response to pathogenic attack (Macpherson and Harris, 2004; Artis, 2008). 
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Currently, information on the mechanism of interaction of EPSs with host cells is 

limited, however, a recent study on a novel EPS (TA-1) isolated from the thermophilic 

marine bacterium, Thermus aquaticus, was shown to stimulate the release of 

proinflammatory cytokines, TNF-α and IL-6, from murine macrophages via a TLR-2-

mediated pathway (Lin et al., 2011). This is consistent with the fact that TLR-2 is well 

characterised in its interactions with a diverse range of microbial components (Takeda et al., 

2003, Akira et al., 2006). When challenged with the EPSs considered in this study, HT29-

19A cells exhibited a significant up-regulation of TLR-2 mRNA expression. This study, and 

earlier ones (Poltorak et al., 1998; Visintin et al., 2001; Hornung et al., 2002), have 

previously shown that, upon binding, TLR agonists cause the up-regulation of their cognate 

receptors, therefore, it can be speculated that the up-regulation of TLR-2 mRNA in HT29-

19A cells is due to direct association with the EPSs. It has also been shown that the up-

regulation of TLR-2 also appeared to sensitise HT29-19A cells to subsequent challenge with 

the known TLR-2 agonist, peptidoglycan (PGN), with a small, but statistically significant, 

increase in the IL-8 secretion. Contrary to this, no significant change in TLR-2 mRNA was 

detected in the Caco-2 cell line. However, it was previously observed that Caco-2 cells 

possess a much increased constitutive expression of TLR-2 (Section 3.2) in comparison to 

HT29-19A cells; therefore, the up-regulatory effects could be masked. Nevertheless, despite 

having hypothesised that the EPSs only directly associate with TLR-2, the modulation of the 

expression of other TLRs was also considered. 

Previously, live lactobacilli have been shown to up-regulate expression of non-

cognate TLRs in intestinal epithelial cells, thus sensitising them to subsequent challenge with 

bacterial antigens (Viszoso Pinto et al., 2009; Seifert et al., 2010). The same phenomenon 

was observed in this investigation, with Rosy EPS sensitising the HT29-19A cell line to 

subsequent challenge with the TLR-5 agonist, bacterial flagellin, causing a significant 
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increase in IL-8 release. This sensitisation could potentially be of clinical importance because 

flagellin plays an important role in gut immunity, and is known to be involved in both 

homeostatic regulation of immune responses to the commensal microflora (Vijay-Kumar et 

al., 2008) and the pathogenesis of inflammatory bowel disease (Lodes et al., 2004; Targan et 

al., 2005). Indeed, Lodes et al. (2004) showed flagellin to be a dominant antigen in patients 

with Crohn’s disease. The mechanism for the sensitisation of epithelial cells to bacterial 

products is currently unknown; however, it is thought that stimulation of the common 

intracellular pathways involved in transduction of TLR-stimulated signals may be responsible 

(Viszoso Pinto et al., 2009).  

The potential for EPSs priming the epithelial layer to pathogen attack by TLR-

independent stimulation was also tested using the pre-treatment of epithelial cell lines with 

EPSs, prior to challenge with C. difficile cell-free supernatant. The results of this showed that 

neither EPS had any significant effects on IL-8 release in response to C. difficile cell-free 

supernatant. Therefore, it can be hypothesised that the epithelial priming activities of EPSs 

are mediated through the modulation of TLR expression. 

Preliminary data published by Hidalgo-Cantabrana et al. (2012) demonstrated the 

stimulation of inflammatory cytokines, in Caco-2 cells, in response to co-culture with EPS-

producing bifidobacteria. However, the present study showed, for the first time, that purified 

EPSs were able to directly interact with intestinal epithelial cells, stimulating IL-8 expression 

at both the transcriptional and translational level. Additionally, it showed that EPSs 

modulated TLR mRNA expression in intestinal epithelial cell lines, resulting in ‘priming’ of 

HT29-19A cells and a potentiated release of IL-8 in response to subsequent challenge with 

bacterial antigens, peptidoglycan and flagellin. 
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6.8.2  Barrier function of Caco-2 monolayers 

