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Abstract 

 
Miniaturization towards the nanoscale is now the trend of technological developments in products 

and devices for mechanical, optical and electronic applications. Normally, good engineering 

functional components should have their form and surface tolerances less than one hundredth or 

even one thousandth of their feature sizes. However the structure fabricated by current 

nanotechnology can rarely achieve such tolerance ratio in a controllable way. Because of this, the 

kinematical and dynamical performances of these nano-structured mechanisms are far from ideal. 

Consequently, this research aims to identify the limit of micro and nano material removal under 

machining conditions.  

 

There are still many fundamental questions which need to be addressed in nanometric machining. 

Some of them are the following, namely; what are the fundamental mechanisms underlying 

nanomachining processes?  What is the limit of machining? What is the minimum depth of cut and 

how does one evaluate atomic surface roughness from nanomachining simulations? This study 

attempts to find some answers to the above questions or to point the direction towards the answers. 

 
Nanomachining has been modelled using the Molecular Dynamics (MD) method because it has 

proved to be an effective tool for the prediction and the analysis of these processes at the nanometre 

scale. Through this investigation, it is identified that the EAM potential is the most appropriate of 

the 3 potentials commonly used for the modelling of nanomachining of copper with a diamond tool. 

This is because the EAM potential provides the best description of the metallic bonding in the 

workpiece, also, the cutting forces variation is smallest; the potential and total energies are most 

stable for the depth of cut considered. Therefore, the EAM potential should be used, rather than LJ 

and Morse potentials for the modelling of copper and other fcc metals in MD simulations of 

nanomachining. For potential pairs; it was observed that the tangential cutting force components are 

considerably affected by the interatomic potential pair used, but they are not greatly affected by 

whether the tool is rigid or deformable. The total energy of the system on the other hand is much 

lower when the tool is non rigid than when it is rigid. 

 

Various MD simulations have been carried out. Results of the investigation of the minimum depth 

cut (MDC) nanomachining show the nano material removal phenomena of rubbing, ploughing and 

cutting. In a copper material removal simulation, ploughing starts from 0.2~0.3nm and the 

formation of chips starts to occur from the depth of cut thickness of 1.5nm. So it can be suggested 

that the extreme accuracy attainable or MDC for copper atoms workpiece, machined with extremely 
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sharp diamond tool is around 1.5nm to 3nm. The onset of plasticity for copper atom workpiece 

machined with extremely sharp diamond tool is around 0.1nm ~ 0.3nm. 

 
In the investigation of the effect of various tool ends on the initiation of the phenomena of rubbing 

and ploughing; all the tools clearly show the phenomena of rubbing and ploughing in the depth of 

cut range of 0.05 to 0.5 nm. The tool with the pointed end has the lowest average cutting force and 

the tool with the flat end has the highest average cutting force. It is important to note that in 

nanomachining the tool with sharpest end may not necessarily cause the greatest material removal. 

The different tool ends may be suitable for different machining applications. 

 
On the velocity variation in nanomachining simulations, it can be concluded that the interatomic 

potentials readily affect the simulation results, whereas the use of rigid and non-rigid tools doesn’t 

show appreciable difference. Also, it was observed that the tangential and the normal cutting force 

components relatively increase with increase in velocity. 

 

The atomic surface roughness evaluation is affected by the choice of the interatomic potentials used 

for the simulation. 
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Chapter  1. Introduction  
 

1.1 Motivation and Significance of the Study 

 
Humans have been using machine tools for centuries. The usage has evolved from very primitive 

forms to highly advanced, precise and efficient machines that exist today (Hoffman et al 2011). 

Machining plays an essential role in modern manufacturing and the demand for miniaturized 

devices with stringent form and surface requirements is making the process a top choice. The world 

machine tool industry is worth $65 billion and global demands for machine tool products will keep 

growing by 5.2% annually (Freedonia Market Research, 2009). 

 

The need for high accuracy and high efficiency machining of difficult-to-machine materials is 

making the application of machining technology increasingly important. Also, the use of machining 

to produce complex three dimensional (3D) nanoscale devices is clearly a distinct advantage over 

other methods of manufacturing (Jackson, 2008). Many different types of models have been 

developed to model machining, which range from the macroscopic to the microscopic and they 

cover analytical, empirical and physical approaches. Some of these are fundamental analytical 

models, kinematic models, analytic regression models, artificial neural networks models and the 

finite element analysis approaches (Brinksmeier et al 2006), with special emphasis on grinding. 

With the trend towards miniaturization and the development of ultra–precision processes which can 

achieve excellent surface finish at nanometre level, there is a need for simulations at this length 

scale and many of the above models are not adequate for nanoscale simulations.  

 
 
1.2 Short History of Machining 

 
In early times, metal removal was achieved by using hand tools made from bones, sticks and stones. 

Later on, metal cutting machines driven by water, steam and electricity were employed and further 

innovations advanced the development of machine tools. In 1775, John Wilkinson invented a 

cannon-boring machine, which was soon after adapted for boring cylinders for steam engines. Eli 

Whitney in 1815 invented a milling machine and C.H. Norton invented the grinding machines in the 

late 19th century. According to (El-Hofy 2007), systematic research on machining began in 1850, 

with the following highlights, namely: 
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• “1851 – Measurement of the cutting forces and power consumption to remove a given 
volume of metal 

• 1870 – Mechanics of chip formation 

• 1893 – Analysis of forces in the cutting zone 

• 1907 – Study on tool wear began 

• 1950 – Verification of the metal cutting models 

• 1960 – Developments of the field of grinding and non traditional machining processes 

• 1970 – Developments in the field of non-traditional and hybrid machining processes, 
including micromachining and nanomachining” 

• 1980~2000  –  The advancement of technology in Very Large Scale Integrated (VLSI) 
Circuits (Microprocessors) and Artificial Intelligence have impacted the Ultraprecision 
machine tools in the controls and dexterity 

 
Now the latest trend of machining development is in nanomachining where atoms (which may be 

considered as chips) are removed to produce highly precise machined parts in products and devices 

for mechanical, optical and electronic applications. This supports Taniguchi’s prediction (Taniguchi 

1983) of increasing precision as a function of time (Figure 1.1). Many of these nanotechnology 

applications need to engineer the surface on which the nano-materials can build on. Normally, good 

engineering functional components should have their form and surface tolerances less than one 

hundredth or even one thousandth of their feature sizes. However the structure fabricated by current 

nanotechnology can rarely achieve such tolerance ratio in a controllable way. Because of this, the 

kinematical and dynamical performances of these nano-structured mechanisms are far from ideal. 

Improvement of the accuracy of nano-feature shape needs controllable erosion methods which can 

remove excessive materials as required. At the moment, there is no such controllable method that 

can be used at the nanoscale. Chemical erosions have poor directional controllability, which are 

difficult to apply for a good surface finish. (Surface roughness in the micrometre range have been 

reported – Senthilkumar et al, 2011 and Ruszaj et al, 2003) Electrolytic methods can be used in 

making micro features, but the electrical poles suffer severe wear and control at the nano scale level 

is difficult. Conventional abrasive polishing methods can only be applied to large surface features 

due to large scale flow kinematical requirement, and so the development of a suitable nano surface 

removal method becomes a critical issue in micro-nano fabrication of nanogrooves – nanochannels.  
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Figure 1.1: Taniguchi Curve (Taniguchi 1983) 
 

 

1.3 Short History of Nanotechnology 

 
The prefix nano has its origin in Greek, which means dwarf. In modern scientific parlance, a 

nanometer is one billionth of a metre. Nanotechnology, as we know it now, was first proposed in 

1959 by Richard Feynman, in an after-dinner lecture, titled, “There is plenty of room at the bottom” 

(Feynman, 1959). The following are highlights in the development of nanotechnologies. 

 

• Nario Taniguchi of Tokyo Science University coined the word nanotechnology in 1974 
(Taniguchi, 1974) 

• In 1981, Gerd Binnig and Heinrich Rohrer invented the Scanning Tunneling Microscope 
(STM) at the IBM’s Zurich Research Laboratory (Binnig and Rohrer, 1982) 

• Invention of the Atomic Force Microscope (AFM) (Binnig et al., 1986) 

• In 1990, Don Eigler of IBM and co-workers showed that it is possible to manipulate 
individual atoms. They positioned 35 xenon atoms on the surface of a nickel crystal, using 
an AFM, to spell out the letters “IBM” (Eigler and Schweizer, 1990) 

• Other landmarks that have high prospects in the development of nanotechnology, are the 
discovery of buckyball, a molecule consisting of 60 carbon atoms (Curl et al., 1985) and 
the discovery of carbon nanotube (Iijima, 1991). 
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1.4 Problems of Conventional Modelling of Micro/Nanoscale Machining Processes 
 

Micro and Nano machining phenomena take place in a small limited region of the tool – workpiece 

interface, containing few atoms or layers of atoms and it is not continuous as assumed by 

continuum mechanics. Furthermore, at this range, inherent measurement problems limit the use of 

analytical and empirical models (Rentsch, 2008). The atomistic simulation methods lend themselves 

to the solution of this problem, as the dynamics of the material removal process can be modelled in 

the simulation.  Also, the material removal mechanisms on the nanoscale are not fully understood, 

so more insight is needed to be able to adequately predict nanomachining processes in industry. 

 
1.5 Research Aim and Objectives 

 
The aim of this research work is to understand the fundamental material removal mechanisms in 

nanomachining and to identify the limit of micro/nano material removal under machining 

conditions.  

 
The specific objectives are the following, namely: 
 

• To develop an atomistic tool-workpiece model for nanomachining  

• To simulate nanomachining process mechanisms using the Molecular Dynamics (MD) 
method 

• To determine the minimum depth cut in nanomachining 

• To observe the phenomena of rubbing, ploughing and chip formation in nanomachining 

• To evaluate the atomic surface roughness in nanomachining 

• To validate the MD models by carrying out experiments on the Nanoform Ultragrind 
Machine 

 
 
1.6 Structure of the Thesis 

 
The thesis is sub-divided into 8 chapters and the organizational structure is shown in Figure 2.1. 

Chapter 1 explains the motivation, aim and the objectives of the research work.  

Chapter 2 provides a review of the theory of nanometric machining and highlights various atomistic 

simulations methods. It further reviews the molecular dynamics method, with consideration to the 

various thermodynamic ensembles, the commonly used interatomic potentials, algorithms for the 

integration of the equations of motion and examples of MD simulation in nanomachining.  

Chapter 3 explains the methodology used for the MD simulation of nanometric machining; the MD 

software used for the simulations and the hardware platform.  

Chapter 4 provides the MD simulation results of single-pass nanometric machining. These results 

include the effect of interatomic potentials on nanomachining, the determination of the minimum 
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depth cut in nanomachining, the effect of tool geometry on rubbing and ploughing in 

nanomachining and the effect of the variation of velocity in nanomachining.  

Chapter 5 gives an extension to the results in chapter 4, by providing multi-pass nanometric 

machining simulation results. The effects of the following on nanomachining were observed, 

namely; the interatomic potentials, depth of cut, feed rate, rake angle and velocity. 

Chapter 6 provides the evaluation of the atomic surface roughness, Sa from MD simulation of  

nanometric machining. 

Chapter 7 explains the experimental set-up and the procedure for the validation of the MD 

simulation results. The features which can be compared with the simulations results are presented. 

Chapter 8 is a summary of the contribution of this research work and proposes directions for future 

work. 
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Figure 2.1: The Organizational Structure of the Thesis 
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Chapter   2. Literature Review 
 
 
2.1  Theory of Nanometric Machining 

 
Nanometric machining can be defined as a material removal process in which the dimension of the 

chip removed from the workpiece and the dimensional accuracy of the final product are in the order 

of 100nm or less. This can be categorized under the following headings, namely; (Jackson, 2007) 

Mechanical Nanometric Machining, Loose Abrasive Nanometric Machining, Non Mechanical 

Nanometric Machining and Lithographic Material Removal Methods. 

 
2.1.1 Mechanics of Chip Formation 

 
The Merchant’s model is one of the most popular models of orthogonal cutting, where the cutting  

edge is perpendicular to the relative cutting velocity between the tool and the workpiece. (See 

Figures 2.2 and 2.3). The model is suitable for macro level cutting and the materials are considered 

as continuous media. 

 

Shear Plane

Chip

Tool

Workpiece
φ

Shear Plane

Chip

Tool

Workpiece
φ

 

 

 

Figure 2.2: Orthogonal Cutting Model (Merchant 1945a, 1945b) (Luo, 2004) 
 

A metal chip with a width of cut and uncut chip thickness is sheared away from the workpiece. The 

cutting forces are exerted only in the direction of velocity and uncut chip thickness namely 

tangential force and feed force. 

 
Merchant Assumptions 

• The tool tip is a perfectly sharp edge  

• Deformation is 2 –D 

• Stresses on the shear plane are uniformly distributed 

• The resultant force on the chip applied at the shear plane is equal, opposite and collinear to 
the force applied to the chip at the tool-chip interface. 
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2.1.2 Cutting Forces 

 

In nanometric machining, the cutting forces are the interatomic forces (Luo et al, 2003). These 

forces are the superposition of the interaction forces between the cutting tool and the workpiece 

atoms. A low cutting force is a result of fine cutting conditions, which will in turn decrease the 

vibration of the cutting system and then result in better surface roughness (Jackson, 2005).  

 

 
Figure 2.3: Diagram of Cutting Forces (Merchant 1945a, 1945b) (Luo, 2004) 
 
From Figure 2.3 the resultant cutting force (at the macroscale) can be obtained as follows; 
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Where sτ - shear yield stress on the plane assumed uniform over the plane 

cφ - shear angle 

rα - tool rake angle 

ββ - friction angle 

 
Also, the tangential and feed cutting forces can be expressed in terms of the resultant cutting force 
at macro level, as,  
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Many different types of models have been developed to study the machining processes. These range 

from the macroscopic to the microscopic methods. Conventionally, the Finite Element Methods 

(FEM) have been used to model machining processes (Strenkwoski and Carroll 1985, 1988, Shih, 

1995) and a lot of studies have been conducted. FEM has been capable of obtaining useful 
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information on chip formation, temperature distribution, cutting forces and stress distribution. The 

FEM is able to handle macroscale and microscale models, but as the length scale reduces to the 

nanoscale, it becomes unrealiable. This is because at the nanoscale, the material can no longer be 

considered to be a continuum, but rather discrete in nature. The current product miniaturisation and 

the development of ultra-precision processes which can achieve excellent form and surface finish, 

call for nanoscale models which the above mentioned methods cannot handle. Discrete atomistic 

models are suitable for modelling nanometric machining processes and will be discussed further in 

section 2.2. 

 

 
                        (a)      (b) 
 

Figure 2.4a:  Schematic of the MD Simulation of Nanometric Cutting (2D) (Komanduri and Raff 
2001); 2.4b: Atomistic Interaction in Nanometric Machining (Ikawa et al 1991, Promyoo et al. 
2008) 
 

Figure 2.4a shows the initialization of the MD simulation and Figure 2.4b shows the time increment 

(∆t), in which every atom changes its position and interacts with its surrounding neighbour atoms in 

a manner that is determined from the interatomic potential function. 

 

E.g. for atoms described by Lennard Jones potential, ijV , the interatomic force between atoms i and j 

is 
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The force acting on the i-th workpiece atom is thus a summation of the interaction with the 
surrounding atoms (Luo et al 2003); 
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Similarly, the force on each tool atom is 
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The above approach is logical as the cutting forces are based on the interatomic forces between the 

interacting atoms, which in turn are based on the interatomic potentials modelling them. The cutting 

forces have contributions from the interaction of atoms within the workpiece, within the tool and 

between the tool and the workpiece (the tool-workpiece interface).  

For the model in this study, the cutting force is usually negative at the beginning of the process, as 

the tool is maintained at a distance from the workpiece. At this stage, there would be an attractive 

force between the tool atoms and the copper atoms. Later, when the tool starts to cut through the 

workpiece, there would be a repulsive force between the tool and the workpiece atoms, which 

would eventually result in the positive values of the force (Lin et al,  2007). 

 
2.1.3 Cutting Temperature 

 
In MD simulations, it is assumed that the cutting energy is totally transferred into cutting heat and 

this results in an increase of the cutting temperature and kinetic energy of the system (Jackson, 

2007). The thermal motion of the atoms actually originates from the lattice vibrations and the 

average kinetic energy of the system can be given as 
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and consequently the cutting temperature,  
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Where im is the mass of the ith atom, iv is the resultant velocity of the ith atom, N is the number of 

the thermostat atoms, iT is the temperature of the ith atom and Bk is the Boltzmann constant 

(1.3806504 x10-23 JK-1). 
 

Whenever the temperature of the thermostat atoms exceeds the preset bulk temperature of 293K, 

their velocities are scaled by using equation (2.8), 
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Where currentT  is the current temperature that is calculated from the KE and the desiredT  is the 

desired temperature. 
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2.1.4 Minimum Depth Cut 

 
The Minimum Depth of Cut (MDC) is defined as the minimum undeformed chip thickness that can 

be removed stably from a work surface at a cutting edge under perfect performance of a machine 

tool (Ikawa et al, 1992). The concept of MDC is that the depth of cut must be over a certain critical 

thickness before any chip is formed. This phenomenon of MDC leads to a rising of slipping forces, 

burr formation and surface roughness (Ducobu et al, 2009). Conventionally, the tool- workpiece 

material interface has been considered to be homogeneous and continuum mechanics are used in the 

analysis of the MDC. In nanomachining, analysis is based on discrete atoms whose interactions are 

governed by appropriate interatomic potentials. The understanding and the accurate prediction of 

the MDC is very crucial in improving the ultra-precision metal removal technologies, as this would 

assist in the selection of appropriate machining parameters and optimal geometry design 

The significance of MDC has been a topic of research in metal cutting mechanics since the last 

century (Sokolowski, 1955 and Brammertz, 1961). Subsequently, there has been a lot of focus on 

the estimation of the MDC in micromachining.  The relationship between the cutting edge 

sharpness and the MDC was analyzed for an aluminium alloy, by Yuan et al 1996. They obtained 

MDC in the range of 0.05µm – 0.2µm for diamond tool cutting edge radii of 0.2µm – 0.6µm, using 

the equation (Yuan et al 1996) (2.9); 
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Where minλ is the MDC, r is the tool edge radius, xF is the horizontal force, yF is the vertical force 

and µ is the coefficient of friction. 

Weule et al 2001 observed the MDC effect in micromilling process. The cutting experiments were 

carried out with tungsten carbide tools edge radii of around 5µm, on SAE 1045 steel. The minimum 

chip thickness to edge radius ratio of 0.293 was obtained for micromachining.  

 

A Finite Element (FE) model has been used to determine the MDC for the single-phase ferrite and 

pearlite phases at micromilling length scales (Vogler et al, 2004a). The edge radii of 2µm and 7µm 

with a range of chip thickness of 0.1µm -3 µm were used. Results showed that the MDC value for 

ferrite is greater than for pearlite. Similarly, the effect of MDC on the cutting forces in micromilling 

was studied by (Vogler et al, 2004b). It was concluded that the MDC requires two separate force 

models to be able to handle the situations of chip and non-chip formations. The slip-line plasticity 

model for chip formation and the force model for non-chip formation. Also, it was found that the 
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frequency spectra of the forces contain a component that is a subharmonic of the tooth-passing 

frequency at feed rates less than the MDC and appears as a stepping behaviour of the forces in the 

time domain. 

 

Son et al 2005 proposed an ultra precision cutting model in which the tool edges radius and the 

friction coefficient are the major factors for the determination of the MDC with a continuous chip. 

The model was based on equation (2.10). 
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Where minλ is the MDC, r is the tool edge radius and β  is the friction angle between a tool and an 

uncut workpiece passed under the tool. 
 
From the model, MDC obtained for aluminium, brass and Oxygen Free High Conductive (OFHC) 

copper were in the range 0.09µm -0.12µm. It was noted that surface quality was best and 

continuous chip was generated when cutting was at the minimum thickness. Liu et al 2006 

developed an analytical model, based on the molecular-mechanical theory of friction, for the 

prediction of the normalized chip thickness (λn) for 1030 steel and Al6082-T6. The λn was defined 

as the ratio of the minimum chip thickness to the tool edge radius. The model was based on the 

Kragelsky-Drujuanov equation (Kragelsky et al, 1982) (see equation 2.11). 
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Where minh is the limiting depth of penetration of an indenter and it is equivalent to the minimum 

chip thickness mintc  in micromachining, nr is the radius of indenter and it is equivalent to the 

rounded cutting edge radius er , σ  is the effective flow stress of strain-hardened bulk material, aτ  is 

the shear strength of the adhesive junction of chip/tool interface.  
 

It was found that λn increases as the cutting velocity and tool edge radius increases when machining 

carbon steels. On the other hand, the λn remains constant over a range of cutting velocities and tool 

radii, when machining Al6082-T6. 

 

On nanomachining, the Ikawa group in Osaka did a lot of work on the MDC, with the aim of 

achieving machining nanometric accuracy (Ikawa et al 1991, Ikawa et al 1992 and Shimada et al 

1993). A 2-D simulation of copper atoms machined by a diamond tool, with edge radius of 5 to 

10nm was used for the MD studies. Using the Morse potential and a cutting speed of 200m/s, initial 
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stage of chip removal was observed for depth of cut larger than 0.3nm and the MDC increased to 

0.6nm with a larger edge radius of 10nm. From their studies, they proposed that the MDC in 

nanocutting would be about 0.5nm to 1nm, (which is 0.05 to 0.1 of the edge radius). 

 

The different approaches for the determination of the MDC include the Molecular Dynamics 

approach (Shimada et al, 1993), experimentation (Yuan et al, 1996), FEM approach (Vogler et al, 

2004) and analytical approach (Liu et al, 2006). The experimental method for the estimation of the 

MDC would be very tedious and expensive (it is not feasible presently for nanometric cutting) and 

the accuracy will be strongly affected by experimental uncertainties (Liu et al, 2006). The Finite 

Element Method (FEM) approach is not suitable either. Also, the analytical approach to 

nanomachining would be very difficult, as the basis of analysis would be in quantum mechanics. 

The Molecular Dynamics (MD) lends itself to the solution of this problem, as the dynamics of the 

material removal process can be modelled in the simulation. 

