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Abstract. This paper presents a novel SAT-based approach for the computation

of extensions in abstract argumentation, with focus on preferred semantics, and

an empirical evaluation of its performances. The approach is based on the idea

of reducing the problem of computing complete extensions to a SAT problem

and then using a depth-first search method to derive preferred extensions. The

proposed approach has been tested using two distinct SAT solvers and compared

with three state-of-the-art systems for preferred extension computation. It turns

out that the proposed approach delivers significantly better performances in the

large majority of the considered cases.

1 Introduction

Dung’s theory of abstract argumentation frameworks [17] provides a general model,

which is widely recognized as a fundamental reference in computational argumentation

in virtue of its simplicity, generality, and ability to capture a variety of more specific

approaches as special cases. An abstract argumentation framework (AF ) consists of a

set of arguments and of an attack relation between them. The concept of extension plays

a key role in this simple setting, where an extension is intuitively a set of arguments

which can “survive the conflict together”. Different notions of extensions and of the

requirements they should satisfy correspond to alternative argumentation semantics,

whose definitions and properties are an active investigation subject since two decades

(see [6, 5] for an introduction).

The main computational problems in abstract argumentation are naturally related to

extensions and can be partitioned into two classes: decision problems and construction



problems. Decision problems pose yes/no questions like “Does this argument belong

to one (all) extensions?” or “Is this set an extension?”, while construction problems re-

quire to explicitly produce some of the extensions prescribed by a semantics. In partic-

ular, extension enumeration is the problem of constructing all the extensions prescribed

by a given semantics for a given AF . The complexity of extension-related decision

problems has been deeply investigated and, for most of the semantics proposed in the

literature they have been proven to be intractable. Intractability extends directly to con-

struction/enumeration problems, given that their solutions provide direct answers to

decision problems.

Theoretical analysis of worst-case computational issues in abstract argumentation

is in a state of maturity with the available complexity results covering all Dung’s tra-

ditional semantics and several subsequent prominent approaches in the literature (for a

summary see [19]). On the practical side, however, the investigation on efficient algo-

rithms for abstract argumentation and on their empirical assessment is less developed,

with few results available in the literature. This paper contributes to fill this gap by

proposing a novel approach and implementation for enumeration of Dung’s preferred

extensions, corresponding to one of the most significant argumentation semantics, and

comparing its performances with other state-of-the-art implemented systems. We focus

on extension enumeration since it can be considered the most general problem, i.e. its

solution provides complete information concerning the justification status of arguments

(making it possible to determine, for instance, if two arguments cannot be accepted in

the same extension) and the proposed approach can be easily adapted to solve also the

decision problems mentioned above.

The paper is organized as follows. Section 2 recalls the necessary basic concepts and

state-of-the-art background. Section 3 introduces the proposed approach while Section

4 describes the test setting and comments the experimental results. Section 5 provides

a comparison with related works and then Section 6 concludes the paper.

2 Background

An argumentation framework [17] consists of a set of arguments5 and a binary attack

relation between them.

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where A is a

set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b, a〉 ∈ R, also denoted

as b → a. The set of attackers of an argument a will be denoted as a
− , {b : b → a}.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of

arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is conflict–free if ∄ a, b ∈ S s.t. a → b;

– an argument a ∈ A is acceptable with respect to a set S ⊆ A if ∀b ∈ A s.t. b → a,

∃ c ∈ S s.t. c → b;

5 In this paper we consider only finite sets of arguments.



– a set S ⊆ A is admissible if S is conflict–free and every element of S is acceptable

with respect to S.

An argumentation semantics σ prescribes for any AF Γ a set of extensions, denoted

as Eσ(Γ ), namely a set of sets of arguments satisfying some conditions dictated by

σ. In [17] four “traditional” semantics were introduced, namely complete, grounded,

stable, and preferred semantics. Other literature proposals include semi-stable [12],

ideal [18], and CF2 [7] semantics. Here we need to recall the definitions of complete

(denoted as CO) and preferred (denoted as PR) semantics only, along with a well

known relationship between them.