Live lactobacilli have previously been shown to increase intestinal epithelial integrity, 

causing an increase in trans-epithelial electrical resistance (TEER) (Nissen et al., 2009). As 

indicated by domes, the results of this study showed that 5e2 EPS had no significant effect on 

the integrity of Caco-2 monolayers. Conversely, and in contrast to the results from the study 

by Nissen et al. (2009), Rosy. EPS appeared to cause a temporary loosening of the tight 

junction in Caco-2 cells, as suggested by the short-term loss of domes. The effects were 

apparent immediately after incubation with the EPS; however, the decrease in barrier 

integrity was reversed following removal of the EPS. The mechanism for this could 

potentially be mediated via a TLR-2 pathway, as this receptor has been shown to regulate 

epithelial barrier function (Cario et al., 2007); however, much more investigation is required.  

 

6.8.3  Bacterial adherence and internalisation 

Adherence is a key step in bacterial colonisation of host mucosal surfaces (Beachey, 1981). A 

study undertaken by Lebeer et al. (2007) demonstrated a key role for EPSs in bacterial 

attachment to abiotic surfaces, however, the role of EPSs in attachment of bacteria to 

biological moieties is unclear. EPSs have been shown to promote the adherence of pathogenic 

bacteria to intestinal mucus (Ruas-Madiedo et al., 2006a; Ruas-Madiedo et al., 2006b); 

however, these same EPSs were also shown to inhibit the attachment of probiotic bacteria to 

the mucus (Ruas-Madiedo et al., 2006a; Ruas-Madiedo et al., 2006b). Here, the modulatory 

potential of EPSs on the direct attachment, and subsequent internalisation of E. coli C25 on 

intestinal epithelial cells was explored. 

The data obtained in this investigation showed that 5e2 EPS was unable to provoke 

any significant changes in either adherence or internalisation of E. coli C25, in either HT29-

19A or Caco-2 cells. However, Rosy EPS exhibited modulatory activity with Caco-2 cells, 
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causing a significant increase in adherence of E. coli C25, but having no subsequent effects 

on internalisation. This effect could suggest that Rosy EPS was able to form a protective, 

‘sticky’ coating, akin to intestinal mucus, on Caco-2 cells. In contrast to this and possibly due 

to the differences in cell line origin, HT29-19A cells showed a significant increase in 

bacterial internalisation without a significant increase in adherence of C25, following 

treatment with Rosy EPS. However, should this effect be seen in vivo, it could represent a 

mechanism via which the transcellular translocation of commensal bacteria is actively 

promoted, resulting in the development of host immunocompetency (Lichtman et al., 2001) 

and microfloral tolerance (Mowat, 2003). Finally, it is worth noting that these effects were 

not attributable to increased proliferation of C25 in the presence of EPSs, as no significant 

differences in bacterial populations were observed, compared to EPS-free controls. 

 

6.8.4  Future work 

A major limitation of the work in this study was the availability of the EPSs, due to both their 

limited release by the bacteria and the laborious nature of the purification process. Had they 

been more easily obtainable, the investigation could have been taken much further. A logical 

starting point for future work would be the translational confirmation of the changes in TLR 

expression, seen in this investigation, in response to EPSs. This could be undertaken utilising 

Western blot analysis or flow cytometry. Also, the working concentration of EPSs used in 

this study was a ‘mid-range’ concentration taken from the existing literature and so, given 

larger volumes of EPSs, a range of concentrations could be tested to explore the extent of 

their activity at higher and lower doses. Moreover, experimentation similar to that undertaken 

by Lin et al. (2011) could be utilised to in an attempt to determine if TLR-2 is the receptor 

responsible for intestinal epithelial cell responsiveness to EPSs. A TLR-deficient cell line, 

such as the human embryonic kidney (HEK)293T cell line used by Lin and colleagues, and 
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its subsequent transfection with TLR-2 could be utilised to investigate whether or not TLR-2 

does in fact confer responsiveness to the EPSs (as would be evident by an increase in IL-8 

secretion, compared to control cells). Additionally, blocking of intestinal epithelial cells with 

anti-TLR-2 antibodies prior to stimulation with EPSs could also be used to substantiate, via a 

decrease in IL-8 secretion, that TLR-2 confers responsiveness to EPSs. 
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6.9 Immunomodulatory effects of bacterial extracellular products 

Taken all together, the results of this investigation indicate that, in the two cell lines utilised, 

the mRNA expression of the TLR receptors is, in fact, representative of their functionality. 

