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Abstract

The Fast Fourier Transform (FFT) is commonly used in the field of digital signal
processing to move a signal from the time domain to the frequency domain. The
FFT is popular as a low level processing technique in automatic music
transcription algorithms, but there is a performance trade-off between suitable
time and frequency resolutions for music transcription. To address this problem,
multiresolution methods that employ several FFTs across the frequency
spectrum have become popular. The purpose of this investigation was to assess
the properties of the FFT in the context of Automatic Music Transcription (AMT)
and to optimise the main parameters of a multiresolution FFT to improve the
spectral output.

Background theory of AMT and current low level processing techniques is
presented. Discussion of the FFT decomposition theory and multiresolution
techniques are followed by a brief overview of spectral processing and current
high level processing approaches. These topics are presented within the context
of western music harmony as a foundation for the presentation of an optimised
multiresolution FFT.

A novel method of scoring FFT parameters based upon frequency resolution,
time resolution and the alignment of the fundamental frequencies for equal
tempered musical notes with the frequency bins of the FFT was developed. A 4-
band multiresolution FFT with optimised sub-band divisions and FFT lengths is
derived from the exhaustive evaluation of parameters based upon the scoring
method.

The optimised 4-band multiresolution FFT is evaluated against a single band
FFT, a 3-band optimised solution, an existing 4-band multiresolution FFT
solution and two variations of the existing 4-band multiresolution solution -
comparing optimisation scores and performance in sinusoidal extraction tasks.

Theoretical results show the optimised 4-band multiresolution FFT does offer an
improved performance for use in automatic music transcription compared to a
non-optimised solution. Preliminary real world testing indicated issues that
require further investigation.
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Introduction

Mozart would have attended many concerts and performances during his
lifetime, but famously he attended a performance of Gregorio Allegri’s “Miserere”
in the Sistine Chapel in 1770. It is famous because upon leaving the performance
he proceeded to write the entire score for the piece of music he had just heard,
from memory. He then attended a second performance just to check he had
scored it correctly (Gutman, 1999). This ability to listen to music and decode it is
possible for all humans with a functioning auditory system in some measure,
even if it is just identifying one sound as being higher than another, or it being
different in tone. Although Mozart was highly trained and exceptionally good at
transcribing music, that is analyzing an acoustic signal and writing down the

pitch, onset time, duration and source of each sound that occurs in it, today’s

computers still struggle to succeed at even simple transcription tasks.

Some of the earliest handwritten scores are found in the early church where
monks would transcribe chants from the performance they heard to written
notation therefore allowing others to reproduce the original music having never
previously heard it. Later, the invention of the printing press greatly increased
the distribution of written music and so it developed over time to the standards
found in the musical scores of today (Latham, 2002, pp. 842-849). Despite the
great advancement in technology for printing and distributing written music, the
human ability to detect and decode sounds into their basic characteristics of time

duration and pitch is something which technologists are still striving to replicate.
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The dawn of the computer age gave great pace to signal analysis, particularly
when |W Cooley and ]J.W. Tukey published their paper in 1965 utilising a
computer to calculate the Discrete Fourier Transform (Cooley & Tukey, An
Algorithm for the Machine Calculation of Complex Fourier Series, 1965). Interest
specifically in music analysis and automatic music transcription increased from
the 1980s, when advancements in processing power first allowed computers to
feasibly model the human auditory system and analyze audio quickly and
efficiently - allowing many processes to be performed simultaneously (Patterson
& Moore, 1986). Now the area of automatic music transcription research is very

active covering many aspects of music transcription and analysis.

The annual ISMIR conference is a bench mark for progress in the research
community and the evidence of the papers submitted suggest that the initial
processing stage in music analysis is moving an audio signal from the time
domain to the frequency domain. There are varying methods to transform a
signal from the time domain to the frequency domain, such as filter banks (Diniz
F., Kothe, Netto, & Biscainho, 2007) and wavelets (Azizi, Faez, Delui, & Rahati,
2009) but still the Fourier family of transforms is used widely as a low level
frequency analysis process for music transcription (Tan, Zhu, & Chaisorn, 2010)
(Hsu & Jang, 2010). So, despite it's age, the Fourier transform is still important in
signal processing, and often is the foundation of other transform techniques such
as Fast Filter Banks (Diniz F. , Kothe, Netto, & Biscainho, 2007) and the

multiresolution FFT (Dressler, 2006).

The development of multiresolution processes such as wavelets and the

multiresolution FFT are of significance. All windowed spectrum analyses,
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including the Short Time Fourier Transform suffer from a compromise between
time resolution and frequency resolution This is related to the Heisenberg
Uncertainty Principle (Roads, 1996) that states if an accurate measurement of a
signal’s timing is required, the accuracy of the signal’s frequency measurement
will be compromised. Conversely, if an accurate measurement of a sound’s
frequency is required, the accuracy of the sounds timing measurement will be
compromised. Multiresolution analyses are designed to address the Heisenberg
Uncertainty Principle and improve the time and frequency resolution

simultaneously.

The first chapter of this thesis introduces the fundamentals of sound and music
as well as how the human detects and perceives sound and pitch. The different
disciplines within automatic music transcriptions are also discussed, as well as

the problems associated with fundamental frequency tracking.

Chapter 2 presents current single resolution low level processing techniques for
automatic music transcription. The main content of this chapter is a discussion of

the Discrete Fourier Transform and the Fast Fourier Transform implementation.

Chapter 3 continues the discussion of low level processing, focusing on
multiresolution techniques. The techniques presented are divided into two
categories, those imitating the human auditory system and those based upon a

‘constant Q’ factor to vary time and frequency resolution across the spectrum.

Chapter 4 is a brief introduction to ‘Peak Picking’ methods for extracting
frequency maxima representing note frequencies from a spectral representation.

The frequencies selected by the peak picker are the ‘note candidates’ presented
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to the ‘high level’ processing. This chapter also discusses methods to manipulate

the spectral information to improve the performance of the peak picker.

Chapter 5 provides an overview of current popular high level processing for
automatic music transcription. The purpose of this chapter is put into context the

low level processing discussed in previous chapters.

Chapter 6 is a discussion of the FFT parameters and characteristics of the FFT

algorithm for use in automatic music transcription.

Chapter 7 proposes a novel method of choosing parameters for multiresolution
Fast Fourier Transforms to optimise the output to create higher quality note
candidates for higher-level automatic music transcription processing. The
optimised multiresolution FFT is tested and compared to other implementations.

Results are presented and discussed.
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1 Fundamentals of Sound, Hearing, Music and Transcription

Before discussing pitch detection, identification methods and digital processing
techniques, it is important that the fundamentals of sound and its properties are
established. This section will introduce the fundamental properties of sound
waves, to help understand what is being attempted in this work and the

associated problems.

The basic properties of wavelength, frequency, loudness, amplitude and phase

are defined in appendix 1.

1.1 Superposition of Waves — Constructive and Destructive Interference

Two waves traveling in opposite directions can pass through each other and
emerge with their original form. This behavior is described by the principle of
superposition (Rossing, Moore, & Wheeler, 2002, p. 44). Figure 1-1 shows 2 sine
wave pulses passing through each other. At the point they meet their amplitudes
are summed resulting in a single summed pulse. However, note that the
frequency component stays consistent for each of the pulses. Once the two waves

have passed, they maintain their original characteristics.
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Superposition of pulses P1 and P2
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Figure 1-1 Superposition of waves

Image from (Stracha, 2008)

The same theory can be used for musical notes. A sine wave tuned to 440Hz
played with a second sine wave tuned to 493Hz will create a wave consisting of

the summation of a 440Hz and a 493Hz sine wave (Figure 1-2).
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R . U |

Figure 1-2 Wave summation

It is clear to see that the interaction of waves results in far more complex
patterns than a simple sine wave. This is one of the difficulties associated with
extracting pitch information from polyphonic waveforms as wave period

information is harder to extract as waves interact and superimpose.

The amplitude, frequency and phase of individual waveforms contribute to the
characteristics of the waveform produced when combined. The superposition of
waves can result in cancellation. Figure 1-3 shows the complete cancellation of 2
waves with opposite phase resulting in silence - this is known as destructive

phase interference.
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Figure 1-3 Destructive interference

If ‘in-phase’ waves are combined constructive interference occurs producing a
wave with increased amplitude equal to the sum of the combined amplitudes

(Figure 1-4).

Figure 1-4 Constructive interference

The above examples are very simple, but serve to demonstrate that although a
frequency is produced by a sound source, overlapping waves can cause complete
or partial cancellation. Waves are combined with waves from other sources,

resulting in some frequencies not being present or detectable in a mixed

waveform.
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1.2 Real World Notes

So far sine waves have been used to explain sound phenomena however, in the
real world, acoustic signals are rarely perfect sine waves. Many factors are
present in real world instruments and environments that ‘colour’ or ‘shape’ the
sound. The source of vibration e.g. a string, or a reed will vibrate with different
properties, the shape and material of the instrument will alter the way the sound
resonates. How the player plays the instrument will change the resultant sound
wave. The room in which the instrument is played will alter the sound reaching
your ears. These and variants result in much more complex waves than a sine
wave. Figure 1-5 demonstrates this by showing the waveform for an acoustic
guitar playing a note at 440Hz. The guitar was recorded using an AKG 414
microphone placed approximately 12 inches from the sound hole in an
acoustically treated studio environment, which minimizes the quantity of

reflections and reverberation detected by the microphone.

|||||||I .||||.|.| BRI AT A ||||[u.| M i, LA AW, I TP
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Figure 1-5 A 440Hz Guitar Note

Figure 1-5 demonstrates the complexity of ‘real world’ sound waves of

instruments when compared to ‘ideal’ sine wave representations. The
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complexity of the waves is in part due to frequencies other than that of the pure
note frequency (in this example 440Hz) being generated by the sound source

and being received by the microphone.

1.3 Harmonics, Fundamental and Pitch

A frequency domain analysis of the 440Hz guitar note shown in Figure 1-5

reveals many more frequencies present in the signal than that of 440Hz [Figure

1-6].

o
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Figure 1-6 Guitar harmonics

Within the frequency make up of the guitar note are the harmonics of the
fundamental frequency. Most oscillators such as a plucked string, human voice
or trumpet naturally oscillate at not only one, but several frequencies. These are
known as partials. When an oscillator vibrates with partials at integer multiples
of the fundamental frequency, they are know as harmonics. Partials whose
frequencies are not at integer multiples of the fundamental frequency are known

as inharmonic.
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The fundamental frequency is the note frequency, in this example 440Hz and is
typically the lowest frequency component, although not always as some
instruments have sub harmonics. A harmonic is a frequency component that is
an integer value of the fundamental, e.g. for a fundamental f, a series of
harmonics could be 2f, 3f, 4f etc. For a note of 440Hz (fundamental) the first
harmonic is at 880Hz, second harmonic at 1320Hz and so on. Figure 1-7 marks

the fundamental frequency and the 4 harmonics of the guitar note of 440Hz.
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Figure 1-7 Numbered guitar harmonics

Although the untrained human ear does not detect harmonics as separate notes,
harmonics do contribute to the perceived quality, timbre (the attribute used to
discern two sounds as being dissimilar using criteria other than pitch, loudness
or duration (Rossing, Moore, & Wheeler, 2002, p. 135)) and pleasantness of a
sound, which are all influenced by the relative strength of the individual

harmonic frequencies (Mesaros, Lupu, & Rusu, 2003).
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The complexity of the sound wave, both in the time and frequency domains
increases when multiple notes are sounded at the same time. Figure 1-8 shows
an excerpt from the waveform of 2 notes played on an acoustic guitar recorded

with an AKG 414 microphone. The notes are 440Hz and 493Hz.

Seconds
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1]

. I . I . I . I . 1 . 1 . 1 . I . I . I . I
1.0

0.8-
0.7-
0.6-
0.5-
0.4-
0.3-

EE i llW un..lﬂmm..dlm il Hml l llllmmllﬂlrll ,]m ,]m' .,nl“l
a0 ] ”M[””H'H”l T |”| ww”m]” i

-0.3-
-0.4-

-0.6-
-0.7
-0.8-

10
Figure 1-8 A section of a wave generated by 2 notes on an acoustic guitar

The resultant waveform of the 2 notes in unison is significantly more complex
than that of a single note as the phases and amplitudes of the 2 notes and their
harmonics interact with destructive and constructive interference. The
frequency domain analysis shows the complexity of the interaction of the 2 notes

and their harmonics (Figure 1-9).
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Figure 1-9 Interaction of harmonics

Interaction of the harmonics can make it difficult to discern the fundamental
frequency of a note being played as it is masked by harmonics of other notes.
However, as discussed later, the presence and pattern of the harmonics can be
used to ‘authenticate’ the presence of a fundamental. In a similar way, the human
auditory system uses the upper harmonics of a sound to determine the pitch of a
note, and can even determine the fundamental frequency from the pattern of the
harmonics even if the actual fundamental is not included in the wave (Rossing,

Moore, & Wheeler, 2002, p. 126).

1.4 Human Auditory System

The human auditory system and the brain of a trained musician is the most
reliable audio transcriptions system available (Klapuri, 2006b, p. 229). It has the
ability to discern pitch, the timbre of a sound, separate sound sources and locate
sound in an environment with great ease and accuracy that currently cannot be
rivaled by computer technology. Therefore, when investigating pitch analysis it

is informative to understand how the human auditory system functions.
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The input to the peripheral system is an acoustic signal and the output is a

collection of neural spikes that enter the brain (Gold & Morgan, 2000, p. 195).

Figure 1-10 shows a simple diagram of the human ear.

Pinna Hammer Anvil Stapes
\ , / Cochlea Basilar membrane
Eardrum
N\
\
Sound \} — A
Waves
Ear canal A

Outer ear Middle ear Inner Ear

Figure 1-10 The human auditory system

A simplified diagram of the human ear. Image modified from (Rossing, Moore, &

Wheeler, 2002, p. 84)

Sound enters the ear and travels down the auditory canal and is transmitted to
the eardrum where the acoustic energy is transformed to vibrational mechanical
energy in the middle ear. The hammer, anvil and stapes transfer the vibration
from the eardrum to the inner ear. The stapes motion impinges on the oval
window of the inner ear, which is a flexible membrane, and its motion sets the
fluid within the cochlea in motion. The motion of the fluid is transferred to the

basilar membrane within the cochlea. This is where frequency detection occurs.
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Figure 1-11 The cochlea

A simplified model of the cochlea. Image source: (Gold & Morgan, 2000, p. 193)

The position where the stapes impinges on the oval window of the cochlea is
called the base; the far end of the cochlea is the apex. Near the base of the
cochlea the basilar membrane is relatively narrow and stiff, and at the apex it is
wider and less stiff. This structure results in high frequencies exciting the basilar
membrane at the base but vibrations subside as they approach the apex. Low
frequencies enter the cochlea at the base but agitate the basilar membrane to
maximum amplitude at the apex. The vibration of the basilar membrane at
different points indicates different frequency content. It is this function that
leads to the supposition that the basilar membrane action is akin to a filter bank

(Klapuri, 2006b, pp. 234-237) (Figure 1-12).
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Figure 1-12 The basilar membrane as a filter bank

A representation of the activity along the basilar membrane. The filter bank
comparisons of the basilar membrane are clear. Image source: (Gold & Morgan,

2000, p. 193)

The motion of the hairs, or stereocilia on the basilar membrane causes firing of
the auditory nerves that connect to the hair cells and it is the spikes produced by
the auditory neurons that relay all auditory information to the brain for
interpretation. To transfer this model of the ear to a pitch perception algorithm,
the basilar membrane can be considered the low level processing, and the brain

as the high level processing - interpreting the data from the low level processing.

The model of the peripheral human auditory system as a sophisticated filter
bank is the basis of a significant amount of pitch detection research and theory
(Fletcher, 1938) and is still common in modern audio analysis algorithms

(Klapuri, 2008). Klapuri reasons that as it is the most accurate transcription
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system known, then it is sensible to imitate its functionality (Klapuri, 2006b, p.

229)

1.5 Critical Bands

The functionality of the basilar membrane as a filter bank is the basis of
‘Auditory filter’ research. The America physicist Harvey Fletcher was a leader in
the field of auditory filters and in the 1940s introduced the term ‘critical band’,
which referred to the then loosely defined bandwidths of the auditory filter

(Swets, Green, & Tanner, 1962).

A pure tone input to the basilar membrane will not agitate just a single hair, but a
large number of hairs. If 2 pure tones of similar frequency are present, the
agitation of the hairs in the basilar membrane will be similar for both tones, i.e.
they will stimulate the same receptors. When there is significant overlap of
which hairs are stimulated, it is said the 2 tones fall in the same critical band. The
effect of 2 frequencies being present in the same critical band is linked to the
inability of the auditory system to resolve 2 frequencies that are close together
as the louder of the 2 frequencies will mask the other in the same critical band
(Campbell & Greated, 1994). Critical bands allow the discrimination of different
sounds simultaneously only when the 2 or more frequencies fall within separate

critical bands to each other. (Roland-Mieszkowski, 1994)

The basilar membrane has 24 critical bands, with each band roughly equating to
a width of 1 third of an octave (Zwicker, 1961). However, when a single sound
source is heard in isolation (where there is no issue with masking), the ear can

discern pitch variances of less than 1 critical band. (Roland-Mieszkowski, 1994)
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The total number of pitch steps perceptible by the human auditory system is
approximately 1400, which is far greater than the number of notes in the range
of traditional western harmony and musical instruments. (Olson, 1967, pp. 248-

251)

Having discussed the properties of sound waves and how the human body
detects and perceives pitch, it is important to now consider pitch in musical
terms. There are basic properties and fundamentals of western musical tonality
that are of importance when discussing and designing music transcription

algorithms.

1.6 Western Musical Tonality

Modern popular western music is composed using the equal temperament. The
equal temperament tuning divides each octave into 12 semitones which are all
equal on a logarithmic scale and is usually tuned relative to a standard pitch of
around 440Hz, which is widely accepted as concert A. Although the exact
frequency of concert A does vary between orchestras, the equal tuning ensures
the intervals between notes remains constant. The frequency ratio between 2

adjacent notes is the twelfth root of 2, or 2 to the power of 1/12.

For the purposes of this thesis the most important property of the equal
tempered scale is the logarithmic relationship between adjacent note
frequencies. This logarithmic property results in low frequency notes being
closer together in terms of Hertz, than high frequency notes. This is significant
when considering the frequency resolution of low level processing for music

transcription algorithms.

31



Figure 1-13 shows 4 octaves of equal tempered notes starting at 440Hz,

demonstrating the logarithmic increase in frequency of the equal tempered scale

The Logarithmic Nature of Musical Notes
300
250

200

Note

150
Frequency

100

Frequency (Hz)

50

C D E F#GHAH# C D E FHGH#AH C D E F#GHA#H
Notes

Figure 1-13 Logarithmic note frequencies

Automatic music transcription is part of a larger area entitled Music Information
Retrieval, which can be sub divided into different categories This next section
will introduce the different categories and also some of the problems and issues

that make the process of using computers to transcribe music so difficult.

1.7 Categories of Music Information Retrieval

The Music Information Retrieval Evaluation eXchange (MIREX), an annual
evaluation of music information retrieval systems (MIREX, 2010b) has
categorised different areas of music information retrieval for the purposes of the

conference. Table 1 is a brief explanation of the key categories as defined by
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Mirex for the 2010 conference, and while it is not categorisation of music

information retrieval per se, it does provide a useful set of definitions.

Category

Task

Audio Key Detection

Identify the musical

recorded music

key of pre

Audio Cover Song Identification

Identify other versions/recordings of
an original query audio track.

Real-time Audio to Score Alignment

Requires the algorithm to align an
incoming music signal to the
corresponding musical score.

Query by Singing/Humming

Using a sung or hummed input signal
the algorithm will identify the correct
score from a database.

Audio Chord Estimation

Requires the algorithm to extract or
transcribe a sequence of chords from a
musical recording.

Audio Melody Extraction

Identify and extract the melody line
from a polyphonic recording.

Audio Beat Tracking

Track each beat location in a sound file.

Audio Music Similarity and Retrieval

Queries music files to group similar
music together.

Structural Segmentation

Identify the segments or ‘form’ of a
piece of music.

Audio Tempo Extraction

Extract the tempo of a piece of music.

Audio Onset Detection

To find the time locations of musical
events e.g. Notes in a recording

Multiple  Fundamental
Estimation & Tracking

Frequency

Estimate the fundamental frequencies
present in a piece of audio and track
their changes over time.

Table 1 Categories of music information retrieval

(MIREX, 2010c)

The Multiple Fundamental Frequency Estimation Tracking task is of particular

interest for this thesis. The task deals with the concept that a complex music

signal can be represented as a series of fundamental frequency contours. The

goal of this discipline is to identify the fundamental frequencies present in each
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time frame, and use this information to track notes through a complex music
signal. This is a complex task and tracking all fundamental frequencies in an

audio mixture is very difficult. Therefore, MIREX limit the problem to 3 cases:

* Estimate active fundamental frequencies on a frame-by-frame basis.
* Track note contours on a continuous time basis. (As in audio-to-MIDI).

* Track multiple timbres on a continuous time basis.

(MIREX, 2010c)

The category of fundamental frequency estimation and tracking is a good
example of the importance of both time and frequency resolution in automatic
music transcription, and is primarily the category of interest for this thesis. A
good frequency resolution is required to accurately detect fundamental
frequencies, but also a good time resolution is required to accurately identify the
timing of frequency onset. The next section outlines some of the challenges

associated with multiple fundamental frequency estimation.

1.8 Challenges Associated with multiple fundamental frequency estimation

Figure 1-14 shows a spectrogram of a recording of a conversation taking place in

an environment containing many other background conversations and noises.
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PCM signed 16-bit little-endian, 1411 kbps, 44100 Hz, 2 channels

Figure 1-14 Spectrogram of a conversation

The task of reading a complex spectrogram as in Figure 1-14 and extracting a
single sound source would be impossible for even an expert spectrogram reader
(Bregman, 1994), even though the human auditory system can decipher the

sound.

The difficulty of reading the spectrogram is due to sounds overlapping in both
time and frequency - this is a fundamental difficulty in multiple Fundamental
frequency estimation (Multiple FO Estimation). The overlapping of sounds
causing one not to be heard is termed Auditory Masking in psychoacoustics
(Wegel & Lane, 1924). Wegel and Lane’s investigation of masking focused on the
auditory system response to sound masking (as discussed in section 1.5) and the
effect of partials of lower frequency sound interfering with higher frequency

fundamentals (Figure 1-15).

Wegel and Lane found that the masking is greatest for tones nearly alike. When

the masking tone is loud it masks tones of higher frequency better than those of
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frequency lower than itself. When the masking tone is weak, there is little

difference. (Wegel & Lane, 1924)

Masking Tone

Masked Area

Inaudible Tone

Amplitude

Audible Tone

-~

v

Frequency

Figure 1-15 Auditory masking

Wegel and Lane’s work refers to masking of sounds which humans cannot detect,
but Yeh (Yeh, 2008) refers to masking of sounds which increase the difficulty for

computers to track fundamental frequencies, but which the human ear can hear.

Yeh refers to the difficulty of overlapping time and frequency components of
sound sources in more musical terms. He states that when musical notes are
played in harmonic relations, i.e. in the same key or scale (which is typical of
western popular music), the harmonics or partials of the higher notes may
completely mask, that is overlap, those of lower notes (Yeh, 2008). This,
combined with the diverse spectral characteristics of musical instruments,

results in greater ambiguity in the estimation of partial amplitudes increasing
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the difficulty of accurately extracting and tracking fundamental frequencies
through a piece of music. A spectrogram of a monophonic (single source)
recording (Figure 1-16) compared to that of a polyphonic source (Figure 1-17)

clearly shows the difficulty of polyphonic fundamental frequency estimation.

/Users/admin/Desktop/monophonic.wav
PCM signed 16-bit little-endian, 1411 kbps, 44100 Hz, 2 channels

10 kHz

0:06
Seconds

Figure 1-16 A monophonic Piano Line

/Users/admin/Desktop/polyphonic.wav
PCM signed 16-bit little-endian, 1411 kbps, 44100 Hz, 2 channels

Figure 1-17 a polyphonic piano line and bass line
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The time and frequency overlap of sound sources is the crux of the multiple
fundamental frequency estimation problem, particularly when considering the
harmonic structure of music and sound. In a given piece of music, perhaps 4 or
more notes may be overlapping in time, but given the theory of western tonality,
the fundamentals of these notes may be in simple integer ratios, leading to a
collision of their harmonics in spectral terms. This results in complex
constructive and destructive interference in the frequency domain (Poliner, Ellis,
Ehmann, Gomez, Streich, & Ong, 2007), which in part contributes to the complex

spectral representation of music.

The clear deciphering of fundamental frequencies from spectral representations
is the starting point for a very active area of research as people explore different

techniques and methods to transcribe notes from an audio mixture.

1.9 Structure of Fundamental Frequency Estimation Algorithms

Numerous single and multiple Fundamental Frequency (FO) Estimators have a

similar basic processing structure as that shown in Figure 1-18.

Low Level Processing High Level Processing

| Timeto Frequency
| Domain Transform

Transform Output
Manipulation

Peak Pick/Presentation Statistical Analysis
of Note Candidates ' Y Music Transcription

Figure 1-18 A commonly used structure of automatic music transcription algorithms
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Digitized audio is transformed from the time domain to the frequency domain.
From the output of this transform frequencies are selected as note candidates.
Further processing is performed to determine the correct notes from the note
candidates and the chosen notes are transcribed into a score - which is typically

generated as a MIDI file.

Although common, this structure is not exclusively followed (e.g. (Cheveigne &
Kawahara, 2002) but the presented structure in Figure 1-18 will be assumed as
the starting point for the following discussion and form the inspiration for the

optimisation investigation.