Definition 3. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a complete extension, i.e. S ∈ ECO(Γ ), iff S is admissible and

∀a ∈ A s.t. a is acceptable w.r.t. S, a ∈ S;

– a set S ⊆ A is a preferred extension, i.e. S ∈ EPR(Γ ), iff S is a maximal (w.r.t. set

inclusion) admissible set.

Proposition 1. For any AF Γ = 〈A,R〉, S is a preferred extension iff it is a maximal

(w.r.t. set inclusion) complete extension. As a consequence EPR(Γ ) ⊆ ECO(Γ ).

It can be noted that each extension S implicitly defines a three-valued labelling of

arguments, as follows: an argument a is labelled in iff a ∈ S, is labelled out iff ∃ b ∈ S
s.t. b → a, is labelled undec if neither of the above conditions holds. In the light of

this correspondence, argumentation semantics can be equivalently be defined in terms

of labellings rather than of extensions (see [11, 5]). In particular, the notion of complete

labelling [13, 5] provides an equivalent characterization of complete semantics, in the

sense that each complete labelling corresponds to a complete extension and vice versa.

Complete labellings can be (redundantly) defined as follows.

Definition 4. Let 〈A,R〉 be an argumentation framework. A total function Lab : A 7→
{in, out, undec} is a complete labelling iff it satisfies the following conditions for any

a ∈ A:

– Lab(a) = in ⇔ ∀b ∈ a
−Lab(b) = out;

– Lab(a) = out ⇔ ∃b ∈ a
− : Lab(b) = in;

– Lab(a) = undec ⇔ ∀b ∈ a
−Lab(b) 6= in ∧ ∃c ∈ a

− : Lab(c) = undec;

Moreover, it is proved in [11] that preferred extensions are in one-to-one correspon-

dence with those complete labellings maximizing the set of arguments labelled in.

The introduction of preferred semantics is one of the main contribution of Dung’s

paper. Its name, in fact, reflects a sort of preference w.r.t. other traditional semantics,

as it allows multiple extensions (differently from grounded semantics), the existence of

extensions is always guaranteed (differently from stable semantics), and no extension

is a proper subset of another extension (differently from complete semantics). Also in

view of its relevance, computational complexity of preferred semantics has been ana-

lyzed early [15, 14] in the literature, with standard decision problems in argumentation

semantics resulting to be intractable in the case of PR.



As to algorithms for computing preferred extensions, two basic approaches have

been considered in the literature. On one hand, one may develop a dedicated algorithm

to obtain the problem solution, on the other hand, one may translate the problem in-

stance at hand into an equivalent instance of a different class of problems for which

solvers are already available. The results produced by the solver have then to be trans-

lated back to the original problem.

The three main dedicated algorithms for computing preferred extensions in the lit-

erature [16, 24, 25] share the same idea based on labellings: starting from an initial

default labelling, a sequence of transitions (namely changes of labels) is applied lead-

ing to the labellings corresponding to preferred extensions. The three algorithms differ

in the initial labelling, the transitions adopted, and the use of additional intermediate la-

bels besides the three standard ones. The algorithm proposed in [25] has been shown to

outperform the previous ones and will be therefore taken as the only term of comparison

for this family of approaches.

As to the translation approach, the main proposal we are aware of is the ASPAR-

TIX system [22], which provides an encoding of AF s and the relevant computational

problems in terms of Answer Set Programs which can be processed by a solver like

DLV [23]. Recently an alternative encoding of ASPARTIX using metaASP has been

proposed [20] and showed to outperform the previous version when used in conjunc-

tion with gringo/claspD solver. ASPARTIX is a very general system, whose capabilities

include the computation of preferred extensions, and both versions will be used as ref-

erence for this family of approaches.

3 The PrefSat approach

The approach we propose, called PrefSat, can be described as a depth-first search in the

space of complete extensions to identify those that are maximal, namely preferred ex-

tensions. Each step of the search process requires the solution of a SAT problem through

invocation of a SAT solver. More precisely, the algorithm is based on the idea of encod-

ing the constraints corresponding to complete labellings of an AF as a SAT problem

and then iteratively producing and solving modified versions of the initial SAT problem

according to the needs of the search process. The first step for a detailed presentation

of the algorithm concerns therefore the adopted SAT encoding for complete labellings.