Owing to its increased expression of TLR-4 mRNA, the HT29-19A cell line is more 

responsive to the products isolated from the Gram-negative bacterium, E. coli C25. 

Conversely, the Caco-2 cell line, which expressed higher levels of TLR-2 mRNA, was much 

more sensitive to the extracellular products isolated from the Gram-positive lactobacilli 

strains. Additionally, the magnitude of IL-8 release from both cell lines, in response to the 

range of non-pathogenic extracellular products tested, was relatively low in comparison with 

the response observed in response to extracellular products from C. difficile (Figure 6.1). This 

moderate level of inflammation is potentially accountable for the theorised epithelial 

‘priming’ effect of the commensal microflora (Macpherson and Harris, 2004; Artis, 2008).  

However, the physiological relevance of the results gained in this investigation is 

somewhat limited by the incomplete polarisation of the intestinal epithelial cell lines utilised. 

In vivo, intestinal epithelial cells are fully polarised, subsequently differentiating into the 

apical and basolateral surfaces. To achieve polarisation in in vitro cell lines, they must be 

cultured on Transwell™ permeable inserts (Corning, UK); however, due to a lack of 

resources, they were unavailable for the current study. The use of fully polarised monolayers 

is more physiologically accurate to the enteric conditions, with intestinal epithelial cell lines 

differentially responding to apical and basolateral stimulation (Lammers et al., 1994; Lee et 

al., 2006), as would be seen in vivo (Gewirtz et al., 2001).  

Another key limitation of this investigation is the fact that TLR expression was only 

explored at the mRNA level and, given that the releationship between transcriptional and 

translational expression is hypothesised to be relatively weak (Schwanhäusser et al., 2011), 

changes in TLR mRNA, in response to bacterial products, may not be wholly representative 
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of changes in protein expression. Therefore, an obvious starting point for future work is to 

validate the mRNA expression changes observed in this study by investigating the 

translational expression of TLRs in response to the range of bacterial products investigated. 

This could be achieved by utilising techniques such as Western blot analysis and/or flow 

cytometry.  
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Figure 6.1 – Comparing the magnitude of IL-8 release, in HT29-19A and Caco-2 cells, in 

response to bacterial extracellular products. Cells were incubated with various pathogenic (A) or 

non-pathogenic (B) challenge samples for 24 h and IL-8 was measured. Results are fold change in IL-

8 release, relative to the constitutive level. 
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6.10 General summary   

The symbiosis that exists between the intestinal microflora and the human host is clearly a 

highly complex relationship that upholds a very fine balance between health and disease. 

Studies utilising germfree animals have demonstrated that the microflora is essential in the 

maturation and functionality of the intestine, with its absence leading to significantly under-

developed intestinal walls and mucosal immune systems. Paradoxically, the commensal 

enteric microflora is also a vast source of antigenic materials which relentlessly challenge the 

intestinal innate immunity, resulting in a state of constant immunological stimulation. 

Furthermore, the microflora, and its associated antigens, has also been heavily implicated in 

the aetiology of chronic inflammatory diseases, such as Crohn’s disease and ulcerative colitis. 

However, in healthy individuals, the innate immune system is able to maintain a multifaceted 

homeostatic balance between remaining hyporesponsive to the commensal microflora, yet, 

also retaining the capacity to react to pathogenic attack. The key interface in the regulatory 

defence system is the intestinal epithelial layer, which forms both a physical barrier and an 

innate immune sensor. The expression of pattern recognition receptors in epithelial cells 

allows the detection of a wide range of conserved microbial products released by both 

pathogenic and non-pathogenic bacteria. Nevertheless, previous studies have generally only 

characterised the immunological activities of extracellular products from pathogenic or 

known probiotic bacteria, thus neglecting the vast populations of bacteria between the two 

extremes. The present study is one of the first investigations characterising the interactions of 

the intestinal epithelial layer with products from bacteria not previously recognised to be 

pathogenic or probiotic. Although work undertaken in this study was non-mechanistic in 

nature, it has provided new information on the role of the enteric-associated bacteria in 

intestinal homeostasis, highlighting the immunomodulatory potential of their extracellular 

products. Additionally it has provided novel evidence that non-pathogenic extracellular  
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products could play a role in the development of host tolerance to the commensal microflora. 