 
2.1.5 Atomic Surface Finish 

 
The atomic surface finish or roughness can be defined as the roughness limit of a surface. Its value 

has been demonstrated both in theory and in experiments to be non-zero (Yu and Namba 1998 and 

Namba et al 2000). This parameter is very important in assessing the quality of high performance 

nano surfaces and so its understanding is very crucial. Namba et al 2000 presented equations for the 

evaluation of 2-D and 3-D atomic surface roughness on atomic topography, where λ  is the 

interatomic spacing and r is the radius of the surface atom.  
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Figure 2.5: Illustration of Interatomic Interaction for a STM ( Adapted from Yu and Namba, 1998 
and Namba et al, 2000) 
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Figure 2.6: Illustration of Interatomic Interaction for an AFM (Adapted from Yu et al, 1999) 
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Figure 2.7: Simulated Atomic Topography for 21 λλ = (Yu and Namba, 1998 and Namba et al, 

2000) 
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Figure 2.8: Simulated Atomic Topography for 21 λλ > (Yu and Namba, 1998 and Namba et al, 

2000) 
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For two dimension (2-D), 
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For three dimension (3-D),  
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The evaluation of the roughness limit of a surface is of great importance for ultra-precision 

machining and silicon fabrication. 

 

Table 2.1 shows the comparison of nanometric cutting and conventional cutting mechanics and it 

can be observed that the cutting mechanism on the nanoscale is quite different from that on the 

macro/conventional scale. Nanometric cutting is based on a very small region of the tool-workpiece 

interface, which contains few atoms and so discrete mechanics apply. On the other hand, 
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conventional cutting is based on continuum mechanics. The cutting forces are based on the 

interatomic potentials in classical MD studies, but are dependent on the plastic deformation in 

conventional cutting. It is worth stating that the basic physics of material removal on the nanoscale 

is not fully understood yet and much study is still needed for further insight. 

 

 

Table 2.1: Comparison of Nanometric Cutting and Conventional Cutting Mechanics  
(Adapted from Luo et al 2003) 
 

 Nanometric Cutting Conventional Cutting 

Fundamental Cutting 

Principles 

Discrete Molecular Mechanics Continuum Mechanics 

Workpiece Material Heterogeneous Homogeneous 

Cutting Physics Atomic Cluster Model 
 

Shear Plane Model 

Energy Consideration Interatomic Potential 
Functional 

Shear/Friction Power 

Cutting Force Interatomic Forces Plastic Deformation 

Chip Formation Inner Crystal Deformation 
(Point Defects or Dislocation) 

Inter Crystal Deformation 
(Grain Boundary Void) 

Deformation and Stress Discontinuous Continuous 

Cutting Tool Edge Radius Significant Ignored 

Cutting Tool Wear Cutting Face and Cutting Edge Rake Face 

 
 
2.2 Atomistic Simulation Methods 

 
These are simulation methods that take into account the discrete nature of the system under study. It 

is not assumed that the system is a continuum, but that it consists of a set of interacting atoms or 

molecules. The interacting atoms are bound by chemical reactions, and these reactions are 

interactions between electrons and nuclei. The exact prediction of the correlation between the 

micro/nano-structure and properties of materials requires a solution of the time dependent 

Schrödinger wave equation (equation 2.16) for nuclei and electrons, with a Hamiltonian, H 

describing the entire particle interactions involved in the problem (Li et al., 2008, Marx and Hutter, 

2000).  
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where Ψ is the wave function, �  is the reduced Planck constant and H is the Hamiltonian operator. 
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This is extremely computationally demanding and to overcome this limitation, many atomistic 

simulations have been developed with various approximations, for different applications, namely; 

Monte Carlo (MC), Molecular Mechanics (MM), Molecular Dynamics (MD), et cetera. The MC 

and MD are among the most popular of these methods. The MC methods have different variants, 

but are more suitable for applications at exact thermodynamic states. On the other hand, the MD can 

readily handle dynamic states and can be categorized into the following, namely;    

 

• Ab initio Molecular Dynamics Method 

• Semi-empirical Molecular Dynamics Method 

• Empirical Molecular Dynamics Method 
 
2.2.1 Ab initio Molecular Dynamics Method 

 
Ab initio Molecular Dynamics Method is a first principle MD approach, in which the forces acting 

on the nuclei are obtained from electronic structure calculations that are performed ‘on the fly’ as 

the MD trajectory is generated. These include viz; Ehrenfest (E), Born-Oppenheimer (BO), Car-

Parrinello (CP) et cetera. These methods use different approaches for the electronic structure 

calculations like the Density Functional Theory (DFT), Hartree–Fork (HF) and post HF theories 

which include Generalized Valence Bond (GVB) et cetera (Marx and Hutter, 2000). The BO 

approximation employs classical equation to describe the nuclei and adds the electronic structure by 

solving the time independent Schrödinger equation for each MD step. The CP method on the other 

hand, calculates the valence electrons from first principles, describes the inner electrons by pseudo 

potentials and then treats the motion of the nuclei classically (Marques et al., 2005). Figure 2.9 

shows various simulation methods with time and length. It shows increase in the time scale along 

the vertical axis and increase in the length scale on the horizontal axis. The various simulation 

techniques are also shown in relation to each other. 

Time Scale

Length Scale

Time Scale

Length Scale

 

Figure 2.9: Scales for Simulation Time and Length (Thijsse, 2007) 
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The problem of calculating the total energy and the corresponding interatomic potentials in the 

ground state of matter is quite complex. For example, what DFT (which is one of the most popular 

electronic structure calculation methods) does is to map the problem onto the problem of calculating 

the wave function and energy of a single electron with no approximations (Hohenberg & Kohn, 

1964). The central idea of the DFT is that, for a system of eN  electrons, a functional E[ρ] exists 

such that when E is minimized with respect to the variation in the electron density ρ, its value is the 

ground state energy of the system. The minimization of E must be carried out subject to the 

constraint, 

                                                      ∫ = eNdrr)(ρ                                                                (2.17)      

  

Where eN  is the number of electrons and ρ is the electron density as a function of position, r. 

It is assumed that the functional is semi local, i.e. it depends on the local electron density and its 

derivatives, and that the contribution to the electron density, at an atom due to the remaining atoms 

of the system, is slowly varying.  

 
2.2.2 Semi-empirical Molecular Dynamics Method 

 
The semi-empirical MD method is a trade-off between ab initio and the classical MD methods. It 

allows the establishment between the first principles interactions obtained from electronic structure 

methods and empirical potentials. The method is set up with structure similar to a Hartree-Fork 

(HF) calculation, with certain information like electron integrals approximated or completely 

removed. An example of the semi-empirical MD is tight binding. The tight binding MD includes 

quantum mechanical effects in the MD simulation through explicit evaluation of the electronic 

structure of the system at each time step (Kopidakis et al., 1997, Wang & Ho, 1996). 

 
2.2.3 Empirical Molecular Dynamics Method 

 
This is also known as the classical molecular dynamics method that uses empirical potentials for the 

determination of the forces on the interacting atoms or molecules. This is the approach that has been 

used for the simulations in this study and is detailed in section 2.3. The classical MD method is a 

very powerful and an easy to use computational technique for atomistic studies, when compared to 

more complex quantum mechanical approaches. Some of its drawbacks are the following, namely; 

the use of classical forces, pre-defined potentials and the limitations of the system’s size and the 

simulation times. 
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2.2.4 Monte Carlo Methods 

 
Most of Monte Carlo methods are based on the generation of statistically uniform independent 

values in the interval (0 and 1). Atomistic MC methods are based on exploring the energy surface of 

the system by randomly probing the geometry or configuration space, they make use of interatomic 

potentials for the calculation of the atomic forces, but differ in the way the atomic positions are 

evaluated and unlike the MD are stochastic or non-deterministic.  

 

Steps in Using Monte Carlo Method for atomistic simulations (Medyanik, 2007) 
 

• Compute the total potential energy, V from the atomic positions 

• Randomly choose one atom and move it from its original position for random distance in a 
random direction. Then compute the total potential energy, V*  

• Accept or decline the move: 
  If  V* < V : Accept 

                        If  V* > V : Accept with a probability proportional to exp[-β(V*-V)], where β = 1/kT 
 

 

Table 2.2:  Comparison of Some Atomistic Simulation Methods 

 

Method Applications and Advantages Disadvantages 

Ab initio Molecular Dynamics 
Methods 
 

More accurate solution  Computationally expensive – 
suitable for hundreds of atoms 

Semi Empirical Molecular 
Dynamics Methods 

A trade off between ab initio 
and classical MD methods. Can 
handle up to thousands of 
atoms 

Less accurate solution than in 
ab initio methods 

Empirical/Classical Molecular 
Dynamics Methods 
 

Less computationally expensive 
than ab initio MD 

Simulations are for shorter 
times than in MC 

Monte Carlo Methods 
 

More efficient /time saving, can 
be used for larger time frames, 
time is controllable 

Don’t allow the time evolution 
of the system in a suitable form 
for viewing 

 
 
Table 2.2 shows a comparison of some commonly used atomistic simulation methods. The classical 

MD uses a reasonable approximation, and with appropriate potentials, it can handle systems up to 

millions of atoms, which is not possible for other MD methods. For classical MD, it is assumed that 

quantum effects are negligible on the dynamics of the atoms and the only limitation is that the 

assumption is not valid for light nuclei like hydrogen, helium, et cetera (Turkerman & Martyna, 

2000, Ercolessi, 1997). The use of the classical MD method has proved to be an effective tool for 

the investigation of machining processes at the nanometre scale. (Subsequently, the use of the term 

MD would mean the empirical/classical MD). The method also gives higher resolution of the 
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cutting process than is possible by continuum mechanics on that length scale (Komanduri & Raff, 

2001). The MD method is considered in more detail in the next section. 

 

2.3 The Molecular Dynamics (MD) Method 

 
Molecular dynamics (MD) is a computer simulation technique used in the study of the motions of a 

set of particles – molecules (for metals it can be atoms) (Allen and Tildesley 1988, Haile 1997, 

Field 1999, Frenkel and Smit 2001, Leach 2001, Schlick 2002, Rapaport 2004). The technique 

works by following the time evolution of a set of interacting atoms while integrating the equations 

of their motion. The MD is deterministic, once the positions, velocities and accelerations of the 

particles are known, the state of the system can be predicted. The method is also based on statistical 

mechanics – a way to obtain a set of configurations distributed according to some statistical 

distribution functions (Ercolessi 1997, Hernandez, 2008). 

 
Figure 2.10: Schematic of the MD Simulation of Nanometric Cutting (2D) (Komanduri and Raff, 
2001) 
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Figure 2.11: Schematic of the MD Simulation of Nanometric Cutting (3D) (Fang and Weng ,2000) 
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The MD method was initiated in the late 1950s at Lawrence Radiation Laboratory in the US by 

Alder and Wainwright in the study of statistical mechanics (Alder and Wainwright, 1959). Since 

then, the use of the simulation method has spread from Physics to Materials Science and now to 

Mechanical Engineering. In the field of nanometric cutting, Belak pioneered work on the study of 

cutting copper with a diamond tool (Belak and Stowers, 1990). Initially, the method was used 

extensively to model indentation and cutting (see Figures 2.10 and 2.11). In 1991, Belak and 

Stowers first applied the MD to abrasive processes (Belak and Stowers, 1991) and Rentsch and 

Inasaki’s study later presented the first results of simulations targeted on the pile-up phenomenon in 

abrasive machining (Rentsch and Inasaki, 1994). Relatively, not many studies have been carried out 

on abrasive machining, and this may likely be due to difficulties in developing suitable models in 

terms of the micro topography and in terms of the required potential functions for the material and 

interactions of interest. Also, MD studies have been restricted to single or few grits interfering with 

a workpiece (Brinksmeier et al, 2006). The MD simulation is based on Newton’s second law of 

motion. It consists of the numerical step-by-step solution of the classical equations of motion. For a 

set of N atoms, 

 

                                   iii amF =        (2.18) 

 

Where im is the mass of atom i, 
2

2

dt

rd
a i

i =  is the acceleration of the atom i and iF is the resultant 

force acting on atom i. These forces should be balanced by the potential energy between atoms, 

which are usually presented as the gradient of a potential energy function. 

 
2.3.1 Thermodynamic Ensembles 

 
An ensemble is a large group of atoms or systems which are in different microscopic states, but 

have the same macroscopic or thermodynamic states. If a system of N atoms in a given macrostate 

is defined in terms of thermodynamic quantities no of atoms, N; pressure, P; temperature, T; 

entropy, S; volume, V etc, there are many configurations at the atomic scale, which will lead to the 

same macrostate. The microstate of a system, defined by the atomistic positions and momenta 

cannot be known in a deterministic manner, because of the uncertainty principle of quantum 

mechanics. To avoid this problem, a statistical mechanics approach is used for the atomic 

description. Some common thermodynamic ensembles are considered below and a comparison is 

given in Table 2.3. 
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2.3.1.1    Microcanonical Ensemble (NVE) 

 
This is an isolated system, with N atoms, which occupies a constant volume and the overall energy, 

E of the system is constant. The ensemble can have copies of an isolated system, with each of the 

system having constant energy. Its thermodynamic potential is entropy, S and the partition function 

is∑1 . 

 
2.3.1.2    Canonical Ensemble (NVT) 

 
This is a system in a temperature bath, with N atoms and the volume, V and the temperature, T of 

the system are kept constant. It models a system in thermal interaction with a heat reservoir and 

having constant temperature. Each system in canonical ensemble generally has a different energy. 

Its thermodynamic potential is Helmholtz, A and the partition function is∑ − iE
e

β . 

 

2.3.1.3    Isobaric Isothermal Ensemble (NPT) 

 
This is a system in a temperature and pressure bath, with N atoms and the pressure, P and the 

temperature, T of the system are kept constant. Its thermodynamic potential is Gibbs, G and the 

partition function is∑ +− )( ii PVE
e

β . 

 

2.3.1.4    Grand Canonical Ensemble ( µ VT) 

 
This is a system in contact with a reservoir with which it is possible to exchange energy and 

particles. It is characterized by a constant chemical potential and temperature T. Its thermodynamic 

potential is Hill, (-PV) and the partition function is∑ +− )( ii NE
e

µβ . 

 
Table 2.3: Comparison of the Thermodynamic Ensembles (Adapted from Cross, 2012) 
 

Ensemble Partition Function Probability 

Distribution 

Bridge Equation 

Microcanonical ∑=Ω 1  

Ω
=

1
iπ  ),,( EVNIn

k

S
Ω=  

Canonical ∑ −= iE
eQ

β  iE

i e
Q

E
βπ −=

1
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),,( TVNInQA =− β  

Isothermal-isobaric ∑ +−=∆ )( ii PVE
e

β  )(1
),( ii PVE

ii eVE
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∆
= βπ  

),,( TPNInG ∆=− β  
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2.3.2 Steps in MD Simulation 

 
The outline of the MD simulation is as follows: 
 

• Select the model, choose an appropriate interatomic potential and the algorithms for 
calculating the equations of motion; 

• Initialize the model; 

• Relax the model from its initial state to its dynamically equilibrium condition; 

• Run the simulation and analyse the results. 
 
 Select the Model and Choose an Appropriate Interatomic Potential and the Algorithms for 

Calculating the Equations of Motion  

 
The model should be selected correctly to reproduce what is expected (whether 2D/3D). Then, the 

next thing is a major task in MD simulation, which is the selection of the potential function. This is 

a function, ),.........( Ni rrV  of the position of the nuclei which represents the potential energy of the 

system. Where ),.........( Ni rr represents the complete co-ordinate position of the atoms. Then forces 

are derived from it as, 

).,.........( Ni

i

i rrV
r

F
∂

∂
−=      (2.19) 

 
Strictly speaking, the problem of modelling a material is that of finding a potential function for that 

material. If the potential function could not model atom behaviour correctly, the results produced 

from the simulation could be wrong. 

 
2.3.3  Interatomic Potentials for MD  

 
Consider the energy of N interacting particles, which can be written as (Tersoff, 1988) 
 

∑∑ ∑ ∑
<<<< <<

++++=
Nkji

NkjiN

i ji kji

kjijii rrrrVrrrVrrVrVE
.......

321 )......,,(........),,(),()(    (2.20)  

 

Where kji rrr ,, are the positions of the particles and the functions NVVVV ,....,, 321  are the m-body 

potentials. 
 
For simplicity, pair potentials models are normally used for atomic interactions, and it follows from 

equation (2.20), that the second term, ),(2 ji

ji

rrV∑
<

 is the two-body or pair potential, (which also can 

be re-written as in equation 2.21), and the third term is the three-body potential and so on.  

 

                                                      ∑∑
>

=
i ij

ijrVV )(       (2.21) 

 

Where ijr  is the distance between particles i and j. 
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The pair potentials are the simplest interatomic potentials used for the interaction of a set of 

particles. The crucial task in a MD simulation is the selection of the potential function, and if the 

potential doesn’t model the behaviour of the atoms correctly, the results produced from the 

simulation would be useless. Most times, it can be observed that the basis of the choice of the 

interatomic potentials for MD simulation is often shrouded in mystery. The lack of clear 

understanding about the scope and the limitations of a given model may lead to its innocent misuse 

and sometimes, to the dissemination of nonsensical results (Finnis, 2003). The most popularly used 

is the Lennard-Jones potential; others are Morse potential, Born-Mayer potential et cetera. Apart 

from the pair potentials, there are multi-body potentials, like Tersoff and Embedded-Atom Method 

potentials, et cetera. 

 
2.3.3.1    Lennard-Jones Potential 
 
Lennard-Jones started with the general form equation (Lennard-Jones, 1924 and Brush, 1970). 
 

                                                 
nm

r

g

r

f
rV −=)(                                               (2.22) 

 
(The inverse nth power attractive force dominates at large distances and the inverse mth power 

repulsive force dominates at short distance.) He later arrived at n = 6, m= 12; n=7 and m=13, as the 

special cases of the equation. He didn’t derive the equation as it were from first principles, but 

arrived at it by fitting experimental data. The values n = 6, m= 12 are widely used nowadays. 
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Where ε  and σ  are constants which are dependent on the interacting particles. Some values of ε  

and σ  for rare gases are given in Table 1. The LJ potential is ideal for rare gases, where the 

interactions between the non- bonded and uncharged atoms are due to weak Van der Waal forces 

 
Table 2.4: Constants for Lennard-Jones Potential (Hansen and McDonald, 1976) 

 

Gas 
)(KkB

ε  )10( 9−σ  

Helium 10.2 0.256 

Neon 35.8 0.275 

Argon 119.8 0.341 

Krypton 116.7 0.368 

Xenon 225.3 0.407 
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2.3.3.2    Morse Potential: (Morse, 1929) 
 
Morse started with the wave equation for the nuclear motion of the diatomic molecule of nuclear 

masses 1M  and 2M ; and charges 1Z  and 2Z respectively as in equation 2.24. 
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Where 
( )21

21

MM

MM

+
=µ  , r is the distance between the nuclei, W is allowed energy levels, )(rVe is 

the electronic energy calculated by considering the two nuclei as fixed in space with a distance r 
apart. 

In order to obtain the exact solution of equation 2.24, Morse chose a potential ijV , expressed as 

equation 2.15, which is equal to 







− )(21

2

rV
r

ZZe
e . The choice of ijV  was based on the following 

criteria, viz; 
 

• should come asymptotically to a finite value as ∞→r  

• should have its only minimum point at 0rr =  

• should become infinity at 0=r  

• should exactly give the allowed energy levels as a finite polynomial 
 

]}(exp[2)](2{exp[ eijeijij rrrrDV −−−−−= αα             (2.25) 

 

Where, ijr and er  are instantaneous and equilibrium distances between atoms i and j respectively; α  

and D are constants determined on the basis of the physical properties of the material. The examples 

are given in Table 2.5, for interaction up to first neighbours. The Morse potential is suitable for 

cubic metals and they can be used to model the interactions between an atom and a surface. 

 
Table 2.5: Constants for Morse Potential (Das et al, 1977) 
 

Metals  )10( 20 JD −×  )10( 10 m×α  )10( 10−×er  

Gold 10.1374 1.6506 2.8709 

Copper 9.4332 1.4311 2.5421 

Nickel 11.9572 1.4415 2.4817 

Silver 7.9609 1.4509 2.8749 

Lithium 6.7414 0.7899 3.0000 

 

 

2.3.3.3     Born-Mayer Potential 

 
Born and Mayer suggested that the repulsion between the atoms would have a roughly exponential 

dependence on distance (Born and Mayer, 1932). 
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  )]}{exp[
BM

ij
a

r
AV −=                                                      (2.26) 

 

Where A and BMa  are constants dependent on the material. This potential is used for metals, Group 

III-V semiconductors and ceramics.  
 
Table 2.6: Constants for Born-Mayer Potential (Smith and Carter 1969, Khukhryansky et al. 
2004) 
 

Interactions A(keV) 
BMa ( m

1010− ) 

Argon-Argon 8.89 0.24 

Gold-Gold 200±60 0.20±0.4 

Argon-Gold 42380 0.219 

Gallium-Gallium 15.365 0.2813 

Gallium-Phosphorus 9.27 0.2716 

Phosphorus-Phosphorus 5.5963 0.2712 

 
 
2.3.3.4    Tersoff Potential 

 
Tersoff modelled the total energy of the system as a sum of pair like interactions and as a function 

of the atomic coordinates, given as equation (2.27). The potential is based on the concept that the 

strength of a bond between two atoms is not a constant, but depends on the local environment 

(Tersoff 1988a and Tersoff 1988b). 
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The Tersoff potential is used for covalently bonded materials like silicon atoms and the values of 

the parameters for Silicon and Carbon are given in Table 2.7. 

 
Table 2.7: Constants for Tersoff potential (Tersoff, 1988b),(Rafii-Tabar and Mansoori, 2003), 
(Saito et al, 2001) 
 

Parameters Silicon Carbon 

A(eV) 3108308.1 ×  3103936.1 ×  

B(eV) 2107118.4 ×  210467.3 ×  

)( 1

1

−nmλ  24.799 34.879 

)( 1

2

−nmλ  17.322 22.119 

α  0.0 0.0 

β  6100999.1 −×  7105724.1 −×  

N 1108734.7 −×  1102751.7 −×  

P 5100039.1 ×  4108049.3 ×  

Q 16.218 4.384 

H 1109826.5 −×−  1107058.5 −×−  

)( 1

3

−
nmλ  17.322 22.119 

R (nm) 0.285 0.18 

D(nm) 0.015 0.02 

 

Where R and D are cut-off parameters; hqpnBA ,,,,,,,,,, 321 βαλλλ  are fitting parameters of the 

Tersoff potential. 

 
2.3.3.5    Embedded-Atom Method Potential 

 
In deriving the embedded-atom method potential, it can be stated that the major contribution to the 

energetics is the energy to embed the atom into the electron density of the neighbouring atoms. 

The total energy of the system can be written as (Foiles 1985), (Foiles et al, 1986). 

 

                                  ∑∑ +=
ji

ijij

i

ihitot rVGE
,

, )(
2

1
)(ρ                              (2.29) 

 

ih,ρ  is the total electron density at atom i due to the rest of the atoms in the system. 

iG  is the embedding energy for placing an atom into the electron density 

jiV ,  is the short range pair interaction representing the core-core repulsion 

ijr  is the separation of atoms i and j 

 
Using a model needed for the host electron density 
 

                                           ∑
≠

=
ij

ij

a

jih r )(, ρρ                                               (2.30) 
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)(ra

jρ is the atomic electron density of atom j at the distance ijr  from the nucleus. 