For the purposes of this thesis low level processing refers to the transformation of
a digital music source from the time domain to the frequency domain, any
manipulation of the transform output and the peak picking process to present
note candidates. High level processing refers to any analysis of the output data
from the low level transform to present a series of fundamental frequencies that

represent the original acoustic signal.
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2 Low Level Processing — Single Resolution Analysis

Low level processing refers to the techniques used to extract frequency
information from a time domain musical signal. The frequency domain
information is critical for automatic music transcription as it is the frequency
content that determines the note pitch to be transcribed. The techniques
described in the following section are implemented as the initial stage of the
majority of music information retrieval algorithms, but will be discussed
specifically in the context of fundamental frequency estimation and onset

detection.

The purpose of the low level processing stage is to present the spectral
information of the signal being transcribed as accurately as possible,
representing the fundamental frequencies and harmonics (dependent on the
type of high level processing used) clearly. If the initial low level processing can
present strong ‘note candidates’ i.e. clear spectral maxima to the high level
processors, then the likelihood of those candidates being ‘true’ is increased from

the outset, resulting in an easier high-level process to discern notes.
The characteristics of a desirable low-level process are:

* A good time resolution to accurately locate a frequency in time
* A good frequency resolution to accurately represent adjacent note

frequencies
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Low level processing can be divided into 2 categories, single resolution
transforms where a single time-frequency resolution is used across the entire
spectrum, and multiresolution transforms which use a variable time-frequency
resolution across the frequency spectrum - typically by splitting the initial signal
into different frequency bands. Single resolution transforms can be sub divided

in to frequency domain and time domain methods.

2.1 Time Domain Low Level Processing

Time domain low level processing methods look for repetitive patterns in the
waveform to determine a periodicity, and therefore a frequency. Time domain
approaches to pitch extraction have been used with successes for monophonic
pitch estimation (Rabiner, On the Use of Autocorrelation Analysis for Pitch
Detection, 1977) but such approaches are not suitable for multiple pitch
estimation due to the spectral complexity of the signal. However, for

completeness it is useful to have an understanding of these basic methods.

2.2 Zero Crossing

The zero crossing is the point where a waveform intersects the zero point,

changing sign from positive to negative (Figure 2-1).
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Figure 2-1 Zero Crossing

By tracking the time between zero crossings the period of the waveform and
therefore frequency can be calculated. This technique has been used as a crude
fundamental frequency estimator for speech processing (Veeneman, 1988) as
well as other disciplines such as the classification of percussive sounds (Gouyon,
Pachet, & Delerue, 2000), but as a stand-alone low level process for polyphonic
pitch extraction the complex waveforms render it wholly inaccurate (Roads,

1996, p. 508).

2.3 Autocorrelation

Correlation functions compare two signals with the goal of finding similarity
between the two signals (Roads, 1996, p. 509). Autocorrelation compares a
signal with versions of itself delayed by regular intervals. The comparing of
delayed versions results in finding underlying periodic signals from noisy signals

(Figure 2-2).
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Figure 2-2 Autocorrelation

The top diagram shows a time domain signal with a ‘hidden’ sine component. The
bottom diagram shows the result of the autocorrelation function on the time

domain signal.

Autocorrelation has been used as the main process with success in monophonic
pitch estimation (Rabiner, On the Use of Autocorrelation Analysis for Pitch
Detection, 1977), particularly in speech recognition (Kida, Sakai, Masuko, &
Kawamura, 2009) and is still a powerful tool for auditory model based methods
for multiple FO estimation (Klapuri, 2006b). These examples all use the same

basic autocorrelation process for pitch detection (Figure 2-3)
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‘ Y[n] Pitch ,
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X[n] algorithm

Delaym | Y[n-m]
samples

Figure 2-3 Auto correlation process

Part of the input signal is delayed in a buffer, and as more of the input signal
comes in, the detector attempts to match a pattern in the incoming signal with
the part of the waveform delayed in the buffer (Roads, 1996, p. 510). If the
detector finds a match between the two signals periodicity is indicated. The time
interval between the two waveform patterns is measured and the frequency is

calculated.

Although various autocorrelation algorithms exist (Moorer, 1975) a typical

function is

N
Autocorrelation[lag] = z signal[n] x signal[n + lag]
n=0

Equation i

Where:
N is the length of the input signal.

The magnitude of the autocorrelationf[lag] is determined by the similarity of the

values of signal at different points n and n+lag.
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When attempting to detect periodicity in more complex signals, the ‘pitch

decision’ algorithm will search for recurrent peaks in the autocorrelation (Roads,

1996, p. 511).

The difficulty with autocorrelation techniques is that peaks can occur at sub
harmonics, making it difficult to determine which are fundamental frequencies
(Gerhard, 2003). Modification of the basic autocorrelation function is not

uncommon to minimize the errors generated from the basic implementation

(Cheveigne, 1991).

Cheveigne and Kawahara presented the YIN estimator, which uses an adapted
version of the autocorrelation function as it’s low level processing (Cheveigne &
Kawahara, 2002). YIN utilises a ‘cumulative mean normalized difference
function’, which is a squared difference function normalized with it's average
over short lag values. This modification reduces error rates from 10% to 1.69%
compared to the standard autocorrelation function (Cheveigne & Kawahara,

2002) and has become a much-cited algorithm in the field.

The following section will discuss low-level frequency domain processing, and

primarily the Fast Fourier Transform.

2.4 Frequency Domain Low Level Processing

Frequency domain low level processing refers to methods that present spectral
information as an output by transforming the time domain signal into the

frequency domain. The most famous of these algorithms is the Fourier
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Transform. Many of the leading music transcription algorithms use the Fourier
Transform to view the spectral components of a signal (Goto 2006, Klapuri
2006), so it is important to discuss the Fourier family of transforms, their
properties and characteristics to understand their positive and negative
attributes for the purpose of fundamental frequency estimation and onset

detection.

2.5 Fourier Analysis

The Fourier transform is a mathematical operation that decomposes a time
signal into its component frequencies, generating a corresponding spectrum

representation (Roads, 1996, p. 550).

Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830), a

French mathematician who contributed significantly to the field.

2.5.1 The Fourier Family of Transforms

The differentiation between the categories of transforms in the Fourier family is

based on the signal in can transform.

A signal can be either continuous or discrete, and it can be either periodic or
aperiodic. These properties generate the 4 categories of Fourier transform which

are described in the following diagram (Smith S. W., 1997)
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Figure 2-4 The Fourier family

Image modified from (Smith S. W., 1997, p. 145)

The Discrete Fourier Transform (DFT) (boxed in blue in Figure 2-4) is utilised in
DSP as digital computers can only work with a discrete and finite amount of data

(samples), therefore ruling out the use of the other 3 transforms.

The above 4 categories of signal including the DFT, in mathematical terms all
extend to negative and positive infinity, and what is shown in Figure 2-4 is only a
small section of a mathematically infinite signal. However, only a finite number
of samples of a signal are used during a DFT, therefore this discrepancy needs to

be resolved, as discussed in the following section.

2.5.2 Periodicity of the DFT

As shown in Figure 2-4 the DFT is periodic i.e. it views both the time and

frequency domain as periodic. This may seem unsuitable for use in DSP as most
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signals used in DSP are not periodic but constantly changing, but a mathematical
characteristic of the DFT is that it views a time domain signal as a section of a
periodic signal which extends to infinity. To use the DFT to analyse a finite signal,
the finite signal is made to look infinite by duplication of the finite signal as
imaginary points either side of the actual signal. This results in the signal
appearing to be discrete and periodic, thus matching the criteria for the DFT

(Figure 2-5).

Original Signal
Sampled
{ Discrete
Signal

l

Discrete signal to
be transformed

Discrete Periodic Signal

Negative Infinity Positive Infinity

Figure 2-5 Discrete periodic signal
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2.5.3 The DFT Decomposition — An Introduction

The DFT decomposes a time domain signal into a series of component sine and

cosine waves.

Each member of the Fourier family of transforms can be sub-dived into real and
complex versions. The real version does not use complex numbers for the
decomposition process and is therefore relatively simple. The complex version

requires the use of complex numbers, which is the method of the FFT.

Smith (Smith S. W.,, 1997) is a useful single and easy-to-follow source for DSP
fundamentals. The following section on the DFT and FFT is a summary of the
content that Smith presents in his widely referenced book regarding the DFT and

FFT.

The DFT can be calculated in three different ways. The first is by simultaneous
equations, but this method is too inefficient to be of practical use. The second
method is by correlation and the third method is by using the Fast Fourier

Transform.

Although simultaneous equations and correlation methods will arrive at the
same result as the FFT, the speed and efficiency of the FFT is significantly better,
improving computation times by hundreds. The following section introduces the

decomposition method used in the Fast Fourier Transform.
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2.6 The Fast Fourier Transform

Tukey and Cooley are credited for introducing the FFT in 1965 (Cooley & Tukey,
An Algorithm for the Machine Calculation of Complex Fourier Series, 1965), but
in reality others such as Karl Friedrich Gauss (1777-1855) had discovered the
technique many years earlier (Smith S. W., 1997, p. 225). This early work was
forgotten as the tools were not available to make it practical, but Cooley and

Tukey’s introduction of the FFT coincided with the computer revolution.

The FFT calculates the complex DFT. The practical mathematics of the complex
DFT and the FFT is complicated, but it is useful to have a basic understanding of

how the FFT calculates the DFT.

2.6.1 The Complex DFT

The complex DFT transforms an N point time domain signals a real part, and an

imaginary part in to two N point frequency domain signals (Figure 2-6).
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Figure 2-6 Complex DFT

The complex DFT decomposition transforms both real and imaginary parts in the
time domain to the frequency domain. Shaded areas show values common to the

real DFT.

The real and imaginary parts of the time domain signals are represented in the
FFT collectively as N complex points. Complex points are composed of 2 values,
the real and imaginary parts. As each complex point holds two numbers, when
one complex point is multiplied by another the four components need to be
combined to form the two components of the produced complex variable. This
brief introduction to complex numbers in the FFT is useful to know when

discussing the FFT decomposition process in section 2.6.2, and more specifically

the FFT butterfly.
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2.6.2 FFT Decomposition

The decomposition performed by the FFT is what makes the FFT fast in
comparison to the simultaneous equations and correlation methods. The
following is a summary description of the FFT decomposition process,
emphasizing its speed and efficiency, rather than the complexities of

functionality, which are not relevant to the purpose of this project.

There are three stages to the FFT decomposition

* Decomposing an N point time domain signal into N time domain signals
each a single point

* (Calculate the N Frequency corresponding to each of the N time domain
signals

* Synthesize the N Spectra in to a single frequency spectrum

Smith’s 16-point time domain signal example will be used as a simple

explanation of the FFT decomposition process.

The first stage divides the 16 point signal in a pyramid structure where one
signal of 16 is split in to two signals of 8, is split in to four of 4 until there are
sixteen signals of 1 point. Duhamel and Vetterli refer to this as the ‘divide and
conquer’ method (Duhamel & Vetterli, 1990). Each time a signal is separated an
interlace decomposition is used to separate the signal in to its odd and even

numbered points. The figure below shows this process.

52



0123456789 10 11 12 13 14 15

/\

02 46 8 10 12 14 1357 9 11 13 15
/\ /\
048 12 2 610 14 159 13 37 11 15
/\ /\ /\ /\
081|412 2101|614 191|513 311|715
AN AN AN AN
0|8(4]12 2110/ 6| 14 119 5] 13 3111 7| 15

Figure 2-7 FFT Sample ordering

The output of the N point decomposition process shown in Figure 2-7 is
essentially the result of a bit reversal sorting algorithm. Bit reversing involves
rearranging the 16 time domain samples based on the flipping of their binary

representations (Table 2)

53



Samples In 'normal’ order Samples after bit reversal
Decimal Binary Decimal Binary
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 6 0100
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

Table 2 Bit reversal

The table on the right shows the decimal numbers reordered as a product of

reversing the binary numbers from the table on the left.

Stage two of the FFT is to determine the frequency spectra of the 1-point time
domain signals. This is the simplest step as the frequency spectrum of a 1 sample
signal is equal to itself, therefore nothing is involved is this step to take the 1
point signal from the time domain to the frequency domain. Each 1 point signal

is now a frequency spectrum, not a time domain signal

The third step of the FFT algorithm is more complicated as it involves combining
the 16 points of the frequency spectra in exactly the reverse order that the time
domain decomposition took place, undoing the interlaced decomposition

performed in the time domain. However, the bit reversal method is not
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applicable. Instead, the process must be performed one step at a time,
synthesizing the sixteen 1-point spectra in to eight 2-point spectra, in to four 4-
point spectra etc. The last stage results in the output of the FFT being a 16-point

frequency spectrum.

2.6.3 Frequency Domain Reordering and Butterflies

The method for combining the points of the frequency spectra involves diluting
the N point time domain signals to be decomposed/synthesized with zeros. Lets
take the process of combing two 4-point signals into a single 8-point signal to

explain the process.

A four-point signal abcd becomes a0b0c0d0 and when combined with a second
signal of 0e0f0g0Oh the synthesis of the two former 4-point signals becomes a
single 8-point signal of aebfcgdh. Diluting the time domain signal with zeros
results in a duplication in the frequency spectrum. The FFT combines the

frequency spectra by duplicating the spectra and then summing them.
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Figure 2-8 Spectral combination

Image modified from Smith (Smith S. W., 1997, p. 230)

One signal has been diluted at the even points, the other at the odd points to
ensure the signals match up when added. An alternative way to view the dilution
with zeros is the second signal has been shifted to the right by one point. This
shift in the time domain corresponds to multiplying the spectrum by a sine wave.
The diagram below shows the method of combining two 4-point frequency
spectra into a single 8-point spectrum. ‘xS’ denotes the operation of multiplying

the signal with a sinusoid of an appropriate frequency determined by Fs/N.
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Figure 2-9 combining two 4-point frequency spectra into a single 8-point spectrum

Figure 2-9 combining two 4-point frequency spectra into a single 8-point

spectrum modified from (Smith S. W., 1997, p. 231)

The diagram above is formed from a single basic calculation, which is repeated
many times. This basic calculation is known as the FFT ‘butterfly’ and is the most
fundamental element of the FFT, converting 2 complex points into two other

complex points (Figure 2-10).
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Figure 2-10 FFT Butterfly

This method of FFT decomposition is based on the Cooley and Tukey radix-2 FFT
(Cooley & Tukey, An Algorithm for the Machine Calculation of Complex Fourier
Series, 1965). Power of 2 FFTs are popular due to their speed and efficiency, but
other Fast Fourier Transforms have been developed which allow for non-power

of 2 numbers of samples.

2.7 Non Power of 2 FFTs and the Fastest Fourier Transform in the West

Tukey and Cooley, when they presented their paper used a power of 2
decomposition as an example (Cooley & Tukey, An Algorithm for the Machine
Calculation of Complex Fourier Series, 1965), but the algorithm actually included
a ‘twiddle factor’ which allowed for non power of 2 sample sizes to be used. Itis
only because of their example that it assumed to be a radix-2 only transform
(Duhamel & Vetterli, 1990). In very basic terms, the difference between the
different FFT algorithms in use is the process of transforming from N time
domain samples to N samples of the frequency domain. The usual measurement

of success is the efficiency in which it can be done (Duhamel & Vetterli, 1990).
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A popular algorithm in current DSP practice is known as ‘The Fastest Fourier
Transform in the West’ or FFTW. The FFTW is an open source software library
that is widely regarded as the fastest FFT by adapting its performance to the N
points it is presented with and the hardware it is run on (Frigo & Johnson, 2005).
It is the FFTW included with the Matlab software (Moler, 2005) that is used in

the investigation of FFT parameters and characteristics in Chapter 6.

Considering automatic music transcription as the application for a FFT the
number of FFT points is of significance as it directly relates to the time resolution
- that is the length of time the spectrum represents, and also the frequency
resolution - that is how many component sine waves are available to represent
the frequency content. To address the time and frequency resolution the Short

Time Fourier Transform is popular for music analysis.

2.8 The Short Time Fourier Transform

If a DFT is performed on the entirety of a pop song, there is no way of knowing
which frequencies in the spectral information occurred at the start of the song, in
the first line, or the first word - there is no time information to localize frequency

maxima to a point in time.

The Short Time Fourier Transform (STFT) functions as the DFT does, but
analysis is performed on small ‘windows’ of the signal being analysed. Once the
content inside the ‘window’ has been transformed, the window will move along
the signal by a number of samples (usually equal to the window length or less )
where the next part of the signal will be transformed. This method allows the

spectral information to be associated with a finite amount of time equal to the
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window length within the context of the entire signal being analysed.

Spectrograms are constructed by aligning adjacent STFT windows.

This positive aspect of localizing frequency spectra to a point in time is also the
major negative of the algorithm. Due to the decomposition method of the DFT, if
a short time frame is used, i.e. fewer samples, there are fewer sinusoids to
represent the frequency components, therefore the size of each ‘bin’ is greater
and the accuracy of the frequency values compared to the actual values in the
signal is compromised. To improve the spectral accuracy the window must be
enlarged, but then the ability to localize a frequency domain event in the time
domain is compromised as is the ability to detect fast changes. This is discussed

further in section 6.3.

Despite the time-frequency trade off, the STFT is a highly popular method of
extracting spectral information from an audio signal for purposes of automatic
music transcription. An analysis of the algorithms submitted to MIREX 2010
show a large number use the STFT algorithm (Table 3). Page numbers refer to

the MIREX 2010 complete proceedings (MIREX, 2010a).

Authors Title Pages Low Level Window Higher Level
Processing Size & Processing
Other
Information
Grindlay, Ellis A PROBABILISTIC | 20 - STFT 1024 NMF
SUBSPACE MODEL | 26
FOR MULTI-
INSTRUMENT
POLYPHONIC
TRANSCRIPTION
Coz, Lachambre, | A SEGMENTATION- | 27-31 STFT Not stated Comb Decision' -
Koenig, Obrecht BASED TEMPO Harmonic
INDUCTION METHOD Analysis
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Joder, Essid, Richard | AN IMPROVED | 39 - STFT HMM
HIERARCHICAL 44 generated
APPROACH FOR Chroma
MUSIC-TO-SYMBOLIC Vectors
SCORE ALIGNMENT
Yoshii, Goto INFINITE LATENT | 309 - Wavelet 60ms Time Bayesian
HARMONIC 314 Transform Resolution Variation
ALLOCATION: A
NONPARAMETRIC
BAYESIAN
APPROACH TO
MULTIPITCH
ANALYSIS
Eyben, Bock, | UNIVERSAL  ONSET | 589 - MRFFT 1024, 2048 Neural Networks
Schuller, Graves DETECTION WITH | 594
BIDIRECTIONAL
LONG SHORT-TERM
MEMORY  NEURAL
NETWORKS
Wang, Li, Ogihara ARE TAGS BETTER | 57 - STFT NMF
THAN AUDIO | 62
FEATURES? THE
EFFECT OF JOINT USE
OF TAGS AND AUDIO
CONTENT FEATURES
FOR ARTISTIC STYLE
CLUSTERING
Humphrey AUTOMATIC 69 - 22 Band Chroma
CHARACTERIZATION 74 Cochlea Filter
OF DIGITAL MuUSIC Bank
FOR RHYTHMIC
AUDITORY
STIMULATION
Rump, Miyabe, | AUTOREGRESSIVE 87 - | 40 Band Mel MFCC analysis
Tsunoo, Ono, | MFCC MODELS FOR | 92 Filter Bank
Sagama GENRE
CLASSIFICATION
IMPROVED BY
HARMONIC-
PERCUSSION
SEPARATION
Abeber, Brauer, | BASS PLAYING STYLE | 93 - STFT Support Vector
Lukashevich, DETECTION  BASED | 97 Mechanism
Schuller ON HIGH-LEVEL (SVM)
FEATURES AND

PATTERN SIMILARITY
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Weiss, Bello

IDENTIFYING
REPEATED PATTERNS
IN  MUSIC USING
SPARSE
CONVOLUTIVE NON-
NEGATIVE  MATRIX
FACTORIZATION

123
128

STFT

NMF Variation

Mauch, Dixon

APPROXIMATE NOTE
TRANSCRIPTION FOR
THE IMPROVED
IDENTIFICATION OF
DIFFICULT CHORDS

135
140

STFT,
Hamming
Window

4096,
11Khz, 2048
Hop

Bayesian Network

Granseman,
Scheunders,
Mysore, Abel

EVALUATION OF A
SCORE-INFORMED
SOURCE SEPARATION
SYSTEM

219
225

STFT

2048,
44.1Khz,
512 hop

NMF Variation

Karydis,
Radovanovic,
Nanopoulos,
lvanovic

LOOKING THROUGH
THE “GLASS
CEILING”: A
CONCEPTUAL
FRAMEWORK  FOR
THE PROBLEMS OF
SPECTRAL
SIMILARITY

267
272

STFT

512, 11Khz,
256 hop

MFCC / Gaussian
Mixture Model

Lidy, Mayer, Rauber,
Leon, Pertusa, Inesta

A CARTESIAN
ENSEMBLE OF
FEATURE SUBSPACE
CLASSIFIERS FOR
MUSIC
CATEGORIZATION

279
284

STFT

Various
Spectrogram
Analysis

Oliveira, Gouyon,
Martins, Reis

IBT: A REAL-TIME
TEMPO AND BEAT
TRACKING SYSTEM

291
296

STFT,
Hamming
Window

1024,
44.1Khz,
512 hop

Agent Based
tempo tracker

Han, Raphael

INFORMED SOURCE
SEPARATION OF
ORCHESTRA AND
SOLOIST

315
320

STFT, Hann
Window

Various
Spectrogram
Analysis

Schnitzer, Flexer,
Widmer, Gasser

ISLANDS OF
GAUSSIANS: THE
SELF ORGANIZING
MAP AND GAUSSIAN
MUSIC  SIMILARITY
FEATURES

327
332

STFT

1024, 22kHz

MFCC / Gaussian
Mixture Model

Marolt, Lefeber

ITS TIME FOR A
SONG -
TRANSCRIBING
RECORDINGS OF
BELL-PLAYING
CLOCKS

333
338

Constant Q
Transform

NMF
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Hamel, Eck

LEARNING FEATURES
FROM MUSIC AUDIO
WITH DEEP BELIEF
NETWORKS

339
344

STFT

1024,
22.5kHz

DBN Neural
Networks

Jo, Yoo

MELODY
EXTRACTION FROM
POLYPHONIC AUDIO
BASED ON PARTICLE
FILTER

357
362

STFT,
Hanning

2048,
44.1Khz,
512 hop

Bayesian Particle
Filter

Raczynski, Vincent,
Bimbot, Sagayama

MULTIPLE PITCH
TRANSCRIPTION
USING  DBN-BASED
MUSICOLOGICAL
MODELS

363
368

STFT

NMF/DBN Neural
Networks

Nakano,
Ono,

Murao,
Kitano,
Sagayama

MONOPHONIC

INSTRUMENT SOUND
SEGREGATION BY
CLUSTERING NMF
COMPONENTS

BASED ON BASIS
SIMILARITY AND
GAIN DISJOINTNESS

375
380

Wavelet
Transform

NMF

Chang,
lliopoulos

Jang,

MUSIC GENRE
CLASSIFICATION VIA
COMPRESSIVE
SAMPLING

387
392

Octave
Subband STFT

Various Spectral
Analysis inc.
MFCC

Tjoa, Liu

MUSICAL
INSTRUMENT
RECOGNITION USING
BIOLOGICALLY
INSPIRED FILTERING
OF TEMPORAL
DICTIONARY ATOMS

435
441

STFT,
Hamming
Window

2048,
44.1Khz,
512 hop

NMF Variation

Dessein,
Lemaitre

Cont,

REAL-TIME
POLYPHONIC MUSIC
TRANSCRIPTION
WITH NON-
NEGATIVE  MATRIX
FACTORIZATION AND
BETA-DIVERGENCE

489
494

STFT,
Hamming
Window

630 Data,
1024 FFT,
12.6kHz,
512 hop

NMF

Mak,
Yeung, Lam

Senapti,

Similarity Measures
for Chinese Pop
Music Based on Low-
Level Audio Signal
Attributes

512
518

STFT

2048

MFCC / Gaussian
Mixture Model
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Hsu, Jang, SINGING PITCH | 525 MRFFT 2048, 1024, Partial Trend

EXTRACTION BY | 531 (Dressler 512, 256 Tracking

VOICE 2006)

VIBRATO/TREMOLO

ESTIMATION AND

INSTRUMENT

PARTIAL DELETION
Gkiokas, Katsouros, | TEMPO INDUCTION | 555 Mel Filter Convolution
Carayannis USING FILTERBANK | 558 Bank

ANALYSIS AND

TONAL FEATURES
Duggan, Shea TUNEPAL - | 583 FFT Hanning 2048, Klapuri Harmonic

DISSEMINATING A | 588 window 22.05kHz, Analysis

MUSIC 1024 hop

INFORMATION

RETRIEVAL SYSTEM

TO THE TRADITIONAL

IRISH MUSIC

COMMUNITY
Schuller, Kozielski, | VOCALIST GENDER | 613 DFT 50% NMF/Bayesian
Weninger, Eyben, | RECOGNITION IN | 618 overlap Networks
Rigoll RECORDED POPULAR

MUSIC
Paulus, Muller, | AUDIO-BASED MUSIC | 625 Discrete MFCC
Klapuri STRUCTURE 636 Cosine

ANALYSIS Transform
Kelly, Gainza, | LOCATING TUNE | 128 STFT Chroma
Dorran, Coyle CHANGES AND | 134

PROVIDING A

SEMANTIC

LABELLING OF SETS

OF IRISH

TRADITIONAL TUNES
Niedermayer, A MULTI-PASS | 417 MRFFT 4096,1024, NMF
Widmer ALGORITHM FOR | 422

ACCURATE AUDIO-

TO-SCORE

ALIGNMENT
Panagakis, SPARSE MULTI-LABEL | 393 Wavelet NMF Variation
Kotropoulos, Arce LINEAR EMBEDDING | 398 Transform

WITHIN
NONNEGATIVE
TENSOR
FACTORIZATION
APPLIED TO MUSIC
TAGGING

Table 3 - MIREX 2010 processing techniques
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The STFT is popular front end to automatic music transcription systems, but the
time frequency trade off remains as a compromise. An alternative method to a

single resolution transform such as the STFT is the multiresolution transform.