3.1 A SAT encoding for complete labellings

A propositional formula over a set of boolean variables is satisfiable iff there exists

a truth assignment of the variables such that the formula evaluates to True. Checking

whether such an assignment exists is the satisfiability (SAT) problem. Given an AF
Γ = 〈A,R〉 we are interested in identifying a boolean formula, called complete la-

belling formula and denoted as ΠΓ , such that each satisfying assignment of the formula

corresponds to a complete labelling. While this might seem a clear-cut task, several syn-

tactically different encodings can be devised which, while being logically equivalent,

can significantly affect the performance of the overall process of searching a satisfying

assignment. For instance, adding some “redundant” clauses to a formula may speed up



the search process, thanks to the additional constraints. On the other hand, increasing

syntactic complexity might lead to worse performances, thus a careful selection of the

encoding is needed.

In order to explore alternative encodings, let us consider as a starting point a boolean

formula encoding the constraints of Definition 4 in conjunctive normal form (CNF), as

required by the SAT solver. To this purpose, we have to introduce some notation. Letting

k = |A| we can identify each argument with an index in {1, . . . k} or, more precisely,

we can define a bijection φ : {1, . . . , k} 7→ A (the inverse map will be denoted as

φ−1). φ will be called an indexing of A and the argument φ(i) will be sometimes

referred to as argument i for brevity. For each argument i we define three boolean

variables, Ii, Oi, and Ui, with the intended meaning that Ii is true when argument i is

labelled in, false otherwise, and analogously Oi and Ui correspond to labels out and

undec. Formally, given Γ = 〈A,R〉 we define the corresponding set of variables as

V(Γ ) , ∪1≤i≤|A|{Ii, Oi, Ui}. Now we express the constraints of Definition 4 in terms

of the variables V(Γ ), with the additional condition that for each argument i exactly

one of the three variables has to be assigned the value True. For technical reasons we

restrict to“non-empty” extensions (in the sense that at least one of the arguments is

labelled in), thus we add the further condition that at least one variable Ii is assigned

the value True. The detail of the resulting CNF is given in Definition 5.

Definition 5. Given an AF Γ = 〈A,R〉, with |A| = k and φ : {1, . . . , k} 7→ A
an indexing of A, the C1 encoding defined on the variables in V(Γ ), is given by the

conjunction of the formulae listed below:

∧

i∈{1,...,k}

(

(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)∧(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)
)

(1)

∧

{i|φ(i)−=∅}

(Ii ∧ ¬Oi ∧ ¬Ui) (2)

∧

{i|φ(i)− 6=∅}



Ii ∨





∨

{j|φ(j)→φ(i)}

(¬Oj)







 (3)

∧

{i|φ(i)− 6=∅}





∧

{j|φ(j)→φ(i)}

¬Ii ∨Oj



 (4)

∧

{i|φ(i)− 6=∅}





∧

{j|φ(j)→φ(i)}

¬Ij ∨Oi



 (5)

∧

{i|φ(i)− 6=∅}



¬Oi ∨





∨

{j|φ(j)→φ(i)}

Ij







 (6)



∧

{i|φ(i)− 6=∅}





∧

{k|φ(k)→φ(i)}



Ui ∨ ¬Uk ∨





∨

{j|φ(j)→φ(i)}

Ij











 (7)

∧

{i|φ(i)− 6=∅}









∧

{j|φ(j)→φ(i)}

(¬Ui ∨ ¬Ij)



 ∧



¬Ui ∨





∨

{j|φ(j)→φ(i)}

Uj











 (8)

∨

i∈{1,...k}

Ii (9)

C1 corresponds to the conditions of Definition 4 with the addition of the non-

emptyness requirement. Formula (1) states that for each argument i one and only one

label has to be assigned. Formula (2) settles the case of unattacked arguments that must

be labelled in. Formula (3) states that argument i is labelled in if all its attackers are

labelled out, while Formula (4) settles the reverse (i.e. the ‘only if’ ) condition. For-

mula (5) corresponds to the constraint that argument i is labelled out if at least one of

its attackers is labelled in, while Formula (6) corresponds to the ‘only if’ condition.