 

Replace )(ρG with a Taylor-series expansion about the average host electron density ρ . The 

electron density at site i will be written as 
 

                                    ])([, δρρρ −+= ∑
≠ij

ij

a

jih r                                      (2.31) 

Where 
)1( −

=
N

ρ
δ  and N is the number atoms in the system. Keeping the terms in the Taylor 

expansion through the second order, 
 
The expression for the embedding energy is 
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Where ''' GandG are the first and the second derivatives of the embedding energy of the atom i with 

respect to the electron density, evaluated at ρ  respectively. The first term on the right of equation is 

the simplest approximation to the total embedding energy, the third term is a pair-potential-like 

contribution to the embedding energy in that they involve a double sum over the pairs of atoms and 

the last term is the three-body contribution. 

Neglecting the three-body term, and in the thermodynamic limit ∞→N , the terms involving δ can 

be dropped, then the embedded atom energy can be approximated by 

                                   [ ] ∑
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2

1
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ijji

ijtot rVGGNE ρρ                             (2.33) 

Where the pair potential )( ijrV , 
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a

jiiij

a

jiiijijij rGrGrUrV ρρρρ ++=                              (2.34) 

 
The values of electron densities and the embedding functions for Nickel and Gold are listed in 

Tables 2.8 and 2.9 (Foiles, 1985). 

 
Table 2.8: Electron densities and the embedding functions for Nickel 

 

ρ (Angstrom)-3 eVF )(ρ  

0.0 0.0 

0.01446 -3.5847 

0.02891 -5.1449 

0.05783 -3.4041 

0.06650 0.0 
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Table 2.9: Electron densities and the embedding functions for gold 

 

ρ (Angstrom)-3  eVF )(ρ  

0.0 0.0 

0.00728 -3.2170 

0.01455 -4.6278 

0.02910 -2.7699 

0.03347 0.0 

 
The embedded-atom potential was developed for a wider range of metals. It incorporates an 

approximation for the many-atom interactions neglected by the pair-potential scheme. 

 
2.3.2.6    Modified Embedded-Atom Method (MEAM) Potential 

 
The MEAM is theoretically an extension of the EAM potential (Baskes, 1992) with modifications 

to include the directionality of the bonding. The bond-angle was explicitly handled so as to 

accommodate covalent systems. The total energy is given by (Equation 2.29). The MEAM is 

suitable for modelling metals and alloys with fcc, bcc, hcp and cubic structures, and also for 

covalent materials such as silicon and carbon. 

 

The list of the potentials is not exhaustive; and there are other potentials which are modified forms 

of the ones already discussed. Generally, the most commonly used interaction model is the 

Lennard-Jones (LJ) pair potential. It is the standard potential to use for all the investigations where 

the focus is on the fundamental issues, and not studying the properties of a specific material. To 

obtain physically meaningful results from atomistic simulations, it is essential that reliable 

interatomic potentials are used. A reliable potential would reproduce various physical properties of 

the relevant elements or alloys, including the elastic, structural, defect, surface and thermal 

properties etc (Lee et al 2005). For example, Tersoff potential was designed for the description of 

covalent materials like silicon, germanium, carbon, silicon carbide etc. and it cannot adequately 

model metals. Also, the EAM potential was designed for metals, as it describes the bonding in 

metals more satisfactorily, but the MEAM potential can be used for the modelling of both metallic 

systems and covalently bonded materials. Table 2.11 shows some more interatomic potentials and 

their suitability. 
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Table 2.10: Comparison of the Interatomic Potentials 

 

Name  Model   Application  

 

Lennard-

Jones 

Potential 




















−








=

612

4
rr

V ij

σσ
ε , σ  and ε  are constants which are 

dependent on the physical property of the materials. 
(Lennard-Jones, 1924) 

 
 

 
Mostly 
suitable for 
rare gases 

Morse 

Potential 
]}(exp[2)](2{exp[ eijeijij rrrrDV −−−−−= αα  

ijr and er  are instantaneous and equilibrium distances between atoms 

i and j respectively 

α  and D are constants determined on the basis of the physical 
properties of the material 
(Morse, 1929) 

 
 
 
 
 
 

Mostly 
suitable for 
cubic metals 

    
Born-

Mayer 

Potential 

)]}(2{exp[ 0rrAV ijij −−= α  

A and 0r  are constants dependent on the material 

(Born and Mayer, 1932) 

 
 
 

Mostly 
suitable for 
ceramics  

    
Tersoff 

Potential 
)()( ijaijijrij rVBrVV −=  

rV  and aV are the potentials due to repulsive and attractive forces 

between atoms i and j 

and ijB is a parameter that provides the information for the 

direction and the length of the bond. 
(Tersoff, 1988a and Tersoff, 1988b) 

 
 
 
 

Mostly 
suitable for 
covalently 
bonded 
materials 

Embedded-

Atom 

Potential 

(EAM) 

∑∑ +=
ji

ijij

i

ihitot rVGE
,

, )(
2

1
)(ρ  

ih,ρ  is the total electron density at atom i due to the rest of the atoms 

in the system. 

iG  is the embedding energy for placing an atom into the electron 

density 

jiV ,  is the short range pair interaction representing the core-core 

repulsion 

ijr  is the separation of atoms i and j 

(Foiles 1985, Foiles et al 1986) 

 
 
 
 
 
 

Mostly 
suitable for a 
wide range 
of metals 
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Table 2.11: On more Potentials 

 

Potential Suitability References 

Finnis-Sinclair For body-centred cubic elemental  
metals, noble metals  

Finnis and Sinclair 1984 

Stillinger-Weber For Silicon Stillinger and Weber 1985 

The Glue Model For Gold, Lead, Aluminium, 
Magnesium 

Ercolessi et al.1986 

Sutton-Chen For face-centred cubic elemental 
metals 

Sutton and Chen 1990 

Rafii-Tabar-Sutton For face-centred cubic random 
binary alloys 

Rafii-Tabar and Sutton 1991 

Force Matching Method For Aluminium, Magnesium  Ercolessi and Adams 1994 

Effective Medium Theory For face-centred cubic metals Wang et al. 1995 

Murrell-Mottram Cluster For Aluminium,  Copper, Silver, 
Lead 

Cox et al. 1999, Murrel et al 
1990 

Second-Moment 
Approximation 
of Tight Binding 

For Iron and its alloys Chamati et al. 2006 

 
 
For molecular dynamic analysis, an interatomic potential should have the following properties 

(Rafii-Tabar and Mansoori, 2003),  

 

• Flexibility – it must be flexible enough to accommodate a wide range of fitting data 

• Accuracy – it should be able to accurately reproduce an appropriate database 

• Transferability – it should be able to describe structures not included in the fitting database 

• Computational Efficiency – the evaluation of the potential should be relatively efficient 
 

In summary: for metals; the EAM and the MEAM potentials should be used, for covalent materials; 

Tersoff and MEAM should be employed, and for the interface of materials where suitable potentials 

have not yet been developed, appropriate available LJ and Morse potentials can be used with 

caution. 

 

2.3.4 Algorithms for the Integration of the Equations of Motion 
 
After the choice of the potential, the next step is to select an appropriate algorithm for the 

integration of the equations of motions. This is the main kernel of the simulation program. The time 

integration algorithms for the solution of these equations are based on finite difference methods. It 

is important to note that this is so because the collisions between atoms are not instantaneous, but 

they are strong repulsive and attractive interactions that occur over a finite duration. MD 

simulations use time steps from a few femto seconds ( 1510−  s) (Shimada et al, 1993).   
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There are several numerical schemes that have been developed for the integration of the equations 

of motions. Some of these are the Verlet algorithm (Verlet, 1967), the predictor-corrector algorithm 

(Rahman 1964, Gear and Tu 1975, Gear and Watanabe 1974) and the Beeman’s algorithm (Beeman 

1976). The Verlet algorithm is of three types, namely; the basic (position) Verlet, the Verlet 

Leapfrog and the velocity Verlet algorithms. The basic Verlet algorithm uses the second and the 

third order Taylor expansions, and calculates the positions at the next time step from the positions at 

the previous and current time steps (Van Gunsteren and Berendsen, 1990). The predictor-corrector 

algorithm, on the other hand consists of three steps. The first step is to predict (by Taylor 

expansion) positions and their time derivatives at time, tt ∆+ , from values known at a time t. The 

second step is to compute the force by taking the potential at the predicted positions, and comparing 

the resulting acceleration, with the predicted acceleration. The last step is to correct the positions 

and their derivatives by using the difference between the computed and the predicted acceleration 

(known as the error signal). The Beeman’s algorithm is similar to the velocity Verlet algorithm, but 

it is more complex, and it requires more memory. The merit of the algorithm is that, it provides 

more accurate expressions for the velocities and better conservation. The predictor-corrector 

algorithm gives very accurate results, it is computationally expensive and requires large storage. 

 

All the above integration schemes make the assumption, that the positions, velocities and 

accelerations can be approximated using a Taylor series expansion: 
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                              (2.35) 

Where ∆t is a finite time step, r is the position, v is the velocity, a is the acceleration; b and c are the 

third and the fourth derivative of position with time. 

 
2.3.4.1    The Basic Verlet Algorithm (Verlet, 1967) 
 
Using this method, the next step of position can be predicted as follows; 
 

                                     ...)(
2

1
)()()( 2 +∆+∆+=∆+ ttattvtrttr                      (2.36) 

In the same way, the previous step; 
 

                                    ...)(
2

1
)()()( 2 −∆+∆−=∆− ttattvtrttr                        (2.37) 
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Summing equations (2.36) and (2.37), we have 
 

                                   2)()()(2)( ttattrtrttr ∆+∆−−=∆+                             (2.38) 

 
It can be observed that the Verlet algorithm uses no explicit velocities. The method is  

straightforward, easy to implement and its storage requirements are modest. 

 

2.3.4.2     The Verlet Leapfrog Algorithm 

 
In this algorithm, the velocities are calculated by taking the average value halfway between position 
steps. The equations are as follows; 
 

                         tttvtrttr ∆∆++=∆+ )
2

1
()()(                                                 (2.39)    

                         ttattvttv ∆+∆−=∆+ )()
2

1
()

2

1
(                                              (2.40) 

 
In this method, the velocities leap over the positions and then, the positions leap over the velocities. 

Consequently, the positions and the velocities are not known simultaneously, but the velocities are 

calculated explicitly. 

 
2.3.4.3    The Velocity Verlet Algorithm 

 
This algorithm calculates new positions, velocities and accelerations using their values at time t 

based on the following equations deduced from equations (2.35) and (2.38) ignoring infinitesimals. 

 

                  2)(
2

1
)()()( ttattvtrttr ∆+∆+=∆+                                              (2.41) 
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)()(                                          (2.42) 

 
This algorithm requires low memory. 
 
2.3.4.4    The Predictor-Corrector Algorithm (Rahman 1964, Gear and Tu 1975,  
                Gear and Watanabe 1974) 
 

Velocities at time t+∆t are predicted and the forces calculated, and then the corrected forms of the 

velocities are later calculated. Combining the )( ttr ∆+  and )( tta ∆+  in equation 2.35, the position 

can be expressed as: 
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The velocities at time t = t+∆t are then calculated from the positions. Combining the )( ttr ∆+  and 

)( tta ∆+  in equation (2.33), the position can be expressed as: 

 

                 (Predicted) tttattatvttv ∆∆−−∆+=∆+ )(
2

1
)(

2

3
)()(                   (2.44) 

 

The acceleration at t = t+∆t are calculated from the positions and the predicted velocities. 
 

          (Corrected) tttattatttatvttv ∆∆−−∆+∆∆++=∆+ )(
6

1
)(

6

5
)(

3

1
)()(   (2.45) 

 
This algorithm has the advantage that, by comparing the predicted and the corrected values of 

parameters, it is possible to perform a self-check on the algorithm for accuracy. 

 
2.3.4.5    The Beeman’s Algorithm 

 
The Beeman’s algorithm (Beeman, 1976) is based on equations (2.46) and (2.47), which can be 

deduced from the equations (2.43) and (2.45). The algorithm is more complicated and requires more 

memory than the velocity Verlet, but it provides more accurate expression for the velocities and 

better energy conservation. 

 

22 )(
6

1
)(

3

2
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When choosing an integration algorithm following factors need to be considered:  
 

• Accuracy – it should produce an approximate result close to the exact solution 

• Memory requirement – it should require little memory 

• Efficiency – it should be fast and computationally efficient 

• Time Step – it should permit long time step ∆t for the integration 
 
Initialize the Model 

 
To initialize the simulation, the MD ‘box’ (the control volume) must be defined; then initial 

positions and velocities of the atoms must be assigned – this is a kind of initial randomization. 

Positions of the atoms can be defined, by assuming certain crystal structure and the initial velocities 

can be randomly assigned. 
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Relax the Model from its Initial State to its Dynamically Equilibrium Condition 

 
The model of having atoms positioned and assigned velocities as above implies that additional 

potential energy between atoms has been artificially applied to the system. This is not the case in 

real solids, where atoms are actually vibrating around their equilibrium positions. So, it is necessary 

to relax this initial model from its artificially assigned initial conditions to its natural, dynamically 

equilibrium condition. This would involve running the MD program under constant temperature for 

a specified number of time steps, so that the velocities of atoms that are initially assigned randomly 

or based on a normal distribution, will gradually reach equilibrium at the specified temperature of 

the simulation (Cheong et al 2001). This relaxation may take 50 time steps or more depending on 

the time needed for the model to reach its natural, dynamically equilibrium state, that is consistent 

with the environmental temperature. 

 
Run the Simulation and Analyze the Results 

 
The simulation is then run and the results analyzed. Using the MD, the effect of such variables as 

edge effect, cut depth et cetera can be defined and the simulations conducted accordingly. It is also 

easy to vary the properties of the work materials and the cutting tools in MD simulations 

(Komanduri and Raff, 2001) 

 
2.3.5 Examples of MD Simulation of Nanomachining 

 
The fundamental part of the abrasive process is the interaction of two bodies, where one is carrying 

out work upon the other one and it is a massive deformation process. By exerting work on each 

other, energy is added to the bodies and thereby to the system, therefore the temperature would rise. 

The implementation of thermostat areas along the boundaries allows the temperature of the systems 

to be controlled by releasing energy to the not modelled environment (Marinescu et al, 2004). 

 

(Rentsch and Inasaki, 1994) modelled a copper work material and a diamond tool for their study. 

They used the Lennard-Jones potential function for the copper atom interactions, but kept the 

boundaries and the tool stiff. A total of 11476 atoms in 13 horizontal (1,1,1) – layers of fcc-lattice 

were used for the copper, and the tool was shaped from a diamond lattice block by clearing on the 

four (1,1,1) –planes. Using a cutting speed of 100m/s, they observed a pronounced build-up 

phenomenon after 25000 time steps (see Figure 2.12). 
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Figure 2.12: Advanced MD Simulation with Straight Aligned Tool (Rentsch and Inasaki,1994) 
 
 
The MD simulation of nanometric cutting was carried out by Komanduri team with a range of 

negative-rake tools to simulate the Ultra-Precision Grinding (UPG) process (Komanduri et al 1999). 

A copper work material and an infinitely hard tool (tungsten) were used in the simulations. A 

pairwise sum of Morse potential was used for the study, in which they concluded that simulation 

tests can facilitate a better understanding of the process without the need for expensive and time 

consuming machining or grinding experimental work. 

 

The investigation of the fundamental atomistic processes in chemical mechanical polishing of 

copper was carried out by Ye et al (2002). They simulated the nanoscale polishing of a copper 

surface by a single abrasive particle, using the embedded-atom potential. The temperature was 

controlled by maintaining 1.2nm of the substrate at 300K and the rescaling of atom velocities was 

performed whenever the temperature deviated more than 10K from the specified value. This 

allowed the transfer of heat from the machined region to the bulk of the work-material. They 

focused on the mechanical abrasion aspect of material removal and found that dislocations and 

atomically rough planarized surface were formed. They also studied the nature of the material 

removal, chip formation, materials defects and frictional forces as function of the cutting speed, 

depth of cut and abrasive geometry. They established that the material removal rate scales linearly 

with the depth of planarization and is directly proportional to the velocity of cut. 

 

Lin et al (2003) used the MD method to survey the features of grinding energy dissipation, grinding 

stress, strain state and grinding temperature in the atomic space. The workpiece and the tool 

materials were assumed to be monocrystalline silicon and diamond respectively. A Tersoff potential 

function, suited to a multibody system was employed for the simulation. They found out that as the 

abrasive grain cut into the workpiece continuously, the value of the grinding force increased 
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gradually in a repeated fluctuating manner. Also, it was observed that atoms of the crystal lattice 

were reconstituted and parts of the non-crystal atoms were piled up on the front of the abrasive 

grain. 

To be more realistic, (Rentsch and Inasaki, 2006) extended the MD material modelling to consider 

fluids like coolants. They considered the impact of such fluids on the surface generation and the 

tribological contact conditions. The fluid-fluid interactions were calculated on the basis of the 

Lennard-Jones potential function and the embedded-atom potential function was used for the inner 

workpiece reactions (the internal tool dynamics were ignored). They observed an intensive self-

diffusion of the fluid atoms, and these filled the whole free space above the workpiece. No impact 

on the stress distribution was observed, but the whole fluid-tool/workpiece contact was heated up in 

a narrow range. 

Rentsch and Brinksmeimier obtained a 3-D MD simulation of the grinding process (Brinksmeier et 

al 2006). Using the embedded atom method potential and 100000 atoms, they modelled two 

abrasives that cut through a workpiece over its whole length at 100m/s (see Figure 2.13).They 

reported that the periodic borders in the horizontal plane led to complete groove formation in the 

cutting direction. 

 

 
 
Figure 2.13: - Groove Scratching with 2 Grits (top view - 360 000 time steps, 144 ps) (Brinksmeier 
et al, 2006) 
 
Shimizu et al (2006) reported on molecular dynamics simulations of the effect of vibration, 

acceleration and velocity on the reduction of both the plastic flow and cutting forces in the vibration 

assisted cutting. The workpiece material used was aluminium with rigid diamond as the tool. The 

Morse potential was used for the atomic interactions. They observed that the effect of the vibration 

on the plastic flow and cutting forces is more than the effect due to acceleration. Figure 2.14 shows 
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some snapshots of the simulation, where the material removal process can be clearly seen. In Figure 

2.14a, it can be seen that the tool is not in full contact with the chip due to the tool oscillation cycle 

progresses (Figure 2.14b), strain is visible in the workpiece and the observed shear plane 

phenomena is similar to what is seen in macro scale.  

 

 
Figure 2.14: - Snapshots of atomic arrays in vibration-assisted cutting process and travelling 

distance from initial arrays. Cutting speed, smVc /50= , Amplitude, A=4nm and Frequency, f 

=4GHz (Shimizu et al, 2006) 
 
 
The MD simulations of nanoindentation followed by scratching at constant depth on the Si-

terminated (0 0 1) surface of 3CSic was carried out by (Noreyan and Amar, 2008). They 

investigated the dependence of the friction coefficient, scratch hardness, and wear on scratching 

depth, velocity, direction, and indenter size and shape. The workpiece was assumed to have the 3C 

SiC cubic crystal structure, and a diamond tip was used. Both were modelled using the Tersoff 

potential. They found that the friction coefficient and the scratch hardness increased with 

indentation depth but decreased with increasing scratching velocity. They also noted that the 

direction dependence of the friction coefficient is weaker at high scratching velocity. These findings 

are certainly providing good insight to nanometric machining processes. 
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(Shimizu et al, 2008) furthered their research, by using the molecular dynamics method to study the 

material deformation and removal mechanism of a face centred cubic (fcc) metal by a diamond 

abrasive grain. They assumed the workpiece and the abrasive grain to consist of mono-crystalline 

copper and rigid diamond respectively, and the influence of the polishing pad was taken into 

consideration. They employed Morse potential for the simulation. It was concluded that the growth 

of cutting chip and the stick-slip behaviour of tangential force are deeply related. It was also noted 

that the MD simulation has an advantage for the estimation of the proper stiffness of the grinding 

wheel and the actual depth of cut in nanoabrasive machining processes, where the tool stiffness is 

considered. See Figure 2.15 for a snapshot of part of the simulation. 

 

 
Figure 2.15: - Snapshots of atomic arrays and travelling distance (Shimizu et al, 2008) 
 
Table 2.12 lists a comparison of MD simulations of nanomachining. The potentials used for MD 

simulations of metals include LJ, Morse, EAM and MEAM. In many cases, the rationale or 

justification for their use are not given except for reference to the use in earlier studies. Ideally, 

multi-body potentials (EAM and MEAM) should be used for metals, rather than pairwise potentials 

(LJ and Morse); because they could more correctly model the metallic bonding. The range of 

velocity considered are from 5m/s to 360m/s which covers representatively what occurs in practical 

processes.  Most of the studies use diamond as the abrasive/cutting tool and this suggests that other 

abrasives and cutting tools like cubic born nitride, aluminium oxide, silicon carbide et cetera should 

be further investigated. Also, most of the MD simulations were not validated by experiments even 

though many researchers are beginning to consider this issue. Besides excellent exploration of MD 
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application in machining research, some fundamental questions remain. For example, the limits of 

nanomachining process in terms of the best surface finish and the minimum depth of cut for 

minimum material removal are still unclear. Many investigations only give some simulation 

observations of nanometric machining phenomena without detailed quantitative measures. Some 

physical parameters that were used for macro world were directly applied to nanometric world, 

which do not provide good explanation of causal relationships. Many results from MD simulations 

have not been verified by physical experiments, though they match with common intuitive sense. 

All of these indicate that there is still a long way to go in order to fully take the advantages of 

molecular dynamics for nanomachining researches. 

 

Although many questions remain in the application of MD in nanomachining, the MD has 

demonstrated its advantages in the explanation of material behaviour at the nanometre scale, which 

is difficult and expensive to observe in experiments. Molecular dynamics is a useful tool to 

investigate effects of material property and material defects on surface creation in nanomachining 

and tool wear mechanism.  