The following section introduces the concept of multiresolution analysis and

techniques for the purpose of automatic music transcription.

65



3 Low Level Processing - Multiresolution Analysis

Multiple resolution analysis for automatic music transcriptions consists of 2
main approaches, multiresolution in time, and multiresolution in frequency
(Duxbury, Bello, Davies, & Sandler, A Comparison Between Fixed and

Multiresolution Analysis for Onset Detection in Musical Signals, 2004).

Time varying multiresolution signal analysis is based on varying the analysis
window used for Fourier transform based frequency estimation methods

resulting in a variable time-frequency scale (Dressler, 2006).

The multiresolution in frequency approach comprises of splitting the frequency
spectrum in to subbands and then analysis is performed on each separate band.
This allows short analysis windows to be used at higher frequencies where the
fast transients reside, while a longer window can be implemented for the lower
frequencies resulting in frequency resolution adequate to separate closely space

fundamentals.
The following section is an introduction to multiresolution analysis.

3.1 Approaches to Multiresolution Analysis

Broadly speaking, approaches to multiresolution analysis can be categorized into
methods based upon modeling the critical bands of the human auditory system,
and methods based upon a ‘quality’ factor, referred to as ‘Constant Q’, which is
defined as the center frequency (Hz) divided by the bandwidth (Hz) (Diniz F.,

Kothe, Netto, & Biscainho, 2007).
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_FC
"~ Bw

Q

Equation ii

Where:

Q is the ‘quality factor’
Fc is the center frequency

Bw is the bandwidth

As the center frequency of each band increases, so too does the bandwidth,
therefore maintaining a constant quality factor. The human auditory system
reflects an approximately constant Q frequency resolution in its critical bands
(Garas & Sommen, 1998), but it is convenient for this thesis to categorize
approaches as those that aim to achieve auditory functionality, and those that

aim to achieve constant Q functionality.

The concept of constant Q is significant and important for automatic music

transcription as it reflects the logarithmic nature of music and harmonics.

The constant Q transform (CQT) refers to any method of generating a time
frequency representation where the frequency bands or bins are geometrically
spaced and the Q factors of all bands/bins are equal (Schorkhuber & Klapuri,
2010). A constant Q transform results in the frequency resolution being
improved in the low frequency ranges compared to higher frequencies -

reflecting the logarithmic nature of western music.
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The following sections present some common methods and approaches for
multiresolution analysis. First the auditory system based methods are

introduced, followed by constant Q approaches.

3.2 Auditory System Methods Filter Banks

A filter bank is an array of band pass filters that separate the original signal into
multiple frequency bands (Roads, 1996, p. 193). The output of each filter is a
sub-band containing the frequencies determined by the parameters of the filters

used.

The center frequencies of the filters used for the lower frequencies can be closer
together than the filters used for the higher frequencies. The arrangement
results in a finer frequency resolution in the low frequencies where note

fundamentals are closer together.

An Example of Filter Bank Configuration
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—Filter 1
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2 Filter 2
E' Filter 3
0.6 == 1+ f ilter

<
g —Filter 4
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- = N N <

Logarithmic Frequency (Hz)

Figure 3-1 Filter bank
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3.2.1 Auditory Filter Banks

Filterbanks are popular for auditory system approaches to pitch detection due to
their behavior being similar to the cochlea (section 1.4). A typical model uses
about 100 filters (Klapuri, Signal Processing Methods for Music Transcription,
2006b), with their center frequencies uniformly distributed along the
logarithmic frequency scale, but various configurations of filters are used for

multiresolution analysis of music signals.

3.2.2 Mel Filter Banks

Mel filter banks consist of filters with triangular magnitude response whose
bandwidths reflect the Mel scale. Stevens, Volkman and Newman are credited
with the Mel scale, which is a scale of pitches as perceived by humans (Stevens,
Volkman, & Newman, 1937). The scale reflects the increasingly larger intervals
above 500Hz judged by humans to produce equal pitch increments, implying
humans have less resolution at high frequencies, and finer resolution at lower

frequencies.

The spacing of the bands gives the Mel filter bank it's multiresolution property

(Figure 3-2).
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Min Freq Max
Frequency

Figure 3-2 Mel filter bank

Uchida and Wada successfully use Mel filters to identify pitched instruments by
comparing the output of the Mel filter bank to a trained database of sample

instruments and pitches (Uchida & Wada, 2010).

3.2.3 Bark Scale

The Bark scale was proposed by Eberhard Zwicker in 1961 and is closely related
to the Mel scale. The bark scale ranges from 1 to 24, where each point on the
scale represents one of the first 24 critical bands of hearing, for 20Hz to 15.5kHz

(Figure 3-3).
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Bark Scale Frequency Band Centers Distribution
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Figure 3-3 Bark scale frequencies

Shannon and Paliwal state in their investigation that despite the popularity of
the Mel scale, there is little difference between that and the bark scale (Shannon
& Paliwal, 2003). Indeed, Dressler uses the Bark scale rather than the Mel scale
to determine frequency cut off points for his multiresolution sinusoidal analysis

(Dressler, 2006).

3.2.4 Gammatone Filter Bank

The gammatone filter was introduced by Johannesma to imitate the filtering
performed by the human ear by recreating the impulse response of the auditory
system ((Johannesma, 1972) cited by (Lyon, Katsiamis, & Drakakis, 2010)) and
has been popular for auditory modeling systems. This is mainly due to its
simplicity (Lyon, Katsiamis, & Drakakis, 2010) and accuracy in imitating the

filtering performed by the human ear (Ellis, 2009).
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Although the filter models the auditory system impulse response, the filter itself
only represents a single band, so for a full auditory system model it is

implemented as a bank of gammatone filters.

Klapuri, building on work from Patterson et al. implemented a bank of
gammatone filters for a perceptually motivated fundamental frequency
estimation system (Patterson, Nimmo-Smith, Holdsworth, & Rice, 1987)

(Klapuri, 2005).

Klapuri defines the bandwidth of 72 gammatone filters along the critical bands
between 60Hz and 5.2kHz. This low level processing provides the initial spectral
information Klapuri uses for an iterative harmonic detection and elimination
method of fundamental pitch estimation. In testing, the method proved to be
efficient and out performed its competitors in multiple fundamental frequency

estimation tasks (Tolonen & Karjalainen, 2000).

The implementation of filters in the time domain for auditory modeling is a
significant topic (Lyon, Katsiamis, & Drakakis, 2010), but the filtering of audio

signals for music transcription purposes is not restricted to auditory models.

The following section presents constant Q motivated approaches to

multiresolution frequency analysis.

3.3 Third Octave Banks

Third octave filter banks consist of a bank of filters that divide up each octave of

the musical scale in to thirds. Each third of the octave is covered by a single
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band-pass filter, which results in a non-liner frequency resolution across the

frequency spectrum.

A One Third Octave Band Filter Bank
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Figure 3-4 Third octave banks

Third octave filter banks are commonly used in graphic equalizers, but
historically they have also been popular in auditory system modeling (Barabell &
Crochiere, 1979) as the bandwidths of the filters approximately represent the

bandwidths of the human auditory system (Cassidy & Smith, 2008).

The result of the one-third sub division of the frequency spectrum is what is

referred to as a constant Q transform.

Pertusa et al. implement a one-semitone band pass filter bank on the output of a
STFT (Pertusa & Inesta, 2009). The one semi tone filter bank is tuned to the
western scale with the center frequency of each band pass corresponding to a
note in the musical scale. The tuning of the filters creates strong note candidates

for the onset detection and peak picking algorithms.
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3.4 The STFT as a Filter Bank

The STFT so far has been viewed as a windowed DFT representation but the STFT
can also be viewed as a filter bank representation (Smith ]J. 0., 2010). By
rearranging the STFT equation the output of the STFT can be interpreted as a
frequency-ordered collection of narrow band time domain signals. This variation
in the decomposition method of the FFT results in the input signal being
converted to a set of N time-domain output signals, one corresponding to each

bin (or channel) of the STFT (or filter bank) (Roads, 1996, p. 1096) (Figure 3-5).

%f\[-\/—_,f\ — Frequency Bin (K+2)
Frequency Bin (K+1)

--» Frequency Bin (K)

Magnitude

Time

o

Figure 3-5 STFT Filter bank

The time frequency resolution of this basic STFT filter bank is still linear, but can

be implemented as a part of a constant Q system.

3.5 The Constant Q Fast Filter Bank

The constant Q fast filter bank (CQFFB) as proposed by Diniz et al. is an attempt
to utilise the speed and selectivity of the FFT based filter banks, with the ideal
constant Q properties previously described, but without the computational
overhead of other constant Q transforms (Diniz F., Kothe, Netto, & Biscainho,

2007).
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The CQFFB is based on the Fast Filter Bank (FFB) as proposed by Lim et al. (Lim
& Farhang-Boroujeny, 1992). The FFB takes advantage of the tree structure of
the FFT, but modifies the ‘butterfly’ to increase the selectivity of the channels in
the frequency domain. By implementing filters in the FFT decomposition with
very steep pass band-stop band transitions the FFB decreases any interference
between adjacent bins, thus presenting strong maxima in the bins, from which
note candidates can be more easily ‘peak picked’. Although this increases the

computation time of the FFT, it is still relatively efficient.

The design of the steep band filters follows the Frequency Response Masking
Method (FRM) (Lim, 1986), which results in a highly optimised, low complexity
filter. The FRM generated filters are generated across the FFT structure in a
formation that results in each interpolated filter being masked by subsequent

filters in the cascade. This is the FFB (Lim & Farhang-Boroujeny, 1992).

Although the original FFB implementation was highly selective and efficient, it

still suffered from linear bin alignment in the same way as the STFT filter.

v

1f 2f 3f 4f 5f 6f 7f Frequency

Figure 3-6 FFB Frequency bin spacing
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Filipe et al. introduced a Bounded Q Fast Filter Bank (BQFFB) to improve the
spectral analysis of the FFB for the musical context (Filipe, Diniz, Luiz, Biscainho,
& Netto, 2006). Instead of calculating all bands linearly, the BQFFB

logarithmically spaced the octaves, but inside each octave the channels were

linearly distributed.
Octave Octave Octave
i | Ao eem
| | | -
1f 2f 3f 4f 5f 6f 7f 8f 9f  Frequency

Figure 3-7 BQFFB Bin spacing

The BQFFB improved the performance of the FFB for analyzing music signals,
but at the time the inefficiency meant a truly constant Q implementation wasn’t

practical.

The CQFFB demonstrated a computationally expensive, although still practical
way of distributing the bands of the FFB geometrically across the entire

spectrum, not just the octave bands.
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Figure 3-8 CQFFB Bin spacing

The implementation of the FFB combined with the constant Q spacing improved
the distinction of maxima in the produced spectrum on tests with sinusoidal
inputs. This property suggests the CQFFB is a useful tool for automatic music
transcription, but the current implementation is relatively computationally
expensive. Also several approaches for automatic music transcription require a
signal to be transformed back to the time domain from the frequency domain,
which the FFT and FFB are capable of doing but the CQFFB and BQFFB are not.
This is possibly the reason why this method has so far not been adopted for

automatic music transcription.

3.6 Other FFT and Filter Based Multiresolution Techniques

Zhou’s Resonant Time Frequency Image (RTFI) (Zhou R., 2006) method for
frequency analysis uses down sampling in the fast multiresolution
implementation of the RTFI (Zhou, Reiss, Mattavelli, & Zoia, 2009), implementing
a cascading filter bank similar to Goto (Goto, 2002). The RTFI is becoming more

popular due to its constant Q properties and flexibility (Benetos & Dixon, 2011).

Cancela et al. used an Infinite Impulse Response (IIR) filter on the output of an

FFT in a simple but effective algorithm for multiresolution analysis (Cancela,
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Rocamora, & Lopez, 2009), which was used on the best ‘Overall Accuracy’
algorithm for the Audio Melody Extraction exercise at Mirex 2008 (Durrieu, Gael,

& Bertrand, 2008).

Smith presents an approach to designing and efficiently implementing non-linear
FFT filter banks that approximately matches the constant Q form (Smith J. O.,
2009). By performing smaller inverse FFTs on each band of an FFT output, Smith
synthesized the down sampling of the time domain signals in each band, thus
resulting in a non-linear time-frequency scale. The concept of down sampling is

introduced in the following section.

3.7 Multirate Filter Banks

Multirate filter banks use different sample rates for different bands, which are
matched to different filter bandwidths to generate varying time-frequency

resolutions across the spectrum.

The process of down sampling is to retain every Mth sample of a signal x(n)
relabeling the index axis accordingly. The compression of time explicit in this
process is accompanied by a stretching in the frequency domain (Akansu &

Haddad, 1992), hence a non-linear time frequency resolution.

The down sampling of a digital signal when combined with low pass filtering is
known as Decimation. The decimation functions in stages where the top half of

the frequency spectrum is output as an audio band, and the bottom half of the
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frequency spectrum is down-sampled. The process is then repeated on the

decimated audio. The basic process is shown in Figure 3-9

v

Audio Signal [>{ sample Rate (Hz)

v

Decimator [ sample Rate/2

v

Decimator [ sample Rate/4

i —>
Decimator Sample Rate/8

Decimator [

Sample Rate/16

Figure 3-9 Decimation

It is not immediately obvious how this process varies the time frequency
resolution, but applying the concept of reducing sample rates to the FFT
decomposition, it is clear to see that varying the sample rate will affect the time
resolution and the frequency resolution. Table 4 is an example of the effect of
varying the sample rate for a 1024 sample FFT across different bands, resulting

in a variable time frequency resolution.
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Time Res Frequenc
Bottom of | Top of | Sample of 1024 q . ¥
. Resolution
Frequency frequency Rate Window (Hz)
Band (Hz) bands (Hz) (s)

689.06 1378.13 2756.25 0.372 2.69
1378.13 2756.25 5512.5 0.186 5.38
2756.25 5512.50 11025 0.093 10.77
5512.50 11025.00 22050 0.046 21.53
11025.00 22050.00 44100 0.023 43.07

Table 4 FFT Multirate resolutions

Figure 3-10 below shows the time-frequency plane diagram for the first four
bands of the multirate example in Table 4 to clearly show the varying time and

frequency resolution across the different frequency bands of the original signal.
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Figure 3-10 Multirate FFT plane diagram

Considering the frequency spacing of the equal tempered scale and the pattern of
the time frequency resolution plane in Figure 3-10 it is clear that this method of
multiresolution decomposition is suited to music transcription. The lower
frequencies where note fundamentals are closer together are in a band that has a
higher frequency resolution than the highest band where fundamentals are
further apart. Also, high frequency notes tend to have faster rates of change than
lower notes, which is reflected in the relevant time resolution of the frequency

bands.

Goto implements a multirate filter bank as the low level processing in his PreFest

algorithm (Goto, 2000). PreFest was the first algorithm to successfully prove the
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transcription of polyphonic music from a commercial CD is possible (Goto, 2000)

by accurately estimating the melody and bass line note fundamentals.

Goto implements a multirate filter bank to obtain an adequate time frequency
resolution. The multirate filter banks also allow for real time processing by

keeping the computational load relatively low (Goto, Music Scene Description,

2006, p. 332).

Goto starts with a 16kHz sampled audio signal, which is decimated in 4 steps to a
1kHz sampled signal. The decimation stage consists of a low pass filter with a cut
off frequency of 0.45 of the sampling frequency of that ‘branch’ of processing,
and then half down sampled. An STFT is then performed on each frequency

band. This process is shown in Figure 3-11.

Audio Signal | 16Khz .
' ] FFT 1.8-3.6KHz
== Decimator ﬁl 8KHz

[ 1 FFT 0.9-1.8KHz ’
Decimator [~ 4KH:

,' 0.45-0.9KHz I
. ’ FFT }——> 0-0.45KHz

Decimator 2KHz

Decimator

Figure 3-11 Goto implementation

The multirate filter as used by Goto is very similar in its construction and

resulting time-frequency plain as the Discrete Wavelet Transform.
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3.8 The Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a constant Q transform that uses
cascading pairs of high pass and low pass filters to decompose a signal to a time-

frequency spectrum.

A single level of DWT consists of the signal to be analysed being filtered through
a high pass and low pass filter simultaneously. A quadrature mirror filter is used
for this process, which splits the signal in to two bands where each filter is
subsampled by 2 at the output. (Mallat, 2009). This decomposition halves the
time resolution, but as each output has either the high frequency band or low
frequency band of the input signal, the frequency resolution has been doubled.

This process is repeated in a cascading formation (Figure 3-12).

—G@r-

Level 3

Level 2

Audio —>@ ‘@ > Level 1

Figure 3-12 DWT down-sampling

The resultant frequency spectrum is shown in Figure 3-13.
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Level 3 Level 2 Level 1

0 f/8 f/4 f/2 f

Figure 3-13 DWT frequency division

And the resultant time-frequency plane is shown in Figure 3-14.

<«— AMuanbaly ———»

< Time >

Figure 3-14 DWT plane diagram

Wavelet transforms differ from filter banks in that the half band filters always
create a true pyramid structure in the time-frequency plane, whereas filter banks
do not necessarily result in a pyramid structure (Humphrey, 2010). However, the
similarity between the DWT and the multirate filterbank decomposition as used

by Goto (Goto, Music Scene Description, 2006) is clear.

Wavelet analysis has been used for automatic music transcription and pitch
analysis as the constant Q properties are ideal (Yegnanarayana & Murty, 2009),
but it is not a popular choice in the fundamental frequency estimation discipline
of music transcription. Analysis of the submissions to Mirex 2010 show only one
competitor used the wavelet transform method for multipitch analysis (Yoshii &

Goto, 2010). A significant reason for the unpopularity of the DWT is the Q factors
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currently required for multiple fundamental frequency estimation can be
equivalent to up to 96 bands/bins per octave (Schorkhuber & Klapuri, 2010). To
create this resolution using a wavelet transform requires filtering the input
signal hundreds of times, thus making it highly inefficient and computationally
expensive, particularly compared to the, albeit non constant Q, but very fast and

efficient STFT (Schorkhuber & Klapuri, 2010).

3.9 Variable and Multiple Window STFT Representation

An alternative method to FFT filter based multiresolution analysis is the variable
and multiple window technique. The size of the analysis widow used in an FFT
directly affects the time-frequency resolution, so the adjusting in length and

combining these windows results in a non-linear time-frequency response.

The process as implemented by Anderson (Anderson, 1996) and later by Tyagi
and Bourland (Tyagi & Bourland, 2003) involves taking multiple sliding FFTs of
varying window lengths of the same input data. The long windowed high
frequency resolution FFT is used for low frequency analysis, the short
windowed, low frequency resolution used for high frequency analysis. The use of
multiple window sizes for multiresolution Fourier transforms was adopted by
Brown and Puckette as part of a constant Q transform (Brown & Puckette, 1992),
and Keren et al. also used varying window lengths in their low level processing

for transcribing piano music (Keren, Zeevi, & Chazan, 1998).

Godwin developed the idea of variable window lengths by implementing a

dynamically changing window length based upon the transient activity of the
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signal, providing greater time resolution in areas of high energy activity

(Godwin, 1997).

Djurovic and Stankovic further developed an adaptive window for
multiresolution analysis by calculating the optimal window width for an STFT
reliant upon the Bias-Variance of the FFT and the Mean Square Error (MSE)

(Djurovic & Stankovic, 2003).

The MSE is a method of quantifying the difference between implied values
generated by an estimator (0*) and the actual values being estimated (0). The

MSE is calculated as:
MSE = Var(0 +) + Bias(8 +)*

Equation iii

Although the lack of bias of a system is attractive based on the above formula, if
the bias can be increased to minimize the variance in the system, then the error

rate can be reduced and accuracy improved.

In the context of the FFT for fundamental frequency estimation, the MSE of the
system is a measure of the FFT’s accuracy of measuring a frequency within an
audio signal (Djurovic & Stankovic, 2003). The variance of the system is the
probabilistic distribution of the frequencies within the signal (see section 5.1).
The optimal window width for the FFT is derived by Papoulis (Papoulis, 1977),
but cannot be used practically as the bias of the FFT relies on unknown

behaviors dependent on the input signal (Djurovic & Stankovic, 2003).
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Djurovic and Stankovic develop a method to calculate the optimal window width
that can be implemented based on the intersection of the confidence intervals
(ICI) rule (Djurovic & Stankovic, 2003), as introduced by Goldenshluger and

Nemirovski (Goldenshluger & Nemirovski, 1997).

Although the ICI is mathematically involved, Katkovnik et al. explain the rule in
the context of window sizes (Katkovnik, Egiazarian, & Shmulevich, 2001). For a
finite set of window sizes, the bias is proportional to the window size. A
confidence interval is calculated for the bias resulting from each window size,
forming a sequence of confidence intervals. Considering the sequence of
confidence intervals, there will be a common point of intersection of the
intervals, from which the optimal adaptive window is calculated (Katkovnik,

Egiazarian, & Shmulevich, 2001).

Djurovic and Stankovic include a probability parameter in the calculation of the
confidence interval sequence, which determines the algorithm accuracy. The
results of FFT analysis on a mixture of 3 sine waves show their optimised
adaptive window out performs the minimum static window and maximum static
window, generating stronger magnitudes in the FFT output with reduced noise

(Djurovic & Stankovic, 2003).

Duxbury et al. suggested variable window analysis to be a redundant technique
(Duxbury, Bello, Davies, & Sandler, A Comparison Between Fixed and
Multiresolution Analysis for Onset Detection in Musical Signals, 2004), but
research and methods are still being developed using variable windows.
Benaroya et al implemented a tri-window multiresolution FFT (MRFFT) as a
successful front end to a Bayesian high level process, improving results
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compared to a single window analysis (Benaroya, Blouet, Fevotte, & Cohen,
2006). Benaroya’s et al. method implements cascading FFTs of different window

lengths, each becoming shorter on each iteration.

Keren et al. Proposed a multi windowed FFT algorithm for polyphonic music
transcription which demonstrated the usefulness of varying the frequency
resolution to detect harmonics of piano notes (Keren, Zeevi, & Chazan, 1998)
However, the process was computationally demanding and impractical for most

real world applications.

Dressler described a very efficient implementation of a 4 windowed
multiresolution STFT (Dressler, 2006), which is used as a benchmark for other

FFT based multiresolution algorithms (Cancela, Rocamora, & Lopez, 2009).

3.10 Sinusoidal Extraction Using a Multiresolution FFT (MRFFT)

Dressler’'s MRFFT generates varying time and frequency resolutions by altering
the data frame size only, leaving the hop size and window length constant. Four
data lengths are used - 2048, 1024, 512 and 256 - all powers of 2 in length,
resulting in a four layer MRFFT, but zero padding is used to maintain a constant

window length of 2048.
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Figure 3-15 FFT data vs. window length

The time-frequency plane diagram of the MRFFT is dependent on sample rate
and window length so remains constant in Dressler’s implementation. However,
as Dressler points out, the time-frequency resolution of the transform is not
necessarily the time-frequency resolution of the resulting calculated as sample
rate/window size, but actually, the true resolution of the transform is calculated
as the sample rate/data size. This is discussed further in section 6.10. The sample
rate/data size time frequency plane diagram as generated by Dressler takes on a

familiar form (Figure 3-16)
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Figure 3-16 Dressler's plane diagram

As all transforms are the same length due to zero padding, the spectra of the 4
STFT windows can simply be summed. The magnitudes (resultant of the
constant window size) of the summed spectra are valid for peak picking at this

point, which demonstrates the simplicity of this process.

Wen and Sandler look to further improve the efficiency of MRFFT
implementations by optimising a radix-2 FFT for multiresolution calculations by
reducing the number of calculations required in the FFT decomposition by half

by reusing internal results (Wen & Sandler, 2007).
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Dresslers’ Mirex 2009 submission implemented the MRFFT as the low level
processing stage, and performed with the highest overall accuracy for the Audio

Melody Extraction test (Dressler, 2009).
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4 Peak Picking and Spectral Processing

This section introduces methods for extracting frequencies from the frequency

spectrum to present as note candidates to the high level processing.

Peak picking is the term given to the process of extracting the frequency
associated with a maxima from a spectra representation such as a spectrogram,
or more typically the output of a Fourier transform. Peak picking has an
important role to play in spectral analysis for audio as it aims to select only
peaks corresponding to genuine resonant components present in a signal

(Nunes, Esquef, & Biscainho, 2007).

4.1 Threshold Based Peak Picking

The most basic peak picking method is to set a static threshold, and when the
threshold is crossed by the magnitude of a frequency component, it is
determined to be a note candidate. Using sine waves it is possible to gain
acceptable results by using a very simple static threshold method, but in reality it

is ineffective when dealing with the spectral complexities of ‘real’ audio.

Collins implemented a basic peak picker imitating how a human would visually
‘peak pick’ by comparing peaks to their nearby ‘terrain’. Collins’ peak picker
scores the most salient peaks relative to their local ‘terrain’ - the current frame
and 3 analysis frames either side (Collins, 2005). The spectral energy in the 7
frames is normalized to be between 0 and 1 and is then analysed. An empirically
determined threshold of 0.34 is manually set to then extract any peaks. The

manual setting of the threshold is typical for this kind of application (Duxbury,

92



Bello, Davies, & Sandler, Complex Domain Onset Detection for Musical Signals,

2003).

Duxbury et al however, do state that manual setting of thresholds is not
acceptable in all cases, for example a commercial product where the user should
not be expected to set a threshold for each source. Thresholds are therefore set
either globally, which is a computationally efficient method but more prone to
errors by missing candidates in quiet passages, or over detecting in louder
passages of music, or thresholds can be set locally by analyzing the spectral
content on a frame by frame method to dynamically adjust the threshold. This,

according to Duxbury et al is essential for effective onset detection.

