Search:
Computing and Library Services - delivering an inspiring information environment

The variation of catalytic efficiency of bacillus cereus metallo- β-lactamase with different active site metal ions

Badarau, Adriana and Page, Michael I. (2006) The variation of catalytic efficiency of bacillus cereus metallo- β-lactamase with different active site metal ions. Biochemistry, 45 (35). pp. 10654-10666. ISSN 1520-4995

Metadata only available from this repository.

Abstract

The kinetics and mechanism of hydrolysis of the native zinc and metal substituted Bacillus cereus (BcII) metallo--lactamase have been investigated. The pH and metal ion dependence of kcat and kcat/Km, determined under steady-state conditions, for the cobalt substituted BcII catalyzed hydrolysis of cefoxitin, cephaloridine, and cephalexin indicate that an enzyme residue of apparent pKa 6.3 ± 0.1 is required in its deprotonated form for metal ion binding and catalysis. The kcat/Km for cefoxitin and cephalexin with cadmium substituted BcII is dependent on two ionizing groups on the enzyme: one of pKa1 = 8.7 ± 0.1 required in its deprotonated form and the other of pKa2 = 9.3 ± 0.1 required in its protonated form for activity. The pH dependence of the competitive inhibition constant, Ki, for CdBcII with L-captopril indicates that pKa1 = 8.7 ± 0.1 corresponds to the cadmium-bound water. For the manganese substituted BcII, the pH dependence of kcat/Km for benzylpenicillin, cephalexin, and cefoxitin similarly indicated the importance of two catalytic groups: one of pKa1 = 8.5 ± 0.1 which needs to be deprotonated and the other of pKa2 = 9.4 ± 0.1 which needs to be protonated for catalysis; the pKa1 was assigned to the manganese-bound water. The rate was metal ion concentration dependent at the highest manganese concentrations used (10-3 M). The metal substituted species have similar or higher catalytic activities compared with the zinc enzyme, albeit at pHs above 7. Interestingly, with cefoxitin, a very poor substrate for ZnBcII, both kcat and kcat/Km increase with increasing pKa of the metal-bound water, in the order Zn < Co < Mn < Cd. A higher pKa for the metal-bound water for cadmium and manganese BCII leads to more reactive enzymes than the native zinc BcII, suggesting that the role of the metal ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate

Item Type: Article
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References: 1. Fre`re, J. M. (1995) Beta-lactamases and bacterial resistance to antibiotics, Mol. Microbiol. 16, 385-395. 2. Fisher J. D., Meroueh, S. O., and Mobashery, S. (2005) Bacterial resistance to â-lactam antibiotics: compelling opportunism, compelling opportunity, Chem. ReV. 105, 395-424. 3. Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J., Dideberg, O., and Fre`re, J. M. (2001) Standard numbering scheme for class B â-lactamases, Antimicrob. Agents Chemother. 45, 660- 663. 4. Fabiane, S. M., Sohi, M. K., Wan, T., Payne, D. J., Bateson, J. H., Mitchell, T., and Sutton, B. J. (1998) Crystal structure of the zinc-dependent â-lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzyme, Biochemistry 37, 12404-12411. 5. Orellano, E. G., Girardini, J. E., Cricco, J. A., Ceccarelli, E. A., and Vila, A. J. (1998) Spectroscopic characterization of a binuclear metal site in Bacillus cereus â-lactamase II, Biochemistry 37, 10173-10180. 