 

2.4 Research Gaps and Summary 

 
From available literature, it can be inferred that the simulation of atomic and molecular behaviour 

using the Schrödinger wave equation for real machining is still not feasible due to the complexity of 

obtaining a solution. The common methods to enable so-called MD simulation of machining are 

based on using interatomic potentials. Many potential functions have been proposed for MD 

analyses, and some of them have been applied in nanomachining simulations. It is important to 

stress that appropriate potentials should be used for MD simulations. Previous works suggest that 

the EAM potential should be used for the modelling of fcc metals (Pei et al 2006, Promyoo et al 

2008). The Tersoff potential should be used for covalent materials and the MEAM should be used 

for both metallic and covalent materials. Recent studies have demonstrated that using EAM 

potential will result in lower cutting forces  than LJ and Morse potentials (Pei et al, 2006). The MD 

simulation is a powerful tool for the understanding of the machining processes on the nanometre 

scale. It can be used to obtain information on material behaviour, such as the changes in cutting 

forces, observation of rubbing, ploughing and the chip formation phenomena, and it can also be 

used to predict minimum depth cut and material deformation conditions which cannot be easily 

duplicated experimentally (Belak and Stowers 1990, Ikawa et al 1991 and Komanduri et al 1998, 

1999). 
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Table 2.12: Comparison of some MD simulations of Nanomachining  

 

Reference Model Potential/s 

Used 

Workpiece 

Material 

Tool Cutting 

Speed  

Experimental 

Validation 

Shimada et 
al (1992) 

2D Morse for 
Cu-Cu 

Copper Diamond 20-200m/s Yes 

Rentsch and 
Inasaki 
(1994) 

2D and 3D Lennard-
Jones for 
Cu-Cu and 
Cu-C 

Copper Diamond 20m/s No 

Komanduri 
et al (1999) 

3D Morse for 
Cu-Cu and 
Cu-tungsten 

Copper Infinitely 
Hard 
Tungsten 

500m/s No (Just 
comparisons 
with published 
experimental 
results) 

Shimada et 
al (1999) 

2D Tersoff for 
the Si-Si, C-
C and Si-C 

Silicon Diamond 200m/s No 

Han et al 
(2002) 

2D Tersoff for 
Si-Si 

Silicon Diamond Not known No 

Ye et al 
(2002) 

2D/3D EAM for 
Cu-Cu 

Copper A Single 
Abrasive 
Particle 

8-180m/s No 

Lin et al 
(2003) 

Quasi 3D Tersoff for 
Si-Si and C-
C 

Silicon Diamond Not Known No 

Cheng et al 
(2003) 

2D MEAM for 
Si-Si 

Silicon Diamond 20m/s Yes 

Fang et al 
(2005) 

Quasi 3D Tersoff  for 
Si-Si 

Silicon Diamond 24.5m/s Yes 

Rentsch and 
Inasaki 
(2006) 

2D/3D EAM for 
Cu-Cu, LJ 
for Cu-C 
and LJ for 
Fluid-Fluid 

Copper Diamond 
With the 
effect of 
fluid 

(Workpiece 
velocity at 
100m/s) 

No 

Shimizu et 
al (2006) 

2D Morse for 
Al-Al and 
Al-Cu 

Aluminium Diamond 50-360m/s No 

Pei et al 
(2006) 

2D EAM for 
Cu-Cu and 
Morse for 
Cu-C 

Copper Diamond 100m/s No 

Cai et al 
(2007) 

2D/3D Tersoff for 
Si-Si and 
Morse for 
Si-C 

Silicon Diamond 20m/s No 

Shimizu et 
al (2008) 

2D Morse for 
Cu-Cu and 
Cu-C 

Copper Diamond 5m/s No 

Noreyan 
and Amar 
(2008) 

3D Tersoff for 
Si-C 

SiC Diamond 214m/s No 

 



Such information could open up a huge potential to improve machining performance at the 

nanometre scale. In this study, the MD method would be used for the simulation and the study of 

nanometric machining of monocrytalline diamond tool on  a monocrystalline copper workpiece. 

The MD is favoured over the Monte Carlo (MC) method as the MC is often the most appropriate 

method for the investigation of systems at exact temperatures and pressures, but may not be suitable 

for the calculations of time-dependent quantities (Leach, 2001). The major problem with the 

application of the conventional MC to machining applications is that there is no time variable in an 

MC calculation and this is an issue for systems that are neither canonical nor microcanonical 

(Narulkar et al, 2004).  The MD method is accurate when compared to experiments, (if accurate 

interatomic potentials are used) and it can be used to study phenomena that are not available to 

experimentation (Allen, 2004). 

When compared with the FEM, the MD should be used in machining when the depth of cut is less 

than 1µm. This is because, for these small regions (below 1µm), quantum mechanics are applicable 

and not the continuum elastic theory (Rudd and Broughton, 1998). FEM machining simulations 

performed using Abaqus/Explicit and Deform3D encountered difficulties for depth of cuts below 3-

4µm. For example, a 3D FEM simulation with depth of cut of 2µm, will require 1000 days for a 

tool advancement of 1mm (Opoz, 2012). 

 
In summary it should be stated that there are still many fundamental questions which need to be 

addressed in nanometric machining. Some of them are the following, namely what are the 

fundamental mechanisms underlying nanomachining processes?  What is the limit of machining? 

What is the minimum depth of cut and how can the atomic surface roughness be evaluated from the 

MD simulation of nanomachining? How to predict the onset of plasticity in nanomachining? This 

study attempts to find some answers or to point the direction towards the answers to the above 

questions. 
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Chapter   3.  The Methodology for the MD Simulation of  

                            Nanomachining 

 
3.1  The Simulation Set-up and Procedure 

 
3.1.1 Software Consideration 

 
There are many open MD software that are available. Many are free programs, some require 

licences for use and others are commercial software. A comparison of some of these software is 

shown in Table 3.1. As can be observed from the table, many of the software were developed for 

different applications and benchmarking would be quite difficult. The choice of the software will 

depend on the intended application and the available operating system platform and the hardware. 

DL_PLOY and LAMMPS MD software would be suitable for this research, but LAMMPS was 

used because of initial personal preference and the available good users’ forum support. Also, it 

allows the portability of many pre- and post processing software. 

 

The MD simulation in this study was carried out by using the following software namely; 
 

• Metadise – Minimum Energy Techniques to Dislocation, Interface and Surface Energies 

• XenoView 

• LAMMPS – Large-Scale Atomic/Molecular Massively Parallel Simulator (Plimpton, 1995) 

• VMD – Visual Molecular Dynamics and OVITO – The Open Visualization Tool 
(Stukowski, 2010) 

 
The Metadise and the XenoView were used for pre-processing and VMD and OVITO were used for 

post-processing (visualization and analysis). The LAMMPS was used for the actual MD simulation. 

 
 
 
 
 
 
 
 
 
 
                    Pre-processing          Main MD Processing                      Post-processing 
 
Figure 3.1: Software Methodology Flowchart  
 
 
 
 
 

   
   Metadise 

 
  XenoView 

 
       LAMMPS 

 
VMD & 
OVITO 



 60

 
Pre-processing 

 
The Metadise 

 
The three-dimensional (3D) structures of the materials used for the MD simulation (Copper and 

Diamond – Carbon) were generated by using the Metadise. To obtain these, the following 

information are required by the software, which are; 

 

• The unit cells 

• Fractional co-ordinates and the type of atoms 

• Space group symmetry 
 

The XenoView 

 
The XenoView is a windows-based software for MD simulation. Its interactive graphical user 

interface was explored for the preparation of the geometry configuration for the simulation. 

The Metadise’s output was imported to XenoView, and consequently the output of XenoView was 

exported to LAMMPS.  

 
LAMMPS 

 
This is a classical MD software that models an ensemble of atoms using a variety of empirical 

potentials and boundary conditions. It runs on single and parallel processor computer. It is an open-

source code and it is distributed under the terms of the GNU public licence. The LAMMPS 

computes the Newton’s equation of motion for a system of interacting atoms. It requires as its input; 

the types of atoms and the list of their initial co-ordinates, molecular topology information and the 

empirical potentials assigned to all the atoms.  

 

Post-processing 

 
VMD 

 
The VMD is a molecular visualization software for displaying and analyzing atomic systems by 

using 3-D graphics technology. The VMD was employed for the visual display of the LAMMPS 

MD simulation results (Chapters 4 and 5). 

 

OVITO 

The OVITO is a very powerful visualization and analysis software for atomistic simulation data. 

OVITO was used for some analysis and the visualization of simulation results in Chapter 6. 
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3.1.2 Hardware Consideration 

 
The simulations were carried out initially on a single processor computer and later on the newly 

installed University of Huddersfield’s High Performance Computer (HPC) clusters. Specifically, the 

simulations were run on the Eridani Hybrid cluster (See Figure 3.2 below). 

 
3.1.2.1 The University of Huddersfield’s High Performance Computing (HPC) Clusters 

 

 
 

Figure 3.2:  Network Diagram   



Table 3.1: Comparison of some MD Software 

Software Capabilities Platform/s Supported Developer/Country Free/Commercial 

CHARMM 
(Chemistry at HARvard 
Macromolecular 
Mechanics) 
 

A general MM and MD 
software. Most suitable for 
biological molecules 

Unix.  
Supports both serial and 
parallel architectures 

Martin Karplus, Harvard 
University/USA 

Free (but it has a 
commercial version – 
CHARMm as part of the 
Quanta Package)  
Latest release: Version 
c3661 August 2011 

DL_POLY A general purpose MD 
software for the simulation 
of a wide range atomic and 
molecular systems. It also 
accommodates many 
boundary conditions, 
namely; cubic periodic, 
slab, orthorhombic periodic, 
parallelepiped periodic etc. 

Unix 
Supports both serial and 
parallel architectures. 

Originally by W. Smith, T.R. 
Forrester and later with I.T. 
Todorov, Daresbury 
Laboratory/UK 

Free (Licence would have to 
be obtained from Daresbury 
Laboratory) 
Latest release: Version 4.02 
July 2011 

GROMACS 
(GROningen Machine for 
Chemical Simulation) 

A MD software primarily 
designed for biochemical 
molecules such as proteins, 
lipids etc, but can also be 
used for polymers 

Unix 
Supports both serial and 
parallel architectures. 

Originally by researchers at 
the University of 
Groningen/Netherlands 

Free 
Latest release: Version 4.5.5 
September 2011 

LAMMPS 
(Large-scale 
Atomic/Molecular 
Massively Parallel 
Simulator) 

This is classical MD 
software that models an 
ensemble of atoms using a 
variety of empirical 
potentials and boundary 
conditions.  

Unix 
Supports both serial and 
parallel architectures. 

Originally by Steve Plimpton 
and later with Aidan 
Thompson and Paul Crozier, 
Sandia National 
Laboratories/USA 

Free 
Latest release: December 
2011 

MDynaMix 
(Molecular Dynamics of 
Mixtures) 

This is MD software for the 
simulation of mixtures of 
rigid and flexible molecules 

Unix A. Laakonen and A. 
Lyubartsev, University of 
Stockholm/Sweden 

Free 
Latest release: Version 5.2.4 
June 2011 

Moldy A general purpose MD 
software for atomic, ionic 

Unix and Windows 95.NT Keith Refson formerly at 
Oxford, then at Rutherford 

Free 
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and molecular systems Appleton Laboratory/UK 

NAMD This is a parallel MD 
software for high-
performance simulation of 
large biomolecular systems 

Unix Theoretical and 
Computational Biophysics 
Group, University of 
Illinois/USA 

Free 
Latest release: Version 2.8 
May 2011 

PMD 
(Parallel Molecular 
Dynamics) 

This is a parallel MD 
software  

Unix University of Columbia/USA Free 

TINKER A MD software for 
molecules 
(biomacromolecules, 
biopolymers etc) 

Unix Jay Ponder and Co 
Researchers, Washington 
University/USA 

Free 
Latest release: Version 6.0 
December 2011 

Tremolo-X This is a parallel MD 
software with user-friendly 
graphical user interface 
(GUI) end. It allows the 
design of new innovative 
materials 

Unix Michael Griebel, University 
of Bonn/Germany 

Free (Licence needed) 

XMD A MD software designed 
for metals and ceramics  

Unix Jon Rifkin, University of 
Connecticut/USA 

Free 

XenoVIEW A MD software with built-
in graphical user interface 
(GUI) for the simulations of 
inorganics, polymers and 
proteins  

Windows Sergei Shenogin and Rahmi 
Ozisik, Rensselaer 
Polytechnic Institute 
(RPI)/USA 

Free for non-commercial 
users 



 
 
Figure 3.3:  Eridani Cluster Architecture Diagram (Kureshi, 2010) 
 
 

 
Figure 3.4:  TauCeti Cluster Architecture Diagram (Kureshi, 2010) 
 
 
The Eridani cluster has two head nodes which comprise the Windows Server/HPC 2008 and the 
Linux CentOS/OSCAR. The configuration of the clusters are shown below; 
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Table 3.2: Hardware Configuration of the Eridani Cluster (Kureshi, 2010) 

 

Resource Description 

Total Systems 37 

Total Cores 148 

Processing Cores 128 

Service Cores 16 

Processor Inter Core 2 Quad Q8200 4M 
Cache 2.33GHz 13333FBS & 
 
Inter Core 2 Quad Q8300 4M 
Cache 2.50GHz 13333FBS 

RAM 4 x Kingston Value 2 GB 800Mhz 

HDD Seagate Barracuda 250 GB 
7200RPM SATA-II 

 
 
3.1.2.1.1 How to run the Simulation on the Huddersfield HPC 
 
 

 
 
Figure 3.5: General Users’ Workflow for the Huddersfield HPC 
 
The user can either log on to the system on the campus or from an-off campus site. The system 

requires an initial authentication to access the HPC. The workflow for the system is shown in 

Figure 3.5. The on-campus users need a SSH key, while the off-campus users need a GSI-SSH key. 

Once the verification is successful, the user would get a prompt on the clusters. (The user also has 

the option of getting access to other NGS cluster sites). The user can then submit a PBS job script to 
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the clusters. The LAMMPS simulation was run on the eridani cluster and an example of the PBS job script 

template is shown in Appendix B. The sections 1 and 2.2 of the template are only to be specified by the user, 

the other sections are defaults for the cluster. Once the script is prepared, it can be submitted to the cluster 

via the PBS using the PBS commands on the Linux console. The job is then accepted and assigned a job 

number. The output of the simulation is obtained from the directory, from which the PBS command 

was run.  

The major advantage of the HPC is in time savings. Several hundreds of simulations were run and 

the HPC affords the opportunity to run simulations concurrently on multiple processors to save 

time.  

 
3.2  The Simulation Configuration 

 
Various configurations were used for the simulations to optimize computational resources. All the 

configuration share the same features in that they consist of the workpiece and the tool and the 

workpiece is divided into boundary, Newtonian and thermostat atoms. 

 
 
Figure 3.6: The MD Simulation Model 
 
The Newtonian atoms obey the Newton’s equation of motion. The thermostat atoms conduct the 

heat generated during the cutting process out of the cutting region. This is achieved by the velocity 

scaling of the thermostat atoms, (with the conversion between the kinetic energy (KE) and 

temperature via Equation 2.6). 
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3.2.1 The Workpiece 

 
The workpiece is monocrystalline copper, which is ductile and has good machinability properties. 
 
Table 3.3: Properties of Copper 

 

Chemical Symbol Cu 

Atomic Number 29 

Atomic Weight 63.54 

Density 8960kg/m3 

Melting Point 1356K 

Thermal Conductivity 394W/mK 

Crystal Structure Face-Centred Cubic 

Hardness 0.369GPa 

 
 
3.2.1.1   The Face-Centred Cubic (FCC) Structure 

 
The Face-Centred Cubic structure has atoms arranged at the corners and at the centre of each cube 

face. It has co-ordination number of 12 and each cell has a net total of 4 atoms. 

 

Figure 3.7: The Face-Centred Cubic Structure 
 
 
3.2.2 The Tool 

 
The tool is crystalline diamond and it’s the hardest known natural material, which makes it suitable 

as a tool for machining. 

 
 
 Table 3.4: Properties of Diamond 

 

Chemical Symbol C 

Density 3500kg/m3 

Melting Point 3820K 

Young Modulus 1050GPa 

Thermal Conductivity 400W/mK 

Crystal Structure Diamond 

Hardness 45GPa 
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3.2.2.1   The Diamond Structure 

 
The diamond structure is made up of repeating units of four carbon atoms which are joined to four 

other carbon atoms by strong covalent bonds. 

 
 

Figure 3.8:  The Diamond Structure 
 
3.3 The Selection of the Interatomic Potentials and Parameters Setting 

 

The three potentials used in the simulation are Lennard-Jones, Morse and Embedded-Atom Method 

(EAM) potentials. The cutting depth and the cutting speed were varied depending on the actual 

simulation.   

 

Table 3.5: MD Simulation Parameters 

 

Parameters Values 

Bulk Temperature 293 K 

Cutting Direction [100]- Along the x-

axis 

Cutting Speed 150m/s (Varies) 

Time Step 0.3fs 

Simulation Run 100000steps (Varies) 

 
3.3.1 Initialization 

 
The model was initialized by assuming the FCC crystal structure for the workpiece and the diamond 

structure for the tool. The positions are then extracted from these configurations for the modelling.  

 
3.3.2 Boundary Conditions 

 
The boundary for the global simulation box in each dimension is set. For the x and y axes, the box 

is set to be non-periodic. This means that the atoms do not interact across the boundary and they do 

not move from one side of the box to the other. For the z axis, the position of the face is set so as to 

accommodate the atoms in that dimension, no matter how far they move. 
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3.3.3 Relaxation of the System 

 
The model atomic configuration was run at NVT for 50000 time steps to relax the system and so 

that the velocities of atoms that are initially assigned randomly will gradually reach their natural, 

dynamically equilibrium states. 

 
3.3.4 Concluding Remarks and Scope of Research 

 
In this research study, the MD method is used for the study of nanometric machining of 

monocrystalline diamond tool on monocrystalline copper workpiece. The effect of wear is not 

considered on the tool and the materials are assumed to be without defects. 
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Chapter   4.  Single-Pass Nanometric Machining Simulation Results 
 

 

4.1  The Effect of Interatomic Potentials on the MD Simulation of Nanomachining 

 

4.1.1 Introduction 

 

The major task in a MD simulation is the selection of the potential function, and if the potential 

doesn’t model the behaviour of the atoms correctly, the results produced from the simulation would 

be useless. Three popular potentials namely; EAM, Morse and the Lennand-Jones, were employed 

to model nanometric machining.  

 

The three potentials used in the simulation are given below; 
 

• Lennard-Jones (LJ) Potential 

• Morse Potential  

• Embedded-Atom Potential (EAM)   

 
The simulation parameters of Table 3.5 were used with a depth of cut of 1nm. 
 

Table 4.1 shows the simulation conditions applied in this study. The workpiece consists of 16000 

copper atoms with perfect FCC lattice. It includes 3 kinds of atoms namely; boundary atoms, 

thermostat atoms and Newtonian atoms. The boundary atoms are kept fixed to reduce edge effects. 

The thermostat atoms conduct the heat generated during the cutting process out of the cutting region 

(See Figure 4.1). This is achieved by the velocity scaling of the thermostat atoms, (with the 

conversion between the kinetic energy (KE) and temperature via equation (2.7). 

The Newtonian atoms obey the Newton’s equation of motion. The cutting tool consists of 912 

carbon atoms with diamond lattice structure. The cutting tool is pointed shaped and it is modelled as 

a rigid body. 

 

 
 
Figure 4.1: The MD Simulation Model for this Investigation 
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The atomic interactions in the simulation are the following, namely; 
Cu-Cu : interactions between copper atoms 
Cu-C   : interactions between copper atoms and diamond atoms 
C-C    : interactions between the diamond atoms (treated as rigid in this paper) 
 
 
4.1.2    Modelling with LJ Potential 

 

Equation (2.25) was employed, and the LJ parameters used for the atom interactions are σ  = 

2.2277 Angstroms and ε  = 0.415eV (Hwang et al, 2004), which apply to both the Cu-Cu and the 

Cu-C interactions. 

The simulation and the cutting forces are shown in Table 4.2. The potential energy and the total 

energy for the LJ modelling and the temperature variation are shown in Table 4.3. 

 

4.1.3    Modelling with Morse Potential 

 
Equation (2.26) was used, and the parameters are given below; 
 
For Cu-Cu interactions: (Girifalco and Weizer1959, Pei et al 2006) 
 
 
For Cu-C interactions: (Hwang et al 2004) 
 
 
The cut-off distance chosen was 6.4 Angstroms (that is, the interactions between atoms separated by 

more than this distance are neglected). 

The simulation and the cutting forces are shown in Table 4.2. The potential energy and the total 

energy for the Morse modelling and the temperature variation are shown in Table 4.3. 

 

4.1.4    Modelling with EAM Potential 

 
Equation (2.30) was used, where the potential parameters used for the Cu-Cu interactions were read 

from the file - Cu_u3.eam in LAMMPS). The file contains the following, namely; the lattice 

constant of copper (3.615 Angstroms), the spacing in density (5.01E-4) and the spacing in distance 

(1.00E-2). Also, it contains three arrays of tabulated values of the embedding function, )( ,ihiG ρ -

500 values; effective charge function, ijZ ,- 500 values, from which the pair potential interaction is 

calculated (the relationship between the effective charge and the pair potential is given by equation 

(4.1) and the density function, ih,ρ - 500 values (A total of 1500 tabulated values). The cut-off 

distance was 4.95 Angstroms (Hwang et al, 2004). (There are no available EAM potential 

parameters between Cu and C atoms).  

nmrnmeVD e 2866.0,)(13588.0,3429.0 1 === −α

nmrnmeVD e 22.0,)(17.0,087.0 1 === −α
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The simulation and the cutting forces are shown in Table 4.2. The potential energy and the total 

energy for the EAM modelling and the temperature variation are shown in Table 4.3. 

 

For a more realistic situation, another simulation (Figure 4.2) was also carried out with EAM 

potentials for the Cu-Cu interactions (with parameters same as above) and Morse potential 

parameters for the Cu-C interactions. The Morse parameters used are below, 

 
 
 
The comparison of potential energy in the two simulations (EAM and the EAM-Morse) shows that 

the error or difference is very minimal (Figure 4.3). Since, the forces are derived from the potential 

energy, the difference in the cutting forces will also be small. 