Various methods of analyzing the frame content to determine the local threshold
are used in peak picking algorithms (Nunes, Esquef, & Biscainho, 2007) but by its
nature peak picking is prone to errors (Kumar, Jakhanwal, Bhowmick, &
Chandra, 2011) and not robust enough to act as the only method to extract note
candidates from a spectral analysis. The errors are due to threshold peak pickers
relying solely on magnitude information, thus neglecting the detection of events
without a strong energy increase e.g. low notes, transitions between
harmonically related notes or onsets played by bowed instruments and due to
the energy in the frequency domain attributed to features other than
fundamental frequencies (Bello, Daudet, Abdallah, Duxbury, Davies, & Sandler,

2005), hence the need for further processing.
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4.1.1 Phase Based Peak Pickers

Keiler and Marchand (Keiler & Marchand, 2002) suggest peak picking algorithms
that also consider the phase of the signal are more accurate. By using phase
changes in the spectral information, peak pickers can increase their accuracy of
detecting low and high frequency tone changes regardless of their intensity.
However, this approach is still not wholly robust as variations by the phases of
noisy low energy spectra, and from phase distortions common in commercial
post production effects and processes can cause errors (Bello, Daudet, Abdallah,

Duxbury, Davies, & Sandler, 2005).

Betser et al. further discuss phase based frequency estimators for short time
Fourier transforms, grouping algorithms in to 3 main types (Betser, Collen,
Bertrand, & Gael, 2006) - Arccos estimator (Lagrange, 2004), Long Term Phase
Vocoder (Puckette & Brown, 1998) and the Short Term Phase Vocoder (Flanagan

& Golden, 1966) as used by Dressler (Dressler, 2006)

The accuracy of the peak picking algorithm can be improved by processing and

enhancing the spectral information generated by the time-frequency transform.

4.2 Spectral Processing

The following section introduces some methods for processing the spectral
results of a time to frequency transform to help improve the performance of a
peak picking algorithm. These processing techniques aim to improve the ‘quality’
of the spectral representation by presenting ‘strong’, accurate spectral peaks to

the peak picking algorithm.
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4.2.1 Spectral autocorrelation

Autocorrelation can be used in the frequency domain as well as the time domain
(discussed in 2.3) but suffers from the same limitations for multiple fundamental
frequency estimation (Lahat, Niederjohn, & Krubsack, 1987). Spectral
autocorrelation is the comparison of the spectrogram of a section of an audio
signal with a spectrogram of an adjacent section. Frequency magnitudes
reinforced by the addition of adjacent frame information are presented as
‘stronger’ note candidates. Although found to be quite accurate on single
fundamental frequency estimation (Cheveigne & Kawahara, Comparative
Evaluation of FO Estimation Algorithms, 2001), spectral autocorrelation is not

robust enough for the complexity of multiple fundamental frequency estimation

(Klapuri, 2006b).

4.2.2 Spectral Compression

Harris developed early work on the identifying of fundamental frequencies
based upon measuring the frequency intervals between potential harmonics
(Harris & Weiss, 1963). Schroeder further developed this work by transposing
spectral transients to lower frequencies to enhance potential fundamental
frequencies (Schroeder, 1968). Spectral compression is used to generate the
Schroeder histogram, which counts equally the contribution of each spectral
peak to the related FOs that are common divisors of its frequency. Schroeder

assigned the magnitude of higher frequency components to harmonically
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matching hypothetical fundamental frequencies on the spectrum This process
focuses the energy of higher partials on distinct peaks, and the maximal peak
determines the related FO (Yeh, 2008, p. 12). Although this process is not robust
against noise in the spectrum, Szczerba and Czyzewski successfully combined in
part this method with prior music knowledge to help reduce errors made in

pitch estimation (Szczerba & Czyzewski, 2005).

Klapuri developed the idea of spectral compression to create a computationally
efficient fundamental frequency estimator for polyphonic music (Klapuri,
2006a). Klapuri’s algorithm calculates the strength of a fundamental frequency
candidate in the output of a Fourier transform as a weighted sum of the
amplitudes of its harmonic partials. The accuracy of the system is improved
through ‘training’ the algorithm with test data to increase accuracy when
identifying harmonics, and also by a simple method of cancelling a confirmed
fundamental frequency and associated harmonics from the mixture, thus
simplifying the spectrum for further analysis. The utilisation of the information
provided by the presence of partials in a polyphonic mixture is directly related to

Harris’s early work on spectral peak interspacing.

4.2.3 Harmonic Matching

Harmonic matching is the process of matching a known harmonic spectral
pattern to an observed spectrum. This is performed by using either a specific
spectral model or by a harmonic comb, which is a series of spectral pulses with

equal spacing defined by a hypothetical fundamental frequency (Yeh, 2008). The
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purpose of the harmonic comb is to emphasize the energy in the observed
spectrum at the expected ideal harmonic locations, thus making any harmonic

energy clearer in the associated spectrogram.

Rao and Rao’s submission to MIREX 2008 successfully developed the harmonic
matching theory and used a ‘two way mismatch’ method (Rao & Rao, 2008). Two
way mismatch minimizes a spectral mismatch error that is the result of a
particular combination of energy at the partial and it’s frequency deviation from
the ideal harmonic location. Rao & Rao’s algorithm, which uses an FFT for its
low level processing, is particularly robust for sparse but strong harmonic
interference in comparisons to other harmonic matching pitch detection

algorithms. (Rao & Rao, 2008).

4.2.4 Spectral Tilt Compensation

Audio will typical exhibit a spectral pattern whose energy decreases with

frequency (Grey & Gordon, 1978) and as a result low energy peaks in the high

frequency range, which may actually correspond to a note, may be discarded

(Nunes, Esquef, & Biscainho, 2007) (Figure 4-1)
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Figure 4-1 Spectral pattern with decreasing energy
Image from (Nunes, Esquef, & Biscainho, 2007, p. 3)
Nunes et al. evaluate methods of adjusting the spectral information to

compensate for the changes in partial maxima based upon their frequency -

Spectral Tilt Compensation.

In simplistic terms, a spectral tilt estimator calculates as accurately as possible
the spectral profile of the signal and uses this to adjust the spectrum so a

constant threshold can be used (Figure 4-2).
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Figure 4-2 A comparison between the non tilted and tilted spectra

Image from (Nunes, Esquef, & Biscainho, 2007, p. 5)

One method suggested by Nunes to accomplish this is ‘Stochastic Spectrum
Estimation’ (SSE), as introduced by Laurenti, Poli and Montagner (Laurenti, Poli,
& Montagner, 2007). Laurenti et al are primarily concerned with modeling
musical sounds and therefore separating the sinusoids, transients and noise that
are the components of a musical instrument. To separate the ‘noise’ components
Laurenti et al estimate the spectral envelope by calculating the energy of the

signal in the frequency domain over successive sliding windows.

The magnitude output of a DFT of the signal is passed through a filter to remove
any null magnitude samples. The reciprocal of this filtered spectrum is calculated
and then smoothed. The estimated envelope is then calculated as being the

reciprocal of the smoothed signal (Figure 4-3).
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Figure 4-3 Diagram of the stochastic spectrum estimation method

In Nune’s test system, the performance of the peak picker working on the SSE
spectral tilted audio worked to an 88.5% success rate, compared to a 38.2%
success rate for the same peak picker working on non processed spectral
information. Although these results only relate to spectral tilt processing, it does
demonstrate the significant improvement to peak picking performance spectral

processing can make.

The output of a peak picking algorithm is a series of note candidates, which are
presented to the high level processes to process. Although the scope of this thesis
does not allow detailed discussion of high level processes, it is good to be aware
of some of the more commonly used techniques used to put into context the low

level processing discussed later.
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5 High Level Processing Summary

The purpose of the high level processing in multiple fundamental frequency
estimation systems is to survey the hypothetical notes presented by the low level
processing and prune as accurately as possible the note candidates presented in

error from those which are correct.

The following is an introduction to some of the common high level concepts and

processes implemented in multiple fundamental frequency estimation systems.

5.1 Probability Density Function

High level processes often rely on prior information to determine the likelihood
of an event occurring. The ‘events’ in FO estimation will normally be note pitches
and/or note intervals. The probability of these events occurring is characterized

by the probability distribution selected for the algorithm (Roads, 1996, p. 896).

Probability density functions provide the prior distribution information for
Bayesian statistical methods (Davy, An Introduction to Signal Processing, 2006a,

p. 40)

5.2 The Bayesian Model

Rules of scales, pitches, intervals and harmonics etc. can be used to help
understand, and extract information from a complex waveform (Davy, 2006b, p.

205).
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As Davey explains “This structure of tonal music can be utilised to build a Bayesian
model, which is a mathematical model embedded into a probabilistic framework

that leads to the simplest model that explains a waveform” (Davy, 2006b, p. 205).

A Bayesian network is a graphical interpretation of probability that represents a
series of random variables and their inter-dependency. The nodes of a Bayesian
network correspond to random variables, such as note candidates, and the links
between the nodes encode probabilistic dependencies between the
corresponding random variables (Kashino, 2006, p. 313) i.e. the probability a
note transition will occur based upon prior distribution. The direction of the
arrow denotes the direction of probabilistic dependency from the origin of the

arrow (the ‘parent’), to the end point (the ‘child’).

Figure 5-1 Bayesian nodes

In Figure 5-1the node labeled A is the parent to the child nodes labeled ‘B’ and
‘C’. The arrows connecting the child nodes to the parent represent the

probability of the variable B or C occurring when the current observed state is A.

Kashino implements a Bayesian network for music transcription in his Organised

Processing Toward Integrated Music Scene Analysis (OPTIMA) system (Kashino,
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2006, p. 318). Kashino performs both a ‘bottom up’ approached based upon
analyzing the note candidates and applying them to a model, and also a top down
approach where a chord hypothesis is applied and the note candidates are

analysed based upon this paradigm.

Figure 5-2 shows the overview of the main process of the OPTIMA system.

Main Processes Knowledge Sources
Temporal Processing Modules S
Chord
Chord Transition Chord Group Transitions
Prediction Creation ~—
—
Bottom-Up | Hypothesis Network ' Top-Down Chord-Note
Processing Modules Processing Modules Relations
~—
' Chords 4
e
YN N \ . Chord Namin
Chord Analysis | 'A‘ ’A‘ 'A‘. | Note Prediction Rules 9
Clustering for > W‘\‘ Q
Source Identification N T\ T/ .
Freq.Component Tone Memories
Clustering for ' ’A‘ ’A‘ 'A‘ ‘ Prediction
. ~—
Sound Formation Freq. Components y
Timbre Models
S ee———
Freq.Component Processing Scope Rhythm / Beat
#p Extraction Creator Analysis u l Perceptual Rules
[ y/ [}
Time-Freq. Analysis ] %lgg;taggt:
1
Preprocesses ® _/
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Resynthesized i
ySoun o MIDI Data Display

Monaural Music Signals

Figure 5-2 OPTIMA System overview

Image source: (Kashino, 2006, p. 318)

The ‘preprocesses’ stage is the initial time to frequency domain transform,
spectral processing and peak picking procedures. The ‘main processes’ show the

bottom up and top down approaches using a ‘hypothesis network’ based upon
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pdfs for chords, musical notes and frequency components. The ‘Knowledge

sources’ are the data used to ‘train the system’ and generate the pdfs.

Models such as Bayesian are important as they have the potential to provide
information about the source of the signal, without having the source available.

A member of the Bayesian process family is the Hidden Markov Model.

5.3 Hidden Markov Model

Markov models consist of ‘states’, which are similar to the nodes of a Bayesian

network. The states are what describe the signal. (Rabiner, 1989).

The Hidden Markov Model (HMM) has 2 defining features:

1) The HMM assumes the observation at time t was generated by a
process whose state was hidden from the observer. For example, a
frequency may be observed, but the instrument that generated it may

be unknown.

2) The HMM assumes the state of the hidden process satisfies the Markov

property.

(Ghahramani, 2001)

The Markov property is: given the value of the previous state, the current state is
independent of all states before that and encapsulates all information about the
history of the state to be able to predict the future of the process. (Ghahramani,

2001, p. 2)
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For AMT, the ‘left-right’ HMM is particularly useful as it has the property that as
time increases the state index increases (or stays the same). This is a desirable

property to model signals that change over time (Rabiner, 1989).

time

v

Figure 5-3 A left-right HMM with 4 states

Ryynanen uses two left-right HMM models, a note event model to indicate the
probability of a note occurring, and a musicological model to determine the
probability of transitions between the notes in a singing transcription system

(Ryynanen & Klapuri, 2004). An over view of the system is shown in Figure 5-4.
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Figure 5-4 Block diagram of Ryynanen and Klapuri system.

Image taken from (Ryynanen & Klapuri, 2004)
The model uses 4 features extracted by the low level processing to determine a
note candidate, these are: fundamental frequency estimates, voicing, accent and
meter - these are the observed outputs of a hidden note source. These note

events are described using a three-state left to right hidden markov model with

each unique note represented with a separate HMM.

Each note HMM has 3 states, attack, sustain and silence/noise (Figure 5-5).

A A

- . .
Note MM Attack Sustain ./ Silence|
State State State

Figure 5-5 Ryynanen and Klapuri's 3 state note HM. The arrows show the possible state transitions
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The HMM of different notes are joined into a system where the probabilities of
transitions from one note to another is determined by a musicological model. In
a similar manner to the Bayesian Network described in section [5.2] the melody
is transcribed by finding the most probable path through the network based

upon the probabilities given by the note HMMs and the musicological model.

Ryynanen and Klapuri’s model is represented in Figure 5-6 Ryynanen and

Klapuri’s HMM Model.
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Figure 5-6 Ryynanen and Klapuri’s HMM Model
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5.4 Non Negative Matrix Factorization

Non negative Matrix Factorization (NMF) is a statistical process which doesn’t
rely on probability models, but functions on the principle of analyzing multiple

variables at a single point in time (Lee & Seung, 1999).

A typical use of the NMF process is to decompose frequency magnitude spectra
into two matrices, one to describe frequency information, one to describe time

information (Smaragdis & Brown, 2003).

5.4.1 The NMF Process

Time domain signals aren’t suitable for NMF as they contain both positive and
negative values, but the magnitude of a spectrogram meets the non-negative

requirement (Wang & Plumbley, 2005).

NMF decomposes an M by N matrix V in to two non negative matrices W and H. V

is approximated by the product of the W and H (Equation iv).

V~WH

Equation iv

W is an M by R basis matrix, and H is an N by R coefficient matrix (Wang &
Plumbley, 2005). For example where V = 28, M =7, N = 4, R = 5 the following

matrices are generated.
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Figure 5-7 Matrix W

Figure 5-8 Matrix H

In simple terms the NMF summarises the profiles of the rows of V in the rows of
H, and likewise for the columns of V in the columns of W (Smaragdis & Brown,

2003).

5.4.2 NMF for Automatic Music Transcription

A desirable characteristic of the NMF is its robustness to deal with multiple
overlapping notes, which is highlighted in Smaragdis and Brown’s polyphonic

music example (Smaragdis & Brown, 2003).
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Figure 5-9 Score decomposed by NMF

The above piece of music (Figure 5-9 Score decomposed by NMF) is decomposed
to W and H matrices where R=7 - the number of unique note frequencies. W
stores frequency information, H stores time information. Analysis of the
resultant matrices shows that the two simultaneous notes (numbered 8 and 9 on
the stave) towards the end of the sample are consolidated as a single component

(Figure 5-10). This is not ideal for polyphonic music transcription.
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Figure 5-10 NMF Decomposition

Diagram showing the H and W matrices. Notes 8 and 9 from figure [5-9] appear as

a single component.

Two notes have been transcribed as a single event because the only time the two
notes occur is in unison, so the system only recognizes that combination of notes
as a single event. If the system is ‘taught’ by showing it the note frequencies in
isolation, or in different polyphonic groups their individuality will be highlighted

and therefore decomposed as separate components.

Teaching a system with audio examples has been successful, and can occur in an
‘offline’ mode before the decomposition of the musical audio. Dessein et al. first
populate a NMF model by using the spectral magnitude from note and
instrument samples. The polyphonic signal to be decomposed is then projected
on to the W matrix containing the learnt prior information during the real-time

decomposition phase to accurately transcribed notes sounded in unison as
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separate events (Dessein, Cont, & Lemaitre, 2010 ). Figure 5-11 describes

Dessein’s system.

‘Off Line’ ‘On Line’
Note Template Learning System Decomposition System

’ Isolated Note Samples Musical Audio

’ STFT Spectrogram ’ STFT Spectrogram ‘

NMF P [ NMF
V =WH V =WH

Note Templates i’ """"""""" Note Acrivation

Figure 5-11 Dessein's NMF

A weakness common to systems that utilise prior information is the data the
system is trained on is not necessarily spectrally identical to the source being

analysed, and therefore induces errors (Dessein, Cont, & Lemaitre, 2010 ).

Although only overviews of the popular Bayesian, HMM and NMF high level
processing techniques have been presented, it is intended to demonstrate that

there are advantages to be gained by providing accurate frequency and energy

components from the low level processing.

The following chapters investigate the parameters of the FFT for music

transcription with the aim of providing quality spectral analysis to the high level

processing.
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6 Discussion of FFT Parameters for Automatic Music
Transcription Algorithms

The Fourier transform and the STFT implementation is the initial process in
many modern automatic music transcription algorithms to gain a time-frequency
representation of the signal. The aim of the project is to evaluate the
characteristics of the STFT as a low level process for multiple fundamental
frequency estimation and investigate the optimisation of MRFFT parameters to
improve the accuracy of the note candidates presented to the high level
processing. For this reason, observations, testing and analysis are performed in

the context of music.

The real world nature of the problem is reflected in the preferred methodology
of a practical testing approach to determine characteristics and parameters

rather than a theoretical or mathematical one.

This chapter begins with an introduction to instruments and frequency ranges in

the context of a STFT.

The parameters of the STFT are then introduced with discussion of their effect

on the STFT output in the context of music transcription algorithms.

All figures, tables and results generated assume a sample rate of 44.1KHz where
relevant.
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6.1 Frequency Resolution - Instrument Frequencies and MIDI notes

Figure 6-1 shows the frequency range of a variety of musical instruments. The
standard piano has 88 keys that stretch to just over 7 octaves. The lowest note
on a piano is tuned to approximately 27.5Hz based on equal tempered tuning,
with the highest note tuning being 4186.0Hz. Generally instrument frequency
scales fall in to this range, although electronic synthesized instruments will

generate tones even below 20Hz (the threshold of human hearing).

Violin

Viola

Cello

Bass
Trumpet
Trombone
French Horn
Tuba
Piccolo
Flute

Oboe
Clarinet
Alto Sax
Tenor Sax
Baritone Sax
Bassoon
Harp
Harpsichord
Piano
Xylophone
Glockenspiel
Vibraphone
Timpani
Marimba
Guitar

Bass Guitar
Voice

(White, 2001)

Figure 6-1 Instrument frequency ranges

Computer software music sequencers often represent notes in terms of Musical

Instrument Digital Interface (MIDI) notes. MIDI notes are numbered from 0 to
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127 and represent a note frequency. There is 1 MIDI note per semitone
extending from 8.175Hz (MIDI note 0) to 12542.63Hz (MIDI note 127), the piano

range falls between MIDI notes 21 and 108 inclusive.

For automatic music transcription and STFT analysis, it is important to consider
the spacing between musical notes. The frequency resolution of the STFT refers
to its ability to discern 2 adjacent note frequencies (Dressler, 2006). The lowest
two notes on a piano are 27.5Hz and 29.135Hz, resulting in a frequency spacing
of 1.635Hz (delta frequency) (Figure 6-2). To successfully identify these two
fundamental frequencies as separate frequency events a resolution of 1.635 Hz is

required.
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Figure 6-2 Delta frequency

In contrast, due to the logarithmic nature of equal tempered tuning, the top two

notes have a delta frequency of 234.9Hz. Figure 6-3 plots the delta frequencies
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against MIDI note numbers to show the frequency resolution range required for

automatic music transcription.
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Figure 6-3 Note delta frequencies

The delta frequency provides a measure for the required frequency resolution of
an FFT to accurately represent individual notes. However, the corresponding
time resolution also must be considered, particularly in relation to transcribing

short notes.

6.2 Time Resolution — Note Lengths and BPM

Musical notes have a frequency value (pitch) but also a length measured in beats.
A beat is a relative measurement to the Beats per Minute (BPM), which is the
number of integer beats the music features within 60 seconds. BPM is directly
related to the meter and pace of the music. The name of the most common note

lengths and beat value are listed in the Table 5.

116



Note Name Beat Value

Semibreve 4
Minim 2
Crotchet 1
Quaver 0.5
Semi Quaver 0.25

Semi Demi Quaver | 0.125

Semi Demi Hemi | 0.0625

Quaver

Table 5 Note names and values

Moelants collated the BPM of 74042 pieces of popular music and plotted the
distribution. The BPM of the majority of popular music is in the range between
115 and 127BPM (Moelants, 2002). The mean is 121 BPM, which is not far from
the popular assumption of 120BPM being the average for popular music. The
plot of BPM that Moelants generates shows a steep drop in the use of BPMs over
150, with relatively few popular music compositions created with a BPM of over
200. 200BPM will therefore be considered the maximum realistic BPM a system
would have to deal with. However, it should be noted that in part BPM is a
perceptual measurement. For example, a composition at 200BPM that uses notes
twice as log as a composition at 100BPM, the 200BPM will be perceived at

100BPM.

Table 6 shows the length in seconds of the different notes for different BPMs.
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Note Name Beat 100BPM 120BPM 200BPM
Value | (secs) (secs) (secs)

Semibreve 4 2.4 2 1.2
Minim 2 1.2 1 0.6
Crotchet 1 0.6 0.5 0.3
Quaver 0.5 0.3 0.25 0.15
Semi Quaver 0.25 0.15 0.125 0.075
Demi Semi Quaver 0.125 0.075 0.0625 0.0375
Hemi Demi Semi Quaver 0.0625 0.0375 0.03125 0.01875

Table 6 Note lengths at varying BPMs

If the STFT time resolution is unsuitable, shorter notes will be ‘seen’ as longer
notes, and onset times will be less accurate. The FFT window length must be

suitable to accurately measure the length of a note.

6.3 FFT Window Length and Note Length

The parameter of the STFT that determines the time resolution is the data length
(or FFT length for non-zero padded transforms - see section 6.10), which is
measured in samples. The longer the analysis window, the more samples it
contains, therefore a longer period of time is analysed. This results in a coarser

time resolution than a shorter window.

In the context of music analysis, the window length determines the shortest note

that can be transcribed.
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Figure 6-4 Note positioning within time domain window

Figure 6-4 is a diagramatic representation of a note positioned within a time
domain wondow. The note is represented as the green bar in a piano roll format
(a screen grab from Apple’s Logic Sequencer) where the virtical axis is frequency
and the horizontal axis is time. The horizontal scale is not of consequence as it is
the relative position of the frequency component to the time domain window
that is of interest. The white box is drawn on top of the screen grab and is
representative of the FFT window length. The only time information available is
the time at the start of the window and the time at the end of the window.
Therefore, even though the note is shorter than the FFT window, the note
transcribed as a result of the FFT output is quantised to an onset and end time

equal to that of the start and end points of the FFT analysis window.

This forced quantisation causes onset and note length errors equal to the
distance between the start of the analysis window and the note onset, and the
end of the note and the end of the analysis window. The red blocks at the start
and the end of the green piano roll note in Figure 6-5 show the error resulting

from the analysis in Figure 6-4.

119



[ =]

Figure 6-5 Note length error

As shown in chapter 2, the length of the FFT in samples determines both the time
and frequency resolution of the FFT. It is the interplay of these two
characteristics generated by the data length that results in the real world trade

off of the STFT.

6.4 STFT Data Length — Time and Frequency Resolution

The data length is the number of samples of a signal that are entered in to the
STFT. Zero Padding is discussed in section [6.10] but for this section assume the

data length is equal to the STFT length.

In accordance with the decomposition described in section [2.6.2], as the FFT
length increases (and therefore the time period it represents), the number of
bins increases resulting in a finer frequency resolution. If the FFT length is
shorter to better localize a frequency in the time domain, the number of bins is
reduced and the frequency resolution becomes coarser. This is in line with

Heisenberg’s uncertainty principle that states the exact position (time) and
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momentum (frequency) of a particle (signal) cannot be known simultaneously

(Smith S. W., 1997).

The corresponding time resolution of an FFT length is calculated as:

L
Time Resolution = —
Fs

Equation v

Where:

L is FFT Length
Fs is Sample Rate

The frequency resolution of an FFT length is calculated as;

Fs
Frequency Resolution = T

Equation vi

Where:

L is FFT Length

Fs is Sample Rate

Table 7below shows the interaction of the time and frequency resolution for

different power of 2 lengths of window analyzing audio sampled at 44100Hz.

121



Time Frequency
Resolution | Resolution

FFT Length | (s) (Hz)
16 0.00036 2756.25
32 0.00073 1378.13
64 0.00145 689.06
128 0.00290 344.53
256 0.00580 172.27
512 0.01161 86.13
1024 0.02322 43.07
2048 0.04644 21.53
4096 0.09288 10.77
8192 0.18576 5.38

Table 7 FFT Time and frequency resolution

The inverse relationship between time and frequency resolution of the FFT is
demonstrated in the above table, as one increases the other decreases. Figure
6-6 shows a plot of the data in Table 7 but range corrected so all values are

between 1 and 0.

122



Scaled Time & Frequency Resolution Vs FFT Length
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Figure 6-6 Scaled time and frequency resolution

Although the scale has been modified so both properties can be plotted on the
axis, the visualization of the proportional interplay between the time and
frequency resolution relative to the window length of the FFT provides a clear
account of the resolution trade off. The curve of the graph indicates the necessity
of a longer FFT to generate a resolution capable of differentiating two low notes
with a small delta. Equally, the curve indicates the need for a short FFT length to

accurately transcribe a note length and onset time.