6. Paul-Soto, R., Bauer, R., Fre`re, J. M., Galleni, M., Meyer-Klaucke, W., Nolting, H., Rossolini, G. M., de Seny, D., Hernandez- Valladares, M., Zeppezauer, M., and Adolph, H. W. (1999) Monoand binuclear Zn2+-â-lactamase. Role of the conserved cysteine in the catalytic mechanism, J. Biol. Chem. 274, 13242-13249. 7. Concha, N. O., Rasmussen, B. A., Bush, K., and Herzberg, O. (1996) Crystal structure of the wide-spectrum binuclear zinc â-lactamase from Bacteroides fragilis, Structure 4, 823-836. 8. Paul-Soto, R., Hernadez-Valladares, M., Galleni, M., Bauer, R., Zeppezauer, M., Fre`re, J. M., and Adolph, H. W. (1998) Monoand binuclear Zn2+-â-lactamase from Bacteroides fragilis: catalytic and structural roles of the zinc ions, FEBS Lett. 438, 137- 140. 9. Yang, Y., Keeney, D., Tang, X., Canfield, N., and Rasmussen, B. A. (1999) Kinetic properties and metal content of the metallo-â- lactamase CcrA harboring selective amino acid substitutions, J. Biol. Chem. 274, 15706-15711. 10. Wang, Z., Fast, W., and Benkovic, S. J. (1999) On the mechanism of the Bacteroides fragilis metallo-â-lactamase, Biochemistry 38, 10013-10023. 11. Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P., Meunier, C., de Pauw, E., Amicosante, G., Fre`re, J. M., and Galleni, M. (1999) Biochemical characterisation of the Pseudomonas aeruginosa 101/1477 metallo-â-lactamase IMP-1 produced by Escherichia coli, Antimicrob. Agents Chemother. 43, 902-906. 12. Haruta, S., Yamaguchi, H., Yamamoto, E. T., Eriguchi, Y., Nukaga, M., O’Hara, K., and Sawai, T. (2000) Functional analysis of the active site of a metallo-â-lactamase proliferating in Japan, Antimicrob. Agents Chemother. 44, 2304-2309. 13. Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever, C. A., Clarke, B. P., Lewis, C., Galleni, M., Fre`re, J. M., Payne, D. J., Bateson, J. H., and Abdel-Meguid, S. S. (2000) Crystal structure of the IMP-1 metallo â-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor, Biochemistry 39, 4288-4298. 14. Garcia-Saez, I., Hopkins, J., Papamicael, C., Franceschini, N., Amicosante, G., Rossolini, G. M., Galleni, M., Fre`re, J. M., and Dideberg, O. (2003) The 1.5-A Structure of Chryseobacterium meningosepticum zinc â-Lactamase in complex with the inhibitor, D-Captopril, J. Biol. Chem. 278, 23868-23873. 15. Crowder, M. W., and Walsh, T. R. (1999) Structure and function of metallo-â-lactamases, Recent Res. DeV. Antimicrob. Agents Chemother. 3, 105-132. 16. Hernandez Valladares, M., Felici, A., Weber, G., Adolph, H. W., Zeppezauer, M., Rossolini, G. M., Amicosante, G., Fre`re, J. M., and Galleni, M. (1997) Zn(II) dependence of the Aeromonashydrophila AE036 metallo-â-lactamase activity and stability, Biochemistry 36, 11534-11541. 17. Crawford, P. A., Yang, K. W., Sharma, N., Bennett, B., and Crowder, M. W. (2005) Spectroscopic studies on cobalt(II)- substituted metallo-â-lactamase ImiS from Aeromonas Veronii bv. sobria, Biochemistry 44, 5168-5176. 18. Rasmussen, B. A., and Bush, K. (1997) Carbapenem hydrolysing â-lactamases, Antimicrob. Agents Chemother. 41, 223-232. 19. Felici, A., Amicosante, G., Oratore, A., Strom, R., Ledent, P., Joris, B., Fanuel, L., and Fre`re, J. M. (1993) An overview of the kinetic parameters of class B â-lactamases, Biochem. J. 291, 151-155. 