 

Results and Discussion 

 
For the LJ model, the potential energy and total energy were initially unstable, but stabilized after 

60000steps, also, the potential energy was initially high but reduced considerably to around -

5200eV, towards the end of the simulation at 100000steps (Table 4.2 – LJ and Figure 4.5); the 

tangential component of cutting forces varied in the range from around -354E-9N to 346E-9N with 

an average of -1.33E-9N (eV/Angs = 1.602×10−9N); the phenomenon of ploughing was not 

observed. As observed in (Table 4.2 – LJ), the copper atoms behave more like gases rather than 

solids, as they do not show the cohesiveness in solids – they loosely move around. The temperature 

variation shows a slight average decrease with the increase in the number of simulation steps.  For 

the Morse model, the potential energy and total energy fluctuate initially and stabilize after 

80000steps, also, the potential is higher than for the EAM potential (Figure 4.5); the tangential 

component of cutting forces are in the range from around -5.62E-9N to 70.51E-9N with an average 

of 37.34E-9N; the phenomenon of ploughing was observed with pile-up of 4 layers of atoms. The 

temperature variation shows a slight average increase with the increase in the number of simulation 

steps. The atoms behave as in solids – bonded together.   For the EAM model, the potential energy 

and total energy were relatively stable, also, the potential energy is lower compared with the Morse 

potential; the  tangential component of cutting forces are in the range from around -6.74E-9N to 

58.2E-9N with an average of 24.99E-9N; the phenomenon of ploughing was observed, with pile-up 

of 5 layers of atoms. The temperature variation shows a slight average increase with the increase in 

nmrnmeVD e 22.0,)(17.0,087.0 1 === −α
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the number of simulation steps. The atoms behave as in solids – bonded together, similar to what 

was observed for the Morse potential. The ratio between the tangential, lateral and the normal 

components of the cutting forces is similar to that found in conventional machining for the Morse 

and the EAM potentials. The results of the EAM model are comparable with reported results (Pei et 

al 2006, Promyoo et al, 2008), that the EAM potential best describes the metallic bonding in the 

copper atoms. In contrast, the pair potentials (both LJ and Morse potentials), do not incorporate the 

many-body effects; they have no environmental dependence and they do not account for the 

directional nature of bonding in metals (Li et al, 2008). 

 
Table 4.1: Comparison of the Different Simulations with Different Potentials showing the 

Cutting Forces 

 

Potential  Simulation Cutting Forces 
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Table 4.2: Comparison of the Different Simulations with Different Potentials showing the 

Energies and the Temperature Variation   

 

Potential  Potential and Total Energies Temperature Variation 
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Figure 4.2: Simulation with EAM-Morse Potentials 
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Cutting Forces for EAM-Morse Potential

-20

-10

0

10

20

30

40

50

0 20000 40000 60000 80000 100000 120000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
e

V
/A

n
g

s
)

Fx

Fy

Fz

 
 
Figure 4.3: Cutting Forces for EAM-Morse Potential 
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Figure 4.4: The Comparison of the Potential Energy for the EAM and the EAM-Morse Potentials 
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Figure 4.5: The Variation of Potential Energies for the LJ, Morse and EAM Potentials 
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4.1.5 Conclusion 

 
Through this investigation, it is identified that the EAM potential is the most appropriate of the 3 

potentials commonly used for the modelling of nanomachining of copper with diamond tool. The 

choice of the best potential is based on the cutting forces and the potential energy.  The EAM 

potential provides the best description of the metallic bonding in the workpiece, also, the cutting 

forces variation is smallest; the potential and total energies fluctations are least for the depth of cut 

considered. Therefore, the EAM potential should be used, rather than LJ and Morse potentials for 

the modelling of copper and other fcc metals in MD simulations of nanomachining.  

For more realistic simulation, the interface between copper and carbon atoms should be modelled 

by a suitable potential; and the Morse potential more suitable than the EAM potential. So, 

technically the EAM-Morse is better than the singly EAM potential for the overall modelling.  

 
 
4.2. Choosing Appropriate Interatomic Potentials for Nanomachining MD Simulations 

 
4.2.1 Introduction 

 
To extend the previous study in 4.1, different potentials were considered for different interfaces and 

comparisons were made between assuming the tool to be rigid and deformable. For the MD 

simulation results to be useful in the prediction of experimental data, the interactions between atoms 

are to be modelled with suitable empirical potentials. In many MD simulations, the tool has been 

modelled as a block/body of stiff atoms, undeformable. The dynamics of the tool is not considered, 

but only its impact on the workpiece atoms. Other reported studies usually use the Morse potential 

to model the interatomic forces between metal atoms. For more realistic modelling, each material 

requires its own material-specific interatomic potential and the each material interface (atomic 

interactions) requires suitable interatomic potentials. 

 
For the simulations in this study, 6 different cases were considered, which are shown below; 
 
Case 4.2.1: The Cu-Cu interactions were modelled by Morse, the Cu-C interactions were modelled 

by Morse potential and the tool was assumed to be rigid. 

 

Case 4.2.2: The Cu-Cu interactions were modelled by Morse, the Cu-C interactions were modelled 

by Morse potential and the tool was assumed to be non-rigid. 

 

Case 4.2.3: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled 

by Morse potential and the tool was assumed to be rigid. 
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Case 4.2.4: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled 

by Morse potential and the tool was assumed to be non-rigid. 

 

Case 4.2.5: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled 

by LJ potential and the tool was assumed to be rigid. 

 

Case 4.2.6: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled 

by LJ potential and the tool was assumed to be non-rigid. 

 

The simulation parameters of Table 3.5 were used for the simulations with a depth of cut of 2nm. 

The non-rigid tool was model with Tersoff potential as given in Table 3.6. 

 
Table 4.3: Comparison of the Different Simulations with Different Potentials Combinations 

                  and Rigid/Non rigid Tool 

 

Interatomic Potentials Tool (Rigid or 

Deformable) 

Simulation (Material Removal) 

Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 
(Case 4.2.1) 

Rigid 

 
Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 
(Case 4.2.2) 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 
(Case 4.2.3) 

Rigid 
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Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 
(Case 4.2.4) 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 
(Case 4.2.5) 

Rigid 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 
(Case 4.2.6) 

Deformable 

 
 
 
Table 4.4: Comparison of the Different Simulations (6 Cases) showing Cutting Forces and the 

Energies 

 

Simulation 

Cases 

Cutting Forces Potential and Total Energies 
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Case 4.2.3 Cutting Forces for EAM-Morse Potentials (Rigid Tool)
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Case 4.2.4 Cutting Forces for EAM-Morse Potentials (Non Rigid Tool)
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Case 4.2.5 Cutting Forces for EAM-LJ Potentials (Rigid Tool)
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Case 4.2.6 Cutting Forces for EAM-LJ Potentials (Non Rigid Tool)
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Total Energy Comparison for Different Potentials
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Figure 4.6: Comparison of the Total Energy for the Different Potential Pairs (both Rigid and 

         Non-Rigid Tools) 
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Total Energy Comparison for Different Potentials using Rigid Tools
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Figure 4.7: Comparison of the Total Energy for the Different Potential Pairs (Rigid Tool) 
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Figure 4.8: Comparison of the Total Energy for Potential Pairs EAM-Morse and Morse-Morse  
                    (Rigid Tools) 
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Figure 4.9: Comparison of the Total Energy for the Potential Pairs (Non-Rigid Tool) 
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Total Energy Comparison for Potentials EAM-LJ and EAM-Morse for 

Rigid Tools

-39100

-39000

-38900

-38800

-38700

-38600

-38500

-38400

-38300

0 20000 40000 60000 80000 100000 120000

No of Steps

E
n

e
rg

y
 (

e
V

)

R_EAM-LJ (Case 4.2.5)

R_EAM-Morse (Case 4.2.3)

 
 

 

Figure 4.10: Comparison of the Total Energy for Potential Pairs EAM-LJ and EAM-Morse  
                    (Rigid Tools) 
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Figure 4.11: Comparison of the Total Energy for Potential Pairs EAM-LJ and EAM-Morse  
                    (Non-Rigid Tools) 
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Figure 4.12: Comparison of the Total Energy for Potential Pair EAM-Morse  
                     (Rigid and Non-Rigid Tools) 
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Total Energy Comparison for Potentials Morse-Morse for both Rigid 

and Non-Rigid Tools
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Figure 4.13: Comparison of the Total Energy for Potential Pair Morse-Morse  
                     (Rigid and Non-Rigid Tools) 
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Figure 4.14: Comparison of the Total Energy for Potential Pair EAM-LJ  
                     (Rigid and Non-Rigid Tools) 
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Figure 4.15: The Tangential Component of the Cutting Forces for the Different Pairs of Potentials 
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Table 4.5: Forces and Total Energies Comparison for the Different Potential Pairs 

 

Potentials Case Number Average Cutting 

Forces (N) 

Fx/Fz Total Energy 

(eV) 

Morse-Morse 
(Rigid Tool) 

Case 4.2.1 8.33878E-08 1.945 -29698.95682 

Morse-Morse 
(Non-Rigid Tool) 

Case 4.2.2 8.10952E-08 2.383 -61538.24872 

EAM-Morse 
(Rigid Tool) 

Case 4.2.3 5.58455E-08 2.113 -38786.89569 

EAM-
Morse(Non-Rigid 
Tool) 

Case 4.2.4 5.51902E-08 2.258 -66822.78799 

EAM-LJ (Rigid 
Tool) 

Case 4.2.5 3.94834E-08 1.800 -38548.82619 

EAM-LJ (Non-
Rigid Tool) 

Case 4.2.6 3.84535E-08 1.681 -66747.00457 

 

 

Discussions 

 
Table 4.3 shows the chip formation after the simulation for the six cases. It can be observed that 

build-ups of atoms are more pronounced for the cases with EAM-LJ and EAM-Morse (for both 

rigid and non-rigid tools). However, atoms appear more loosely bonded together for the Morse-

Morse pair cases. This shows that the EAM potential better models the Cu-Cu interactions than the 

Morse potential. Table 4.4 shows the cutting forces and the potential and total energies for the six 

cases. The total energy greatly reduced for the simulations with non-rigid tool. The total energy for 

the different potentials are compared in Figure 4.6. and with reference to Table 4.5  shows the 

EAM-Morse potential pair with non-rigid tool has the lowest energy. 

A comparison of the cutting forces for all the cases are shown in Figure 4.14. The cutting forces and 

the ratio of the tangential force component to the normal force component, Fx/Fz are lowest for the 

EAM-LJ potential pair (for the rigid and non-rigid tool); see also Table 4.5. The cutting forces 

appear more stable after the initial 20000 steps. Figures 4.7 and 4.8 show the comparison of the 

total energy for the different potentials, with the rigid tool and the non-rigid tool respectively. 

Figures 4.9 and 4.10 show the total energy for the potential pairs EAM-LJ and EAM-Morse for 

rigid tool and non rigid tool respectively. Figures 4.11-4.13 show the comparison of each of the 

potential pairs for both rigid and non-rigid tools. Comparing the potential pairs based on the cutting 

forces, the EAM-LJ with the non-rigid tool is the best and comparing based on the potential energy, 

the EAM-Morse with the non-rigid tool is the best. 
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4.2.2 Conclusion 

 
From the above observations, the EAM-LJ potential pair has the lowest average tangential cutting 

force component and the lowest force ratio. The EAM-Morse pair on the other hand has the lowest 

energy value of all the cases. The EAM-Morse pair may be the most appropriate for the modelling, 

as verified in Chapters 6 and 7. 

 
4.3. Determination of Minimum Depth Cut in Nanomachining 

 

4.3.1 Introduction 

 
MD simulation was conducted to evaluate the MDC in nanomachining of copper workpiece with a 

diamond tool. The workpiece consists of 43240 atoms with FCC copper lattice. It includes 3 kinds 

of atoms namely; boundary atoms, thermostat atoms and Newtonian atoms. The boundary atoms are 

kept fixed to reduce edge effects. The thermostat atoms conduct the heat generated during the 

cutting process out of the workpiece and the Newtonian atoms obey the Newton’s equation of 

motion and so are free to move. The tool consists of 10992 atoms with diamond lattice structure, 

and it is modelled as a deformable, non-rigid body.  

 
The atomic interactions in the simulation are the following, namely; 
Cu-Cu : interactions between copper atoms 
Cu-C   : interactions between copper atoms and diamond atoms 
C-C    : interactions between the diamond atoms  
 
Three potential pairs were used for the Cu-Cu and the Cu-C interactions namely; Case 4.3.1: 

Morse-Morse, Case 4.3.2: EAM-Morse and Case 4.3.3: EAM-LJ. For all the cases, the C-C (tool 

atoms) interactions were modelled by Tersoff potential and the simulations were carried out with 

the variation of the depth of cut from 0.01nm to 4 nm. 

 

4.3.2. The Effect of Interatomic Potentials on the Evaluation of the Minimum Depth Cut in 

Nanomachining 

 
Case 4.3.1: 

 
The Morse potential was used for the Cu-Cu and the Cu-C interactions. The following parameters 

were used. 

 
For Cu-Cu interactions: (Girifalco and Weizer1959, Pei et al 2006) 
 
 
For Cu-C interactions: (Hwang et al 2004) 

nmrnmeVD e 2866.0,)(13588.0,3429.0 1 === −α
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Case 4.3.2: 

 
The EAM potential was used for the Cu-Cu interactions and the Morse potential was used for the 

Cu-C interactions. 

 

The potential parameters used for the Cu-Cu interactions were read from the file - Cu_u3.eam in 

LAMMPS. The file contains the following, namely; the lattice constant of copper (3.615 

Angstroms), the spacing in density (5.01E-4) and the spacing in distance (1.00E-2). Also, it 

contains three arrays of tabulated values of the embedding function, )( ,ihiG ρ -500 values; effective 

charge function, ijZ ,- 500 values, from which the pair potential interaction is calculated (the 

relationship between the effective charge and the pair potential is given by the equation 

ij

ij

ijij
r

rZ
rV

)(
)(

2

=  and the density function, ih,ρ - 500 values (A total of 1500 tabulated values). The 

cut-off distance was 4.95 Angstroms.  

 
For Cu-C interactions: (Hwang et al 2004) 
 
                                                  
 
Case 4.3.3: 

 
The EAM potential was used for the Cu-Cu interactions and the LJ potential was used for the Cu-C 

interactions. 

 
The parameters used for the EAM potential are the same as in case 4.3.2. 
 
The parameters used for the Cu-C interfaces are below, with a cut-off distance of 2.5 Angstroms; 
 

AngstromseV 338.2,4096.0 == σε  

 
For the C-C interactions, the Tersoff potential parameters used are in the following Table 4. 
 
The other simulation parameters used are given in Table 3.2 
 
 
Simulation Results and Discussions 

 
The simulation results for the three cases, for the variation of the depth of cut (0.01 – 4nm) are 

shown in Table C.1. Also, the comparison of the cutting forces, the potential and total energies and  

nmrnmeVD e 22.0,)(17.0,087.0 1 === −α

nmrnmeVD e 22.0,)(17.0,087.0 1 === −α
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the temperature distribution are shown in Tables C.2,  C.3 and C.4 respectively. The summary of 

the results and comments are given in Tables 4.6 and 4.7. It can be observed that the choice of 

interatomic potentials for the atomic interactions affects the evaluation of the minimum depth cut in 

nanomachining. The MD simulation results show that from the depth cut of 0.01 to 0.15nm, rubbing 

phenomena are observed for all the 3 cases; where no atoms are moved from their original positions 

after the tool cuts through them. But, sometimes some atoms at the edge of the surface are knocked 

off. For Case A, ploughing initiates at the depth of cut of 0.25nm with a pile-up of a layer of atoms; 

for Case B, ploughing starts at the depth of cu of 0.20nm and for Case C, ploughing starts from 

0.30nm. It has been suggested that from theory, chip formation/cutting starts when the tangential 

cutting force component, Fx is greater than the normal cutting force component, Fz. This is clearly 

visible in Case C, where chip formation starts at the depth of cut of 1.5nm. For Cases B and C, 

these are also seen, but they are not readily clear when compared to the shapes of the chip. 

 

In Figure 4.15, the variation of the tangential cutting force component, Fx with depth of cut for the 

three cases are shown. The Fx is smallest for Case 4.3.3 – EAM-LJ pair, then for Case 4.3.2 – 

EAM-Morse and largest for Case 4.3.1 – Morse-Morse. Similarly, the variation of the normal 

cutting force component, Fz with depth of cut for all the three cases are shown in Figure 4.16. The 

magnitude of Fz is smallest for Case 4.3.3 – EAM-LJ pair, then for Case 4.3.2 – EAM-Morse and 

largest for Case 4.3.1 – Morse-Morse. Figure 4.17 shows the variation of the lateral cutting force 

component, Fy with depth of cut for completion. Theoretically, these should be zero, but due to 

atomic vibrations there are some fluctuations. Figures 4.18 to 4.21 show the variation of the 

potential and the total energies with depth of cut for the three cases. The potential and total energies 

are lowest for Case 4.3.2. However the variation of the kinetic energy with depth of cut for the three 

cases show similar results in Figure 4.22.  

 

Using a different approach of using the force ratio (Fx/Fz) to predict the phenomena of rubbing, 

ploughing and cutting (Table 4.8): for the Morse-Morse pair, there is a transition at the depth of cut 

of 0.1nm; for the EAM-Morse pair, there is a transition at the depth of cut of 0.2; and for the EAM-

LJ pair, there is a transition at the depth of cut of 1.5nm. For the Morse-Morse pair the transition 

may be from rubbing to ploughing and this may also be the case for the EAM-Morse pair. The 

transition for the EAM-LJ pair may be from ploughing to cutting. These observations may need 

some experimental validations to confirm. The particularly high values of the force ratio for Morse-

Morse: depth of cut-0.15nm; EAM-Morse: depth of cuts-0.3nm and 0.45nm may be due to high 

friction or problems of size effects. Also, there are exceptional high values for EAM-LJ: depth of 
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cuts-0.01nm and 0.03nm, which may be due to high frictions are the way the pair of potentials 

model the interface for very low depth of cut. 

Variation of Fx with Depth of Cut for the Different Potentials
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Figure 4.16: Variation of the Tangential Cutting Force with Depth of Cut for the Potential Pairs 
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Figure 4.17: Variation of the Normal Cutting Force with Depth of Cut for the Potential Pairs 
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Figure 4.18: Variation of the Lateral Cutting Force with Depth of Cut for the Potential Pairs 
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Variation of Potential Energy with Depth of Cut for the Different 

Potentials
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Figure 4.19: Variation of the Potential Energy with Depth of Cut for the Potential Pairs 
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Figure 4.20: Variation of the Potential Energy with Depth of Cut for the EAM-LJ and  
                       EAM-Morse Potential Pairs 
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Figure 4.21: Variation of the Total Energy with Depth of Cut for the Potential Pairs 
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Variation of Kinetic Energy with Depth of Cut for the Different 

Potentials
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Figure 4.22: Variation of the Kinetic Energy with Depth of Cut for the Potential Pairs 
 
 
Table 4.6: Summary on Minimum Depth Cut 

 

Depth of Cut (nm) Build-up/Pile-up 

Phenomena 

Build-up/Pile-up 

Phenomena 

Build-up/Pile-up 

Phenomena 

 Morse-Morse 

(Case 4.3.1) 

EAM-Morse  

(Case 4.3.2) 

EAM-LJ  

(Case 4.3.3) 

0.00 None None None 

0.01 None None None 

0.02 None None None 

0.03 None None None 

0.04 None None None 

0.05 None None None 

0.06 None None None 

0.07 None None None 

0.08 None None None 

0.09 None None None 

0.10 None None None 

0.15 None None None 

0.20 None No pile-up atoms, but 
side atoms 

None 

0.25 One layer of atoms One to two layers of 
atoms 

None 

0.30 Up to two layers of 
atoms 

Two layers of atoms One layer of atoms 

0.35 Two layers of atoms 
(More) 

Two layers of atoms 
(More) 

One layer of atoms 

0.40 Three layers of atoms Three layers of atoms Three layers of atoms 

0.45 Three layers of atoms Four layers of atoms Two layers of atoms 

0.50 Four layers of atoms Four layers of atoms Two layers of atoms 

1.00 Six layers of atoms Seven layers of atoms Six layers of atoms 

1.50 Eight layers of atoms Eight layers of atoms Ten layers of atoms 

2.00 Ten layers of atoms Twelve layers of atoms Thirteen layers of 
atoms 

2.50 Ten layers of atoms Thirteen layers of Sixteen layers of atoms 
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atoms 

3.00 Eleven layers of atoms Fifteen layers of atoms Eighteen layers of 
atoms 

3.50 Fourteen layers of 
atoms 

Seventeen layers of 
atoms 

Twenty six layers of 
atoms 

4.00 Sixteen layers of atoms Seventeen layers of 
atoms 

Twenty Three layers of 
atoms 

 
 
 
Table 4.7: Comments on the Minimum Depth Cut Simulation  

                  (By Observation of the Chip Formation)  

 

Depth of Cut 

(nm) 

Comments on the 

onset of Ploughing 

and Cutting 

Comments on the 

onset of Ploughing 

and Cutting 

Comments on the 

onset of Ploughing 

and Cutting 

 Morse-Morse  

(Case 4.3.1) 

EAM-Morse  

(Case 4.3.2) 

EAM-LJ 

 (Case 4.3.3) 

0.00 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.01 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.02 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.03 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.04 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.05 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.06 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.07 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.08 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.09 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.10 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.15 Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

Rubbing/Elastic 
deformation 

0.20 Rubbing/Elastic 
deformation 

Ploughing  starts Rubbing/Elastic 
deformation 

0.25 Ploughing  starts Ploughing Rubbing/Elastic 
deformation 

0.30 Ploughing Ploughing Ploughing starts 

0.35 Ploughing Ploughing Ploughing 

0.40 Ploughing Ploughing Ploughing 

0.45 Ploughing Ploughing Ploughing 
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0.50 Ploughing Ploughing Ploughing 

1.00 Ploughing Ploughing Ploughing 

1.50 Not sure  Not sure  Chip 
formation/Cutting 
starts 

2.00 Not sure Not sure Cutting 

2.50 Not sure Not sure Cutting 

3.00 Not sure Not sure Cutting 

3.50 Not sure Not sure Cutting 

4.00 Not sure Not sure Cutting 

 
 

Table 4.8: Force Ratio ( zx FF ) Tangential Force Component/Normal Force Component for 

                    the Different Potentials 

 

Depth of Cut 

(nm) 

Morse-Morse 

(Case 4.3.1) 

EAM-Morse  

(Case 4.3.2) 

EAM-LJ  

(Case 4.3.3) 

0.01 0.04829 0.007444 1.073072 

0.02 0.095067 0.046829 0.824648 

0.03 0.105248 0.017279 1.950004 

0.04 0.245986 0.021446 0.020337 

0.05 0.378409 0.06574 0.077502 

0.06 0.423499 0.131955 0.025004 

0.07 0.443842 0.232347 0.032497 

0.08 0.605915 0.354004 0.054916 

0.09 0.791126 0.538339 0.062184 

0.10 1.027395 0.467178 0.086716 

0.15 56.41053 0.844059 0.106155 

0.20 1.682874 1.7182 0.123895 

0.25 2.371085 2.76516 0.164905 

0.30 3.847903 38.84269 0.259996 

0.35 2.306841 9.556566 0.289789 

0.40 2.867722 5.249375 0.347683 

0.45 2.279018 10.35213 0.576208 

0.50 2.21402 4.273372 0.465918 

1.00 1.751497 2.561116 0.996866 

1.50 1.842891 1.90825 1.200217 

2.00 1.773755 1.904111 1.183491 

2.50 1.900488 1.759073 1.551487 

3.00 1.773196 1.766835 1.464213 

3.50 1.960791 2.010869 1.630837 

4.00 1.969789 1.927434 1.98491 
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4.3.3 Prediction of the Onset of Plasticity 

 

Similarly, if the focus is on the prediction of the onset of plasticity;  ploughing starts from 0.1-

0.3nm. For Case 4.3.1, ploughing initiates at the depth of cut of 0.25nm with a pile-up of a layer of 

atoms; for Case 4.3.2, ploughing starts at the depth of cu of 0.20nm and for Case 4.3.3, ploughing 

starts from 0.30nm. In Figure 4.16, the variation of the tangential cutting force component, Fx with 

depth of cut for the three cases are shown. The Fx is smallest for Case 4.3.3 – EAM-LJ pair, then for 

Case 4.3.2 – EAM-Morse and largest for Case 4.3.1 – Morse-Morse. 