Dressler uses 4 different data lengths, 256, 512, 1024, 2048 for a MRFFT
(Dressler, 2006). An FFT length of 2048 samples will result in a frequency
resolution of 21.53Hz. Therefore, due to the logarithmic nature of the equal
tempered scale, the magnitude in the FFT output (spectral magnitude) generated
by any note frequency lower than 369.9Hz will be represented by a frequency
bin that also represents at least one other note. Figure 6-7 A 2048 FFT
decomposition of a 27.5Hz and 29.1Hz sine wave mixture shows the FFT spectral
magnitude of two sine waves tuned to 27.5Hz and 29.1Hz representing the two
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lowest notes on a standard piano analysed by a single FFT length of 2048

samples.

A 2048 FFT Decomposition of a 27.5Hz and 29.1Hz
Sine Wave Mixture
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Figure 6-7 A 2048 FFT decomposition of a 27.5Hz and 29.1Hz sine wave mixture

There is only 1 distinct peak in the spectra, making it impossible to detect the
two discrete frequencies. The magnitudes in adjacent bins are not considered to
be peaks due to their low energy level. A threshold based peak picker would
determine such low levels to be noise and not present the frequencies as note
candidates. An FFT length of 26972 samples would be required for the two
frequencies 27.5Hz and 29.1Hz to be represented by dedicated FFT bins (Figure

6-8 A 26972 FFT decomposition of a 27.5Hz and 29.1Hz sine wave mixture).
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A 26972 FFT Decomposition of a 27.5Hz and
29.1Hz Sine Wave Mixture
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Figure 6-8 A 26972 FFT decomposition of a 27.5Hz and 29.1Hz sine wave mixture

Figure 6-9 shows the FFT spectral magnitude of two sine waves tuned to
369.9Hz and 391.9Hz, the first pair of notes with a delta larger than the 21.53Hz
resolution of the 2048 FFT. Despite some cross channel interference between the
bins of the FFT (discussed in section [6.5]) two distinct magnitudes are visible,
which would result in a suitably configured threshold based peak picking

algorithm correctly detecting the 2 frequencies.
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A 2048 FFT Decomposition of a 369.9Hz and
391.9Hz Sine Wave Mixture
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Figure 6-9 Suitable delta frequency

The energy present in the bins either side of the peak values is a result of the FFT
decomposition method. This ‘cross channel interference’ needs to be considered,
as it is undesirable ‘noise’ for the purpose of peak picking note candidates, but

also contain essential information for a successful inverse FFT

6.5 Cross Channel Interference

Figure 6-9 is the spectral output of a 2048 FFT with a corresponding frequency
resolution of 21.53Hz. The signal analysed was a mixture of a 369.9Hz and
391.9Hz sine waves of equal amplitude. The delta between these notes is 22Hz,
so the resolution of the FFT is suitable. Therefore, it might be expected that as
the two frequencies are represented by separate bins there would be two strong

maxima in the relevant bins and no energy in the FFT bins not representing
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those two frequencies. However, as can be seen in Figure 6-9 this is not the case.

This behavior is often referred to as cross channel interference.

It is important to remember the bins of an FFT represent a single sine wave
frequency, not a range of frequencies. Imagining the FFT as a bank of very
narrow pass band filters with overlapping stop and start bands, with the bin
frequency values as the center frequency of each filter it is easy to imagine a
frequency not represented by a center frequency would appear in adjacent

filters. This is the case with frequencies decomposed by the FFT in Figure 6-9.

If a signal frequency is not represented by a bin value, then the energy associated
with that frequency in the signal will be distributed across several bin values as
the FFT attempts to represent that sinusoidal frequency with the frequency
representations it does have. Figure 6-10 shows the FFT spectral magnitude of

376.83Hz sine wave analysed by a 2048 sample FFT.

A 2048 FFT Decomposition of a 376.83Hz Sine
Wave
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Figure 6-10 Maxima due to cross channel interference
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376.83Hz is exactly half way between two bins of a 2048 FFT (using 44.1kHz as
the sample rate), and the cross channel interference generated results in 2
strong magnitudes in the bins either side and also a decreasing spread of
energies into all frequency bins away from the fundamental frequency bin

(Roads, 1996, pp. 561-562).
Figure 6-11 shows the FFT spectral magnitude of a 366.06Hz sine wave, which

matches an FFT bin value exactly, analysed by a 2048 sample FFT.

A 2048 FFT Decomposition of a 366.06Hz Sine
Wave
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Figure 6-11 Bin value matches frequency
As expected a single strong magnitude is present as the signal frequency matches

the FFT bin frequency.

As well as looking at cross channel interference from the perspective of
frequency bins, it can also be considered in terms of the complete (or

incomplete) cycles of a wave represented by a time domain window.
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6.6 Cross channel interference — Cycles

Figure 6-12 shows the first 2048 samples of a 366.06Hz sine wave as analysed

by the FFT in Figure 6-11.

W | R 226 339 452 1565 1678 79 190¢ 107 1130 1243 11356, 11469 1562 11695 RED 1821

Figure 6-12 Complete number of cycles

Figure 6-12 shows that a signal with a frequency equal to a bin value of the FFT

will contain a complete number of cycles within the analysis window.

Figure 6-13 shows the first 2048 samples of the 376.8Hz sine as transformed in

Figure 6-10

- |2 13 1228 1338 1452 585 1678 &l 904 1o 1130 1243 1358, 1483 1582 1635 1808 1821

Figure 6-13 Incomplete cycles
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As 376.8Hz is exactly between the values of the FFT bins there is not an integer
value of cycles. The first 2048 samples of the wave contain 17.5 cycles of the

signals.

The first 2048 samples of the 369.9Hz sine wave analysed in Figure 6-10 that

suffered from significant cross channel interference is show in Figure 6-14.

- |2 a3 228 1339 452 585 1578 791 1904 107 130 1243 11356, 1463 11582 11695 1808 1821 2

Figure 6-14 Incomplete cycle of 369Hz

The FFT window length contains 17 complete cycles and a fraction of a cycle.

The discontinuities in the waveforms of frequencies that do not match the bin
values generate cross channel interference. Considering the FFT output as a
collection of sine waves of set frequencies and varying magnitudes that when
combined recreate the original time domain signal, extra sine waves are required
to construct the non regular discontinuities at the ends of the windowed

waveform (Roads, 1996, p. 1098).

By applying a window shape to the rectangular data length the discontinuities
are compressed and therefore the magnitudes of the sine waves required to

represent the discontinuities are also compressed, thus attenuating cross
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channel interference. Shaping the time domain samples to be transformed can

result in both positive, and negative outcomes.

6.7 Analysis Frame Window Shape

A rectangular window is the result of sampling the signal to be analysed and not
shaping the signal in anyway. An alternative is to apply an envelope to the
sampled signal to smooth the edges of a rectangular window and suppress the
discontinuities associated with windowing (discussed in section 6.7). Figure

6-15 shows the process of applying an envelope to a STFT analysis window.

Window Function

signal to be analysed f\ /\ /\ /\ /\ /\ /\ :
VY VY
Windowed Signal /\ /\ /\ /\

<‘_‘_‘_'ﬁ"'—-—-_._

Figure 6-15 Windowing Process
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The resulting waveform shape in Figure 6-15 shows the minimization of the
discontinuity of waveform by reducing the time domain amplitude of the signal

at the edges of the window.

Applying an envelope to the signal in the time domain also has an effect on the
signal in the frequency domain, which can be positive or negative dependent
upon the envelope shape used (Roads, 1996, p. 1099). An envelope shape is
characterized by lobes in the frequency domain - a main lobe and a series of side

lobes on either side.
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Figure 6-16 Plots of Hamming (Blue), Hann (Green), Blackman (Red) and Gaussian (Turquoise)

window shapes and corresponding lobes.

The height of the side lobes indicates the effect they will have in frequency bins
that they ‘land’ on. High side lobes will increase any components present in the

corresponding bins. Low side lobes reduce the magnitudes of bins adjacent to
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the main lobe, but will increase the bandwidth of the main lobe, which itself can

lead to cross channel interference.

The ideal envelope shape for automatic music transcription implementations
would generate a tall thin main lobe, and no side lobes. Unfortunately, the ideal is

not possible.

In a similar scenario to the time-frequency trade off of the FFT, a main lobe-side
lobe trade off compromises window shapes. Windows with close to ideal main
lobe behavior exhibit poor side lobe behavior. Windows with good side lobe
behavior such as the Blackman window or Kaiser Bessel, are compromised by

their main lobe behavior (Harris F. J., 1978).

Harris presents extensive analysis and reviews of window shapes for Fourier
transforms. The choice of window shape is dependent on application, but
whatever that may be, the window shape only changes the shape of the leakage
but doesn’t eradicate it. Therefore, there is no ‘universally best’ window choice

(Roads, 1996, p. 1103).

Window shapes can be important in automatic music transcription algorithms
but need to be evaluated and chosen carefully to ensure they enhance the
spectral representation. The following work does not consider the evaluation of
this parameter, but there is no reason why future work could not be enhanced by

evaluating and using alternative window shapes.

As the context for this thesis is automatic music transcription, it is useful to

consider the suitability of the FFT to handle ‘real world’ music, and to compare
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the FFT performance with the human auditory system’s ability to determine

frequency.

6.8 Note Length, Frequency and Cycle

Longer FFTs are used for low frequency notes to accurately represent the

frequency content, but time domain factors also need to be considered.

Note lengths in terms of BPM and seconds are shown in Table 5 and Table 6 but
these should be considered in terms of FFT window length and cycles per
window also to determine the suitability of FFT length to accurately place a note

event in time.

Hsieh and Saberi present measured statistics of the number of cycles of a
waveform a human requires to accurately identify its pitch. A minimum of 4
cycles is required before human pitch identification is considered to be above
chance. For the frequencies between 65.4Hz and 262Hz, the lowest 2 octaves
Hseieh and Saberi tested frequency identification was much less accurate than
the higher octaves, and required a greater number of cycles of the waveform to
be identified. A sample 5 cycles long for a pitch in the lowest 2 octaves would
yield only a 10% success rate, 10 cycles yielded a much higher 80% success rate

- which was deemed to be an acceptable success rate (Hsieh & Saberi, 2007).

Hsieh and Saberi’s experiments were performed by playing a sine wave signal to
the listener through headphones in an anechoic room, so did not take into
consideration the effects of reverb. In the ‘real world’ recordings of music will

feature reverb, whether naturally occurring or added in the production process.
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The effects of reverb on music include a ‘blurring’ of pitch as a note frequency
and its harmonics will overlap with the next note. The extent to which this
happens depends on the length of the reverb used, but the result is an increase in
difficulty for an automatic music transcription tool to determine and extract

fundamental frequencies (Wilmering, Fazekas, & Sandler, 2010).

Using Hsieh and Saberi’s research, assumptions can be made about note duration
in the lower frequencies, which can be a guide to suitable time resolutions. If a
human requires 10 cycles of a sound to determine the pitch, it is unlikely a
composer will write a note that is shorter than 10 cycles and therefore

undetectable.

If a note is significantly sorter than the analysis window, the timing and length of
the transcribed note will be compromised, but if the FFT analysis window is
approximately the length of 10 cycles of the low frequencies, then it can be
assumed the time resolution is sufficient to accurately transcribe the shortest

possible note that would be used in the lower octaves

Table 8 shows the time duration for 1 and 10 cycles of the 2 octaves of an equal
tempered piano. It also displays the number of samples required to sample 10
cycles of each frequency at 44.1kHz sampling rate, and what the frequency
resolution of an FFT is with a data length equal to the number of samples
required to represent 10 cycles. The penultimate column displays the delta
frequency between the current note and the one above, and the final column
displays the required FFT to ensure each note is represented by a discrete bin

value.
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Time

FFT Freq Frequency difference
No. of resolution |difference |Required between
samples for |when Data [to note FFT Length |10 cycles
Time 10 cycles length =10 |above in toresolve [and

Note for 10 |when cycles pitch (Delta |delta required
Frequency |[cycles |Fs=44.1KHz [samples Freq) frequency |FFT Length
27.50 0.36 16036.36 2.75 1.64 26969 0.248
29.14 0.34 15136.31 2.91 1.73 25455 0.234
30.87 0.32 14286.78 3.09 1.84 24026 0.221
32.70 0.31 13484.92 3.27 1.94 22678 0.208
34.65 0.29 12728.07 3.46 2.06 21405 0.197
36.71 0.27 12013.70 3.67 2.18 20204 0.186
38.89 0.26 11339.42 3.89 2.31 19070 0.175
41.20 0.24 10702.99 4.12 2.45 17999 0.165
43.65 0.23 10102.28 4.37 2.60 16989 0.156
46.25 0.22 9535.28 4.62 2.75 16036 0.147
49.00 0.20 9000.10 4.90 2.91 15136 0.139
51.91 0.19 8494.97 5.19 3.09 14286 0.131
55.00 0.18 8018.18 5.50 3.27 13484 0.124
58.27 0.17 7568.16 5.83 3.46 12727 0.117
61.74 0.16 7143.39 6.17 3.67 12013 0.110
65.41 0.15 6742.46 6.54 3.89 11339 0.104
69.30 0.14 6364.04 6.93 4,12 10702 0.098
73.42 0.14 6006.85 7.34 4.37 10102 0.093
77.78 0.13 5669.71 7.78 4.63 9535 0.088
82.41 0.12 5351.49 8.24 4.90 9000 0.083
87.31 0.11 5051.14 8.73 5.19 8495 0.078
92.50 0.11 4767.64 9.25 5.50 8018 0.074

Table 8 Note lengths in cycles and FFT lengths

The fourth and final columns show the discrepancy between a suitable data

length to accurately represent the length of a note 10 cycles long, and the

frequency resolution required to resolve the delta frequency components. The

FFT length required to resolve the delta frequencies is consistently larger than

the length of 10 cycles, which will lead to a transcription timing error.

The error between the shortest note (10 cycles) and the shortest FFT length to

resolve the delta frequency is shown in real terms in Table 10 where the error is
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120bpm is shown as a reference in Table 9.

calculated as seconds. The lengths of a crotchet, quaver and semi quaver beat at

Semi
Crotchet @ [Quaver @ Quaver @
120bpm 120bpm
( ds) | ds) 120bpm
seconds seconds (seconds)
0.5 0.25 0.125

Table 9 Note references
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Time
difference
Note Time for 10 |between 10 |10 cycle note
cycles cycles and |transcription
Frequency .
(Seconds) |required length
FFT Length
(Seconds)
27.50 0.36 0.248 0.608
29.14 0.34 0.234 0.574
30.87 0.32 0.221 0.541
32.70 0.31 0.208 0.518
34.65 0.29 0.197 0.487
36.71 0.27 0.186 0.456
38.89 0.26 0.175 0.435
41.20 0.24 0.165 0.405
43.65 0.23 0.156 0.386
46.25 0.22 0.147 0.367
49.00 0.20 0.139 0.339
5191 0.19 0.131 0.321
55.00 0.18 0.124 0.304
58.27 0.17 0.117 0.287
61.74 0.16 0.110 0.270
65.41 0.15 0.104 0.254
69.30 0.14 0.098 0.238
73.42 0.14 0.093 0.233
77.78 0.13 0.088 0.218
82.41 0.12 0.083 0.203
87.31 0.11 0.078 0.188

Table 10 10 cycle note errors

Table 10 above shows that the longest window required to transcribe the
smallest delta frequency (27.50 Hz Note frequency) will increase the 10 cycle
note to a length of 0.608 seconds. This is the equivalent of a dotted quaver being

transcribed as a note longer than a crotchet at 120BPM (Figure 6-17).
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Figure 6-17 Real term transcription note error - original note (left) transcribed note (right)

The percentage increase of transcribed note length compared to the length of 10
cycles for the lowest 2 octaves is approximately 68%, so the minimum note is

length (10 cycles) will always be transcribed as an event of 1.68 times longer.

This demonstrates in real terms the trade off between the required frequency

resolution and the required time resolution.

139



Cylesina Cyclesina |Cyclesina |[Cyclesina [Cyclesina
Note 256 FFT 512 FFT 1024 FFT 2048 FFT 4096 FFT
Frequency [Window Window Window Window Window
27.50 0.16 0.32 0.64 1.28 2.55
29.14 0.17 0.34 0.68 1.35 2.71
30.87 0.18 0.36 0.72 1.43 2.87
32.70 0.19 0.38 0.76 1.52 3.04
34.65 0.20 0.40 0.80 1.61 3.22
36.71 0.21 0.43 0.85 1.70 3.41
38.89 0.23 0.45 0.90 1.81 3.61
41.20 0.24 0.48 0.96 1.91 3.83
43.65 0.25 0.51 1.01 2.03 4.05
46.25 0.27 0.54 1.07 2.15 4.30
49.00 0.28 0.57 1.14 2.28 4.55
51.91 0.30 0.60 1.21 2.41 4.82
55.00 0.32 0.64 1.28 2.55 5.11
58.27 0.34 0.68 1.35 2.71 5.41
61.74 0.36 0.72 1.43 2.87 5.73
65.41 0.38 0.76 1.52 3.04 6.07
69.30 0.40 0.80 1.61 3.22 6.44
73.42 0.43 0.85 1.70 3.41 6.82
77.78 0.45 0.90 1.81 3.61 7.22
82.41 0.48 0.96 1.91 3.83 7.65
87.31 0.51 1.01 2.03 4.05 8.11
92.50 0.54 1.07 2.15 4.30 8.59
98.00 0.57 1.14 2.28 4.55 9.10
103.83 0.60 1.21 2.41 4.82 9.64
110.00 0.64 1.28 2.55 5.11 10.22
116.54 0.68 1.35 2.71 5.41 10.82
123.47 0.72 1.43 2.87 5.73 11.47

Table 11 Note cycles vs. FFT length
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Table 11 shows the number of cycles of different note frequencies contained in 4
typical FFT window lengths. It is interesting to note that an FFT length of 4096
contains fewer than 10 cycles of frequencies below 110Hz. An FFT of 4096

samples can determine a frequency below 103.83 Hz successfully, but by doing




so with fewer than 10 cycles it is actually outperforming the human auditory

system based upon Hsieh and Saberi’s research.

The ability of an FFT to accurately represent a frequency component is
important, but for a peak picker to determine that frequency as a note candidate,

the magnitude of the frequency in the FFT output is important.

6.9 Magnitude of the FFT

The magnitude of the output of the FFT is dependent on the amplitude of the
signal in the time domain, the position of the signal frequency relative to the bin
frequencies as discussed above, and also the FFT length. Figure 6-18 and Figure
6-19 show the FFT spectral outputs for a 1076.66Hz sine wave transformed with
a sample rate of 44.1kHz. One window length is 8192, and the other is 4096. The
frequency value of the input signal is equal to a bin value for each window

length. The sine wave peak amplitude in the time domain is 1.
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A 8192 FFT Decomposition of a 1076.66Hz Sine
Wave
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Figure 6-18 8192 FFT magnitude

A 4096 FFT Decomposition of a 1076.66Hz Sine
Wave
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Figure 6-19 4096 FFT magnitude

The magnitude measured for the 8192 FFT is 2048; the magnitude measured for
the 4096 FFT is 1024. Each value is a quarter of the FFT length used to transform
the signal. This holds true for the power of 2 Fastest Fourier Transform in the
West (FFTW) when the input signal is a sine wave equal to a bin frequency value

and the amplitude of the input signal is 1. However, it cannot be considered as
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the ‘maximum’ value. If cross channel interference occurs then the summing of

spectral components means there is no ‘maximum’ spectral magnitude.

However, what can be concluded is that longer FFT data lengths generate larger
valued spectral magnitudes. The alternative way to consider this is that longer
FFT lengths create a finer bin resolution. This means frequencies can be more
accurately represented with less spectral leakage, resulting in more defined
spectral magnitudes. Large magnitudes in the frequency domain are ideal as it
increases the likelihood of the magnitude being chosen by the peak picker as a

note candidate.

So far, the discussion of FFT parameters and characteristics has been based upon
the data length being equal to the FFT window length, but this doesn’t have to be

the case.

6.10 Zero Padding — Data Length and Window Length

Zero padding is the process of adding a series of zeros to the end of a sampled
signal usually with the intention of increasing the frequency resolution of the

FFT while maintaining a small time domain resolution.

An example is taking a sample of a signal that is 512 samples long (data length).
If the sample rate is 44.1kHz, the 512 samples represent a period of time equal to
0.011 seconds. If a further 512 samples of values equaling zero are applied to the
end of the data length, then the total number of samples is 1024, allowing a 1024
sample FFT to be performed instead of a 512 sample FFT which would result in a

coarser frequency resolution.
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Figure 6-20 Zero padding

When discussing zero padding in relation to FFT window lengths, it is good to
consider the FFT as having two frequency resolutions. For the purpose of this

thesis they are termed the native resolution and the grid resolution.

The native resolution depends upon the data length and refers to the ability of
the FFT to distinguish 2 closely spaced frequencies (Dressler, 2006). The native

resolution is equal to:

Fs
Native Resolution = o

Equation vii

Where:

Fs is Sample Rate

D is Data Length

The grid resolution depends upon the window length and refers to the scale on
which the FFT outputs are plotted - these are the bin values for the generated
frequency spectrum representation (Dressler, 2006). The grid resolution (or bin

spacing) is equal to:
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. . Fs
Grid resolution = —

Equation viii

Where:

Fs is Sample Rate

W is Window Length

Appending zeros to the end of a time domain signal to generate a finer grid
resolution is interpolating the FFT outputs. There is not any actual new data as
that is dependent on the native resolution and the sampling frequency (Dressler,

2006).

Zero-padding has the effect of interpolating the points in between the points of
the non padded analysis. Only by adding more data samples can the actual
frequency resolution be increased, but interpolating extra points, can aide the
visualization of curves in the spectrum (Roads, 1996, p. 1104). The interpolation
can result in frequencies that fall between bin values of an unpadded FFT being

visualized in a zero padded FFT.

The use of zero padding and the interpolation of the FFT can be quite successful.
Figure 6-21 and Figure 6-22 show the FFT frequency spectra for a signal
containing a 107.6Hz sine and an 118.4Hz sine. One FFT used a data window of
1024 zero padded to an FFT length of 4096, the other used a data length of 1024

and a FFT length of 1024.
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A 4096 FFT with 1024 data window Decomposition
ofa 107.6Hz and 118.4Hz Sine Wave Mixture
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Figure 6-21 Zero padded analysis

A 1024 FFT with 1024 data window Decomposition of a
107.6Hz and 118.4Hz Sine Wave Mixture
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Figure 6-22 Non zero padded analysis

The zero padded version shows 2 distinct magnitudes, which accurately
represent the 2 frequencies being decomposed. In the non zero padded
decomposition the 2 signals are represented by a single significant magnitude in
the FFT output spectrum, but if no new information is added when a signal is

zero-padded, why are the 2 signals visible in the zero padded FFT?
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The information to construct the 2 frequency components was present in both
transforms. This is true because if the inverse FFT were performed the time
domain signal would be perfectly reconstructed. However, in the decomposition
of the non-padded FFT the data is hidden and not displayed (Quach, 2008). The
non-padded version can’t display the 2 peaks whereas the padded version can,
but it only as a function of interpolation of the data points generated from the
data length. As it is the data length that provides actual samples of the time
domain signal rather than interpolated points, the native resolution is still of

importance (Quach, 2008) (National Instruments, 2006).

Zero padding is a useful technique, but can also cause problems. The examples
above use a frequency that matches a bin frequency value. Figure 6-23 and
Figure 6-24 shows the FFT spectral outputs for a 91Hz sine wave whose

frequency does not match the bin values of the native or padded FFT frequency

resolution.
A 4096 FFT with 1024 Data Window
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600
%500
£ 400
&
§300
= 200
e
= 100
0 --
O N MO INMOoOINNMmOINNMmOINMmMmOoONmoim
O NIIN N O 0 VM-I VT ANAANNINAN O M
SS T A MMITBIE I N BRRAS =N ® M F s
S AN M FT N OO H N MW O N0 O
™ o e e e e = = NN

FFT Bin (Hz)

Figure 6-23 not useful zero padding

147



A 1024 FFT with 1024 Data Window
Decomposition of a 91Hz Sine Wave
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Figure 6-24 Accurate decomposition

Although from the zero padded FFT it can be determined that the frequency is
between 86.13Hz and 96.90Hz, it is at the cost of generating increased cross
channel interference without providing any further information regarding the
actual frequency of the signal. Equally, the same spectral output could be
interpreted as representing 2 frequency components, one at 86.13Hz and

another at 96.9Hz.

Reading the non-padded FFT, the actual frequency value of the signal has been
misrepresented, due to the frequency resolution not allowing a more accurate
representation. Although the non padded transform is still inaccurate it features

less channel interference and correctly displays only 1 magnitude.

If 91Hz was a note frequency, and the two FFTs were for the purposes of
automatic music transcription, the results of the Fourier analysis would enable a
‘closest fit’ function. So, although the dominant frequency is 86.13Hz, if it is

known the note value is at 91Hz, the result can be altered. This process can be
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applied to both signals but the noise of the padded FFT is still undesirable as it

may interfere or contribute to other note fundamental frequency magnitudes.

Zero padding, although useful should not be used as an alternative to using the
longest data length possible - the more data points available for the transform,
the more accurate and defined the FFT spectrum output will appear (Quach,
2008). There are arguably benefits to zero padding, but as discussed, there are
also associated problems. As Quach states, it is the data length that is of primary
importance for an FFT, therefore the investigation in Chapter 7 does not
consider zero padding in the evaluation of FFT parameters. It may be possible to

include the evaluation of zero padding in future work.

Another method of manipulating the output of the FFT is to alter the window

alignment of successive frames of an STFT.

6.11 STFT Hop

The STFT analysis window moves along the waveform after the Fourier

transform has been performed on that window of the waveform.
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Figure 6-25 Hop Process

The hop size refers to the distance the STFT analysis window moves after each

STFT. If the hop size is equal to the data length, there is no overlap (Figure 6-25).