The HT29-19A and Caco-2 cell lines exhibited very different expression levels of IL-

8; with HT29-19A cells possessing a much larger capacity, than Caco-2 cells, for constitutive 

release of the proinflammatory chemokine. Conversely, despite a lack of detectable protein 

production, Caco-2 cells exhibited the potential for the secretion of the potent anti-

inflammatory cytokine, IL-10, with mRNA expression evident, whereas HT29-19A cells did 

not exhibit detectable signals in either transcription or translation. Additionally, the TLR 

mRNA expression profiles of the cell lines were very distinct from one another, which, 

consequently, had profound effects on their sensitivity to known bacterial agonists. The two 

cell lines exhibited similar levels of mRNA expression for TLR-5 and TLR-9, and 

subsequently demonstrated comparable sensitivities to both flagellin and CpG-DNA. 

However, HT29-19A cells exhibited much higher mRNA expression of TLR-4, than Caco-2 

cells, and consequently demonstrated a much higher sensitivity to the TLR-4 agonist, LPS. 

Additionally, Caco-2 cells were found to possess significantly increased levels of TLR-2 

mRNA, in comparison to HT29-19A cells, thus exhibiting a much increased sensitivity to the 

TLR-2 agonist, PGN. In contrast to this, both cell lines exhibited an increase, of comparable 

magnitude, in IL-8 release, in response to the products of the enteropathogen, C. difficile, 

which are thought to act in a TLR-independent manner. Finally, Caco-2 cells were shown to 

form physiologically active tight junctions, with the formation and maintenance of domes.   

Although this investigation was not the first to demonstrate the proinflammatory 

effects of E. coli C25 cfs and sonicate, the extended cell challenge utilised here was much 

more representative of an in vivo situation. Also, unlike previous studies, the 

immunomodulatory effects of C25 were explored at the transcriptional level in both HT29-

19A and Caco-2 cells. Additionally, IL-10 expression was investigated, with significant up-

regulation of IL-10 mRNA observed in both cell lines, suggesting a role in intestinal 
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homeostasis; however, this effect was not reflected at the translational level. Also, evidence is 

presented that C25 LPS is a major contributing factor to the proinflammatory nature of C25 

extracellular products, stimulating IL-8 release from HT29-19A cells. Moreover, MVs 

isolated from C25 were shown to possess immunomodulatory activity with both HT29-19A 

and Caco-2 cells, stimulating IL-8 and modulating TLR mRNA expression. Consequently, 

this thesis was the first study to consider the immunomodulatory effects of commensal-

derived MVs on intestinal epithelial cells. Finally, the extracellular products were shown to 

regulate bacterial internalisation, in both HT29-19A and Caco-2 cells, with cfs and sonicate 

significantly potentiating the internalisation of E. coli C25, but MVs were found to somewhat 

inhibit the process. 

Additionally, this thesis was the first to investigate the immunomodulatory effects of 

extracellular products, specifically ultrapurified EPSs, from two previously unstudied, EPS-

producing bacteria L. acidophilus 5e2 and L. helveticus sp. Rosyjski. Crude cell-free 

supernatants and bacterial sonicates from two the lactobacilli strains were found to be 

biologically active, stimulating a relatively moderate, yet statistically significant, IL-8 

release, in the Caco-2 cell line. However, the stimulatory effects were less evident in HT29-

19A cells. Nevertheless, EPSs isolated and ultrapurified from the two strains exhibited novel 

immunomodulatory effects on HT29-19A cells, with IL-8 release and TLR modification 

observed. EPSs demonstrated fewer effects on Caco-2 cells, yet, TLR-modification was still 

evident. Pre-treatment with EPSs were also found to ‘prime’ HT29-19A cells to the bacterial 

antigens, peptidoglycan and flagellin, significantly potentiating the resultant release in IL-8. 