Formula (7) is a bit more articulated: it states that argument i is labelled undec if none

of its attackers is labelled in and at least one of its attackers is labelled undec, and

again Formula (8) corresponds to the ‘only if’ condition. Finally, formula (9) ensures

non-emptyness, i.e. that at least one argument is labelled in.

The encoding of Definition 5 is redundant, i.e. it is possible to drop out some clauses

so as to obtain a simpler logically equivalent encoding. The following proposition,

whose proof, based on the requirement thatLab is a total function (cf. Def. 4), is omitted

due to space limitations, shows the alternative non redundant encodings.

Proposition 2. Referring to the formulae listed in Definition 5, the following encodings

are equivalent:

C1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)
Ca

1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (9)
Cb

1 : (1) ∧ (2) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)
Cc

1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (7) ∧ (8) ∧ (9)
C2 : (1) ∧ (2) ∧ (4) ∧ (6) ∧ (8) ∧ (9)
C3 : (1) ∧ (2) ∧ (3) ∧ (5) ∧ (7) ∧ (9)

Ca
1 , Cb

1 and Cc
1 correspond to Definition 4 where the third, first and second iff

condition is removed, respectively, C2 codifies the ‘only if’ (⇒) part of the conditions

and C3 the ‘if’ (⇐) part6.

In Section 4 we evaluate the performance of the overall approach for enumerating

the preferred extensions given the above six encodings. In the next section we describe

the core of our proposal.

6 Ca
1 and C2 correspond to the alternative definitions of complete labellings in [13], where a

proof of their equivalence is provided.



Algorithm 1 Enumerating the preferred extensions of an AF

1: Input: Γ = 〈A,R〉
2: Output: Ep ⊆ 2A

3: Ep := ∅
4: cnf := ΠΓ

5: repeat

6: prefcand := ∅
7: cnfdf := cnf

8: repeat

9: lastcompfound := SS(cnfdf)
10: if lastcompfound ! = ε then

11: prefcand := lastcompfound

12: for a ∈ INARGS(lastcompfound) do

13: cnfdf := cnfdf ∧ Iφ−1(a)

14: end for

15: remaining := FALSE

16: for a ∈ A \ INARGS(lastcompfound) do

17: remaining := remaining ∨ Iφ−1(a)

18: end for

19: cnfdf := cnfdf ∧ remaining

20: end if

21: until (lastcompfound ! = ε ∧ INARGS(lastcompfound) ! = A)

22: if prefcand ! = ∅ then

23: Ep := Ep ∪ {INARGS(prefcand)}
24: oppsolution := FALSE

25: for a ∈ A \ INARGS(prefcand) do

26: oppsolution := oppsolution ∨ Iφ−1(a)

27: end for

28: cnf := cnf ∧ oppsolution

29: end if

30: until (prefcand ! = ∅)

31: if Ep = ∅ then

32: Ep = {∅}
33: end if

34: return Ep

3.2 Enumerating preferred extensions

We are now in a position to illustrate the proposed procedure, called PrefSat and listed

in Algorithm 1, to enumerate the preferred extensions of an AF Γ = 〈A,R〉.
Algorithm 1 resorts to two external functions: SS, and INARGS. SS is a SAT

solver able to prove unsatisfiability too: it accepts as input a CNF formula and returns a

variable assignment satisfying the formula if it exists, ε otherwise. INARGS accepts

as input a variable assignment concerning V(Γ ) and returns the corresponding set of

arguments labelled as in. Moreover we take for granted the computation of ΠΓ from

Γ (using one of the equivalent encodings shown in Proposition 2), which is carried out

in the initialization phase (line 4).



Theorem 1 proves the correctness of Algorithm 1.

Theorem 1. Given an AF Γ = 〈A,R〉 Algorithm 1 returns Ep = EPR(Γ ).