STFT 1 STFT2

Figure 6-26 100% hop size

If the hop size is smaller than the data length as in Figure 6-27 the overlap does
not result in an increased time resolution. In a similar way to zero padding, the
overlapping of windows does not provide any additional information. However,
interpolation between windows can result in the ability to detect finer details in

the time domain, which could be missed without overlapping windows
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STFT 1 STFT 2

Figure 6-27 50% hop size

STFT1 STFT 2

Figure 6-28 25% hop size

The following examples are hypothesised based upon a basic energy based FFT
peak picking method where there is no further processing of the FFT data
following the initial transform. A basic peak picker will assume the presence of a

note if the magnitude of energy within a frequency bin exceeds a threshold.

Figure 6-29 shows a scenario where a hop size equal to the length of the analysis
window leads to a larger note length error than using a smaller hop size as

shown in Figure 3.1b.

The presented figures are diagramtic representations of hypothesised window
alignment and associated energy content. The green blocks represent the
original played notes, the red shows the onset time error of the transcribed note,
and the blue shows the note length error of the transcribed note. The white

boxes represent the STFT analysis windows.
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Figure 6-30 overlap

Figure 6-30 shows STFT with a hop size of FFT Length divided by 2, or an over
lap of 50%. In this example the first note is transcribed with the same errors
using 0% overlap and 50% overlap. The second note would suffer from much
larger quanisation errors using the 0% overlap method (Figure 6-29) than the
50% overlap method as the length of the note would be extended to a full frame

length rather than 50%.

Figure 6-31 and Figure 6-32 and Table 12 further clarify the process of the 50%

overlap shown in Figure 6-30.
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Frame Number Note  Frequency
(Green) Present?
STFT 1 Yes
STFT 2 Yes
STFT 3 No
STFT 4 No
STFT 5 No
STFT 6 Yes
STFT 7 No

Table 12 STFT note presence

Figure 6-32 shows the FFT ouput for frames 1,2 and 3. The note frequency is
strongly present in frames 1 and 2, but no frequency compontents are detected
in frame 3, therefore, using a basic peak picker it is assumed the note ended at
the start time of frame 3. Note that because the note is a smaller proportion of
frame 2 than frame 1, the relative power magnitude of that frequency

component is smaller also.

It is important to note that utilising an overlapping STFT method does not
provide more accurate note timing information for all scenarios. If a single note
is longer than the hop size, the timing accuracy is not increased using an
overlapping STFT. The transcription of the first green note in Figure 6-29 and

Figure 6-30 demonstrates this point.
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For the simple case of a single note in a frame, if a note is equal in length to a
multiple of the hop size and aligned with the window boundaries, then an
accurate note length transcription will be generated. When multiple notes occur

in a single frame it becomes more complicated.

6.11.1 Hop Size - Multiple Notes in a Single Frame

If there are multiple notes of the same frequency within a single analysis frame,
the Fourier transform will not provide any information to distinguish the two

notes as separate events (Figure 6-33).

Figure 6-33 Multiple notes of the same frequency

155



Frame Number Note  Frequency | Note Start/End

(Green) Present?

STFT 1 Yes Start
STFT 2 Yes
STFT 3 No End

Table 13 STFT Note presence

The same note frequency is present in both frames 1 and 2 of the STFT, the

resulting transcribed note is shown in Figure 6-34.

Figure 6-34 Transcription error

To be able to differentiate between 2 notes of the same frequency, the FFT length
must be shorter than the gap between the 2 notes. For the purpose of
distinguishing 2 notes of the same frequency it is the silence inbetween the notes

which is important to detect (Figure 6-35).
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Using a hop size of 50%, if the two notes separated by the gap in Figure 6-33
were of different frequencies, both notes would succesfully be transcribed.
However the transcribed notes would be longer than the originals as the silence

between the two would not be detected.

The shortest detectable note length is equal to the hop size of the STFT. If the
hop size is equal to the FFT length, then the minimum note length is determined
by the number of samples in the FFT analysis window. If overlapping windows
are utilised the hop size allows for an increase in accuracy of onset times and

note lengths, (Figure 6-29 and Figure 6-30).

6.11.2 Minimum Note Length Detectable

The success of overlapping windows to detect short notes depends largely on the
position of the note within analysis frames. If the note is positioned so it features
in a single window, then an accurate transcription will be possible. Figure 6-37
shows an effective window length (due to the overlap) equal to the length of the
note. This will provide a highly accurate transcription as the window length is
equal to the note length. However, if the note is positioned so it features in 2 FFT
analysis windows, then the transcribed note will be extended in length (Figure

6-38), even though the analysis window is equal to the length of the note.
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Figure 6-38 Ineffective window length

So while the hop size does determine the shortest note possible to transcribe
accurately, the position of the note in the analysis window will determine the
actual accuracy. If a note of length equal to hop is position over two frames, the

transcribed note will have a length of twice the hop size.

This same scenario is true when considering the smallest length of silence
detectable. If a silence between two notes is positioned over two frames, the

silence will not be detected (Figure 6-39).
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Figure 6-39 Undetected silence

Although the hop size is shorter than the length of silence between the two
notes, because the notes are present in the same analysis window the silence will

be removed from the transcribed version (Figure 6-40).

Figure 6-40 2 notes transcribed as one

If the analysis windows are realigned, it is possible to correctly transcribe the
silence, although as the notes are shorter than the hop size, they would still be
transcribed with timing errors. This is only true if the notes are of different

frequencies (Figure 6-41)..
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Figure 6-41 Silence maintained

Although frame 2 in Figure 6-41 contains energy from the second note (in frame
3), because that frequency is not present in frame 1 it can be deduced that the
2nd frequency onset does not occur until frame 3. As the first note frequency is
not present in frame 2, it is deduced that the first note ends before the start of

frame 2. This means the silence between the two notes is maintained.

If the notes are the same frequencies as each other, then the same frequency
component will be present in frame 1, 2 and 3 leading to a transcription error

where the silence is removed (Shown as the orange band in Figure 6-42).
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Figure 6-42 Silence is removed

6.11.3 Note Length Errors in Real Terms

The best case scenario for note positioning using an overlapping STFT is a note

equal to the hop length, which is positioned in a single analysis frame (Figure

6-43).
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Figure 6-43 Best case scenario
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The worst case scenario is a note positioned across the boundaries of analysis

windows (Figure 6-44).

gl [ g=T |
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Figure 6-44 Worst case scenario

From this it can be stated that the shortest transcribed note possible will be

quantised to be 1 hop length.

If a note is longer than 1 hop length and therefore positioned across N analysis
window boundaries, then an error of N hop lengths minus the original note

length can be generated

This conclusion is used to generate real case timing errors. The graphs below
show the calculated timing errors of best and worst case transcriptions of
quavers and semi quavers at 120 and 200 BPM, based upon an FFT length of

8192 and window overlap of 0,%, 25% and 50%.
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Figure 6-45 Quaver transcription errors
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Figure 6-46 Semi quaver transcription errors
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Quaver Transcription at 200 BPM
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Figure 6-47 Quaver transcription errors at 200bpm
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Figure 6-48 Semi quaver transcription errors at 200bpm
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The graphs show a decreased hop length generally increases note length
transcription accuracy. However, these conclusions are drawn from a simplified
theory and not practical experiments. Also they are based on only a single note

per anlysis frame.

6.11.4 STFT Hop Summary

Hop length can have positive benefits. While not increasing the actual time
resolution of the transform, the interpolated information generated by
overlapping the windows can increase the accuracy of note length and onset
transcription. This is certainly true for the simple scenarios discussed but
potential gains become much harder to calculate and quantify when considering
multiple notes in a single window, the variations of spaces between notes, note

frequency and note length.

The extent of the positive outcome of altering hop size appears to depend on
how the musical content of the signal being analysed aligns with the boundaries
of the overlapping windows, and also how the length of the musical notes and
silences relate to length and overlap of the analysis windows. As the gains of
varying hop size relies in part on the characteristics of the signal being analysed,
hop size was not evaluated as part of the investigation in chapter 7. Future work
could consider developing a method for evaluating and optimising the hop

parameter for music transcription purposes.
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6.12 FFT Parameters used by automatic music transcription algorithms

This chapter has discussed the control parameters of the STFT that determine

the characteristics and behavior of the STFT output.

As Table 3 demonstrates, the parameters for the FFT used in music transcription
algorithms vary. This was a motivating factor to optimise the parameters of the

FFT for music transcription.

Having discussed the STFT parameters and observed their impact for practical
use in music transcription, a novel method of scoring the performance of STFTs
based upon the transform output and suitability for music analysis is introduced

in the following chapter.

A set of optimised multiresolution FFT (MRFFT) parameters for use in automatic
music transcriptions are generated and presented and tested on sinusoidal
extraction tasks. Results are compared with other multiresolution approaches

and discussed.
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7 Optimisation of FFT Parameters for Automatic Music
Transcription

Table 14 is a summary of the low level processes discussed in Chapter 4 that are
typically implemented in automatic music transcription algorithms. Table 3
shows that the FFT is the favoured process for frequency domain
transformations - despite it's time-frequency resolution trade off and linear

frequency response.

Advantages Disadvantages
Filter Banks Flexible configuration Potentially

Simple implementation computationally

Flexible filter shapes expensive for suitable

frequency resolution

STFT Fast Linear frequency
Computationally efficient response
Time-frequency trade off
CQFFB Fast Constant Q based on
Constant Q frequency octave divisions
response Computationally
expensive
Non reversible
Multirate Filter Fast Computationally
Banks Computationally efficient expensive to generate
Constant Q Frequency suitable frequency
response resolution
Wavelets Multiresolution frequency Relatively slow
resolution Computationally

expensive to generate
suitable frequency

resolution
MRFFT Multiresolution frequency Not Constant Q
response FFT Parameters
Fast potentially not optimised
Computationally efficient for transcribing music

Table 14 Low Level Processing comparisons

The motivation for the following investigation is to determine a set of FFT

parameters that are optimised for automatic music transcription and evaluate
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them with commonly used parameters to observe if the optimised parameters

offer any improvements.

The outline of this chapter is as follows:

An overview of the optimisation process is presented with justifications for
parameters chosen. The search process used to find the optimised MRFFT
settings is then presented, including the scoring process for note-bin

alignment, frequency resolution, time resolution and overall MRFFT score.

Section 7.7 introduces the 6 ‘solutions’ that are generated from the
optimisation process. The results of this optimisation process are then

presented and discussed.

A sinusoidal extraction test is performed by all 6 solutions to evaluate their
optimised performance. The method and results of this test are presented
and discussed, followed by a further investigation motivated by these results,
including analysis of quality of note candidates generated by MRFFT

solutions.

7.1 A ‘tuned’ Multiresolution FFT for Automatic Music Transcription

The presented system varied the cut off frequencies for dividing the frequency
domain into sub-bands and varied the FFT length used in each sub-band. The

algorithm scored the time resolution, frequency resolution and the alignment of
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equal tempered scale fundamental frequencies with the bin spacing to determine

a set of optimised ‘tuned’ parameters for automatic music transcription.

Zero padding, window shape and hop overlap are not considered in this initial
evaluation of parameters. Based upon the conclusions drawn in the sections of
Chapter 6 these parameters and manipulations of the FFT output can be
beneficial for music transcription algorithms. However, as discussed, there are
also drawbacks to each method, so each must be used/selected carefully. The
performance of each of these parameters also depends largely on the
characteristics and content of the input audio. The methodology of this initial
work does not account for the variations of input signals that would affect the
performance of zero padding, window shape and hop overlap. Therefore, the

system would not be able to evaluate these particular parameters accurately.

The focus of this work is on the essential parameters of multiresolution Fourier
transforms that are independent of the audio input. The FFT data length, and the
division of sub-bands are the basic parameters for all MRFFTSs, so these are

evaluated and optimised.

A rectangular window was used for the audio testing of the optimised MRFFT.
The presented scoring method doesn’t account for evaluating window shapes,
and as there is no universally accepted ‘best’ window shape for audio analysis,
the simplest shape was chosen. The rectangular window used provides a worse
case scenario in terms of side lobe behavior and cross channel interference, so
any improvements seen in resulting magnitudes, cross channel interference and
bin alignment can be attributed to the optimised FFT length, rather than an

optimised window shape.
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The outcomes of this investigation are:

* Atuned FFT length for a single band FFT

* A set of 3 optimum sub-band divisions and an optimised FFT length for
each sub-band of a multiresolution FFT

* A set of 4 optimum sub-band divisions and an optimised FFT length for

each sub-band of a multiresolution FFT

By optimising the FFT length and sub-band division for automatic music
transcription, it is hoped the spectra presented from the resulting FFT will yield
more accurate results than parameters currently being used by providing a
higher quality of note candidate to the higher level processing. The method for
determining optimised FFT lengths and sub-band divisions is based upon an
instrument tuned to the equal tempered scale, and therefore whose fundamental

note frequencies are in the ratio or 21/12,

7.2 The Searching and Scoring of FFT Parameters

A program was developed using Matlab software that cycled all possible
combinations of sub-band cut offs (the position in the frequency domain where

one band ends and another starts) for a 3 band and 4 band MRFFT.

Figure 7-1 shows the scoring and searching process. The diagram only includes

cut off frequencies for simplicity and clarity.
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Band A FFT Length = 128
Band B FFT Length = 128

v
| Band A Upper Cut-off = 99Hz |
v
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Calculate Band A Freq Score
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| Set Band B FFT Length=128 | | Set Band B FFT Length=128 |

v ¢ ¢

Figure 7-1 The scoring and search process for a 2 cut-off MRFFT.

The search method was an exhaustive search with the objective of minimising a
combined ‘error score’ for frequency resolution, time resolution and note-to-bin
alignment. The error score is calculated based upon the difference between the
best possible frequency resolution, time resolution and note-to-bin alignment
and those generated by the combination of FFT Length and sub band divisions in
the MRFFT. The scoring method for these parameters is presented in sections 7.3

to 7.6.

The MRFFT was calculated for every combination of sub-bands. For every

combination of sub-band division all FFT lengths from 256 to 8192 samples in
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increments of 128 samples were applied to each band in all combinations. The
resulting note-to-bin-alignment, time resolution and frequency resolution were
scored and summed to determine the optimum set of sub-band cut off

frequencies and FFT lengths for each band.
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Sub-band 1
Sub-band 2
A S S S S
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TPy
Sub-band 4

Frequency 5kHz

Figure 7-2 Sub-band cut off points

A 4 band MRFFT. The algorithm moves the cut off frequencies A, B and C through
all combinations of positions. For each position, all FFT lengths between 256 and
8192 samples in increments of 128 are evaluated on each sub-band. All
combinations of FFT lengths on all combinations of subbands are evaluated and

scored.

Traditionally, FFT decomposition has been restricted to power of 2 lengths. This
was due to the functionality and efficiency of the decomposition method relying
upon the number of samples equaling a power of 2 (Duhamel & Vetterli, 1990).
Modern computer processors and decomposition methods, such as the Fastest
Fourier Transform in the West allow non-power of 2 transform lengths. This
flexibility of window length can be utilised to better align note frequencies with

bin values within each sub-band.
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The following sections describe the parameter scoring methods.

7.3 Bin Scoring

For each set of cut off frequencies and FFT length within each band, the position
of the fundamental frequencies of the equal tempered scale within the FFT bins
is scored between 1 and 0. For every FFT length the bin values change, so the
alignment of fundamental frequencies with bin values alters for every FFT

length.

If the fundamental frequency of a note matches the frequency of a bin, it is ideal
so the bin is scored with an error score of 0. If a note is positioned at the half way
point between bins, the bin is scored 1 - this is the worst score possible. A
fundamental frequency exactly between bins will cause significant cross channel

interference and not be represented accurately in the FFT spectrum.

Error Scores 1 0 1 0 1
0.5 0.5 0.5 0.5
Bin A Half way Bin B
Value point Value

Figure 7-3 Bin scoring method

Error scores assigned to frequencies based upon their position relative to bin values

of Aand B

If the bin spacing is such that a single bin represents more than a single
fundamental frequency, then the bin is scored with a penalty of 1000, thus
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eliminating that particular FFT length from being considered an optimal length.
This penalty is imposed, as it is crucial that a bin will only represent a single

fundamental frequency.

The following equations explain the bin scoring process

IfNb=1

N=1

b = | xXj — ’!Jq

j=1

Equation ix
else if Nb >1

&; = 1000

Equation x
elseif Nb=0

b;=0

Equation xi
where:

Nb number of notes in bin

&;  isthe score for the FFT bin

j is the number of bins in the FFT
x is the bin frequency
Y is the note frequency
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When all notes have been positioned into corresponding bins and those bins
have been individually scored between 0 and 1, the scores for all the bins in that
transform are summed providing a total score for that FFT length in that sub-

band - the Sub-band FFT Bin Score.

B
SBs = Z %
b=1

Equation xii

where:

SBs is Sub band FFT Bin Score
B is total number of bins in sub band

Xn is bin score

7.3.1 Sub-Band FFT Bin Score — Weighting

The division of the frequency spectrum into subbands results in some subbands
containing more note frequencies than others. To ensure a sub-band with a good
score but only a single note, or a sub-band with a poor score but lots of notes for
example doesn’t ‘skew’ the overall score, the initial FFT bin scores are weighted

by the number of notes in the current band relative to the total notes.

176



X
WSb = SBsx (7)

Equation xiii

where:

WSb is Weighted Sub band FFT Bin Score
SBs is sub-band FFT Bin Score
X is Notes in Sub-band

Y is total notes across all bands

The multiresolution FFT bin score is calculated by summing the Weighted Sub-

band FFT Bin Score for each band in the multiresolution FFT.

N
MRb = Z WSb,
n=1

Equation xiv

where:

MRb is the multiresolution FFT bin score
N is total number of bands in MRFFT
WSb is Weighted Sub-Band FFT Bin Score

7.3.2 MRFFT Bin Score — Range Correction

To allow the MRFFT bin score, frequency resolution score and time resolution

score to be summed into a ‘total score’, their scores need to be adjusted so they
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are all within the same range. The MRFFT Bin score is range corrected to be
between 1 and 0 by dividing the MRFFT bin score by the total number of notes
within the MRFFT. This averaging works as a bin can only score between 0 and 1
for each note unless 2 notes are positioned within the same bin, in which case

the FFT length is penalized so wouldn’t feature as an optimised solution.

7.4 Frequency Resolution Score

For each FFT length checked in the algorithm, a different frequency resolution is

generated. The initial frequency score is simply the FFT frequency resolution.

SBf = Fs/L

Equation xv

where:

SBf  is Sub band Frequency Resolution
Fs is Sample Rate

L is FFT Data Length
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7.4.1 Frequency Score - Weighting

The number of notes in the band then weights the frequency score of the FFT

used in each band in the same manner as the bin score is weighted.

where:

WSt

SBf

WSf = SBfx ()7()

Equation xvi

is Weighted Sub Band Frequency Score
is sub-band Frequency Score
is Notes in Sub-band

is total notes across all bands

The MRFFT Frequency score is calculated by summing the Weighted Sub-band

Frequency score for each band in the multiresolution FFT.

where:

MRf

WSt

MRf = i WSf,

Equation xvii

is MRFFT Frequency Score
is total number of bands in MRFFT

is Weighted Sub-Band Frequency Score
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7.4.2 MRFFT Frequency Score — Range Correction

As the FFT lengths are limited to be between 256 and 8192 samples long, the
‘best’ and ‘worst’ frequency resolutions are decided by these values. The MRFFT

Frequency score is range corrected to be between 0 and 1 using the following

formula.
F
MEf ~ ()
RG]
B A
Equation xviii
where:
RcMRf is Range Corrected MRFFT Frequency Score
MRf is MRFFT Frequency Score
Fs is Sample Rate
A is shortest FFT Data Length

is largest FFT Data Length

The ‘1 minus’ at the start of the equation is to adjust high frequency resolution
values to be closer to 0, as zero is ideal. In this case a frequency resolution
generated by an 8192 FFT length would be assigned a score of 0, as that

resolution is the best that can be produced in this model.
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7.5 Time Resolution Score

For each FFT length checked in the algorithm, a different time resolution is

generated. The initial time score is simply the FFT time resolution.
SBt = L/Fs

Equation xix

where:

SBt  is sub band Time Resolution
Fs is Sample Rate

L is FFT Data Length

7.5.1 Time Score - Weighting

The number of notes in the band then weights the time score of the FFT used in

each band in the same manner as the frequency score is weighted.

WSt = SBtx (X)
B Y

Equation xx

Where:

WSt is weighted Sub band time score
SBt is sub band Time Resolution

X is Notes in Sub-band

Y is total notes across all bands
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The MRFFT Time score is calculated by summing the Weighted Sub-band Time

score for each band in the multiresolution FFT.

N
MRt = Z wst,
n=1

Equation xxi

where:

MRt is MRFFT Time Score
N is total number of bands in MRFFT

WSt  is Weighted Sub-Band Frequency Score

7.5.2 MRFFT Time Score — Range Correction

As the FFT lengths are limited to be between 256 and 8192 samples long, the
‘best’ and ‘worst’ time resolutions are decided by these values. The MRFFT time

score is range correct to be between 0 and 1 using the following formula
Fs
- &)
Fs Fs

Equation xxii

A
RcMRt =1 — e - (_)

where:

RcMRt is Range Corrected MRFFT Time Score

MRt is MRFFT Time Score
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Fs is Sample Rate
A is shortest FFT Data Length

B is largest FFT Data Length

7.5.3 The MRFFT Score

The MRFFT score is equal to:

MRb + RcMRf + RcMRt

Score =
3
Equation xxiii
where:
MRb is the multiresolution FFT bin score
RcMRf is Range Corrected MRFFT Frequency Score
RcMRt is Range Corrected MRFFT Time Score

The MRFFT Score is a value between 0 and 1, 0 being best and 1 being worst. The
MRFFT Score is calculated for every combination of sub-band divisions with

every combination of FFT Lengths.

The algorithm presents a ‘best” MRFFT for each set of sub-bands. These results
provide the best FFT length to use in each sub-band created by each set of cut-off
frequencies. The combination of cut off frequencies and FFT length that generate

the lowest MRFFT Score is selected as the optimal MRFFT.
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7.6 Scoring Restrictions

The FFT lengths considered were limited to be between the range of 256 and
8192 samples. This reflects the range of FFT lengths commonly used for music

transcription algorithms.

As the FFT lengths considered were limited, the frequency range of notes used to
generate scores was also limited. This was to ensure the frequency resolution of
the longest transform didn’t exceed the smallest delta frequency. Applying this
restriction ensured it was possible for every note to be positioned within a bin
without sharing it with another fundamental frequency. It is crucial a bin does

not represent more than 1 fundamental frequency.

The frequency resolution of a 8192 FFT at 44.1kHz sample rate accommodates
the delta frequency between a note at 98Hz and the next note at 103Hz.
Therefore the range of notes was restricted be between 98Hz and 5kHz. S5kHz
accounts for the full note range by exceeding the fundamental frequency range of

virtually all popular western instruments.

7.7 Testing Parameters

Results for 6 different transforms are presented. They are:

1) 4 Band MRFFT 98Hz- 500Hz F Range - a 4 band MRFFT optimised by
scoring all sub-band divisions and FFT lengths between 256 and 8192 for
note values between 98Hz and 5000Hz. This MRFFT was generated as

being the optimised 4 band MRFFT.
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2)

3)

4)

5)

6)

256-8192 3 Band MRFFT - a 3 band MRFFT designed by scoring all sub-
band divisions and FFT lengths between 256 and 8192 for note values
between 98Hz and 5000Hz. This MRFFT was generated as being the

optimised 3 band MRFFT.

Actual Dressler Bands and FFT lengths - based on the parameters
presented by Dressler (Dressler, 2006). The note frequency range is
limited to 369Hz - 5000Hz due to the 256-2048 FFT lengths used by
Dressler. Dressler’s work is highly referenced and is becoming a popular

MRFFT. It is therefore a useful benchmark to compare against

Dressler FFT Length, Variable Bands - FFT values were limited to
2048, 1024, 512 and 256, but the division of the sub-bands was flexible.
This is a variation of Dressler’s method to determine if it can be further
optimised by maintaining the power of 2 FFT lengths, but changing the

cut-off frequencies.

256 - 2048 FFT Limit - FFT values were limited to be between 256 and
2048 and the division of sub-bands was flexible. The restriction of FFT

length allows a direct comparison to Dressler’s solution

8192 1 Band FFT - a single band 8192 FFT.

Solutions 1 and 2 are original. Solution 3 is an evaluation of Dressler’s proposed

MRFFT. Solutions 4 and 5 are variations of 3, and solution 6 is for the purpose of

providing a single band comparison to the multi-resolution solutions.
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7.8 Optimised MRFFT Results

The optimised MRFFT parameters resulting from the described scoring system

are presented in the tables below.

Each MRFFT solution is listed in a table showing the cut off frequencies for the
number of bands used (FcA, FcB, FcC, FcD), the number of notes present in each
band (FcA Notes, FcB Notes, FcC Notes, FcD Notes),which is used for the
weighting of results, the FFT length used in each of those bands (FcA FFT, FcB
FFT, FcC FFT, FcD FFT), and then the normalized Bin Score, Frequency Score,

Time Resolution Score, and finally the MRFFT score for the solution.
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7.8.1 Solution 1,3-5 Optimisation Results

Bin Score Freq Score Time Score MRFFT
FcA FcB FcC FcD FcA Notes FcB Notes FcCNotes FcD Notes |FcA FFT FcB FFT FcC FFT FcD FFT Normalised Normalised Normalised Score Total
Solution 1 169.72 339.44 1209.6 5000 10 12 22 25 6016 3328 1792 1408 0.0581 0.1029 0.2868 0.1493
Solution 3 510 1270 2700 5000 6 16 13 11 2048 1024 512 256 0.0666 0.4770 0.0782 0.2073
Solution 4 640.75 1920.1 4838.3 5000 10 19 16 1 2048 1024 512 256 0.0976 0.2298 0.4441 0.2572
Solution 5 427.65 678.86 22834 5000 3 8 21 14 1664 1408 896 768 0.0601 0.1598 0.4000 0.2066

Table 15 Solution 1,3-5 optimisation results

Solution 1 contains 69 notes in total compared to 46 for solutions 3,4 and 5. This is due to the restricted frequency range determined by

the shorter maximum FFT length. Results are still comparable however as scores are biased based upon proportions of notes present in

each band relative to the total.