Additionally, EPSs were found to modify bacterial adherence and internalisation in both cell 

lines.  

In conclusion, data presented in this investigation has shown that the use of two 

phenotypically divergent, yet highly complementary, in vitro intestinal epithelial cell lines 
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HT29-19A and Caco-2 present a reasonable model for investigating the interaction of 

bacterial extracellular products with the intestinal epithelium. Additionally, it has been one of 

the first studies to demonstrate that extracellular products, isolated from non-pathogenic, 

enteric-associated bacteria, stimulate a relatively mild proinflammatory response from, and 

modulate TLR mRNA expression in, intestinal epithelial cell lines. Furthermore, for the first 

time, the potential for non-pathogenic bacterial products to increase bacterial internalisation 

in intestinal epithelial cells has been shown. If the novel effects observed in this investigation 

also occurred in vivo, then they could potentially contribute to intestinal homeostasis, the 

innate ‘priming’ of the epithelial layer to pathogens and their products or even the 

development of host tolerance to the commensal microflora. 
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8.1 Validating PCR primers 
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Figure 8.1 – PCR primer efficiency validation. cDNA samples were serially diluted and 

subjected to qRT-PCR. The resultant Ct values were plotted against the log10 of the dilution. 
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8.2 Characterising the proliferation of HT29-19A and Caco-2 cell lines 

 

Figure 8.2 – HT29-19A cells grow to a higher cell density than Caco-2 cells. Cells were 

seeded at 0.5 x 105 cells/cm2 and were counted at regular time points utilising trypan blue 

dye and a haemocytometer. Results are mean ± SEM, n = 3.  
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8.3 Characterisation of E. coli C25  

 

 

Figure 8.3 – The bacterial 16S gene is amplified by PCR. The total DNA was isolated 

from the bacterial culture and subjected to PCR to amplify the 16S gene. Following PCR, the 

product was subjected to gel electrophoresis. The resulting band is circled in red. 
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GAT GGA CGC TGG CGG CAG GCC TAA CAC ATG CAA GTC GAA CGG TAA 