The proof of the above Theorem is omitted due to space limitations, however we

provide an explanation of the algorithm. The algorithm mainly consists of two nested

repeat-until loops. Roughly, the inner loop (lines 8–21) corresponds to a depth-first

search which, starting from a non-empty complete extension, produces a sequence of

complete extensions strictly ordered by set inclusion. When the sequence can no more

be extended, its last element corresponds to a maximal complete extension, namely to

a preferred extension. The outer loop (lines 5–30) is in charge of driving the search:

it ensures, through proper settings of the variables, that the inner loop is entered with

different initial conditions, so that the whole space of complete extensions is explored

and all preferred extensions are found.

Let us now illustrate the operation of Algorithm 1 in detail. Given the correspon-

dence between variable assignments, labellings, and extensions, we will resort to some

terminological liberty for the sake of conciseness and clarity (e.g. stating that the solver

returns an extension rather than that it returns an assignment which corresponds to a

labelling which in turn corresponds to an extension). In the first iteration of the outer

loop, the assignment of line 7 results in cnfdf = ΠΓ in virtue of the initialization

of line 4. Then the inner loop is entered and, at line 9, SS is invoked on ΠΓ . Due to

the non-emptyness condition in ΠΓ , SS returns ε if the only complete extension (and

hence the only preferred extension) of Γ is the empty set. In this case, lines 11–19 are

not executed and the loop is directly exited. As a consequence, prefcand is still empty

at line 22 and also the outer loop is directly exited. The condition of line 31 then holds,

the assignment of line 32 is executed and the algorithm terminates returning {∅}.

Let us now turn to the more interesting case where there is at least one non-empty

complete extension. Then, the first solver invocation returns (non deterministically)

one of the non-empty complete extensions of the framework which is assigned to

lastcompfound at line 9. Then the condition of line 10 is verified and lastcompfound
is set as the candidate preferred extension (line 11). In lines 12–19 the formula cnfdf is

updated in order to ensure that the next call to SS returns a complete extension which is

a strict superset of lastcompfound (if any exists). This is achieved by imposing that all

elements of lastcompfound are labelled in (lines 12–14) and that at least one further

argument is labelled in (lines 15–19). In the next iteration (if any), the modified cnfdf
is submitted to SS. If a solution is found, the inner loop is iterated in the same way: at

each successful iteration a new, strictly larger, complete extension is found. According

to the conditions stated in line 21, iteration of the inner loop will then terminate when

the call to SS is not successful or when lastcompfound covers all arguments, since

in this case no larger complete extension can be found. If a new preferred extension

has been found, it is added to the output set Ep (line 23). Then, a formula is produced

which ensures that any further solution includes at least an argument not included in the

already found one (lines 25–27). This formula is then added to cnf (line 28). The outer

loop then restarts resetting variables at lines 6–7 in preparation for a new execution of

the inner loop. The inner loop is entered with cnfdf updated at line 7, this ensures that

the call to SS either does not find any solution (and then the algorithm terminates re-

turning Ep as already set) or finds a new complete extension which is not a subset of



any of the preferred extensions already found and is then extended to a new preferred

extension in the subsequent iterations of the loop.

4 The Empirical Analysis

The algorithm described in the previous section has been implemented in C++ and

integrated with two alternative SAT solvers, namely PrecoSAT and Glucose. PrecoSAT

[9] is the winner of the SAT Competition7 2009 on the Application track. Glucose [3,

4] is the winner of the SAT Competition in 2011 and of the SAT Challenge 2012 on the

Application track.

This choice gave rise to the following two systems:

– PrefSat with PrecoSAT (PS-PRE);

– PrefSat with Glucose (PS-GLU).

To assess empirically the performance of the proposed approach with respect to

other state-of-the-art systems and to compare the two SAT solvers on the SAT instances

generated by our approach, we ran a set of tests on randomly generated AF s.