7.8.2 Solution 2 Optimisation Results

Bin Score Freq Score Time Score MRFFT
FcA FcB FcC FcA Notes FcB Notes FcCNotes |FcAFFT FcB FFT FCcC FFT Normalised Normalised Normalised Score Total
256-8192 all fft 3 band 98hz start 226.55 855.33 5000 15 23 31 6016 2688 1408|0.07777916 0.09438261 0.35741 0.16577124

Table 16 Solution 2 optimisation results
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7.8.3 Solution 6 Optimisation Results

Bin Score Freq Score Time Score MRFFT
FcA FcA Notes |FcA FFT Normalised Normalised Normalised Score Total
8192 1 Band FFT 5000 69 8192| 0.259977 0 1| 0.41999233

Table 17 Solution 6 optimisation results
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Figure 7-4 shows the sub-band divisions as described by Dressler in solution 3,
and the divisions generated for solutions 1,2,4 and 5. The areas labeled ‘Not
Analysed’ are the note frequencies not considered for that solution. This is due to
the maximum FFT length frequency resolution not being high enough to resolve
the delta frequencies of the lower notes. For this investigation the ideal of not
having multiple notes in a single bin is upheld, but two notes in a single bin could

possibly resolved by high level processing.
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Figure 7-4 Sub-band divisions
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Figure 7-5 shows the Bin Score, Time score, Frequency score, and the total

MRFFT score for each set of parameters presented.

Normalised Error Score

Weighted FFT, Time, Frequency and MRFFT Score of Presented MRFFT Solutions

¥ Bin Score Normalised

0.60 —
B Freq Score Normalised

Time Score Normalised

B MRFFT Score Total

0.40

0.20

0.00
(Solution 1) 4 Band (Solution 2) 256-8192 (Solution 3) Actual (Solution 4) Dressler  (Solution 5) 256 -  (Solution 6) 8192 1
MRFFT 98Hz-5000Hz all fft 3 band 98hz  Dressler bands and FFT Length, Variable 2048 FFT Limit. Band FFT
F range start FFT Lengths Bands

Figure 7-5 Optimisation results graph

Alow bin score indicates that a MRFFT will generate strong note candidates with

minimal cross channel interference.

A low frequency score indicates a good frequency resolution so frequency

representations in the FFT output will be accurate.

A low time score indicates a good time resolution, which indicates the MRFFT
will be able to accurately place a frequency event in the time domain by

minimizing note length and onset/offset errors.
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7.8.4 Optimisation Results Discussion

The interplay between FFT length and the time and frequency resolution is
relatively simple to predict, as demonstrated by the extreme nature of the time
and frequency scores for single band 8192 FFT that demonstrates the ultimate
trade-off. The less predictable measure is the positioning of the fundamental

frequencies relative to the bin frequencies generated by the FFT length.

Based upon the optimisation results presented, the optimised 4 Band MRFFT is
the most ‘tuned’ MRFFT for music transcription by generating the lowest MRFFT
error score (0.149). The 3 band MRFFT out performed the Dressler parameters

also, but predictable faired worse than a 4 band MRFFT.

Dressler’'s MRFFT generates a low time resolution error score, which is in
contrast to the other solutions presented. The time-frequency trade off is clear in
the frequency error score however, as it is significantly larger than the other
MRFFT solutions. Despite this the weighted bin score, which is related to the
spacing of the bin frequencies, is comparable to the 4 band MRFFT that has a
much lower frequency error score. The MRFFT Score of the Dressler transform is
outperformed by solution 5 (256 - 2048 FFT range with optimised cut offs and
FFT lengths)), although in reality there is very little difference with a delta
MRFFT score of 0.001 between the Dressler MRFFT and solution 5. Solution 5
favours an improved frequency resolution than the Dressler MRFFT, but the time

score suffers for it.

It is interesting to note that the 3 band MRFFT transform scored better in the

optimisation evaluation than the 4 band Dressler MRFFT. This suggests the
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transcription results from the 3 band MRFFT could be an improvement on those

generated by Dressler’s at the reduction of a sub-band.

As expected, all solutions preferred a longer FFT length in the low frequency, and

a shorter FFT length in the high frequency sub-bands.

Solution 3, the Dressler MRFFT actually fares well in the scoring system being
only slightly worse than a 4 band MRFFT using different sub-band divisions and
non power of 2 FFT lengths (solution 5). The increased maximum FFT length
from 4096 to 8192 can be attributed to why the 3 band MRFFT generates a lower

error score than any of the 256-4096 MRFFT variants presented.

Dressler’s solution favours a stronger time resolution property over the
frequency resolution. This suggests solution 3 will perform better than the other
solutions with regards to accurately transcribing note onset times and note

lengths.

The division of sub-bands (Figure 7-4) shows minimum variation, but there is a
pattern of the highest frequency band of the optimised solutions being extended
into lower frequencies than compared to Dressler in solution 3. This suggests the
cut off frequencies Dressler uses are not optimised for the positioning of
fundamental frequencies relative to bin frequencies. This is reflected in the

slightly lower Bin Score given to solution 3.
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7.8.5 Weighting Desirable Parameters

The optimised 4 Band MRFFT demonstrates a closer to ideal frequency resolution
than time resolution. One method to further enhance and optimise the FFT
scoring system is to weight desirable criteria. If a scenario required an improved
time resolution property, the scoring method could be altered to prefer solutions

with good time resolution properties to frequency and bin scores.

Figure 7-6 shows the original optimised 4 Band MRFFT, and a solution generated

with a weighting on the time resolution score.

The range adjustment formula for the time resolution calculation was altered by a

factor of 2 as in Equation xxivx.

Range Corrected MRFFT Time Score =

Equation xxiv

Where:

w is MRFFT Time Score
Fs is Sample Rate
X is shortest FFT Data Length

Y is largest FFT Data Length
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FcA  FcB FcC FcD | FcA FcB  FcC  FcD | BinScore  Freq Score Time Score MRFFT

FcA FcB FcC  FcD Notes Notes Notes Notes| FFT FFT FFT FFT |Normalised Normalised Normalised Score Total

Solution 1 -

Time 170 339 960 5000 10 12 18 29 | 6016 3328 1664 1152| 0.0702 0.1258 0.2662 0.1541
weighted
Solution1 | 170 339 1210 5000 10 12 22 25 | 6016 3328 1792 1408| 0.0581 0.1029 0.2868 0.1493

Table 18 Time Weighted 4 band MRFFT Solution

Time Weighted Vs Solution 1 (4 Band MRFFT)

0.35

0.30

0.25

0.20 ——  HESolution1- Time
0.15 weighted

i Solution 1
0.10

0.05

0.00

Bin Score Freq Score Time Score =~ MRFFT
Normalised Normalised Normalised Score Total

Figure 7-6 Time weighted 4 Band MRFFT comparison

As expected, the time error score is decreased and predictably the frequency
error score is increased due to the weighting. Less predictable is how the
weighting affects note to bin alignment. The Bin Error Score generated by the
weighted solution is increased compared to solution 1, yet there is very little
difference between the two MRFFT total scores. These results suggest the
optimisation process can be further tuned to reflect a particularly desirable

property without fully compromising on the other properties.

195



7.8.6 Single Band Optimisation

In response to the results of Solution 6, all FFT lengths were evaluated on a single
frequency band contain 69 notes between 98Hz and 5000Hz. The optimised
single band FFT is 6016 samples at 44.1Khz. The scores for this are compared to

the solution 6 scores in Figure 7-7.

6016 vs 8192 Single Band FFT

1.2

0.8

0.6 . w6016

0.4 — w8192
0.2

o | I

Bin Score  Freq Score Time Score MRFFT Score
Normalised Normalised Normalised Total

Figure 7-7 Optimised single band FFT

These results suggest that the 6016 FFT length will provide a more accurate
transform result across the 3 properties of frequency resolution, time resolution
and note to bin alignment. The time resolution score is improved significantly for
little frequency trade off. However, the total MRFFT score is still poor compared

to a multiresolution solution.
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7.8.7 Optimisation comparisons and expectations

Table 19 Rates each presented solution in terms of rank to easily compare the
optimised performance of each solution for time resolution, frequency resolution,

note-bin alighment and overall MRFFT.

Ranking (1=best, 6=worst)
Time Frequency | Note-Bin
Resolution | Resolution | Alignment [MRFFT | Average
Solution Rank Rank Rank Rank Rank
1) 4 Band MRFFT 2 3 1 1 1.75
2) 3 Band MRFFT 3 2 4 2 2.75
3) Dresslers MRFFT 1 6 3 4 3.50
4) Dressler FFT Length,
Optimised Bands 5 5 5 5 5.00
5) 256 - 2048 FFT
range (Authors
Optimised parameters) 4 4 2 3 3.25
6) 1 Band 8192 FFT 6 1 6 6 4.75

Table 19 - MRFFT Solution Performance Ranking

Dressler’s MRFFT is the highest ranking performer for time resolution due to its
shorter FFT lengths. This will result in more accurately placed note candidates in
the time domain. The optimised 4 band MRFFT and 3 Band MRFFT are 2"d and
3rd, They feature longer FFT lengths as they are also optimised for frequency and
note-bin alignment. As expected, the single band FFT is the lowest ranked in
terms of time resolution due to it's relatively long fixed 8192 FFT length.
However, due to this it ranks as the best solution for frequency resolution
meaning it should identify a frequency accurately and produce a corresponding
note candidate. The 3 band and 4 band MRFFT solutions are ranked2nd and 3
which is an improvement over Dressler’'s MRFFT which is ranked as 6th. The

optimised 3band and 4 band MRFFT solutions have found a ‘mid ground’ in the
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time-frequency trade off, where as Dressler’s solution is weighted more towards

an improved time resolution.

The 4 Band MRFFT is top ranking for note-bin alighment meaning it's note
candidates should be stronger with less cross channel interference when
compared to the other solutions. However, when looking at the actual results as
shown in Figure 7-5 there is minimal difference between solutions 1 - 5, with

only the single band MRFFT showing a particular lack of optimisation.

The 4 Band MRFFT solution is ranked as the best optimisation so it is anticipated

it will produce the highest quality note candidates.

The MRFFT scoring shows solution one to be theoretically optimised for

automatic music transcription algorithms based upon the 3 parameters chosen.

7.9 Time domain and F-measure Testing

The aim of the time domain and F-measure testing is to validate the search

process and fitness function has optimised the MRFFT performance.

The secondary testing performed on the presented sets of MRFFT involved a
simple automatic transcription task. The purpose of this testing is to evaluate
whether the theoretical optimisation of the MRFFT translates into performance
improvements. In a similar method to Diniz et al. (Diniz F. , Kothe, Netto, &
Biscainho, 2007) and Dressler (Dressler, 2006), the MRFFT was implemented as

the front end low level processor for a sinusoidal extraction exercise.

A monophonic sine wave is used as the source audio to minimize variants and

test the raw basic performance of each solution. Although this doesn’t represent
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true audio transcription tasks it enables the solutions to be tested in a way that
should practically demonstrate their characteristics as described by the
theoretical optimisation results. Using a basic audio source will also attribute any
issues or errors to the MRFFT process rather than the quality or complexity of the

test audio.

Two files of chromatically climbing quaver length notes composed across the full
frequency range for each presented solution were synthesized as sinusoids from
a MIDI file. The MIDI files used to generate the audio files are used as a ground

truth for the evaluation of the transcription. 1 file had a BPM of 120; the other

had a BPM of 200.
Length of length of 1 Number of
BPM cycle of cycles of 98Hz
qguaver (s) .
98Hz (s) in a quaver
100 0.15]0.01020408 14.7
200 0.075( 0.01020408 7.35

Table 20 Note cycles at 98Hz

Table 20 shows the number of cycles of a 98Hz wave (lowest note analysed)
contained in a quaver at 100bpm is 14.7, and so exceeds the minimum 10 cycles
required for a human. At 200 bpm, the number of cycles is reduced to 7.35. This is
below what a human requires to identify a pitch, so as a musical example it is
unlikely that notes as low as 98Hz would be sounded as short as a quaver at
200bpm. As an example though it still provides an indication of how a system will

fair transcribing shorter notes at a fast speed.

An algorithm was written using Matlab to automatically transcribe the audio files

and output a generated MIDI file based upon the transcription. The main function
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of the algorithm was a simple energy based peak picker. A threshold is
dynamically set for each analysis window of the STFT as a percentage of the
maximum magnitude within the window, with a minimum threshold heuristically
decided. If a bin magnitude exceeds the threshold a note is transcribed at that

point. The code for this program is included in appendix 11.1

An evaluation function developed by Tavares et al (Tavares, Barbedo, & Lopes,
2008) was implemented to evaluate the transcribed MIDI file against the original

MIDI file by generating recall, precision and F-measure results.

Figure 7-8 shows a simplified flow diagram of the process performed by the

transcription algorithm.

Perform FFT set dynamic no

—_—> = threshold as 25%

on Window N
max magnitude
A

2

Are any magnitudes above
the threshold?

Transcribe a
no Frequency as
midi note value
closest to FFT Bin
value

Was frequency present
In previous frame?

Extend note
length by 1 frame

Were there any frequencies
present in previous frame that
are not present in the current
frame?

End notes from previous frame

- \V Compare
Move wmdpw End all notes transcribed midi
alf)ng audio | _ - Is it end of file? > write to midi > file to original file
file 1 hop yes file and generate F-
length Measure Score

Figure 7-8 Audio to midi transcription program
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7.9.1 Time Domain and F-measure Results

Figure 7-9 and Figure 7-10 present the results for this evaluation of the MRFFT

parameters.

Recall refers to the fraction of the relevant notes that were retrieved i.e. how

many of the correct notes the system extracted.

Precision refers to the fraction of relevant notes retrieved, relative to the total

number retrieved i.e. how many of the extracted notes that were correct.

F-Measure is the weighted mean of precision and recall.

120 BPM F-Measure

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

Score

& Recall
& Precision

“ Fmeasure

(1) 4 Band (2) 3 Band (3) Dressler (4) Dressler (5)256— (6) 8192 FFT
MRFFT ~ MRFFT  MRFFT FFT, 2048 FFT
Optimised range
Bands

Solution

Figure 7-9 120BPM F-measure results
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Figure 7-10 200BPM F-measure results

7.9.2 Time Domain and F-measure Discussion

The results for the F-Measure testing are disappointing in terms of the MRFFT
performance, and upon further analysis they indicated issues that require further
investigation. The expected performance of the MRFFT solutions based upon the

optimisation results outlined in section Error! Reference source not found. has

not materialized in the transcription results.

The F-measure results for the 120BPM file are all very positive and similar for

each solution tested. Solutions 1 and 2 achieved slightly higher F-Measure scores
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than solutions 3,4 and 5, which indicates the optimisation has been successful.
However, the margin of improvement is minimal. The high performance of the
8192 FFT - scoring the highest F-Measure result is an interesting result, which
initially suggests the MRFFT solutions offer no real world benefits. However, the
perceived optimisation of the 8192 FFT can be explained upon further analysis of

results in section 7.10

The results for the 200BPM transcription show a disappointing performance of
the MRFFT solutions upon initial analysis. Solutions 1 to 5 all score considerably

lower than in the 120 BPM task.

Analysis of the transcribed MIDI files show that the lowest octaves of notes are

particularly poorly transcribed in solutions 1 to 5.

Figure 7-11 Original MIDI file
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Figure 7-12 Solution 1 (4 Band MRFFT) 200BPM transcription

The vertical green lines in Figure 7-12 are the band cut off points. The lower 2
bands are shown in full. The missing notes in the lower band suggest the
magnitudes generated by solution 1 in the low frequencies are not optimised for
the peak picker. This is contrary to the results of the optimisation process, which
suggested the longer FFT length and optimised note-bin alighment score would

generate accurate note candidates.

Solution 6 performs the most accurate transcription. This is not expected based
upon the optimisation results where a single band suffered from poor time
resolution and note-bin alignment. The high performance of the single FFT
despite this suggests that even with a high BPM, the emphasis should be on a
longer FFT length and therefore a higher frequency resolution. Figure 7-13 shows

the solution 6 transcription of the lower frequencies at 200BPM.
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Figure 7-13 Solution 6 (1 Band 8192 FFT) 200BPM transcription - low frequencies

Compared to the original in Figure 7-11 solution 6 shows relatively few errors.
The errors that do occur are mainly time based errors where notes are longer.
This can be attributed to the lower time resolution of the 8192 FFT length, which

is highlighted in the optimisation results.

Observation of the higher band of frequencies of the 4 band MRFFT (solution 1)
suggests that as the delta frequencies become wider, transcription accuracy
increases. Upon analysis of the transcribed midi data it can be concluded that it is
the low extremes of the frequency range that are particularly poorly transcribed
and significantly contribute to the low F-measure score. This is true for solutions

1to5.

Figure 7-14 shows a largely accurate transcription of the higher frequencies by
the 4 band MRFFT (solution 1). This transcription improves on the transcription

of the single band FFT (solution 6) for the same range (Figure 7-15). These
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transcriptions meet the expectations based upon the optimisation scores i.e. the
MRFFT solution demonstrates a more accurate time resolution, and the note

candidates (based upon the transcription process) are of a higher quality.

Figure 7-14 Solution 1 (4 Band MRFFT) transcription - high frequencies

Figure 7-15 Solution 6 (1 Band 8192 FFT) transcription - high frequencies
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The transcription by Solution 3 (Figure 7-16) demonstrates an accurate
transcription of the time domain in terms of note length, as the scoring system
suggested, but faired less well in the frequency domain compared to solution 1
(Figure 7-14). These characteristics are inline the findings of the parameter

scoring and optimisation.

Figure 7-16 Solution 3 (Dressler Parameters) transcription high frequencies at 200BPM

The performance of solution 6 suggests a greater emphasis of the frequency
resolution for the lower notes is required in the MRFFT optimisation. However,
based upon the transcription of the higher frequencies, evidence suggests the

MRFFT can outperform a single band analysis.

The optimisation process has evaluated all 3 criteria (time resolution, frequency
resolution and bin alignment) equally, providing a ‘best fit’ solution. Weighting
different bands to different criteria could reduce some of the problems outlined

in this section.
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Analysis of the MIDI transcriptions reveals characteristics that reflect the results
of the scoring and optimisation process, but F-Measure results are severely
hindered by poor transcription, and were not as expected. Some of the
transcription errors can be explained by MRFFT properties such as shorter
window length, however the universally poor F-Measure results for the MRFFT

solution led to further investigation of why they performed so poorly.

7.10 Further Investigation of Errors

The poor F-measure results for the MRFFT solutions and the analysis in section
7.9.2 suggest errors are introduced to the system that affects the MRFFT

solutions but not solution 6.

Table 21 shows the note information for the original file, and the note

information for the solution 2 transcribed file. Pitch errors are highlighted in red.
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Original Filefranscriptiof
Pitch Trans Pitch
55 55
56 56
57 57

Table 21 3 Band MRFFT transcription errors

The pitch errors shown highlight a problem with spurious frequency maxima
being detected. A repercussion of this is seen when a series of notes is correctly
identified, but they are out of position compared to the original file. This could
result in the correct notes being counted as false positives by the F-measure

algorithm.

The incorrect frequency detections required further analysis on the frequency
domain to determine why they were occurring in the MRFFT solutions, but not in

solution 6.
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7.10.1 Note Distribution Analysis

To investigate the errors in the MRFFT transcriptions, note distribution was
analysed. Table 22 shows how the fundamental frequencies of notes align to the

frequency bins of solution 1. The coloured rows denote the sub-band divisions.
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Note FrequencyBin Frequency

98.00 95.30
103.83 102.63
110.00 109.96
116.54 117.29
123.47 124.62
130.82 131.95
138.59 139.28
146.84 146.61
155.57 153.94
161.27

164.82 168.60
174.62 172.27
185.00 185.52
196.00 198.77
207.66 212.02
220.01 225.27
233.09 238.52
246.95 251.77
261.63 265.02
277.19 278.28
293.67 291.53
304.78

311.13 318.03
349.24 344,53
370.00 369.14
392.00 393.75
415.31 418.36
440.01 442.97
466.17 467.58
493.90 492.19
523.26 516.80
554.38 541.41
566.02

Table 22 Solution 1 (4 Band MRFFT) note distribution

Table 22 shows the notes are successfully represented by individual bins. Table
23 shows the average distance of the note from the bin frequency as a fraction of

the bin size (frequency resolution) for all solutions.
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Average
distance
from center
of band as a
fraction.
O=centre,
0.5=half way
between
Solution bins

0.2
0.2
0.272
0.287
0.2
0.264

NP WIN|F

Table 23 average distances from center of the bin

Table 23 shows the optimised solutions 1,2 and 5 to be better ‘tuned’ to note
frequencies than solutions 3,4 and 6. As these theoretical optimisations are not
supported by the F-Measure results, then the magnitudes generated must be

analysed in ‘real world’ tests rather than theoretical.

7.10.2 Quality of Note Candidates — Polyphonic analysis

To indicate the tuned performance for analyzing music, each solution
decomposed a polyphonic mixture of sine waves, with each sine equal to a
different fundamental note frequency in the MRFFT range. All sine waves were
generated with peak amplitude of 1. All notes in the range were represented so
the results give an indication of the quality of note candidate generated by each
MRFFT. This is the absolute worse case scenario as all note frequencies are
sounding at once. This also serves to give an indication of the MRFFT

performance for polyphonic analysis.
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The results for each solution are represented in the figures below. The graph for
each solution shows the spectral output of the solution, giving an indication of
note distribution across the bands and the magnitudes generated. Bins that
represent notes are red; bins representing non-note frequencies are blue. This

indicates the level of cross channel interference into non-note representing bins.
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7.10.3 Solution 1 (4 Band MRFFT) Note Candidates
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Figure 7-17 Solution 1 (4 Band MRFFT) Note Candidates
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7.10.4 Solution 2 (3 Band MRFFT) Note Candidates
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Figure 7-18 Solution 2 (3 Band MRFFT) Note Candidates
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7.10.5 Solution 3 (Dressler MRFFT) Note Candidates
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Figure 7-19 Solution (Dressler MRFFT) 3 Note Candidates
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7.10.6 Solution 4 (Dressler FFT Length, Optimised Bands) Note Candidates
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Figure 7-20 Solution 4 (Dressler FFT Length, Optimised Bands) Note Candidates
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¥ 8ins containing no notes
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Figure 7-21 Solution 5 (256 - 2048 FFT range) Note Candidates
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7.10.8 Solution 6 (8192 FFT) Note Candidates
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Figure 7-22 Solution 6 (8192 FFT) Note Candidates
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7.10.9 Quality of Note Candidate Discussion

All solutions successfully extracted all note frequencies, so perform well under
polyphonic conditions. However, closer analysis of the quality of polyphonic note
candidates generated by each solution highlight some interesting characteristics

of the presented MRFFT solutions.

Solution 6, which performed relatively well in the F-Measure test, generates
strong note candidates. The magnitudes are high and consistent across the
spectrum. This is due to the long FFT window, and provides an indicator of why

the MRFFT solutions scored poorly.

The magnitudes of the note candidates for solutions 1 to 5 are generally lower
than solution 6, but also vary significantly across the spectrum. The poor MRFFT
F-Measure results may be explained by the inability of the peak picker to resolve

a range of magnitudes.

For example, if a peak picker threshold was set to be 25%, the frequency
magnitudes from solution 6 would be successfully picked (Figure 7-24). However,
due to the variance of magnitudes in the MRFFT solutions, notes are not being
picked Figure 7-23. This partially explains the missing notes in transcriptions. In
the F-Measure test, the threshold is set dynamically to consider local maxima and
set as a percentage of the maxima, so for an area where spectral magnitudes are
consistent e.g. the higher frequencies in Figure 7-17 the dynamic peak picker
would be successful. This is seen in the transcription of the higher frequencies

(Figure 7-13).
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Further inadequacies of the peak picker are again highlighted when considering
low frequency maxima for the MRFFT solutions. Figure 7-23 shows the low
frequency magnitudes for solution 1. A hypothetical threshold of 25% of the
maximum magnitude within the ‘local terrain’, still results in ‘missed’
transcriptions as the variation is so great. The variations of maxima in the MRFFT
solutions contribute significantly to the poor transcription performance in the

lower frequencies.
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Threshold
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Figure 7-23 Solution 1 (4 Band MRFFT) Low Frequency Magnitudes
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Figure 7-24 Solution 6 (8192 FFT) 25% threshold
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The variation of maxima in the MRFFT solution can be partially attributed to the
variation of FFT window length, which is constant in solution 6. However, based

on Figure 7-23, variations are occurring within a single band of FFT.

Although the above figures do not show the phase of the signals it is important to
mention at this stage as there will be inconsistencies in the phase information, as
well as the energy magnitude. The phase of the magnitudes are an important
feature for high level processing. For example, the tracking phase vocoder (TPV)
will assign each peak to a ‘frequency track’ by matching the peaks of a previous
frame with those of the current frame. This peak tracking uses phase information
to identify a continued peak from one frame to another (Roads, 1996, p. 571). As
the presented MRFFT doesn’t feature any phase correction, the phases of
fundamentals and harmonics, which over lap sub-band divisions will have
distorted phases due to the change in data length used to decompose the original
signal. This will result in poor quality note candidates. Phase issues do not affect
the sinusoidal extraction test results, as the source audio is non-harmonic pure
tones. Also, the peak picker does not use phase information, so although phases
are distorted it will have no bearing on these results, but it is an important

consideration for future implementations for the reasons outlined.