 

Using the force ratio (Fx/Fz) to predict the phenomena of the incipient of plastic deformation, (Table 

3): for the Morse-Morse pair, there is a transition at the depth of cut of 0.1nm; for the EAM-Morse 

pair, there is a transition at the depth of cut of 0.2nm; and for the EAM-LJ pair, there is a transition 

at the depth of cut of 1.5nm. For the Morse-Morse and EAM-Morse pairs, the transition may be 

from rubbing to ploughing, whereas it may be from ploughing to cutting for the EAM-LJ pair. The 

high value for the Case 1 (depth of cut of 0.15nm) may be due to friction or problem of size effects. 

 

4.3.4 Conclusion 

 
From the MD simulation results, the phenomena of rubbing, ploughing and cutting are observed. 

Ploughing starts from 0.1~0.3nm and the formation of chips starts to occur from the depth of cut 

thickness of 1.5nm. So it can be suggested that the extreme accuracy attainable or MDC for copper 

atoms workpiece, machined with extremely sharp diamond tool is around 1.5nm to 3nm. This is 

around the value of 1nm suggested by Ikawa et al [1], but the tool edge radius may affect the 

evaluation of this value.  Also, it can be suggested that the onset of plasticity for copper atoms 

workpiece, machined with extremely sharp diamond tool is around 0.1nm to 0.3nm. The 

observation of the elastic-plastic transition is predicted differently by using using pile-up and 

material removal information; and the force ratio (Fx/Fz) information. These observations may need 

some time to be confirmed by experiments as current observations are not down to these length 

scales. The particularly high values of the force ratio for Morse-Morse: depth of cut-0.15nm; EAM-

Morse: depth of cuts-0.3nm and 0.45nm may be due to high friction or problems of size effects.  
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4.4. The Effect of Tool Geometry on Rubbing and Ploughing in Nanomachining 

 

 

4.4.1 Introduction 

 

The selection of effective and optimal machining parameters is a major challenge for the 

manufacturing industries. The tool-work interactions may be affected by many process parameters 

including depth of cut, cutting speed, feed rate, cutting tool geometry et cetera. Proper selection of 

these parameters is critical in material removal processes. The effect of different geometric end 

shapes was investigated on the phenomena of rubbing and ploughing in nanomachining. The shapes 

used were flat, pointed, spherical and trapezoidal. 

 

In the investigation, the workpiece consists of 16000 copper atoms with FCC lattice. It includes 3 

types of atoms namely; boundary atoms, thermostat atoms and Newtonian atoms. The boundary 

atoms are kept fixed to reduce edge effects. The thermostat atoms conduct the heat generated during 

the cutting process out of the workpiece and the Newtonian atoms obey the Newton’s equation of 

motion. The cutting tools consist of carbon atoms with diamond lattice structure and have varying 

number of atoms because of the different shapes. The flat end tool consists of 1824 atoms, the 

pointed end tool consists of 1936 atoms, the spherical end tool consists of 1839 atoms and the 

trapezoidal end tool consists of 1924 atoms. The different cutting tools were modelled as 

deformable, non-rigid bodies. 

 
The atomic interactions in the simulation are the following, namely; 
Cu-Cu : interactions between copper atoms 
Cu-C   : interactions between copper atoms and diamond atoms 
C-C    : interactions between the diamond atoms  
 
The EAM potential was used for the Cu-Cu interactions and the LJ potential was used for the Cu-C 

interactions. All the C-C (tool atoms) interactions were modelled by using the Tersoff potential. 

 
The parameters used for the EAM potential are the same as in section 4.3. 
 
The parameters used for the Cu-C interfaces are below, with a cut-off distance of 2.5 Angstroms; 
 

AngstromseV 338.2,4096.0 == σε  

 
For the C-C interactions, the Tersoff potential parameters used are in the following Table 2.7 and 
other parameters are given in Table 3.5. 
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Different Tool Geometries 

 
The tools shapes investigated in this study are shown in Figures 1-4, namely; the tools with 

spherical, flat, trapezoidal and pointed ends.   

 

    
                                             (a)                      (b)                        (c)                                   (d) 

 

Figure 4.23: Different tool geometries; (a) Tool with flat end (b) Tool with pointed end, (c) Tool 
with spherical end, (d) Tool with trapezoidal end  

 
 
 
 
 

 
 

Figure 4.24: Tool with Flat End 
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Figure 4.25: Tool with Pointed End 
 

 
Figure 4.26: Tool with Spherical End 
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Figure 4.27: Tool with Trapezoidal End 

 
 
The Morse potential was used and the other parameters used for the simulation are the following: 
 
For Cu-Cu interactions: (Girifalco and Weizer1959, Pei et al 2006) 
 
 
For Cu-C  interactions: (Hwang et al 2004) 
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Figure 4.28:  Variation of the Tangential Cutting Force with Depth of Cut for the Different  
                       Tool Ends 
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Variation of Fz with Depth of Cut for the Different Tool Ends
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Figure 4.29:  Variation of the Normal Cutting Force with Depth of Cut for the Different Tool Ends 
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Figure 4.30:  Variation of the Lateral Cutting Force with Depth of Cut for the Different Tool Ends 
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Figure 4.31:  Variation of the Total Energy with Depth of Cut for the Different Tool Ends 
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Table 4.9: Summary on Various Tool Geometries (Observed Phenomena) 

 
 

Depth of Cut 

(nm) 
Flat Tool End Pointed Tool 

End 
Spherical Tool 

End 
Trapezoidal 

Tool End 
0.05 Rubbing Rubbing Rubbing Rubbing 

0.1 Rubbing Rubbing Rubbing Rubbing 

0.15 Rubbing Rubbing Rubbing Rubbing 

0.2 Rubbing Rubbing Rubbing Rubbing 

0.25 Rubbing Rubbing Rubbing Rubbing 

0.3 Ploughing  with 
three layers of 
atoms 

A slight initiation 
of ploughing with 
a number of side 
atoms 

Ploughing  with 
one layer of 
atoms 

Ploughing  with 
one layer of 
atoms 

0.35 Ploughing  with 
three layers of 
atoms 

Ploughing  with 
some few atoms 

Ploughing  with 
two layer of 
atoms 

Ploughing  with 
one layer of 
atoms 

0.4 Ploughing  with 
three layers of 
atoms 

Ploughing  with 
some few atoms 

Ploughing  with 
two layer of 
atoms 

Ploughing  with 
two layer of 
atoms 

0.45 Ploughing  with 
Five layers of 
atoms 

Ploughing  with 
some more side 
atoms 

Ploughing  with 
two layers of 
atoms 

Ploughing  with 
three layers of 
atoms 

0.5 Ploughing  with 
Four layers of 
atoms 

Ploughing  with 
two layers of 
atoms 

Ploughing  with 
three layers of 
atoms 

Ploughing  with 
three layers of 
atoms 

 
 
 

Table 4.10: Force Ratio ( zx FF ) Tangential Force Component/Normal Force Component for 

                    the Different Tool Ends 

 
 

Depth of Cut 

(nm) 

Flat Tool End Pointed Tool End Spherical Tool 

End 
Trapezoidal Tool 

End 
0.05 1.177343 0.291661 0.002823 0.471519 

0.10 0.06136 0.031104 0.04312 0.078221 

0.15 0.154636 0.068924 0.083595 0.095937 

0.20 0.181458 0.077188 0.126165 0.165729 

0.25 0.243493 0.117652 0.274466 0.22554 

0.30 0.941763 0.251311 0.47619 0.569788 

0.35 0.724397 0.340392 0.502437 0.508031 

0.40 0.682284 0.357095 0.504867 0.490259 

0.45 1.691561 0.463065 0.600268 0.671788 

0.50 0.875725 0.612254 0.716174 0.69086 
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Discussion 

 
The simulation results for the four different tool ends, for the variation of the depth of cut (0.05 – 

0.5nm) are shown in Table C.5. Also, the comparison of the cutting forces, the potential and total 

energies and the temperature distribution for the various tool ends are shown in Tables C.6, C.7 and 

C.8 respectively. The summary of the results on rubbing and ploughing are presented in Table 4.9. 

Rubbing phenomena are observed in all the four geometries up to the depth of cut of 0.25nm 

(diameter of a copper atom is 2.5 Angstroms). Also, for all the tools, ploughing initiates at the depth 

of cut of 0.3nm, but the tool with the flat end geometry shows a faster initiation of ploughing with 

three layers of atoms, because it has the largest surface area to engage more atoms. The force ratio 

for the different tool ends are shown in Table 4.10. It can be observed that all the ratio values are 

under 1 (except for the flat tool end for the depth of cut of 0.05 and 0.45nm), which indicates that 

the material removal mechanism phenomena are rubbing and ploughing. The exceptions for the flat 

tool end might be due to spikes in the frictional force. 

 

Figure 4.28 shows the variation of the tangential cutting force component, Fx with depth of cut for 

all the tools. It can be observed that the tool with the pointed end has the lowest cutting force and it 

is highest for flat end. The tools in increasing order of sharpness are the following, namely; the tool 

with the flat end (least sharp), the tool with the spherical end, the tool with the trapezoidal end and 

the tool with the pointed end (sharpest). The tools show the initiation of ploughing in that order. 

The tool with the flat end geometry shows a fast initiation of ploughing, because it has the largest 

surface area to engage more atoms. Figure 4.29 shows similar results for the normal cutting force 

component, Fz. Figure 4.30 shows the variation of the lateral cutting force component, Fy with 

depth of cut for all the tools and Figure 4.31 shows the variation of the total energy with depth of 

cut for all the tools. The total energy is lowest for the tool with the pointed end and highest for the 

tool with the flat end. This is similar to the results shown in Figure 4.28. 

 

4.4.2 Conclusion 

 
All the tools clearly show the phenomena of rubbing and ploughing in the depth of cut range of 0.05 

to 0.5 nm. The tool with the pointed end has the lowest average cutting force and the tool with the 

flat end has the highest average cutting force. The total number of the various tool atoms may also 

have affected the results (See section 4.4.2).  It is important to note that in nanomachining, the tool 

with the sharpest end may not necessarily cause the greatest material removal. This indicate that 

there may be a limit to sharpness of the tool, beyond which it would not necessarily contibute to 
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increased material removal. The different tool ends may be suitable for different metal machining 

applications. 

 
 

4.5 The Effect of the Variation of Velocity in Nanomachining 
 

 
4.5.1 Introduction 

 
The MD simulation of the effect of the variation of velocity on nanomachining was investigated. 

The velocity range considered was from 80m/s to 260m/s in steps of 20.  

 
Table 1 shows the simulation conditions applied in this research. The workpiece consists of 

16000 copper atoms with perfect FCC lattice. It includes 3 kinds of atoms namely; boundary atoms, 

thermostat atoms and Newtonian atoms. The boundary atoms are kept fixed to reduce edge effects. 

The thermostat atoms conduct the heat generated during the cutting process out of the workpiece 

and the Newtonian atoms obey the Newton’s equation of motion. The cutting tool consists of 1936 

carbon atoms with perfect diamond lattice structure. The cutting tool is pointed shaped and it is 

modelled as a rigid body. 

 
The atomic interactions in the simulation are the following, namely; 
Cu-Cu : interactions between copper atoms 
Cu-C   : interactions between copper atoms and diamond atoms 
C-C    : interactions between the diamond atoms  
 
Two potential pairs were used for the Cu-Cu and the Cu-C interactions namely; EAM-Morse and 

EAM-LJ and then the tool was treated as rigid and then deformable. In all, four cases were 

considered. For the C-C (tool atoms) interactions, the deformable cases were modelled by Tersoff 

potential.  

 
 
Case 4.5.1: 

 
The EAM potential was used for the Cu-Cu interactions and the Morse potential was used for the 

Cu-C interactions and the tool was treated as rigid. 

 

The potential parameters used for the Cu-Cu interactions were read from the file - Cu_u3.eam in 

LAMMPS. The file contains the following, namely; the lattice constant of copper (3.615 

Angstroms), the spacing in density (5.01E-4) and the spacing in distance (1.00E-2). Also, it 

contains three arrays of tabulated values of the embedding function, )( ,ihiG ρ -500 values; effective 
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charge function, ijZ ,- 500 values, from which the pair potential interaction is calculated (the 

relationship between the effective charge and the pair potential is given by the equation 

ij

ij

ijij
r

rZ
rV

)(
)(

2

=  and the density function, ih,ρ - 500 values (A total of 1500 tabulated values). The 

cut-off distance was 4.95 Angstroms.  

 
For Cu-C interactions: (Hwang et al 2004) 
 
    

                                            

Case 4.5.2: 

 
The EAM potential was used for the Cu-Cu interactions and the Morse potential was used for the 

Cu-C interactions, but the tool was treated as deformable/non-rigid. The parameters used are same 

as in case 4.5.1. 

 

Case 4.5.3: 
 
The EAM potential was used for the Cu-Cu interactions and the LJ potential was used for the Cu-C 

interactions and the tool was treated as rigid. The parameters used for the EAM potential are the same as in 

case 1. The LJ parameters used for the Cu-C interfaces are below, with a cut-off distance of 2.5 Angstroms; 

AngstromseV 338.2,4096.0 == σε  

 

Case 4.5.4: 

 
The EAM potential was used for the Cu-Cu interactions and the LJ potential was used for the Cu-C 

interactions and the tool was treated as deformable/non-rigid. The parameters used are same as in 

case 4.5.3. For cases 4.5.2 and 4.5.4, where the tool was considered as deformable, the C-C 

interactions were modelled by the Tersoff potential parameters in the Table 2.7. 

 

The cutting speed range is 80-260m/s and the depth of cut is 2.0nm. Table 4.11 shows the various 
timesteps required to advance the cutting distance of 7.2nm. 
 
 
 
 
 
 
 
 
 
 

nmrnmeVD e 22.0,)(17.0,087.0 1 === −α
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Table 4.11: The Various Timesteps for the Different Velocity for a Distance of 7.2nm 

 

Velocity (m/s) No of Steps Time(s) 

40 600000 1.80E-10 

60 400000 1.20E-10 

80 300000 9.00E-11 

100 240000 7.20E-11 

120 200000 6.00E-11 

140 171000 5.14E-11 

160 150000 4.50E-11 

180 133000 4.00E-11 

200 120000 3.60E-11 

220 109000 3.27E-11 

 
 
4.5.2    Modelling with EAM-Morse Potentials and Rigid Tool (Case 4.5.1) 

 
Discussion 

 
Results for the cutting forces and the energies for Case 4.5.1 are shown in Table 4.12. Also, Figure 

4.32 shows the velocity variation with temperature. It can be observed that as velocity increases, the 

temperature variation increases and it is fairly linear as shown in Figure 4.34. Furthermore, the 

tangential cutting force component, Fx shows linear variation with the velocity (Figure 4.33), where 

as the normal forces do not show linear variation with the velocity (Figure 4.33b). 

 
Table 4.12: Comparison of the Cutting Forces and the Energies for Velocities (80-260m/s) 
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120 Cutting Forces for Velocity - 120m/s
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220 Cutting Forces for Velocity - 220m/s
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Figure 4.32: Velocity Variation with Temperature for EAM-Morse Potentials and Rigid Tool 
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Variation of Fx with Velocity
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Figure 4.33: Variation of Tangential Cutting Force Component with Velocity for EAM-Morse  
                      Potentials and Rigid Tool 
 

Variation of Fz with Velocity

-2.70E-08

-2.65E-08

-2.60E-08

-2.55E-08

-2.50E-08

-2.45E-08

-2.40E-08

-2.35E-08

-2.30E-08

0 50 100 150 200 250 300

Velocity (m/s)

N
o

rm
a

l 
C

u
tt

in
g

 F
o

rc
e

 C
o

m
p

o
n

e
n

t 
(N

)

Fz 

 
 

Figure 4.33b: Variation of Normal Cutting Force Component with Velocity for EAM-Morse  
                      Potentials and Rigid Tool 
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Figure 4.34: Variation of Temperature with Velocity for EAM-Morse Potentials and Rigid Tool 
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4.5.3    Modelling with EAM-Morse Potentials and Non-Rigid Tool (Case 4.5.2) 

 
Table 4.13: Comparison of the Cutting Forces and the Energies for Velocities (80-260m/s) 
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160 Cutting Forces for Velcoity - 160m/s
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Potential and Total Energies for Velocity - 180m/s
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200 Cutting Forces for Velocity - 200m/s
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220 Cutting Forces for Velocity - 220m/s
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240 Cutting Forces for Velocity - 240m/s
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260 Cutting Forces for Velocity - 260m/s
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Velocity Variation with Temperature
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Figure 4.35: Velocity Variation with Temperature for EAM-Morse Potentials and Non-Rigid Tool 
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Figure 4.36: Comparison of Variation of Tangential Cutting Force Component with Velocity for    
                      EAM-Morse Potentials (Rigid Tool and Non-Rigid Tool) 
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Comparison of Temperature for Rigid and Non-Rigid Tool (EAM-

Morse)
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Figure 4.37: Comparison of Variation of Temperature with Velocity for EAM-Morse Potentials  
                      (Rigid Tool and Non-Rigid Tool) 
 

Discussion 
 

Results for the cutting forces and the energies for Case 4.5.2 are shown in Table 4.13. Figure 4.35 

shows the velocity variation with temperature. It can be observed that as velocity increases, the 

temperature variation also increases. Figures 4.36 and 4.37 show the comparisons of Case 4.5.1 and 

Case 4.5.2. Figure 4.36 compares the variation of the tangential cutting force component with 

velocity and Figure 4.37 compares the variation of the temperature with velocity. There seems to be 

no much difference between the use of rigid and non-rigid tool for the EAM-Morse potential pair. 

 
 
4.5.4   Modelling with EAM-LJ Potentials and Rigid Tool (Case 4.5.3) 
 

Table 4.14: Comparison of the Cutting Forces and the Energies for Velocities (80-260m/s) 
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100 Cutting Forces for Velocity - 100m/s
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200 Cutting Forces for Velocity - 200m/s
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4.5.5    Modelling with EAM-LJ Potentials and Non-Rigid Tool (Case 4.5.4) 
 
 

 Table 4.15: Comparison of the Cutting Forces and the Energies for Velocities (80-260m/s) 
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160 Cutting Forces for Velocity - 160m/s
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260 Cutting Forces for Velocity - 260m/s
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Variation of Fx with Velocity for All Cases
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Figure 4.38: Comparison of Variation Tangential Cutting Force Component with Velocity for All 
                      Potentials (Rigid Tool and Non-Rigid Tool) 
 
 
 

Variation of Velocity with Temperature for All Cases
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Figure 4.39: Comparison of Variation of Velocity with Temperature for All 
                      Potentials (Rigid Tool and Non-Rigid Tool) 
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Discussion 

 
Results for the cutting forces and the energies for Cases 4.5.3 and 4.5.4 are shown in Tables 4.14 

and 4.15 respectively. Figures 4.38 and 4.39 show the comparison of all the cases. It can be 

observed that the tangential cutting force component, Fx and the temperature variation are lower for 

Cases 4.5.3 and 4.5.4 (the EAM-LJ potential pair) as was observed previously in section 4.2.  

 

To extend the investigation to a wider range of lower velocities, further simulations were carried out 

down to 1m/s (with EAM-LJ potential pair). The variation of the cutting force components for the 

whole range of velocities are shown in Figure 4.40. It can be observed that the tangential and the 

normal cutting force components relatively increase with increase in velocity. 

 

Variation of Fx, Fy Fz with Velocity (1m/s - 260m/s)
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Figure 4.40: Variation of the Cutting Forces with Velocity (1m/s-260m/s) 
 
4.5.6. Conclusion 

 
It can be concluded that the interatomic potential readily affect the velocity variation simulation in 

nanomachining, whereas the use of rigid and non-rigid tools doesn’t show appreciable difference. 
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Chapter   5. Multiple-Pass Nanometric Machining Simulation  

                            Results 
 
5.1 Introduction 

 
The existing MD simulation studies on nanometric cutting have been limited to single pass of tool 

movement. In practice, most machining processes involve the use of multiple passes to create new 

surface. To address this issue, a 3-pass cutting was employed to simulate the surface creation in 

single point diamond turning. 

 

Table 3.5 shows the simulation conditions applied in this study, with depth of cut – 2.0nm, Rake 

angle – 0 degree, feed – 1.5nm and run of 150000 steps. The configuration of the simulation has a 

total of 54232 atoms. The workpiece consists of 43240 copper atoms with perfect FCC lattice. It 

includes 3 kinds of atoms namely; boundary atoms, thermostat atoms and Newtonian atoms. The 

boundary atoms are kept fixed to reduce edge effects. The thermostat atoms conduct the heat 

generated during the cutting process out of the workpiece and the Newtonian atoms obey the 

Newton’s equation of motion. The cutting tool consists of 10992 carbon atoms with diamond lattice 

structure. The cutting tool has a trapezoidal end as illustrated in Figure 5.1. 

 

The atomic interactions in the simulation are the following, namely; 

Cu-Cu : interactions between copper atoms  

Cu-C   : interactions between copper atoms and diamond atoms  

C-C     : interactions between the diamond atoms  

 

For the simulations, 6 different cases were considered, which are shown below; 

 

Case 5.1: The Cu-Cu interactions were modelled by Morse, the Cu-C interactions were modelled by 

Morse potential and the tool was assumed to be rigid. 

 

Case 5.2: The Cu-Cu interactions were modelled by Morse, the Cu-C interactions were modelled by 

Morse potential and the tool was assumed to be non-rigid. 

 

Case 5.3: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled by 

Morse potential and the tool was assumed to be rigid. 
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Case 5.4: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled by 

Morse potential and the tool was assumed to be non-rigid. 

 

Case 5.5: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled by 

LJ potential and the tool was assumed to be rigid. 

 

Case 5.6: The Cu-Cu interactions were modelled by EAM, the Cu-C interactions were modelled by 

LJ potential and the tool was assumed to be non-rigid (Tersoff  Potential was used). 