The experimental analysis has been conducted on 2816 AF s that were divided in

different classes, according to two dimensions: the number of arguments, |A| and the

criterion of random generation of the attack relation. As to |A| we considered 8 differ-

ent values, ranging from 25 to 200 with a step of 25. As to the generation of the attack

relation we used two alternative methods. The first method consists in fixing the prob-

ability patt that there is an attack for each ordered pair of arguments (self-attacks are

included): for each pair a pseudo-random number uniformly distributed between 0 and

1 is generated and if it is lesser or equal to patt the pair is added to the attack relation.

We considered three values for patt, namely 0.25, 0.5, and 0.75. Combining the 8 val-

ues of |A| with the 3 values of patt gives rise to 24 test classes, each of which has been

populated with 50 AF s.

The second method consists in generating randomly, for each AF , the number natt

of attacks it contains (extracted with uniform probability between 0 and |A|2). Then the

natt distinct pairs of arguments constituting the attack relation are selected randomly.

Applying the second method with the 8 values of |A| gives rise to 8 further test classes,

each of which has been populated with 200 AF s. Since the experimental results show

minimal changes between the sets of AF s generated with the two methods, hereafter

we silently drop this detail.

Further, we also considered, for each value of |A|, the extreme cases of empty attack

relation (patt = natt = 0) and of fully connected attack relation (patt = 1, natt =
|A|2), thus adding 16 “singleton” test classes.

The tests have been run on the same hardware (a Quad-core Intel(R) Xeon(TM)

CPU 2.80GHz with 4 GByte RAM and Linux operating system). As in the well-known

international planning competition8 (IPC), a limit of 15 minutes was imposed to com-

pute the preferred extensions for each AF . No limit was imposed on the RAM usage,

7
http://www.satcompetition.org/

8 http://www.plg.inf.uc3m.es/ipc2011-learning/Rules
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Fig. 1: IPC w.r.t. |A| (all test cases), comparing PS-GLU using respectively encodings
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1 , C2, and C3 (cf. Proposition 2).

but a run fails at saturation of the available memory, including the swap area. The sys-

tems under evaluation have been compared with respect to the ability to produce solu-

tions within the time limit and to the execution time (obtained as the real value of the

command time -p). As to the latter comparison, we adopted the IPC speed score,

also borrowed from the planning community, which is defined as follows:

– For each test case (in our case, each test AF ) let T ∗ be the best execution time

among the compared systems (if no system produces the solution within the time

limit, the test case is not considered valid and ignored).

– For each valid case, each system gets a score of 1/(1 + log10(T/T
∗)), where T is

its execution time, or a score of 0 if it fails in that case. Runtimes below 1 sec get

by default the maximal score of 1.

– The (non normalized) IPC score for a system is the sum of its scores over all the

valid test cases. The normalised IPC score ranges from 0 to 100 and is defined as

(IPC/# of valid cases) ∗ 100.

First of all, we ran an investigation on which of the alternative encodings introduced

in Proposition 2 performs best. While there are cases where PS-PRE performs better

using Ca
1 and others where it performs better using C2 (with minimal differences on

average), it is always outperformed by PS-GLU using C2, thus we refer to PS-GLU

to illustrate the difference of performance induced by the alternative encodings. In Fig-

ure 1, we compare the empirical results obtained by executing PS-GLU, and Table 1

summarises the average times. It is worth to mention that PS-GLU always computed

the preferred extensions irrespective of the chosen encoding. As we can see, the overall

performance is significantly dependent on the set of conditions used, where the greatest

performance (considering the generated AF s) is C2, and then in sequence, generally

Ca
1 , C1, Cb

1 , Cc
1 and C3, although we have empirical evidences (omitted due to space



|A| C
1

Ca

1
Cb

1
Cc

1
C

2
C

3

25 5.97E-03 5.91E-03 5.43E-03 5.31E-03 6.25E-04 3.92E-03

50 3.50E-02 3.39E-02 3.38E-02 3.38E-02 9.74E-03 3.10E-02

75 1.06E-01 1.02E-01 1.05E-01 1.06E-01 2.74E-02 1.02E-01

100 2.76E-01 2.65E-01 2.78E-01 2.91E-01 6.39E-02 2.89E-01

125 5.24E-01 5.03E-01 5.54E-01 5.95E-01 1.15E-01 6.23E-01

150 1.27E+00 1.22E+00 1.39E+00 1.43E+00 2.46E-01 1.60E+00

175 2.06E+00 1.98E+00 2.46E+00 2.82E+00 4.80E-01 3.51E+00

200 5.00E+00 4.89E+00 6.17E+00 7.90E+00 1.38E+00 1.00E+01

Table 1: Average time (in seconds) for computing the preferred extensions according to