20. Felici, A., and Amicosante, G. (1995) Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-â-lactamases, Antimicrob. Agents Chemother. 39, 192-199. 21. Crowder, M. W., Walsh, T. R., Banovic, L., Pettit, M., and Spencer, J. (1998) Overexpression, purification, and characterization of the cloned metallo-â-lactamase (L1) from Stenotrophomonas maltophilia, Antimicrob. Agents Chemother. 42, 921-926. 22. Mercuri, P. S., Bouillenne, F., Boschi, L., Lammote-Brasseur, J., Amicosante, G., Devreese, B., Van Beeumen, J., Fre`re, J. M., Rossolini, G. M., and Galleni, M. (2001) Biochemical characterization of the FEZ-1 metallo-â-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli, Antimicrob. Agents Chemother. 45, 1254-1262. 23. Carfi, A., Duee, E., Galleni, M., Fre`re, J. M., and Dideberg, O. (1998) 1.85 Å resolution structure of the zinc (II) â-lactamase from Bacillus cereus, Acta Crystallogr., Sect. D: Biol. Crystallogr. D54, 313-323. 24. Carfi, A., Duee, E., Paul-Soto, R., Galleni, M., Fre`re, J. M., and Dideberg, O. (1998) X-ray structure of the Zn(II) â-lactamase from Bacteroides fragilis in an orthorhombic crystal form, Acta Crystallogr., Sect. D: Biol. Crystallogr. D54, 45-57. 25. Ullah, J. H., Walsh, T. R., Taylor, I. A., Emery, D. C., Verma, C. S., Gamblin, S. J., and Spencer, J. (1998) The crystal structure of the L1 metallo-â-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution, J. Mol. Biol. 284, 125-136. 26. Garcı´a-Sa´ez, P., Mercuri, S., Papamicael, C., Kahn, R., Fre`re, J. M., Galleni, M., Rossolini, G. M., and Dideberg, O. (2003) Threedimensional structure of FEZ-1, a monomeric subclass B3 metallo- â-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril, J. Mol. Biol. 325, 651-660. 27. Garau, G., Bebrone, C., Anne, C., Galleni, M., Fre`re, J.-M., and Dideberg, O. (2005) A metallo-â-lactamase in action: crystal structure of the monozinc carbapenemase CphA and its complex with biapenem, J. Mol. Biol. 345, 785-795. 28. Fitzgerald, P. M., Wu, J. K., and Toney, J. H. (1998) Unanticipated inhibition of the metallo-â-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-Å resolution, Biochemistry 37, 6791-6800. 29. Concha, N. O., Rasmussen, B. A., Bush, K., and Herzberg, O. (1997) Crystal structure of the cadmium- and mercury-substituted metallo-â-lactamase from Bacteroides fragilis, Protein Sci. 6, 2671-2676. 30. Toney, J. H., Fitzgerald, P. M., Grover-Sharma, N., Olson, S. H., May, W. J., Sundelof, J. G., Vanderwall, D. E., Cleary, K. A., Grant, S. K., Wu, J. K., Kozarich, J. W., Pompliano, D. L., and Hammond, G. G. (1998) Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-â- lactamase, Chem. Biol. 5, 185-196. 31. Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Fre`re, J. M., and Dideberg, O. (1995) The 3-D structure of a zinc metallo-â- lactamase from Bacillus cereus reveals a new type of protein fold, EMBO J. 14, 4914-4921. 32. Paul-Soto, R., Zeppezauer, M., Adolph, H. W., Galleni, M., Fre`re, J. M., Carfi, A., Dideberg, O., Wouter, J., Hemmingsen, L., and Bauer, R. (1999) Preference of Cd(II) and Zn(II) for the two metal sites in Bacillus cereus â-lactamase II: a perturbed angular correlation of ç-rays (PAC) spectroscopy study, Biochemistry 38, 16500-16506. 