    
 

Pass 1              Pass 2                  Pass 3 

 
                                                                       
Depth of Cut             D                                 Depth of Cut                                   
     
 
  
(a)                  Feed 
 
2                                                                       Variable   
                                                                          
                                                                         10.73angs 
                                                                           
 
 
   2.65angs 
(b) 

Figure 5.1a: Cross Section of the Machined Grooves with Passes 1-3 (direction of cut is 
perpendicular to the paper face) 1b: Tool Tip Dimensions 
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5.2  The Effect of Interatomic Potentials  

 
Table 5.1: Comparison of the Material Removal for the Different Interatomic Potentials and 

the Tool (Rigid and Deformable) Pass 1 

 

Interatomic Potentials Tool  

(Rigid or 

Deformable) 

Simulation (Material Removal) 

Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 

Rigid 

 
Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 

Rigid 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 

Rigid 

 
Cu-Cu Interaction: EAM 
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Table 5.2: Comparison of the Cutting Forces and Energies for the Different Interatomic 

Potentials and the Tool (Rigid and Deformable) Pass 1 

 

Simulation 
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Case 5.5 Cutting Forces for EAM-LJ (Rigid Tool) - Pass 1
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Table 5.3: Comparison of the Material Removal for the Different Interatomic Potentials and 

the Tool (Rigid and Deformable) Pass 2 

 

Interatomic Potentials Tool  
(Rigid or 
Deformable) 

Simulation (Material Removal) 

Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 

Rigid 

 
Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 

Rigid 
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Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 

Rigid 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 

Deformable 

 
 

 

Table 5.4: Comparison of the Cutting Forces and Energies for the Different Interatomic 

Potentials and the Tool (Rigid and Deformable) Pass 2 
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Case 5.3 Cutting Forces for EAM-Morse Potentials (Rigid Tool) - Pass 2
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Case 5.5 Cutting Forces for EAM-LJ Potentials (Rigid Tool) - Pass 2
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Table 5.5: Comparison of the Material Removal for the Different Interatomic Potentials and 

the Tool (Rigid and Deformable) Pass 3 

 

Interatomic Potentials Tool  
(Rigid or 
Deformable) 

Simulation (Material Removal) 

Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 

Rigid 

 
Cu-Cu Interaction: Morse 
Cu-C Interaction: Morse 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 

Rigid 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: Morse 

Deformable 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 

Rigid 

 
Cu-Cu Interaction: EAM 
Cu-C Interaction: LJ 

Deformable 
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Table 5.6: Comparison of the Cutting Forces and Energies for the Different Interatomic 

Potentials and the Tool (Rigid and Deformable) Pass 3 
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Case 5.5 Cutting Forces for EAM-LJ Potentials (Rigid Tool) - Pass 3
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Case 5.6 Cutting Forces for EAM-LJ Potentials (Non Rigid Tool) - Pass 3

-1.00E-07

-5.00E-08

0.00E+00

5.00E-08

1.00E-07

1.50E-07

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)
Fx

Fy

Fz

 

Potential and Total Energies for EAM-LJ (Non Rigid Tool) - Pass 

3

-224000

-223800

-223600

-223400

-223200

-223000

-222800

-222600

-222400

-222200

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

E
n

e
rg

y
 (

e
V

)

PotEng

TotEng

 
 
 
 
 

Comparison of the Total Energy for Different Potentials - Pass 1
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Figure 5.2: Comparison of the Total Energy for the Different Potential Pairs  
                 (Rigid and Non Rigid Tool) 

 

Cutting Forces (Fx) for the Different Potentials Pass 1
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Figure 5.3: Tangential Cutting Force Components for the Different Potentials – Pass 1 
 



 126

Cutting Forces (Fx) for the Potentials - Pass 2
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Figure 5.4: Tangential Cutting Force Components for the Different Potentials – Pass 2 
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Figure 5.5: Tangential Cutting Force Components for the Different Potentials – Pass 3 
 

 

Cutting Forces for EAM-LJ - Rigid Tool (Passes 1-3)
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Figure 5.6: Tangential Cutting Force Components for the EAM-LJ Potentials  
                 (Rigid Tool) Passes 1-3 
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Cutting Forces for EAM-Morse - Rigid Tool (Passes 1-3)
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Figure 5.7: Tangential Cutting Force Components for the EAM-Morse Potentials  
                 (Rigid Tool) – Passes 1-3 
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Figure 5.8: Tangential Cutting Force Components for the Morse-Morse Potentials  
                 (Rigid Tool) – Passes 1-3 
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Figure 5.9: Tangential Cutting Force Components for the EAM-LJ Potentials  
                 (Non Rigid Tool) – Passes 1-3 
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Cutting Forces for EAM -M orse  - Non Rigid Tool (Passes 1-3)
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Figure 5.10: Tangential Cutting Force Components for the EAM-Morse Potentials  
                 (Non Rigid Tool) – Passes 1-3 
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Figure 5.11: Tangential Cutting Force Components for the Morse-Morse Potentials  
                 (Non Rigid Tool) – Passes 1-3 
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Table 5.7: Comparison for the Different Potential Pairs: Total Energy (eV) 
 

Potentials Cases Total Energy 

(eV) Pass 1 

Total Energy 

(eV) Pass 2 

Total Energy 

(eV) Pass 3 

EAM-Morse(Non-
Rigid Tool) 

Case -222940 -222735 -222661 

EAM-LJ (Non-
Rigid Tool) 

Case -222816 -222595 -222497 

Morse-Morse 
(Non-Rigid Tool) 

Case -211396 -211095 -210935 

EAM-Morse (Rigid 
Tool) 

Case -65928.9 -65735.5 -65657.7 

EAM-LJ (Rigid 
Tool) 

Case -65814.2 -65545.4 -65438.2 

Morse-Morse 
(Rigid Tool) 

Case -38889 -38540.4 -38427.3 

 
 
Discussion 

 
Table 5.1 shows the comparison of the material removal for the different interatomic potentials and 

the tool (both rigid and deformable) for pass 1. The comparison of the cutting forces and the 

energies are shown in table 5.2. Similar results for passes 2 and 3 are shown in Tables 5.3, 5.4, 5.5 

and 5.6 respectively. Tables C.9 and C.10 also show the comparison of the cutting forces and the 

temperature variation for all the cases respectively.  

The comparison of the total energy for the different potentials and for both rigid and non rigid tool 

is shown in Figure 5.2. With reference to Table 5.7, the EAM-Morse (Non-Rigid Tool) has the 

lowest total energy for each of the passes and Morse-Morse has the highest. Table 5.9 is in 

ascending order of total energy. Figures 5.3 - 5.5 show the tangential cutting forces for the different 

potentials for passes 1-3. It can be observed that the cutting forces are lowest for the EAM-LJ 

potential pairs both for the rigid and the non rigid tools. The Morse-Morse potential pairs have the 

highest cutting forces. Also, it can be observed that the tool rigidity doesn’t have significant effect 

on the cutting forces. Figures 5.6 – 5.11 show the comparison of the tangential force component for 

the different potentials for passes 1-3. It can be seen that the cutting forces for pass 1 is always 

slightly higher than for passes 2 and 3. 
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5.2.1 Conclusion 

 

It can be seen that the tangential cutting force components are considerably affected by the 

interatomic potential pair used, but they are not greatly affected by whether the tool is rigid or 

deformable. The total energy of the system on the other hand is much lower when the tool is non 

rigid than when it is rigid. The choice of the use the interatomic potentials can be based on the ones 

with lowest cutting forces and the total energies. 

 

 

5.3 The Effect of Depth of Cut 

 
The depths of cut used in the study are 0.5nm, 1.0nm, 1.5nm, 2nm, 2.5nm and 3 nm. 
 
Table 5.8: Comparison of the Material Removal for the Three Passes for Depth of Cut  

                   (0.5-3nm)  

 
Depth of Cut (nm) Pass 1 Pass 2 Pass 3 

0.5  
 

 
 

 

1 

   

1.5 

   
2 
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2.5 

   
3 
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Figure 5.12: Variation of Fx with Depth of Cut 
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Figure 5.13: Variation of Fy with Depth of Cut 
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Variation of Fz  with Depth of Cut
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Figure 5.14: Variation of Fz with Depth of Cut 
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Figure 5.15: Variation of Fx, Fy and Fz in Pass 3 with Depth of Cut 
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Figure 5.16: Stress Variation with Depth of Cut for Passes 1-3 
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Discussion 

 
Table 5.8 shows the comparison of the material removal for the three passes for the depth of cut 

(0.5-3nm). From the table, it can be observed that the amount of atoms removed increases as the 

depth of cut increases, which is logical, because as the depth increases, there is more volume of 

material atoms to be removed. The associated cutting forces are shown in Table C.11. The average 

tangential and the normal cutting force components decrease with the consecutive passes. Figure 

5.9 shows the variation of Fx with depth of cut. It can be seen that for the different passes, Fx 

increases with increase in depth of cut and Fx is larger in pass 1 than in passes 2 and 3. Fy increases 

in pass 1 and decreases in pass 2 and 3; with increase in the depth of cut. The variation is quite 

small as shown in Figure 5.13, as Fy is supposed to be zero theoretically. Fz, as shown in Figure 

5.14, is similar also to Fx. It increases in magnitude with increase in depth of cut. Figure 5.15 shows 

the variation of the cutting forces in pass 3 with depth of cut. Figure 5.16 shows the stress variation 

with depth of cut for the three passes. It can be observed that as the depth of cut increases, the stress 

values decrease and it is higher for passes 2 and 3. The stress values are in the range from 160GPa 

to 20GPa. The values remain constant at around 20 GPa for all passes for higher depth of cut – from 

2.5nm. This is due to the tool geometry, which becomes similar for higher depths of cut. The 

highest stress values are for depth of cut of 0.5nm during passes 2 and 3. It shows that the cutting 

resistance of the copper material is highest at very small depth cuts.  

 

5.3.1. Conclusion 

 
It can be concluded that the magnitude of the tangential and the normal components of the cutting 

forces increase with increase in the depth of cut. The ratios of the tangential to normal force 

components decrease as depth of cut increases, but remain fairly constant for each of the passes 

after the depth of cut of 1.5nm, with values in the range of 1.1-2.3. Stress values decrease with 

increase in the depth of cut and remain constant for high depth of cut (> 2.5nm). This is due to the 

shape of the tool; as the depth of cut increases, the shape of the tool above the end has the same 

cross sectional area.  
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5.4 The Effect of Feed Rate 

 
For the feed rate; the following were used namely; 0.5nm, 0.75nm, 1.0nm, 1.25nm and 1.5nm. 
 
Table 5.9: Simulations for Different Feeds (0.5 – 1.5nm) 

 

Feed  

(nm) 

Pass 1 Pass 2 Pass 3 

0.5  
 

  
 

0.75 

  
 

1.0 

 
  

1.25 
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1.5 
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Figure 5.17: Variation of Fx with Passes 1-3 
 

Variation of Lateral Component of Cutting Forces (Fy) with 
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Figure 5.18: Variation of Fy with Passes 1-3 
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Variation of the Normal Component of Cutting Forces (Fz) with 

Different Passes

-6.00E-08

-5.00E-08

-4.00E-08

-3.00E-08

-2.00E-08

-1.00E-08

0.00E+00

0 2 4 6 8 10 12 14 16

Feed (Angstrom)

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fz_Pass1

Fz_Pass2

Fz_Pass3

 
 
 

Figure 5.19: Variation of Fz with Passes 1-3 
 

Discussion 

 

Table 5.9 shows the comparison of the material removal for the three passes for feed of (0.5-

1.5nm). The associated cutting forces are shown in Table C.12. The tangential and the normal 

components of the cutting forces decrease for the consecutive passes. Figures 5.17-5.19 show the 

variation of the cutting forces with feed rate for passes 1-3. It can be seen that Fx and Fz increases 

with the increase in the feed rate. This is because as the feed rate increases, the amount of material 

to be removed increases and so this increase in resistance will increase the Fx and Fz. For Fy, it 

fluctuates around zero.  

 

5.4.1 Conclusion 
 

The average tangential and normal components of the cutting forces increase with increase in the 

feed rate. Also, the amount of material removal increases with increase in the feed. 
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5.5 The Effect of Rake Angle 

 
The rake angles used in the study are –ve 5°, -ve 10° and -ve 15° 
 
 

 
Figure 5.20: Rake Angle Negative 5 (-ve 5°) 
 

 
 
Figure 5.21: Rake Angle Negative 10 (-ve 10°) 
 

 
 
Figure 5.22: Rake Angle Negative 15 (-ve 15°) 
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Table 5.10: Simulations for Different Rake Angles (-15°, -10°, and -5°) 

 

Rake Angle (degrees) Pass 1 Pass 2 Pass 3 

-15  
 

   

-10 

   

-5 
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Figure 5.23: Variation of Cutting Forces with Rake Angles – Pass 1 
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Variation of Cutting Forces with Negative Rake  Angles - Pass 2

-4.00E-08

-2.00E-08

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

-16 -14 -12 -10 -8 -6 -4 -2 0

Rake Angles (Degrees)

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fx

Fy

Fz

 
 

Figure 5.24: Variation of Cutting Forces with Rake Angles – Pass 2 
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Figure 5.25: Variation of Cutting Forces with Rake Angles – Pass 3 
 
Discussion 

 

Figures 5.20-5.22 show the initial configuration for the rake angle of negative 5°, negative 10° and 

negative 15°. Table 5.10 shows the comparison of the material removal for the three passes for the 

different rake angles and Table C.13 shows the associated cutting forces. As can be observed in 

Figure 5.23, the variation of the cutting forces components Fx, Fy and Fz appear to increase with 

increase in the negative rake angles (-5° to -15°) for pass 1. Similar features are observed for passes 

2 and 3 (Figures 5.24 and 5.25).  

 

5.5.1 Conclusion 

 
The cutting force component doesn’t show considerable change as the rake angle increases from 

negative 5° to negative 15°, which is not in agreement with macroscale machining results.  
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Chapter  6. Atomic Surface Roughness Evaluation 
 
 
6.1 Introduction 

 
As highlighted in section 2.1.5, the atomic surface roughness is very significant in assessing the 

quality of performance nano surfaces. The theoretical value for the atomic roughness of copper 

(rms) is given as 0.032nm (Namba et al 2000). 

In this study multi-pass nanometric atomistic simulations were carried and the results provide the 

platform from which the atomic surface roughness is evaluated. 

 
6.2 The Algorithm for the Evaluation of Atomic Surface Roughness 

 
The following are steps to take to evaluate the surface roughness from the simulation results; 
 

• Read the input file of the simulated results  
 

• Extract the surface atoms that contribute to the surface roughness evaluation 
 

To extract the surface atoms: 

 

- Carry out coordination analysis to determine the number of nearest neighbours of 
each atom 

- Then the area of interest on the surface, for the evaluation of the surface roughness is 
selected  

 

• Obtain the (x,y,z) data of the surface atoms 
 

• Transform the (x,y,z) data to a grid data 
 

• The grid data is then fed into a suitable surface analysis software to obtain the surface 
roughness 

 
 
6.3   The Implementation and Comparison of Surface Roughness for the Multiple Pass  

            Simulations 

 
The above algorithm was implemented by using the following: 

 

The OVITO visualization software was used to extract the surface atoms. Then the (x,y,z) data of 

the surface atoms was transformed into a grid data by using the Matlab. The grid data was used as 

input to Surfstand, a 3D surface roughness standard software developed at the Centre for Precision 

Technologies, for the evaluation of the surface roughness.  
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The results of the multipass simulations carried out in Chapter 5 were used. The results for the 

EAM-LJ and the EAM-Morse potential pairs were used. The depth of cut range (0.5-3.0nm) and the 

velocity range (40-220m/s) were used. The results are shown in Tables 6.1 – 6.4. Figures 6.1 and 

6.2 show the near perfect surface of the workpiece and the surface atoms contributing to the surface 

roughness. The Sa value was indeterminate, as this may be close to zero. 

 
 

 
 

Figure 6.1: The Near Perfect Surface of the Workpiece 
 

 

 
Figure 6.2:  The Surface Atoms Contributing to the Surface Roughness 
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Table 6.1: Surface Roughness Results for the EAM-LJ Potentials for Depth of Cut 

 (0.5-3.0nm) 

 
 

Depth of 

Cut (nm) 

Simulation Results Surface Atoms Contributing to 

Sa 

Sa (m) 

0.5 

 

 

1.89E-10 

1.0 

 

 

2.73E-10 

1.5 

 

 

3.45E-10 

2.0 

 

 

2.76E-10 
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2.5 

 

 

2.51E-10 

3.0 

 
 

3.23E-10 

 
 
 

Table 6.2: Surface Roughness Results for the EAM-LJ Potentials for Velocity (40-220m/s) 

(Depth of Cut – 2.0nm) 

 

 

Velocity 

(m/s) 

Simulation Results Surface Atoms Contributing to 

Sa 

Sa (m) 

40 

 

 

2.60E-10 

60 

 

 

2.94E-10 
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80 

 

 

2.68E-10 

100 

 

 

3.00E-10 

120 

 

 

2.70E-10 

140 

 

 

3.22E-10 

160 

 

 

2.65E-10 
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180 

 

 

3.16E-10 

200 

 

 

2.93E-10 

220 

 

 

3.44E-10 
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Table 6.3: Surface Roughness Results for the EAM-Morse Potentials for Depth of Cut 

 (0.5-3.0nm) 

 
 

Depth of 

Cut (nm) 

Simulation Results Surface Atoms Contributing 

to Sa 

Sa (m) 

0.5 

 

 

1.67E-10 

1.0 

 

 

2.64E-10 

1.5 

 

 

2.83E-10 

2.0 

 

 

3.49E-10 
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2.5 

 

 

5.26E-10 

3.0 

 

 

5.59E-10 

 
 
 

Table 6.4: Surface Roughness Results for the EAM-Morse Potentials for Velocity (40-220m/s) 

(Depth of Cut – 2.0nm) 

 

 

Velocity 

(m/s) 

Simulation Results Surface Atoms Contributing to 

Sa 

Sa (m) 

40 

 

 

2.25E-10 

60 

 

 

2.90E-10 
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80 

 

 

2.28E-10 

100 

 

 

2.20E-10 

120 

 

 

3.06E-10 

140 

 

 

2.67E-10 

160 

 

 

3.04E-10 
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180 

 

 

2.76E-10 

200 

 

 

3.35E-10 

220 

 

 

3.08E-10 

 
 
 
 

Table 6.5: Surface Roughness Results for the EAM-LJ and EAM-Morse Potential Pairs for 

Depth of Cut – (0.5-3.0nm) 

 

Depth of Cut  (nm) Sa (EAM-LJ Potentials) (m) Sa (EAM-Morse) (m) 

0.5 1.89E-10 1.67E-10 

1.0 2.73E-10 2.64E-10 

1.5 3.45E-10 2.83E-10 

2.0 2.76E-10 3.49E-10 

2.5 2.51E-10 5.26E-10 

3.0 3.23E-10 5.59E-10 

 
The variation of the surface roughness, Sa with the depth of cut for the EAM-LJ and the EAM-
Morse potentials are shown in Figures 6.3 and 6.4  
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Sa versus Depth of Cut (EAM-LJ Potentials)
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Figure 6.3: Variation of Sa with Depth of Cut for the EAM-LJ Potentials 
 

Sa versus Depth of Cut (EAM-Morse Potentials)
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Figure 6.4: Variation of Sa with Depth of Cut for the EAM-Morse Potentials 

 

Table 6.6: Surface Roughness Results for the EAM-LJ and EAM-Morse Potential Pairs for 

Velocity – (40-220m/s) 
 

 

Velocity (m/s) Sa (EAM-LJ Potentials) (m) Sa (EAM-Morse) (m) 

40 2.60 E-10 2.25E-10 

60 2.94 E-10 2.90E-10 

80 2.68 E-10 2.28E-10 

100 3.00 E-10 2.20E-10 

120 2.70 E-10 3.06E-10 

140 3.22 E-10 2.67E-10 

160 2.65 E-10 3.04E-10 

180 3.16 E-10 2.76E-10 

200 2.93 E-10 3.35E-10 

220 3.44 E-10 3.08E-10 
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The variation of the surface roughness, Sa with velocity for the EAM-LJ and the EAM-Morse 
potentials are shown in Figures 6.5 and 6.6.  
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Figure 6.5: Variation of Sa with Velocity for the EAM-LJ Potentials 

 

Sa versus Velocity (EAM-Morse Potentials)
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Figure 6.6: Variation of Sa with Velocity for the EAM-LJ Potentials 
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6.4. Discussions and Concluding Remarks 

 
Figure 6.3 shows the variation of Sa with depth of cut for the EAM-LJ potentials. The Sa is lowest 

for the depth of cut of 0.5nm, it increases to 1.5nm and then decreases to 2.5nm, before increasing 

to 3. Figure 6.4 shows the variation of Sa with depth of cut for the EAM-Morse potentials. The Sa 

is lowest for depth of cut of 0.5nm and it increases linearly to 3.0nm. Figures 6.5 and 6.6 show the 

variation of Sa with velocity. The Sa seems to be increasing and decreasing as the velocity 

increases. On the macroscale, the Sa should decrease as the velocity increases. On the nanoscale, 

the parameters are very sensitive to small variations. This variation may either be size effects of the 

simulation model or some other factors. As it can be observed from Figures 6.1-6.4 that the choice 

of interatomic potentials affect the prediction of the surface roughness of nanomachining using the 

MD simulation. The Sa increase and decreases for a certain range as velocity increases. 
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Chapter  7. Experimental Set-up and Procedure 
 
 

7.1 Introduction 

 

The MD method has been used to simulate nanometric machining of monocrystalline diamond tool 

on monocrystalline copper workpiece. The objective of this chapter is to attempt to observe the 

mechanisms of material removal on the nanometre scale and to validate the simulation results.  

The following illustrates the attempt and the difficulty of validating nanomachining simulation 

results. The aim of the experiment was to observe the phenomena of rubbing, ploughing and 

cutting/chip formation.  

 
7.2 Sample Preparation 

 
Copper specimen were obtained from the laboratory, They were then cut into smaller pieces of 

roughly 15 x 10 mm. Circular moulds were made using a metallographic sample moulding machine, 

with the copper inserted in them. The resulting workpiece specimens were later hand polished to 

mirror finish, using the following 2-stage procedural steps below: 

 
Stage 1 

 
The copper specimen were hand grinded using abrasive grits of 320, 800, and 1200 micron on a 

grinding machine, in that order, for around 3-5 minutes each. 

 
Stage 2 

 
The copper specimen were then hand polished using 6, 1 and 0.5 micron abrasive cloth on a 

polishing machine for 2-3 minutes each. 

 
These produced mirror finish surfaces. 
 
