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Multi-Variable Control of a High Redundancy Actuator

T. Steffen, R. Dixon, R.M. Goodall, A.C. Zolotas
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Abstract: The High Redundancy Actuator project deals with the construction of an actuator from many redundant

actuation elements. Whilst this promises a high degree of fault tolerance, the high number of components also

poses a unique challenge from a control perspective.

This paper shows how the state space model of a stack of actuation elements in series can be separated into

a high dimensional internal and a low dimensional external subspace. Once the internal states are decoupled

and damped, the behaviour is dominated by the few states of the external subspace. This means that the high

redundancy actuator with many redundant elements behaves just like a conventional single actuator.

Keywords: electromagnetic actuation, fault tolerance, multi-variable control

1 High Redundancy Actuation

High Redundancy Actuation (HRA) is a novel con-

cept of designing a fault tolerant actuator that com-

prises a relatively large number of actuation elements

(see Figure 1). As a result, faults in the individual el-

ements can be inherently accommodated without re-

sulting in a failure of the complete actuator system.1

The concept of the High Redundancy Actuation

(HRA) is inspired by the human musculature. A

muscle is composed of many individual muscle cells,

each of which provides only a minute contribution to

the force and the travel of the muscle. These prop-

erties allow the muscle as a whole to be highly re-

silient to damage of individual cells. The aim of this

project is not to replicate muscles, but to use the same

principle of co-operation with existing technology to

provide intrinsic fault tolerance.

An important feature of the High Redundancy Ac-

tuator is that the elements are connected both in par-

allel and in series. While the parallel arrangement

is commonly used, the serial configuration is rarely

employed, because it is perceived to be less efficient.

However, the use of elements in series is the only con-

figuration that can deal with the lock-up of an ele-

ment. In a parallel configuration, this would immedi-

ately render all elements useless, but in the series con-

figuration it only leads to a slight reduction of avail-

able travel (see Steffen et al. 2007b, 2008 for details).

2 Motivation

Because the parallel configuration is already well

studied, this paper focuses on the use of elements in

1This project is a cooperation of the Control Systems
group at Loughborough University, the Systems Engineer-
ing and Innovation Centre (SEIC), and the actuator supplier
SMAC Europe limited. The project is funded by the Engi-
neering and Physical Sciences Research Council (EPSRC)
of the UK under reference EP/D078350/1.

Figure 1: High Redundancy Actuator

series. This is more challenging from a control point

of view, because each element is a moving mass, and

the model needs to describe the position and speed

of each mass separately. For example, the element

at the bottom of the assembly experiences a higher

load, because it needs to move all the other elements

in addition to the load.

For the envisioned number of elements (10x10 or

more), this may lead to a model with hundreds of

states, which would be too complex even for ad-

vanced multi-variable control approaches. Thus the

goal of this paper is to reduce the model complexity

to a level comparable to a conventional actuator.

The basic idea is to split the travel equally between

all actuation elements. If this is achieved, the states of

the elements are no longer individual variables, and

they can all be reduced into a single simple model. In

other words: because the whole system behaves like

a single conventional actuator, a simple conventional

actuator model is sufficient to describe it.

Figure 2: Electromechanical actuator
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Figure 3: Dynamic components of a single element

Figure 4: 3 Elements in Series

3 System Model

The basic components of an electromechanical actu-

ation element are shown in Figure 3. From a mod-

elling perspective, it is a typical single mass system,

which can be described by NEWTONian mechanics.

Three forces act upon the mass: the electromagnetic

force Fel = ki, the damping force Fd = dv, and the

spring force Fs = rx (see Davies et al. 2008 for more

details). Together, they lead to the second order dif-

ferential equation

mẍ = ki−dẋ− rx .

Choosing x and ẋ as states leads to the model:

d

dt
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In the case of several actuation elements in se-

ries, each element creates forces between neighbour-

ing masses, so each mass is subject to forces from

both sides. The resulting model for three actuation

elements (as shown in Figure 4) is:

d

dt
x = Ax+Bi (1)

with α = 1
m1

+ 1
m2

, β = 1
m2
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,
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Figure 5: Delay between elements

state x = (ẋ1 x1 ẋ2 x2 ẋ3 x3)
T , and input i = (i1 i2 i3)

T .

The overall extension is y = x1 + x2 + x3.

The main problem with this system is that the ele-

ments are not used in an equal way. If the same input

is used for all three elements, the top element (x3)

moves first, because it has the lightest load. Then the

middle element (x2) begins to move, and finally the

element on the base (x1) will respond. So the step

moves through the system like a longitudinal wave.

This is shown in Figure 5 for a nominal system

with di = 2, ri =
1
2
, k = 1, m1 = m2 = 0.5 and m3 = 1.

A simple single input/single output (SISO) propor-

tional controller with a phase lead compensator is

used

K(s) = 2
0.4s+1

4s+1
, (2)

and a reference step of 30mm (10mm per element) is

simulated. Since this kind of wave propagation com-

plicates the control of the actuator, the next two sec-

tions present ways to eliminate the time delay and to

align the movement of all elements.