33. de Seny, D, Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., Fre`re, J. M., Bauer, R., and Adolph, H. W. (2001) Metal ion binding and coordination geometry for wild type and mutants of metallo-â-lactamase from Bacillus cereus 569/H/9 (BcII); a combined thermodynamic, kinetic and spectroscopic approach, J. Biol. Chem. 276, 45065-45078. 34. Wommer, S., Rival, S., Heinz, U., Galleni, M., Fre`re, J. M., Franceschini, N., Amicosante, G., Rasmussen, B., Bauer, R., and Adolph, H. W. (2002) Substrate activated zinc binding of metallo- â-lactamases; physiological importance of the mononuclear enzymes, J. Biol. Chem. 277, 24142-24147. 35. Crowder, M. W., Wang, Z., Franklin, S. L., Zovinka, E. P., and Benkovic, S. J. (1996) Characterization of the metal-binding sites of the â-lactamase from Bacteroides fragilis, Biochemistry 35, 12126-12132. 36. Fast, W., Wang, Z., and Benkovic, S. J. (2001) Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-â-lactamase from Bacteroides fragilis, Biochemistry 40, 1640-1650. 37. Matthews, B. W. (1988) Structural basis of the action of thermolysin and related zinc peptidases, Acc. Chem. Res. 21, 333- 340. 38. Lipscomb, W. N., and Strater, N. (1996) Recent advances in zinc enzymology, Chem. ReV. 96, 2375-2433. 39. Bounaga, S., Laws, A. P., Galleni, M., and Page, M. I. (1998) The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent â-lactamase, Biochem J. 331, 703-711. Bounaga, S. (1999) Mechanism of catalysis and inhibition of Bacillus cereus class B â-lactamase, Ph.D. Thesis, University of Huddersfield, Huddersfield, U.K. 40. Gesmantel, N. P., Proctor, P., and Page, M. I. (1980) Metal-ion catalysed hydrolysis of some â-lactam antibiotics, J. Chem. Soc., Perkin Trans. 2, 1725-1732. 41. Kiefer, L. L., and Fierke, C. A. (1994) Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites, Biochemistry 33, 15233-15240. 42. Bicknell, R., Knott-Hunziker, Y., and Waley, S. G. (1983) The pH-dependence of class B and class C â-lactamases, Biochem. J. 213, 61-66. 43. Baldwin, G. S., Edwards, G. F. StL., Kiener, P. A., Tully, M. J., Waley, S. G., and Abraham, E. P. (1980) Production of a variant of beta-lactamase II with selectively decreased cephalosporinase activity by a mutant of Bacillus cereus 569/H/9, Biochem. J. 191, 111-116. 44. Schowen, K. B., and Schowen, R. L. (1982) Solvent isotope effects on enzyme systems, Methods Enzymol. 87, 551-606. 45. Damblon, C., Jensen, M., Ababou, A., Barsukov, I., Papamicael, C., Schofield, C. J., Olsen, L., Bauer, R., and Roberts, G. C. (2003) The inhibitor thiomandelic acid binds to both metal ions in metallo-beta-lactamase and induces positive cooperativity in metal binding, J. Biol. Chem. 31, 29240-29251. 46. Antonaccio, M. J. (1982) Angiotensin Converting Enzyme (ACE) Inhibitors, Annu. ReV. Pharmacol. Toxicol. 22, 57-87. 47. Heinz, U., Bauer, R., Wommer, S., Meyer-Klaucke, Papamichaels, C., Bateson, J., and Adoph, H. W. (2003) Coordination geometries of metal ions in D- or L-captopril-inhibited metallo-â-lactamases, J. Biol. Chem. 278, 20659-20666. 48. Hughes, M. A., Smith, G. L., and Williams, D. R. (1985) The binding of metal ions by captopril (SQ 14225). Part I. complexation of zinc(II), cadmium(II) and lead(II), Inorg. Chim. Acta 107, 247-252. 49. Barnum, D. W. (1983) Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxyl complexes, Inorg. Chem. 22, 2297-2305. 