the different labellings encoding of Proposition 2 grouped by |A|. In bold the best one.
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Fig. 2: Percentage of success over all test cases.

constraints) showing that on dense graphs there are situations where C3 performs better

than C1.

In order to evaluate the overall performance of Algorithm 1 (cf. Section 3), let us

compare PS-PRE and PS-GLU both using encoding C2 with the other three notable

systems at the state of the art:

– ASPARTIX with dlv as ASP solver (denoted as ASP);

– ASPARTIX-META with gringo as grounder and claspD as ASP solver (de-

noted as ASP-META) as presented in [20];

– the system presented in [25] (NOF)9.

None of five (considering also our PS-GLU and PS-PRE) systems uses parallel

execution.

9 We thank Samir Nofal for kindly providing the source code.
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Concerning the ability to produce solutions, Figure 2 summarizes the results con-

cerning all test cases grouped w.r.t. |A|. PS-GLU, PS-PRE (both exploiting C2 encod-

ing), and ASP-META were able to produce the solution in all cases. On the other hand,

the success rate of both ASP and NOF decreases significantly with the increase of |A|.
We observed that the failure reasons are quite different: ASP reached in all its failure

cases the 15 minutes time limit, while NOF ran out of memory before reaching the time

limit. In the light of this observation, NOF’s evaluation has certainly been negatively

affected by the relatively scarce memory availability of the test platform, but, from an-

other perspective, the results obtained on this platform give a clear indication about the

different resource needs of the compared systems.

|A| ASP ASP-META NOF PS-PRE PS-GLU

25 7.78E-02 2.70E-01 3.24E-01 3.87E-03 6.27E-04

50 3.32E-01 1.00E+00 5.43E-01 2.32E-02 1.04E-02

75 1.03E+00 2.30E+00 1.18E+00 5.98E-02 2.96E-02

100 3.75E+00 4.33E+00 3.81E+00 1.36E-01 6.84E-02

125 1.63E+01 6.95E+00 8.50E+00 2.46E-01 1.24E-01

150 3.16E+01 1.16E+01 1.47E+01 4.59E-01 2.24E-01

175 6.65E+01 1.61E+01 2.64E+01 6.65E-01 3.21E-01

200 1.24E+02 2.27E+01 5.02E+01 1.02E+00 4.79E-01

Table 2: Average time (in seconds) for computing the preferred extensions needed by

the five systems grouped by |A| on AF s for which all the systems computed correctly

the preferred extensions. In bold the best one.



Turning to the comparison of execution times, Figure 3 presents the values of nor-

malized IPC considering all test cases grouped w.r.t. |A|, while Table 2 shows the av-

erage time needed by the five systems for computing the preferred extension. Both

PS-PRE and PS-GLU performed significantly better (note that the IPC score is log-

arithmic) than ASP and NOF for all values of |A| > 25, and the performance gap

increases with increasing |A|. Moreover, PS-GLU is significantly faster than PS-PRE

for |A| > 175 (again the performance gap increases with increasing |A|). ASP and

NOF obtained quite similar IPC values with more evident differences at lower values

of |A|. Surprisingly, ASP-META performed worse that its older version ASP (and also

of NOF) on frameworks with number of arguments up to 100 (cf. Table 2). Although

this may seem in contrast with results provided in [20], it has to be remarked that the

IPC measure is logarithmic w.r.t. the best execution time, while [20, Fig. 1] uses a lin-

ear scale, and this turned to be a disadvantage when analysing the overall performance.