4 Parameter Tuning

One of the goals of the HRA is to spread the travel

equally between the elements

x1 = x2 = x3 . (3)

This cannot be achieved directly, but the model can

be tuned for

ẍ1 = ẍ2 = ẍ3 (4)

if xi and ẋi are equal. Since the system is linear, it

is sufficient to satisfy Equation (4) for the two ba-

sis vectors xv = (1 0 1 0 1 0)T and xp = (0 1 0 1 0 1)T

(assuming i = 0 for now).2

If the mechanical parameter are used for the tuning,

this leads to the two equations

−
d1

m1
+

d2

m1
=

d1

m1
−

d2

m1
−

d2

m2
+

d3

m2
=

d2

m2
−

d3

m2
−

d3

m3

2For more details on the geometric approach and invariants see

Wonham, 1985, Basile and Marro, 1992.
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Figure 6: Step response after parameter tuning
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=
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−
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−
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which solve to

d2 = d3 +
2m2

3m3
d3 (5)

d1 = d2 +
1m1

3m3
d3 (6)

r2 = r3 +
2m2

3m3
r3 (7)

r1 = r2 +
1m1

3m3
r3 . (8)

Under these conditions, the system has two modes

that satisfy the condition of equal spread of travel.

It is necessary to align the input signal with these

modes. Using the same approach, the result is

k2 = k3 +
2m2

3m3
k3 (9)

k1 = k2 +
1m1

3m3
k3 (10)

assuming all inputs are equal (i1 = i2 = i3).

The result of this tuning is shown in Figure 6. The

parameters of the third element are equal to the step

response in Figure 5, and the other elements are tuned

accordingly. Clearly the delay between the elements

has been eliminated, and they all respond at the same

time. The disturbance response (at t = 5) still deviates

slightly between the elements, but the difference is

small and not significant for most practical purposes.

5 Tuning Using Feedback

Since the tuning of mechanical parameters is not al-

ways possible, the second approach for travel equali-

sation uses feedback. The inputs i1 and i2 will receive

proportional feedback based on the acceleration

a = ẍ1 + ẍ2 + ẍ3 =−
d3

m3
ẋ3−

r3

m3
x3 +

k3

m3
i3 (11)

of the load m3, and feed-forward from i3:
(

i1
i2

)

=

(

f1

f2

)

a3 +

(

i3
i3

)

(12)
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Figure 7: Step response after acceleration feedback

where f1, f2 ∈ R are coefficients to be determined.

This leads to an augmented model

d

dt
x = AF x+BF i3 (13)

(the matrices are omitted for space reasons), and

again the requirement is Equation (4). This is simi-

lar to a disturbance decoupling problem [Commault

et al., 1997], but the two subspaces are already de-

fined, which simplifies the solution. Assuming that

all elements are equal (d1 = d2 = d3, k1 = k2 = k3

and m1 = m2), and using x = xv, i3 = 0 this leads to

the equation

f1− f2 = 2 f2− f1 =
m1

k1
− f2 (14)

with the solution

f1 =
m1

k2
, f2 =

2

3
f1 . (15)

The alignment is also satisfied for the second basis

vector xp and the input, as long as the springs (r1 =
r2 = r3) and force constants (k1 = k2 = k3) are equal.

Again the subspaces representing unequal exten-

sions of the elements have been decoupled from the

input. With this solution, the decoupling also in-

cludes disturbance forces on the load m3, because

they are measured via a3 and distributed equally over

the elements. The simulation result is shown in Fig-

ure 7: all elements show the same response both to

the set-point change and to the disturbance force.

6 State Reduction

To separate the two different subspaces, the following

state transformation can be used:

T =



















1 0 2 0 0 0

0 1 0 2 0 0

1 0 −3 0 −
3m3
2m2

0

0 1 0 −3 0
3m3
2m2

1 0 1 0 1+ 3m3
2m2

0

0 1 0 1 0 1+ 3m3
2m2



















−1

(16)
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Figure 8: Responses with 5% parameter tolerances

The first two columns obviously span the part of the

state space with equal extent and velocity, while the

remaining columns span the remaining modes of the

system. Applying this transformation to the tuned

system from Section 4 (and the system from Section 5

gives similar results) leads to the model

dt

d
x′ = A′x′+B′i (17)

with the new state x′ = Tx and matrices

A′ =

















−
d

3m3
−

r
3m3

0 0 0 0

1 0 0 0 0 0

0 0 a1 a2 a3 a4

0 0 1 0 0 0

0 0 a5 a6 a7 a8

0 0 0 0 1 0

















B′ = (k 0 0 0 0 0)T
.

As this model clearly shows, the dynamics of the sys-

tem are determined by first two states. The other

states are not excited by the input (as can be seen by

the zeros in A′ and B′), so they remain close to zero.

7 Robustness

If there are parameter tolerances or faults in the sys-

tem, the model of the system changes, and the de-

coupling is no longer perfect. So a slight change in

behaviour is expected. However, since the secondary

modes are fast and well damped, they will not have a

significant influence on the overall behaviour. The in-

fluence of random 5% parameter tolerances is shown

in Figure 8, and the behaviour after a lock-up of the

right element x3 = 0 is shown in Figure 9. As pre-

dicted, the alignment between the elements is still

very close. For a more detailed analysis see Steffen

et al. [2007a].

8 Conclusion

Two methods have been presented that can equalise

the motion of the elements in the HRA. The result-

ing behaviour is identical to a single classical actua-

tor, and the state space model can be reduced to two
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Figure 9: Response with single element looked up

states. Although the method has been demonstrated

for three elements, it scales well and it can easily be

applied to arbitrary complex configuration. The ro-

bustness to parameter variations and faults has been

demonstrated using an example, but a more detailed

analysis is a matter of continuing research.
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