50. Greenwood, N. N., and Earnshaw, A. (1997) Zinc, Cadmium and Mercury, in Chemistry of the Elements, 2nd ed., pp 1201-1226, Elsevier, Amsterdam. 51. Kraus, M., Gilson, H. S. R., and Gresh, N. (2001) Structure of the first-shell active site in metallolactamase: effect of water ligands, J. Phys. Chem. B 105, 8040-8049. 52. Olsen, L., Antony, J., Hemmingsen, L., and Mikkelsen, K. V. (2002) Structure of a metal ion binding site in beta-lactamase: QM study of the influence of hydrogen bonding network and backbone constraints, J. Phys. Chem. A 106, 1046-1053. 53. Lindskog, S. (1982) Carbonic anhydrase, AdV. Inorg. Chem. 4, 115-170. 54. Makinen, M. W., Kuo, L. C., Dymowski, J. J., and Jaffer, S. (1979) Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis, J. Biol. Chem. 254, 356-366. 55. Omburo, G. A., Kuo, J. M., Mullins, L. S., and Raushel, F. M. (1992) Characterization of the zinc binding site of bacterial phosphotriesterase, J. Biol. Chem. 267, 13278-13283. Zheng, F., Zhan, C. G., and Ornstein, R. L. (2002) Theoretical determination of two structural forms of the active site in cadmium-containing phosphotriesterases, J. Phys. Chem. B 106, 717-722. 56. Hemmingsen, L., Bauer, R., Bjerrum, M. J., Zeppezauer, M., Adolph, H. W., Formicka, G., and Cedegren-Zeppezauer, E. (1995) Cd-substituted horse liver alcohol dehydrogenase: catalytic site metal coordination geometry and protein conformation, Biochemistry 34, 7145-7153. 57. Caldwell, S. R., Newcomb, J. R., Schlecht, K. A., and Raushel, F. M. (1991) Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta, Biochemistry 30, 7438-7444. 58. Bicknell, R., and Waley, S. G. (1985) Cryoenzymology of Bacillus cereus â-lactamase II, Biochemistry 24, 6876-6887. 59. Ash, D. E., Cox, J. D., and Christianson, D. W. (2000) Arginase: a binuclear manganese metalloenzyme, Met. Ions Biol. Syst. 37, 407-428. 60. Coleman, J. E. (1992) Structure and mechanism of alkaline phosphatase, Annu. ReV. Biophys. Biomol. Struct. 21, 441-483. 61. Badarau, A. (2006) Reactivity and inhibition of metallo-â- lactamases, Ph.D. Thesis, University of Huddersfield. 62. Bundgaard, H. (1976) Hydrolysis and intramolecular aminolysis of cephalexin and cephaloglycin in aqueous solution, Arch. Pharm. Chemi, Sci. Ed. 4, 25-43. 63. Faraci, S. W., and Pratt, R. F. (1986) Mechanism of inhibition of RTEM-2 â-lactamase by cephamycins: relative importance of the 7R-methoxy group and the 3¢ leaving group, Biochemistry 25, 2934-1941. 64. Indelicato, J. M., and Wilham, W. L. (1974) Effect of 6-R substitution in penicillins and 7-R substitution in cephalosporins upon â-lactam reactivity, J. Med. Chem. 17, 528-529. 65. Heinz, U., Kiefer, M., Tholey, A., and Adolph, H. W. (2005) On the competition for available zinc, J. Biol. Chem. 280, 3197- 3207. 66. Page, M. I. (1992) Structure-activity relationship: chemical, in The Chemistry of â-lactams (Page, M. I., Ed.) pp 79-100, University Press, Cambridge. 67. Spencer, J., Read, J., Sessions, R. B., Howell, S., Blackburn, G. M., and Gamblin, S. J. (2005) Antibiotic recognition by binuclear metallo-â-lactamases revealed by X-ray crystallography,
Depositing User: Sara Taylor
Date Deposited: 18 May 2007
Last Modified: 07 Apr 2018 12:00
URI: http://eprints.hud.ac.uk/id/eprint/180

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©