Indeed, the maximum difference of execution times between ASP and ASP-META ex-

ecuted on frameworks up to 100 arguments is around 1.2 seconds, while the axis of

ordinate of [20, Fig. 1] ranges between 0 and 300, thus making impossible to note this

difference.

5 Comparison with Related Works

The relationship between argumentation semantics and the satisfiability problem has

been already considered in the literature, but less effort has been devoted to the study

of a SAT-based algorithm and its empirical evaluation. For instance, in [8] three ap-

proaches determining semantics extensions are preliminary described, namely the equa-

tional checking, the model checking, and the satisfiability cheking of which three dif-

ferent formulations for, respectively, stable extension, admissible set, and complete ex-

tension are presented from a theoretical perspective, without providing any empirical

evaluation.

More recently, in [10], and similarly in [1], relationships between argumentation

semantics and constraint satisfaction problems are studied, with different formulation

for each semantics or decision problem. In particular, [1] proposes an extensive study of

CSP formulations for decision problems related to stable, preferred, complete, grounded

and admissible semantics, while [10] shows an empirical evaluation of their approach

through their software ConArg, but for conflict-free, admissible, complete and stable

extensions only.

Probably the most relevant work is [21], where a method for computing credu-

lous and skeptical acceptance for preferred, semi-stable, and stage semantics has been

studied, implemented, and empirically evaluated using an algorithm based upon a NP-

oracle, namely a SAT solver. Differently from our work, this approach is focused on

acceptance problems only and does not address the problem of how to enumerate the

extensions. As we do believe that the approach we showed in this paper can be eas-

ily adapted for dealing with both credulous acceptance (we have just to force the SAT

solver to consider a given argument as labelled in) and skeptical acceptance (we have

just to check whether a given argument is in all the extensions), we have already started

a theoretical and empirical investigation on this subject.



Finally, as the computation of the preferred extension using [13]’s labelling ap-

proach requires a maximisation process, at a first sight this seems to be quite close to a

MaxSAT problem [2], which is a generalisation of the satisfiability problem. The idea is

that sometimes some constraints of a problem can not be satisfied, and a solver should

try to satisfy the maximum number of them. Although there are approaches aimed at

finding the maximum w.r.t. set inclusion satisfiable constraints (i.e. nOPTSAT10), the

MaxSAT problem is conceptually different from the problem of finding the preferred

extensions. Indeed, for determining the preferred extensions we maximise the accept-

ability of a subset of variables, while in the MaxSAT problem it is not possible to bound

such a maximisation to a subset of variables only. However, a deeper investigation that

may lead to the definition of argumentation semantics as MaxSAT problems is already

envisaged as a future work.

6 Conclusions

We presented a novel SAT-based approach for preferred extension enumeration in ab-

stract argumentation and assessed its performances by an empirical comparison with

other state-of-the-art systems. The proposed approach turns out to be efficient and to

generally outperform the best known dedicated algorithm and the ASP-based approach

implemented in the ASPARTIX system. The proposed approach appears to be applica-

ble for extension enumeration of other semantics (in particular stable and semi-stable)

and this represents an immediate direction of future work. As to performance assess-

ment, we are not aware of other systematic comparisons concerning computation ef-

ficiency in Dung’s framework apart the results presented in [25], where different test

sets were used for each pairwise comparison, with a maximum argument cardinality

of 45. The comparison provided in [20] is aimed just at showing the differences be-

tween the two different encoding of ASPARTIX. Java-based tools mainly conceived for

interactive use, like ConArg [10] or Dungine [26], are not suitable for a systematic effi-

ciency comparison on large test sets and could not be considered in this work. It can be

remarked however that they adopt alternative solution strategies (translation to a CSP

problem in ConArg, argument games in Dungine) whose performance evaluation is an

important subject of future work.

We are currently working to integrate the proposed approach into the SCC-recursive

schema introduced in [7] to encompass several semantics (including grounded, pre-

ferred and stable semantics). More specifically, the approach proposed in this paper

can be applied to the sub-frameworks involved in the base-case of the recursion: since

such local application decreases the number of variables involved, we expect a dramatic

performance increase.
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