CAG GAA ACA GCT TGC TTT TTT GCT GAC GAG TGG CGG ACG GGT GAG 

TAA TGT CTG GGA AAC TGC CTG ATG GAG GGG GAT AAC TAC TGG AAA 

CGG TAG CTA ATA CCG CAT AAC GTC GCA AGA CCA AAG AGG GGG ACC 

TTC GGG CCT CTT GCC ATC GGA TGT GCC CAG ATG GGA TTA GCT AGT 

AGG TGG GGT AAC GGC TCA CCT AGG CGA CGA TCC CTA GCT GGT CTG 

AGA GGA TGA CCA GCC ACA CTG GAA CTG AGA CAC GGT CCA GAC TCC 

TAC GGG AGG CAG CAG TGG GGA ATA TTG CAC AAT GGG CGC AAG CCT 

GAT GCA GCC ATG CCG CGT GTA TGA AGA AGG CCT TCG GGT TGT AAA 

GTA CTT TCA GCG GGG GGA AGG GAG TAA AGT TAA TAC CTT TGC TCA 

TTG ACG TTA CCC GCA GAA GAA GCA CCG GCT AAC TCC GTG CCA GCA 

GCC GCG GTA ATA CGG AGG GTG CAA GCG TTA ATC GGA ATT ACT GGG 

CGT AAA GCG CAC GCA GGC GGT TTG TTA AGT CAG ATG TGA AAT CCC 

CGG GCT CAA CCT GGG AAC TGC ATC TGA TAC TGG CAA GCT TGA GTC 

TCG TAG AGG GGG GTA GAA TTC CAG GTG TAG CGG TGA AAT GCG TAG 

AGA TCT GGA GGA ATA CCG GTG GCG AAG GCG GCC CCC TGG ACG AAG 

ACT GAC GCT CAG GTG CGA AAG CGT GGG GAG CAA ACA GGA TTA GAT 

ACC CTG GTA GTC CAC GCC GTA AAC GAT GTC GAC TTG GAG GTT GTG 

CCC TTG AGG CGT GGC TTC CGG AGC TAA CGC GTT AAG TCG ACC GCC 

TGG GGA GTA CGG CCG CAA GGT TAA AAC TCA AAT GAA TTG ACG GGG 

GCC CGC ACA AGC GGT GGA GCA TGT GGT TTA ATT CGA TGC AAC GCG 

AAG AAC CTT ACC TGG TCT TGA CAT CCA CGG AAG TTT TCA GAG ATG 

AGA ATG TGC CTT CGG GAA CCG TGA GAC AGG TGC TGC ATG GCT GTC 

GTC AGC TCG TGT TGT GAA ATG TTG GGT TAA GTC CCG CAA CGA GCG 

CAA CCC TTA TCC TTT GTT GCC AGC GGT CCG GCC GGG AAC TCA AAG 

GAG ACT GCC AGT GAT AAA CTG GAG GAA GGT GGG GAT GAC GTC AAG 

TCA TCA TGG CCC TTA CGA CCA GGG CTA CAC ACG TGC TAC AAT GGC 

GCA TAC AAA GAG AAG CGA CCT CGC GAG AGC AAG CGG ACC TCA TAA 

AGT GCG TCG TAG TCC GGA TTG GAG TCT GCA ACT CGA CTC CAT GAA 

GTC GGA ATC GCT AGT AAT CGT GGA TCA GAA TGC CAC GGT GAA TAC 

GTT CCC GGG CCT TGT ACA CAC CGC CCG TCA CAC CAT GGG AGT GGG 

TTG CAA AAG AAG TAG GTA GCT TAA CCT TCG GGA GGG CGC TTA CCA 

CTT TGT GAT CAT GAA TGG ATT TG        

Figure 8.4 – The nucleotide sequence of the isolated and purified 16S gene. The 16S gene 

was sequenced by Eurofins MWG Operon (Ebersberg, Germany) using the 8f and 1510r 

primers. The forward and reverse sequencing results were pieced together to give the 

complete 16S sequence.  
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Accession no. Description % match 

FM180568.1 Escherichia coli 0127:H6 E2348/69 complete genome, strain E2348/69 99% 

AP012306.1 Escherichia coli str. K-12 substr. MDS42 DNA, complete genome 99% 

CP002516.1 Escherichia coli KO11, complete genome 99% 

AP012030.1 Escherichia coli DH1 (ME8569) DNA, complete genome 99% 

CP002185.1 Escherichia coli W, complete genome 99% 

FN649414.1 Escherichia coli ETEC H10407, complete genome 99% 

CP001637.1 Escherichia coli DH1, complete genome 99% 

CP001368.1 Escherichia coli O157:H7 str. TW14359, complete genome 99% 

CP001396.1 Escherichia coli BW2952, complete genome 99% 

CU928163.2 Escherichia coli UMN026 chromosome, complete genome 99% 

AP009240.1 Escherichia coli SE11 DNA, complete genome 99% 

CP001164.1 Escherichia coli O157:H7 str. EC4115, complete genome 99% 

CP002797.2 Escherichia coli NA114, complete genome 99% 

AM946981.2 Escherichia coli BL21(DE3), complete genome 99% 

CP002167.1 Escherichia coli UM146, complete genome 99% 

CP001509.3 Escherichia coli BL21(DE3), complete genome 99% 

CP001969.1 Escherichia coli IHE3034, complete genome 99% 

FN554766.1 Escherichia coli 042 complete genome 99% 

CP001383.1 Shigella flexneri 2002017, complete genome 99% 

Table 8.1 – A selection of the BLASTn results from the 16S gene search. The resultant 

16S sequence was subjected to a BLASTn search of the ‘Nucleotide collection (nr/nt)’ 

database, with the ‘megablast’ option chosen. The results were sorted by ‘% match’ to give 

the best matches. 
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Figure 8.5 – E. coli C25 proliferates in cell culture media. E. coli C25 was grown 

overnight in TSB to obtain an active culture. A 1 in 500 dilution of the culture was prepared 

in basic cell culture media (DMEM + 4 mM glutamine) and the absorbance of the bacterial 

suspension was measured at 400 nm. The absorbance was subsequently taken every 30 min 

for the first 8 h and at the 12 and 24 h time points. Results are mean ± SEM, n = 3. 
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