Some of the variation of the energy magnitudes can be attributed to cross channel
interference summing to create larger magnitudes. Table 24 compares to spacing

of notes between solution 1 and 6.
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Note Bin
Frequency Frequency

98.00 96.90

103.83 102.28

110.00 107.67
113.05

116.54 118.43

123.47 123.82

130.81 129.20
134.58

138.59 139.97

155.57 145.35
150.73

155.57 156.12
161.50

164.82 166.88

174.62 172.27 || Note FrequencyBin Frequency
177.65 98.00 95.30

185.00 183.03 103.83 102.63
188.42 110.00 109.96

196.00 193.80 116.54 117.29
199.18 123.47 124.62
204.57 130.82 131.95

207.65 209.95 138.59 139.28
215.33 146.84 146.61

220.00 220.72 155.57 153.94
226.10 161.27

233.08 231.48 164.82 168.60
236.87 174.62 172.27
242.25 185.00 185.52

246.94 247.63 196.00 198.77
253.02 207.66 212.02
258.40 220.01 225.27

261.63 263.78 233.09 238.52
269.17 246.95 251.77
274.55 261.63 265.02

Table 24 Solution 6 (8192 FFT) Bin Spacing and Solution 1 (4 BAND MRFFT) Bin Spacing

The bin spacing of solution 6 results in empty bins more regularly between note
frequencies than solution 1. Solution 1 optimisation has resulted in all but 1
adjacent bin representing a note. This means any cross channel interference will
contribute to a bin representing another note. In solution 6 there is a ‘buffer zone’

of non note representing bins for cross channel interference to feature before
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contributing to bins representing note frequencies. This may account for some of

the variation in spectral magnitudes for the MRFFT solutions.

average

average power in non

power average note bins as

magnitude in [power in non|% of power

Solution note bins note bins in note bins
1 538.79| 23.4338906 4.35
2 594.48| 32.7189717 5.50
3 157.7| 29.0526256 18.42
4 216.75| 45.368934 20.93
5 208.73| 35.0150222 16.78
6 1527 27.4607458 1.80

Table 25 Summary of note distribution magnitudes

Based upon the note distribution testing, Table 25 shows the average power in
non-note representing bins as a percentage of the average power in note
representing bins. This shows the cross channel interference is greater in the
MRFFT solutions than the 8192, but the optimised solutions 1 and 2 are

improvements over solutions 3,4 and 5.

Another contributing factor to cross channel interference is the process of
constructing the MRFFT. Taking the lower band of solution 1 as an example, a
6016 FFT is performed on the entire frequency spectrum. The spectral

information is then filtered to include only the frequencies required by that band.

Figure 1-1 Superposition of wavesFigure 7-26 shows a scenario where a note

frequency (orange magnitude) not in the frequency band considered, generates
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cross channel interference (red magnitudes) that contributes to the magnitudes

in the sub-band of interest.

6016 FFT Not Used in MRFFT

v

FcA F

Figure 7-26 MRFFT Band interference

This scenario could explain why there are large magnitudes near the lowest sub-

band boundary of solution 1.
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Figure 7-27 Solution 1 (4 Band MRFFT) FcA Sub-band boundary

Implementing a filter in the time domain with steep pass bands to divide the
spectrum into sub-bands and minimise spectral leakage could help reduce the

variation of magnitudes within bands.

7.10.10 Investigation conclusions

The results of the F-Measure are largely disappointing, and can be attributed to
the inadequacies of the implemented peak picker to handle fluctuations in
magnitude of local maxima. Characteristics of the MRFFT, like adjacent note
representing bins, and interference generated by sub-band division methods

contribute to this problem.

Future development of more robust peak picker to handle magnitude

fluctuations, implementing spectral processing, and time domain filtering could

228



all improve the performance of the MRFFT to reflect more convincingly it’s

theoretical advantages in real world testing.

7.11 Optimised MRFFT and Polyphonic Transcription Testing

Although the ability to handle and generate polyphonic note candidates has been
discussed in section 7.10.2, the MRFFT solutions presented have not been tested
for their polyphonic music transcription abilities. Polyphonic testing is essential
further work but there are several reasons why it has not been performed as part

of this thesis.

The primary purpose of the transcription testing was to evaluate the
characteristics of each MRFFT in generating note candidates as predicted by
the optimisation results and not to evaluate its success as a complete

transcription system.

Following the monophonic analysis and the subsequent flaws it highlighted it
was clear that the peak picker and construction of the MRFFT would not be

robust enough to cope with polyphonic transcription.

As previously discussed, polyphonic music transcription is a complex task so
to test the MRFFT it would have to be used as a front end to a far more
complex algorithm (as Dressler used (Dressler, 2006)) than that implemented

in section 7.9, which would be beyond the scope of this project.
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8 Conclusion

An in-depth review of methods and techniques as well as the challenges of
automatic music transcriptions has been presented. Descriptions and discussions
of both high level and low level processes have been included to place in context
the investigation of the effect of the FFT parameters upon it's behavior and

characteristics for automatic music transcription.

Reviewing current literature indicated that there was no set of standard FFT
parameters for use in automatic music transcription algorithms. This provided
the motivation for the investigation to determine a set of optimised standard FFT

parameters for use in automatic music transcription algorithms.

The purpose of this investigation was to optimise the parameters of a
multiresolution FFT (MRFFT) to increase the quality of the note candidates in the
MRFFT spectral output. It is envisaged that providing ‘stronger’ note candidates

will lead to more successful higher level processing.

The effect of varying the FFT parameters on the FFT spectral output was analysed
to determine which parameters would be scored and optimised for a MRFFT
suitable for music transcription algorithms. This investigation determined that
frequency resolution, time resolution and note-to-bin alignment are three
characteristics that are of primary importance for generating quality note

candidates.

The MRFFT parameters that were optimised were the FFT length and the cutoff

frequencies between FFT subbands. Both 3 band and 4 band MRFFTs were
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optimised. Zero padding, hop size and window shapes were investigated and
discussed but not included as parameters to be optimised. Investigations
concluded that the performance of each of these parameters depends in part on
the characteristics and content of the input audio. The methodology of this work
does not account for variations in the input signal that would affect the
performance of zero padding, window shape and hop overlap. Therefore, the

system cannot optimise these particular parameters.

The novel element of this work was the scoring of the FFT parameters and
exhaustively checking all combinations of sub-band divisions and FFT data length
to select an optimised set. The FFT parameter sets were scored based on the

following criteria:

* Time Resolution - Determined by the data length used in the FFT.

* Frequency Resolution -Determined by the data length used in the FFT.

* Bin Tuning - This is based on the positioning of fundamental note
frequencies of a 440Hz tuned scale within the FFT bins. The closer to the
center of the bin a note value is, the better the score for that bin. If
multiple notes are in a single bin, the bin is penalized. The score for each

bin is combined to give an overall score.

The search method used was an exhaustive search with the objective of
minimising a combined ‘error score’ for frequency resolution, time resolution and
note-to-bin alignment. The error score is calculated based upon the difference

between the best possible frequency resolution, time resolution and note-to-bin
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alignment and those generated by the combination of FFT Length and sub band

divisions in the MRFFT.

The generated scores determined an optimised set of parameters for a 4 band
MRFFT and a 3 band MRFFT. Three further 4 Band MRFFTs were used as a
comparison as well as a single band 8192 FFT. One of the 4 band MRFFTs was by
Dressler (Dressler, 2006) and two variations on this were created to facilitate

comparison.

The recommended parameters for MRFFT implementation based upon the
presented search and optimisation are shown in Table 26. The recommended
parameters are for use when transcribing instruments tuned to A=440Hz and
using standard equal-tempered tuning. These parameters assume a 44.1KHz

sample rate.

3 Band MRFFT 4 Band MRFFT

Range FFT Length Range FFT Length
Band 1 98Hz-226Hz |6016 98Hz-169Hz |6016
Band 2 227Hz-855Hz | 2688 170Hz-339Hz (3328
Band 3 856Hz-5KHz |1408 340Hz-1209Hz (1792
Band 4 1210Hz-5Khz 1408

Table 26 Recommended MRFFT Parameters

The optimisation process shows that the 4 band MRFFT parameters as used by
Dressler can be optimised to improve the quality of the note candidates

produced.
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The implication of this theoretical optimisation is that the note candidates
produced by the optimised MRFFT will be of better quality than those produced
by Dressler. The advantages of the optimised 4 band MRFFT compared to
Dresslers were a better note-to-bin alignment score and significantly improved
frequency resolution. Dressler’s MRFFT offered a better time resolution, but not

significantly enough to better the MRFFT score of the optimised solution.

The set of optimised solutions generated were tested on a sinusoidal extraction
task and evaluated based upon the F-measure of their transcriptions. These
experiments used a simple threshold based peak picking algorithm to select from

note candidates generated by MRFFT.

The sinusoidal extraction test demonstrated disappointing F-measure results for
all of the MRFFT solutions (including Dressler’s MRFFT and variations) compared
to the single band 8192 FFT. Close analysis of the transcribed files showed
positive aspects of the optimised MRFFT analyses as performance improved in
the higher frequencies as notes were more accurately transcribed in the time

domain.

Further investigation of the sinusoid extraction results revealed inadequacies in
the simple peak picker and also indicated issues with the construction of the
MRFFT. In particular, cross channel interference affected adjacent bands of the
MRFFT and caused false positive note candidates, which may account in part for

the poor F-measure results.

The inadequacies of the peak picker resulted in limited polyphonic testing.

Results showed that all solutions could successfully extract note frequencies from
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a polyphonic mixture of sine waves, but all MRFFT solutions presented a variable
quality of note candidates. This was attributed to cross channel interference,
increased by the implementation of the MRFFT, and in part the optimisation
process, which favours a shorter FFT length and therefore generates smaller

magnitudes in the FFT bins.

The failings of the simple peak picking and transcription algorithm resulted in no
testing of harmonically rich audio. Consequently no conclusions about the

performance of the MRFFT with harmonically rich content can be made.

The current work is only optimised for standard tuning to A (440Hz). It is
expected that there will be a graceful degradation of performance as the tuning

moves away from 440Hz.

If an instrument were tuned to an alternative tuning, the MRFFT would no longer
be optimised. Although there would still be advantages in terms of time and
frequency resolutions by using the optimised MRFFT over a single resolution
FFT, the non-alignment of instrument note frequencies with the bin frequencies
would result in a spectral output of the MRFFT which would feature a large
amount of cross channel interference. This cross channel interference would
potentially result in reduced magnitudes, less accurate representations of the
frequency being decomposed and a poorer quality of note candidates being

presented.
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9 Further Work

Further testing is required of the presented parameters. Only simple sinusoidal
extraction tasks have been performed to test effectiveness of the optimisation.
Further work would include the testing of these parameters as a front end for an
established pitch recognition algorithm transcribing ‘real’ instruments to

ascertain if any real gains have been made.

The implementations of such a simple peak-picking algorithm has coloured the
results. Therefore, development and implementation of a robust peak picker
would generate more accurate representations of the qualities of the MRFFT

solutions.

The implementation of the optimised MRFFT as part of a complete automatic
music transcription algorithm would allow for thorough testing on real musical
examples, which would provide more complete comparisons with other current
low level processing techniques. It will also give true indicators of performance

and possible problems when dealing with harmonic content.

The development of time domain filtering to minimize cross channel interference

at sub-band divisions could also improve the performance.

Extensive testing with a variety of musical style, instruments, complexities and
tempos would generate a broader spectrum of results and give a more accurate

indication of the effects of optimisation.
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The study presented is very focused on a small set of parameters. Further work
would have to consider the use of popularly used parameters like window shape,

hop size and zero padding in the scoring of FFT parameters.

The study focuses only on the tuning of bins to fundamental frequencies of the
western scale. Future considerations should be given the placement of harmonics
within the bin alignment as harmonic patterns are important in several automatic

music transcription techniques.

Also, no consideration has been given to the phase shift effect of the multi
windowed FFT. The method used to generate multiple windowed FFTs results in
phase inconsistencies across the analysis windows. The phase of the output of the
FFT is of importance for many algorithms, including the popular phase vocoder
peak picker. Therefore, further attention should be given to the phase output of

the optimised MRFFT.

The method of scoring the MRFFT parameters is mathematically sound, but could
be further enhanced by introducing weightings for certain criteria. An example
where this could be useful is when transcribing a piece of music with high BPM it
may be beneficial to have a high time resolution to detect fast transients, which

could be gained by compromising note-to-bin alignment.

The presented optimisation is based upon a standard tuning of 440Hz and equal
tempered instruments and music. To account for alternative tunings a selection
of optimised MRFFT could be developed which are generated using bin alignment

scores based upon alternative tunings.
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The performance of the single band FFT in the extraction test and the subsequent
investigation exceeded expectations, and demonstrated a suitable single band
FFT can be effective as a low level processing tool. However, despite the
problems encountered with the peak picker and MRFFT construction, the
advantages of a multi resolution solution in terms of time and frequency
resolution were still evident in the analysis of the extraction task. These
advantages would be significantly accentuated with improved implementation,
which it is anticipated would improve the note candidates generated compared to

a single band solution.
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11 Appendices

11.1 Matlab - Peak Picker to Midi Program

clearvars
StatStore=[];
StatsNameStore=|[];

StatsScoreStore=[];
%setup excel file construction
File='C:\Documents and Settings\Administrator\Desktop\FFT Time Res
Testing\test.xls';
Excel = actxserver ('Excel.Application');
if ~exist (File, 'file'")
ExcelWorkbook = Excel.workbooks.Add;
ExcelWorkbook.SaveAs (File, 1) ;
ExcelWorkbook.Close(false);
end
invoke (Excel.Workbooks, 'Open',File) ;
files=dir('*.wav');
%$loop round for every wav file present in *dir
for n=l:length(files);
basename = files (n) .name;
basename (end-3:end) = "';
data. (basename)=wavread (files (n) .name) ;

$strip 'wav' and 'orig' to get file number - used to create
trans file

s = regexprep (basename, .wav', "'");

s = regexprep (s, 'Orig', '");

audioname=files (n) .name

number = int2str (n)

midiname = strcat('file tr',s, '.mid");

origmidi = strcat('file',s,'.mid");

wav = wavread (audioname) ;
elements = max(size (wav));
£s=44100;

ad=440;

threshold =0;

msgNum =2;
analysisMatrixl=[];
analysisMatrix2=[];
deltaStart=[];
deltaEnd=[];
notelength=[];

bestO=[];

bestRecall=0;
bestPrecision=0;
bestF-measure=0;
bestConstant=0;

Recall = 0;

Ben = 1
Precision = 0;
Constant = 0.99;
marker = 1;

fftlength = 8192;
hop = fftlength; %data Size
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fftSlide = 512; %
fftTotal = 1;

window = 1;
$Envelope initiation
E = hop;

window length
\ hanning (E) ;
szero pad length
zerolength
to hop to equal fft length
SFFT Setup

$points for the envelope

fftlength-hop;

amount slide along audio file

same size as

$number of zeros required in adition

FFT Window length

% Transform length
Frequency range buckets

m = fftlength; %
n = m; Spow2 (nextpow2 (m)) ;
f = (0:n-1)*((fs)/n); %
bucketsize = (2*fs/n)-(1*fs/n);
halfbucket = bucketsize/2;

$while loop to increase constant if precision isn't 1

while Precision ~=1
if Constant >0.99

0.99
break
end
front = 1;
back = hop;

previousFrame=[];
midiNote=0;

j=1;
p=1;
noteArray =0;
timeArray = 0;

msgNumStr=0;
msgNumFin=0;
noteFrameArray
endNotes=[];
midiNotes=[];
first=0;
index=0;

[1;

$break loop 1if constant gets

larger than

%note detection algorithm

while back<elements %

paddingCounter=front;
for i=1l:hop,
window (i)

wav (paddingCounter) ;

paddingCounter=paddingCounter+1;

end;

%envelope first 2048 elements of array to avoid peaks due

to zero padding

for paddingCounter=1:hop

window (paddingCounter)

window (paddingCounter) *w (paddingCounter) ;

paddingCounter

end;

%$Zero Pad Window
x=[window zeros (1,
SFFT on enveloped
y fft(x,n);

paddingCounter + 1;

zerolength) ];%add zeros to window
zero padded FFT
% DFT
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power = y.*con]j(y)/n; % Power of the DFT
fftTotal = fftTotal+power;

%calculate time of note start and end - round to 9
decimal
$places. First time around time =0

if j==

time=0;
else

time= round2 ((1/fs)* (front),9);
end

endtime=round2 ((1/fs) * (hop*j),9);

%$find midi Note from FFT

%set threshold
maxMag = 0;

for i=1l:fftlength/2, %only use 1st half of FFT
if power (i) > maxMag
maxMag = power (i);
end
end
threshold = maxMag*Constant; %threshold is set as a
fraction of the maximum magnitude in the current window
threshtext = int2str (threshold);
titleName = strcat ('{\bf FFT }',threshtext);
h = plot (f,power);
xlabel ('Frequency (Hz)")
ylabel ('power')
title(titleName)

Jj2=int2str(3j);
fftFilename = strcat('orig',number,'fftPlot',j2);
saveas (h, fftFilename, 'jpeg') ;

%$find which F bin the largest magnitude is in
for i=1l:fftlength/2, %only use 1st half of FFT
if power (i) > threshold %& threshold > 2
frequency = f£(1i);
if frequency > 20 & frequency<13000
sconverts from frequency to closest MIDI note
midiNote = round(12*log2 (frequency/ad))+69;

noteFrameArray (p) = midiNote;
p=p+l;
end
end
end
i=i+1;

numberOfElements=length (noteFrameArray) ;

for i=l:numberOfElements-1
for y=l:numberOfElements
%don't do anything with the note you are checking
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- skip over

unigque note

there is a

use

empty the

if y==1i
y=y+l;
end
%if repeat note in frame note=0
if noteFrameArray (i)==noteFrameArray(y)
noteFrameArray (y)=0;
end

end
end
$strip zeros from current frame notes, leaving only
numbers
index = find(noteFrameArray);

o)

$noteFrameArray contains notes present in current frame

o)

%set controllers for elseif statements below. checking of

$previous note or a current note. l=true, 0O=false

if isempty(noteFrameArray)==1 %if noteFrameArray is empty
thisFrame = 0;

else
thisFrame = 1;

end

if isempty(previousFrame)==1 $if noteFrameArray is empty
lastFrame = 0;

else
lastFrame = 1;

end

%used to populate previous frame at end of loop - can't

$NoteFrameArray as processing occurs in ifelse which can

%array eg. if a note is present but alrady turned on.
currentNotes = noteFrameArray;

%*******************************************************************

o)

$IF Statement 1 - previous note true and current note
true

if thisFrame~=0 & lastFrame~=0
%disp('if statement 1 - previous note and current note
true')

o)

%check if note in previous frame is in current frame

o)

%1f not set end time for note in previous frame

%zero pad note arrays to make the same size
a = length(previousFrame) ;
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b = length (noteFrameArray);

if a>b
b=[noteFrameArray zeros(l,a-b)];
a = previousFrame;

else

a=[previousFrame zeros(l,b-a)l;
b = noteFrameArray;
end

for i=l:length(b),
ind=find(a~= b(i));
a=a (ind) ;

end

$strip zeros from end notes (zeros due to padding)

endNotes=a;

index = find(endNotes) ;

endNotes=endNotes (index) ; %this array contains the
notes that ended in this frame

$write the notes that ended in this frame to
midiNotes

if isempty(endNotes)==0 %if end note not empty
for i=l:length (midiNotes (1, :))
for x=1:length (endNotes(1l,:))
%1f note in midiNotes not already ended then
end the note
$with current time
if endNotes (x)==midiNotes (1, 1) &&
midiNotes (3,1)==0;
midiNotes (3,1)=time;
end
end
end
end

%$check notes in current frame are not already
turned on

for i=l:length(midiNotes (1, :))
for x=1l:length (noteFrameArray)

if noteFrameArray(x)==midiNotes (1l,1i) &&
midiNotes (3,1)==0;

%$1f current note exists in array and
end time is O
tdelete note from noteframearray
noteFrameArray (x)=0;

end

end
end
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$strip note values of 0 from current notes
index = find(noteFrameArray);
noteFrameArray=noteFrameArray (index) ;

%$Set start times and end time=0 for note in current
frame

startTime=0;
endTime=0;
for i=l:length(noteFrameArray)

startTime (i) = time;
endTime (1) = 0;
thresh (i) = threshold;
end
if isempty(noteFrameArray)==0 %if noteframe not empty
startMidiNotes =
[noteFrameArray;startTime;endTime; thresh];
midiNotes = [midiNotes, startMidiNotes];
end

PR R R R R R R I I R O R I I R o I S I I R R R R I I R R O O O R R R R R R

$IF Statement 2 - previous note false and current note
true therefore all new
%$notes are new, not continued notes.

elseif lastFrame ==0 & thisFrame~=0
J
%disp('if statement 2 - previous note =0 and current
note true')
%$Set start times and end time=0 for note in current
frame
startTime=0;
endTime=0;
for i=l:length(noteFrameArray)
startTime (i) = time;
endTime (1) = 0;
thresh (i) = threshold;
end
startMidiNotes =
[noteFrameArray;startTime;endTime; thresh];
midiNotes = [midiNotes, startMidiNotes];

PR R R R R R R I I I O o I R R o I I R R R O I S I R R O G S S S I R i

$IF Statement 3 - previous note true and current note
false therefore no new
%notes so end all previous notes still turned on

elseif lastFrame ~=0 & thisFrame==
%disp('if statement 3 - previous note true current
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note 0')
for i=l:length(midiNotes(1l,:))
if midiNotes (3,1)==0;
midiNotes (3,1)= time;
end
end

PR R R R R R I R I O o I R R I R R O I I I R R O O S R R I R

$IF Statement 4 - previous note false and current note
false therefore no new
%notes and no previous notes so do nothing.

elseif lastFrame==0 & thisFrame==
%do nothing
end

%set previous frame ready for next itteration

if isempty(currentNotes)==1 %if noteFrameArray 1s empty
previousFrame = [];

else
previousFrame = currentNotes;

end

noteFrameArray = []; %Sempty current notes
endNotes = 0;
thresh = [];

front = front+fftSlide; %move analysis frame along by hop
size
back = back+fftSlide;

J=Jj+1;
p=1;
end

%$1f there are notes detected at the end of process - write
the midi file
%end any midi notes still left on.
if isempty(midiNotes)==0 %$if noteFrameArray is not empty
for i=l:length(midiNotes(1l,:))
if midiNotes (3,1) ==

midiNotes (3,1) = time;
end
end

Q = zeros(length(midiNotes(1l,:)),6);
%$turn next note on
Q(:,1) = 1; % all in track 1
Q(:,2) = 1; % all in channel 0
Q(:,3) = midiNotes (1, :):; % note numbers
Q(:,4) = 73; % volumes
Q(:,5) = midiNotes (2, :); % note on
Q(:,6) = midiNotes (3, :); % note off

Swrite matrix to mid file
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midi new = matrix2midi (Q);
writemidi (midi new, midiname);

$enter threshold and magnitude in to data for spreadsheet
for i=l:length(Q(:,1))

Q(:,7) = midiNotes (4, :);
end

if marker == 1
$get original midi file notes
origmidi = readmidi (origmidi) ;
Notes = midiInfo (origmidi,0);
analysisMatrixl=[];

for i=l:length (Notes(:,1))
analysisMatrixl (i, 1) Notes (i,5);
analysisMatrixl (i, 2) Notes (i, 6);

analysisMatrixl (i, 3) = Notes (i, 3);
end

end

analysisMatrix2=[];

for i=l:length(Q(:,1))
analySLSMatrLXZ(l,l) = Q(i,5);
analysisMatrix2(i,2) = Q(i,6);
analysisMatrix2(i,3) = Q(i,3);

end

$calculate recall and precision etc.

E = evaluate(analysisMatrixl,analysisMatrix?2);
Recall = E(3)/E(1)

Precision = E(3)/E (4)

F-measure = (2*Recall*Precision)/ (Recall+Precision);

if F-measure>bestF-measure
bestQ=0Q;
bestRecall=Recall
bestPrecision=Precision;
bestF-measure=F-measure;
bestConstant=Constant;

else
if ben ==
bestQ=0Q;
ben=2;
end
end
if Precision ==1 || Constant > 0.98
Q=bestQ;

Recall=bestRecall;
Precision=bestPrecision;
F-measure=bestF-measure;
Constant=bestConstant;

for i=l:length(Q(: )

1)
deltaStart(i,1l) = Q(i,5)-Notes(i,5);
deltaEnd (i ) = Q(i,6)-Notes(i,6);
noteLength(l 1) = (Q(1,6)-Q(1,5))-(Notes (1,6) -
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Notes (i, 5));
end

%$column headings for spreadsheet

P =
{'channel', 'track', 'note', 'velocity', "'start', 'end', "thresh', 'deltaSta
rt','deltakEnd', 'DeltaNotelength', 'recall', "precision', "F-
measure', 'Constant'};

PP =
{'channel', 'track', 'note', 'velocity', 'start', 'end', 'On Mess #','0ff
mess #',' '};

$write headings to spreadsheet
Data = [PP,P];
xlswritel (File, Data, audioname, "A1");

Swrite midi files to spreadsheet

Data = [Notes];

x1lswritel (File, Data, audioname, 'A2'");
Data = [Q];

xlswritel (File, Data, audioname, 'J2");
Data = [deltaStart,deltaEnd,notelLength];
xlswritel (File, Data, audioname, 'Q2");

Data = [Recall,Precision,F-measure,Constant];
x1lswritel (File, Data, audioname, 'T2'");
StatsName = {midiname};
StatsNameStore = [StatsNameStore;StatsName];
StatsScore = [Recall, Precision, F-
measure,Constant, fftlength, fftSlide];
StatsScoreStore = [StatsScoreStore;StatsScore];
break
end
else
disp('"!!!HHritrttiino notes were detected!!'!!11IIIITLT)
end

if Precision~=1

Constant = Constant+0.01
marker = 0; %marker used to trigger/stop excel write

end
end
end

$Write data to excel spreadsheet

P = {'file', 'recall', 'precision', 'F-measure', 'Constant', 'fft length',
'hop'};

xlswritel (File, P, 'TotalStats', 'Al'");

xlswritel (File, StatsNameStore, 'TotalStats', 'A2'");

xlswritel (File, StatsScoreStore, 'TotalStats','B2');

%Close excel file.

invoke (Excel.ActiveWorkbook, 'Save') ;
Excel.Quit

Excel.delete

clear Excel

disp ('Process Complete')
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