Table 7.1: Process Breakdown 

 

Stage Abrasive Type Process Time 

Stage 1- Grinding Abrasive Grit: 320 
                        800 
                        1200 
                        2500 

 
3-5 Minutes 
 

Stage 2- Polishing Abrasive Cloth: 6  
                           1 
                           0.5 

 
2-3 Minutes 

 
The polishing steps can be summarized as below: 
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Step 1: Polish the workpiece sample using 320 microns grit on a polishing/grinding table for  
            3-5mins  
Step 2: Then polish the workpiece sample using 800 microns grit on a polishing/grinding table for  
            3-5mins 
Step 3: Then polish the workpiece sample using 1200 microns grit on a polishing/grinding table for  
            3-5mins 
Step 4: Then polish the workpiece sample using 6 microns grit, using a 200mm polishing cloth on a  
            polishing/grinding table for 3-5mins 
Step 5: Then polish the workpiece sample using 1 microns grit, using a 200mm polishing cloth on a  
            polishing/grinding table for 3-5mins 
 
 
7.3 Experimental and Measuring Equipment  

 
The validation experiments were carried out on a Nanoform 250, shown below. 
 

 
 
Figure 7.1: The Nanoform 250 Ultraprecision Machine 
 
7.3.1 Experimental Set-up 

 

 
 

Figure 7.2: The Experimental Rig 
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7.3.2 Metrology Equipment 

 
 

 
 
Figure 7.3: The CCI Interferometer 
 

 
 

Figure 7.4: The AFM Machine 
 
 
7.4 Experimental Procedure 

 
The experiments were set-up on the Nanoform 250 diamond turning machine, by mounting the 

copper workpiece on the vertical spindle and the diamond tool on the horizontal spindle. The tool-

workpiece contact was determined by running some preliminary passes and using Acoustic 

Emission (AE) sensors for the nano touch. The workpiece was fed in steps of 100nm and the 

diamond cutter was allowed to cut the copper specimen. The feed used was 15mm/min and the 
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spindle speed was varied from 2000rpm to 7000rpm in steps of 1000. For each of the spindle speed, 

three passes/scratches were made on the workpiece. 

 
7.5 Analysis of the AE Signals 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                    

 
 
 
Figure 7.5: Raw AE Signal for RPM 7000 (Touch) 
                                                                                                     
                                                                                                                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.6: Raw AE Signal for RPM 7000 (Touch and rubbing)  
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 Figure 7.7: Raw AE Signal for RPM 5000 (Rubbing and Ploughing) 
                                      

                                                                      
                                                                                                                                                                                                    
                                                                                                                        
 
 
 
 
 
 
 
 
 
 
                                                                                                               
 
 
 
 
 
 

   
 
Figure 7.8: Raw AE Signal for RPM 5000 (Ploughing) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

60 

0 

-60 

 
Voltage (mV) 

Time (µs) 

0 8E5 1.6E6 2.4E6 

Rubbing 

-30 

30 

Voltage(mV) vs Time(us) <1>

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

Transition from 
rubbing to 

ploughing 

280 

0 

-280 

 
Voltage (mV) 

Time (µs) 

0 1E6 2E6 3E6 

-140 

140 
Ploughing 

Voltage(mV) vs Time(us) <1>

0 500000 1000000 1500000 2000000 2500000 3000000

-280

-260

-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280



 158

 

                                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.9: Raw AE Signal for RPM   (Cutting) 
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Figure 7.10: Raw AE Signal for RPM 7000 (Touch) 
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Voltage(mV) vs Time(us) <1>
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Figure 7.11: Raw AE Signal for RPM 7000 (Touch and rubbing) 
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Figure 7.12: Raw AE Signal for RPM 7000 (Touch and rubbing) 
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Voltage(mV) vs Time(us) <1>
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Figure 7.13: Raw AE Signal for RPM 6000 (Touch) 
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Figure 7.14: Raw AE Signal for RPM 6000 (Touch and Rubbing) 
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Voltage(mV) vs Time(us) <1>
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Figure 7.15: Raw AE Signal for RPM 6000 (Cutting) 
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Figure 7.16: Raw AE Signal for RPM 5000 (Tough and some Rubbing) 
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Voltage(mV) vs Time(us) <1>
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Figure 7.17: Raw AE Signal for RPM 5000 (Rubbing and Ploughing) 
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Figure 7.18: Raw AE Signal for RPM 5000 (Ploughing) 



 163

Voltage(mV) vs Time(us) <1>
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Figure 7.19: Raw AE Signal for RPM 5000 (Cutting) 
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Figure 7.20: Raw AE Signal for RPM 4000 (Touch and Rubbing) 
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Voltage(mV) vs Time(us) <1>
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Figure 7.21: Raw AE Signal for RPM 4000 (Cutting) 
 

Voltage(mV) vs Time(us) <1>

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 18000000 20000000 22000000

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

 
 

Figure 7.22: Raw AE Signal for RPM 3000 (Touch and Rubbing) 
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Voltage(mV) vs Time(us) <1>
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Figure 7.23: Raw AE Signal for RPM 3000 (Cutting) 
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Figure 7.24: Raw AE Signal for RPM 2000 (Touch and Slight Rubbing) 
 



 166

 
Voltage(mV) vs Time(us) <1>
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Figure 7.25: Raw AE Signal for RPM 2000 

 
 
 

 
 
 

Figure 7.26:  AFM Image of the Side of the Scratch 
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Figure 7.27:  AFM Image of the Side of the Scratch for RPM 3000 
 
 

 
 

Figure 7.28:  AFM Image of the Scratch for RPM 4000 
 
 
 
 

 
 
 

Figure 7.29:  AFM Image of the cut (inside) Scratch for RPM 3000 
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                                                                                     8.6 × 8.2 × 7.1 nm in the x, y and z directions respectively 

Similar 
Features 

 
Figure 7.30:  Comparison of Features in an AFM Image and Simulations 

 
7.6 Discussion and Concluding Remarks 

 
Figures 7.5 – 7-25 show an attempt to use the AE signals to characterize the material removal 

mechanisms of rubbing, ploughing and cutting in nanomachining. Certain features are seen during 

the touch of the tool on the workpiece as detected by the AE sensor. Also, some features seem to 

show the transition between the removal mechanism phenomena. Figures 7.26 – 7.30 show the 

AFM images of some of the scratches made by the Nanoform machine. Some certain features may 

seem to compare with the EAM-Morse multipass simulations, but the scales are in different order of 

magnitutes. It is still very difficult to validate nanometric simulation results and obtain experimental 

data at the sub-nano length scale expecially on machine tools. The force sensor used could not 

acquire force data down to the nanometre level. However, the resulst of this study compare 

favourably with works of other researchers, Pei et al 2006 and Komanduri et al 2010. Komanduri et 

al 2010 observed the ploughing material removal phenomenon in aluminium by AFM scratches on 

Aluminium (Figure 7.31). 

 
Figure 7.31: AFM Scratches on Aluminum (Komanduri et al 2010) 
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Chapter  8. Conclusions and Recommendations 
 
A model of the tool-workpiece for nanometric machining has been developed and the mechanisms 

of material removal has been investigated by using the MD simulation method. Also, the effect of 

various machining parameters on the material removal has been studied and the following below are 

the contribution of this research to scientific knowledge. 

 

8.1 Contribution to Knowledge 

 

• The effects of the interatomic potentials on the nanometric machining of copper workpiece 
with a diamond tool have been shown. 

 

• The MD simulation method have been used to estimate and evaluate the minimum depth of 
cut in nanomachining. 

 

• The MD simulation method have been used to predict the onset of plasticity in 
nanomachining. 

 

• The multi-pass MD simulation which realistically models the machining process have been 
carried out and new results have been obtained. 

 

• The atomic surface roughness of nanometric machining have been evaluated.  
 
 
8.2  Conclusions 

 
Also, the following are the conclusions from this research work. 
 

• It has been identified that the EAM potential is the most appropriate of the 3 potentials 

commonly used for the modelling of nanomachining of copper with diamond tool. The 

choice of the best potential is based on the cutting forces and the potential energy.  The 

EAM potential provides the best description of the metallic bonding in the workpiece, also, 

the cutting forces variation is smallest; the potential and total energies fluctations are least 

for the depth of cut considered. Therefore, the EAM potential should be used, rather than LJ 

and Morse potentials for the modelling of copper and other fcc metals in MD simulations of 

nanomachining. However the use of the EAM-Morse potentials (that is, EAM for the Cu-Cu 

interactions and Morse for the Cu-C interactions) is better than using EAM only for the 

simulations. 
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• For pair potentials in the modelling of nanomachining of copper with diamond tool, the 

EAM-LJ potential pair has the lowest average tangential cutting force component and the 

lowest force ratio. The EAM-Morse pair on the other hand has the lowest energy value of all 

the cases. So, the two pairs; EAM-LJ and EAM-Morse are appropriate for the modelling. 

 

• The material removal phenomena of rubbing, ploughing and cutting have been clearly 

observed from MD simulation results. Ploughing starts from 0.2~0.3nm and the formation 

of chips starts to occur from the depth of cut thickness of 1.5nm. So it can be suggested that 

the extreme accuracy attainable or MDC for copper atoms workpiece, machined with 

extremely sharp diamond tool is around 1.5nm to 3nm.  

 

• On the MD simulation with different tool ends; all the tools clearly show the phenomena of 

rubbing and ploughing in the depth of cut range of 0.05 to 0.5 nm. The tool with the pointed 

end has the lowest average cutting force and the tool with the flat end has the highest 

average cutting force. It is important to note that in nanomachining the tool with the sharpest 

end may not necessarily cause the greatest material removal! The different tool ends may be 

suitable for different metal machining applications. 

 

• It can be observed that the tangential and the normal cutting force components relatively 

increase with increase in velocity. 

 

• It can be seen that the tangential cutting force components are considerably affected by the 

interatomic potential pair used, but they are not greatly affected by whether the tool is rigid 

or deformable. The total energy of the system on the other hand is much lower when the tool 

is non rigid than when it is rigid. 

 

 

8.3. Recommendations for Further Work 

 
To extend this research work, the following are suggestions: 
 

• The size of the simulation models should be increased (to say million atoms) so as to 

overcome size effects. This would also verify the extent of the effect of the model size on 

the nanomachining MD simulation results. 
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• Multi-scale simulation approach should be used for the study already carried out in this 

study. Since the MD can only handle small length (nano metres) and time scales (femto-

nano metres), the spatial and the temporal multi-scale approach would extend the simulation 

length and time scales respectively. 

 

• On the experimental design, a sharper diamond tool should be used for the trials. 
 

• On the other hand, the AFM with a diamond probe should be used for nanocuting as this has 

a much smaller edge (2—8nm) 
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Appendixes 

 

Appendix A:  LAMMPS Input File Structure 

 
 
# in.cu_C 

 

units    metal 

boundary        f f s 

atom_style atomic 

pair_style hybrid tersoff eam lj/cut 2.5 

 

read_data       data.cu_C 

 

pair_coeff      * * tersoff SiC.tersoff NULL C NULL NULL 

 

pair_coeff 1 * eam Cu_u3.eam 

pair_coeff 3 * eam Cu_u3.eam 

pair_coeff 4 4 eam Cu_u3.eam 

 

pair_coeff 1 2 lj/cut 0.4096 2.338  

pair_coeff 2 3 lj/cut 0.4096 2.338 

pair_coeff 2 4 lj/cut 0.4096 2.338 

 

neighbor 3.0 bin 

neigh_modify delay 3 

#neigh_modify    exclude type 1 1 

 

group  newtonian type 1 

group  tool type 2 

group  thermostat type 3 

group  boundary type 4 

group           mobile subtract all boundary tool 

#fix             1 tool rigid single 

fix           1 thermostat rigid single 

 

# initial velocities 

 

compute    new mobile temp 

velocity mobile create 293 564329 temp new 

velocity        tool set 1.5 0 0 sum yes units box 

#fix   2 mobile nve 

fix             2 all nve 

#unfix           2 

fix      3 mobile temp/rescale 1.0 293 293 10.0 1.0 

fix_modify      3 temp new 

fix  4 boundary setforce 0.0 0.0 0.0 

fix             5 tool setforce 0.0 0.0 0.0 

velocity thermostat scale 293.0 

 

thermo  500 

thermo_style custom step temp epair pe ke etotal vol press f_5[1] f_5[2] 

f_5[3] 

thermo_modify temp new 

thermo_modify lost warn 

compute_modify  new extra 4 

dump  1 all atom 500 dump.cu_C 

dump_modify 1 scale no 

dump  2 all custom 1000 dump.forcecu_C.* id type x y z vx vy vz fx fy fz 

timestep 0.0003 

run  150000 
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Appendix B:  A (Portable Batch System) PBS Job Script Template 
 

##################################### 

### Job Submission Script         ### 

# Change items in section 1         # 

# to suit your job needs            # 

##################################### 

# Section 1: User Parameters        # 

##################################### 

# 

#!/bin/bash 

#PBS -l nodes=2:ppn=4 

#PBS -m abe 

#PBS -M j.o.oluwajobi@hud.ac.uk 

#PBS -N Sa_Tersoff_EAM_LJ_W15_D5 

#PBS -q parastd 

#PBS -j oe 

 

# 

##################################### 

# Section 2: Environment Variables  # 

# State your executable path        # 

# and any license info              # 

# eg:                               # 

# export LM_LICENSE_FILE=7241@mech1 # 

##################################### 

 

cd $HOME/Sa_Tersoff_EAM_LJ_W15_D5 

NODES=`uniq $PBS_NODEFILE | wc -l` 

CORES=`cat $PBS_NODEFILE | wc -l` 

sort -r $PBS_NODEFILE |uniq > mpd.nodefile.$PBS_JOBID 

PATH=/apps/libs/mpi/openmpi-1.4.1/bin:/apps/lammps/lammps-12Oct10/bin:$PATH 

LD_LIBRARY_PATH=/apps/libs/mpi/openmpi-1.4.1/lib:$LD_LIBRARY_PATH 

OPENMPI_HOME=/apps/libs/mpi/openmpi-1.4.1/ 

##################################### 

# Section 3: Executing Commands     # 

##################################### 

mkdir /tmp/jide/ 

cp -R $HOME/Sa_Tersoff_EAM_LJ_W15_D5/* /tmp/jide/ 

cd /tmp/jide/ 

 

mpirun -machinefile mpd.nodefile.$PBS_JOBID -np $CORES --prefix 

$OPENMPI_HOME -path $PATH lmp_bellatrix <in.cu_C 

 

cp -R /tmp/jide/* $HOME/Sa_Tersoff_EAM_LJ_W15_D5/ 

cd $HOME/Sa_Tersoff_EAM_LJ_W15_D5 

rm -Rf /tmp/jide/ 

 

 

##################################### 

# Section 4: Clean Temporary Files  # 

##################################### 

 

rm ./mpd.nodefile.$PBS_JOBID 
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Appendix C:  More Simulation Results 
 

Table C.1: Simulations with Variations of the Depth of Cut (0.01-4.0nm) for the Three 

Potential Combinations 
 

Depth of Cut 

(nm) 

Morse-Morse  

(Case 4.3.1) 

EAM-Morse  

(Case 4.3.2) 

EAM-LJ  

(Case 4.3.3) 

0.01 

 
  

0.02 

 
 

 

0.03 

   
0.04 

  

 
0.05 

 
  

0.06 
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0.07 

 
  

0.08 

 
  

0.09 

   
0.10 

 
  

0.15 

   

0.20 
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0.25 

 
  

0.30 

 
 

 

0.35 

   
0.40 

  
 

0.45 

   
0.50 

 

 
 

1.00 
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1.50 

 
  

2.00 

 
  

2.50 

 
  

3.00 

 
  

3.50 

   
4.00 
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Table C.2: Comparisons of the Cutting Forces for the Simulations with Depth of Cut  

(0.01-4.0nm) 

 

Depth 

of 

Cut 

(nm) 

Morse-Morse (4.3.1) EAM-Morse (4.3.2) EAM-LJ (4.3.3) 
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0.05 Cutting Forces for Depth of Cut - 0.05nm
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0.06 Cutting Forces for Depth of Cut - 0.06nm
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0.07 Cutting Forces for Depth of Cut - 0.07nm
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0.08 Cutting Forces for Depth of Cut - 0.08nm
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0.09 Cutting Forces for Depth of Cut - 0.09nm
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0.10 Cutting Forces for Depth of Cut - 0.1nm
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0.15 Cutting Forces for Depth of Cut - 0.15nm
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0.20 Cutting Forces for Depth of Cut - 0.2nm
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0.25 Cutting Forces for Depth of Cut - 0.25nm
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0.30 Cutting Forces for Depth of Cut - 0.3nm
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0.35 Cutting Forces for Depth of Cut - 0.35nm
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0.40 Cutting Forces for Depth of Cut - 0.4nm
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0.45 Cutting Forces for Depth of Cut - 0.45nm

-6.00E-08

-4.00E-08

-2.00E-08

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fx

Fy

Fz

Cutting Forces for Depth of Cut - 0.45nm

-3.00E-08

-2.00E-08

-1.00E-08

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

6.00E-08

7.00E-08

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fx

Fy

Fz

Cutting Forces for Depth of Cut - 0.45nm

-5.00E-08

-4.00E-08

-3.00E-08

-2.00E-08

-1.00E-08

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)
Fx

Fy

Fz

 
0.50 Cutting Forces for Depth of Cut - 0.5nm
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1.00 Cutting Forces for Depth of Cut - 1nm
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1.50 Cutting Forces for Depth of Cut - 1.5nm
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2.00 Cutting Forces for Depth of Cut - 2.0nm
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Table C.3: Comparisons of the Energies for the Simulations with Depth of Cut (0.01-4.0nm) 

 

Depth 

of Cut 

(nm) 

Morse-Morse  

(Case 4.3.1) 
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(Case 4.3.3 ) 
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0.50 Potential and Total Energies for Depth of Cut - 0.5nm

-213400

-213200

-213000

-212800

-212600

-212400

-212200

-212000

-211800

-211600

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

E
n

e
rg

y
 (

e
V

)

PotEng

TotEng

 

Potential and Total Energies for Depth of Cut - 0.5nm

-225500

-225000

-224500

-224000

-223500

-223000

-222500

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

E
n

e
rg

y
 (

e
V

)

PotEng

TotEng

 

Potential and Total Energies for Depth of Cut - 0.5nm

-225500

-225000

-224500

-224000

-223500

-223000

-222500

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

E
n

e
rg

y
 (

e
V

)

PotEng

TotEng

 
1.00 Potential and Total Energies for Depth of Cut - 1nm
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2.00 Potential and Total Energies for Depth of Cut - 2.0nm
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2.50 Potential and Total Energies for Depth of Cut - 2.5nm 
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3.00 Potential and Total Energies for Depth of Cut - 3.0nm
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3.50 Potential and Total Energies for Depth of Cut - 3.5nm
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4.00 Potential and Total Energies for Depth of Cut - 4.0nm
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Table C.4: Comparisons of the Variation of Temperature for the Simulations with Depth of 

Cut (0.01-4.0nm) 
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0.05 Temperature Distribution for Depth of Cut - 0.05nm
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0.06 Temperature Distribution for Depth of Cut - 0.06nm
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0.07 Temperature Distribution for Depth of Cut - 0.07nm

270

275

280

285

290

295

300

305

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

E
n

e
rg

y
 (

e
V

)

Temp

 

Temperature Distribution for Depth of Cut - 0.07nm

270

275

280

285

290

295

300

305

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

T
e
m

p
e

ra
tu

re
 (

d
e

g
 K

)

Temp

 

Temperature Distribution for Depth o f Cut - 0.07nm

270

275

280

285

290

295

300

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

T
e

m
p

e
ra

tu
re

 (
d

e
g

 K
)

Temp

 
0.08 Temperature Distribution for Depth of Cut - 0.08nm
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0.09 Temperature Distribution for Depth of Cut - 0.09nm
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0.10 Temperature Distribution for Depth of Cut - 0.1nm
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0.15 Temperature Distribution for Depth of Cut - 0.15nm

270

275

280

285

290

295

300

305

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

T
e

m
p

e
ra

tu
re

 (
d

e
g

 K
)

Temp

 

Temperature Distribution for Depth of Cut - 0.15nm

270

275

280

285

290

295

300

305

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

T
e

m
p

e
ra

tu
re

 (
d

e
g

 K
)

Temp

 

Temperature Distribution for Depth of Cut - 0.15nm

270

275

280

285

290

295

300

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

T
e

m
p

e
ra

tu
re

 (
d

e
g

 K
)

Temp

 



 196

0.20 Temperature Distribution for Depth of Cut - 0.2nm
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0.25 Temperature Distribution for Depth of Cut - 0.25nm
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0.30 Temperature Distribution for Depth of Cut - 0.3nm
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0.35 Temperature Distribution for Depth of Cut - 0.35nm
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Temperature Distribution for Depth of Cut - 0.35nm
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0.40 Temperature Distribution for Depth of Cut - 0.4nm
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0.45 Temperature Distribution for Depth of Cut - 0.45nm
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0.50 Temperature Distribution for Depth of Cut - 0.5nm
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1.00 Temperature Distribution for Depth of Cut - 1nm
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1.50 Temperature Distribution for Depth of Cut - 1.5nm
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2.00 Temperature Distribution for Depth of Cut - 2.0nm
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2.50 Temperature Distribution for Depth of Cut - 2.5nm
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3.00 Temperature Distribution for Depth of Cut - 3.0nm
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3.50 Temperature Distribution for Depth of Cut - 3.5nm
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4.00 Temperature Distribution for Depth of Cut - 4.0nm
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Table C. 5: Comparison of the Simulation for Different Tool Ends with Depth of Cut (0.05-

0.5nm) 

 

Depth of Cut 

(nm) 
Flat Tool End Pointed Tool End Spherical Tool 

End 
Trapezoidal 

Tool End 
0.05 

  
 

 
0.1 

  
 

 
0.15 

    
0.2 

    
0.25 

    

0.3 

  
  

0.35 
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0.4 

    
0.45 

   
0.5 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table C.6: Comparison of the Cutting Forces for the Different Tool Ends (Depth of Cut 0.05-0.5nm) 
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Table C.7: Comparison of the Energies for the Different Tool Ends (Depth of Cut 0.05-0.5nm) 
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0.2 Potential and Total Energies for Depth of Cut - 0.2nm (Flat End 
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0.4 Potential and Total Energies for Depth of Cut - 0.4nm (Flat End 
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Table C.8: Comparison of the Temperature Variation for the Different Tool Ends (Depth of Cut 0.05-0.5nm) 
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0.2 Temperature Distribution for Depth of Cut - 0.2nm (Flat End 

Tool)
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0.4 Temperature Distribution for Depth of Cut - 0.4nm (Flat End 
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Table C.9: Cutting Forces for the Different Cases 

 

 Cases Pass 1 Pass 2 Pass 3 
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Table C.10: Temperature Variation for the Different Cases 
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Table C.11: Cutting Forces for Different Depths of Cut (0.5 – 3nm) 

 

Depth of 

Cut 

(nm) 

Pass 1 Pass 2 Pass 3 
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Table C.12: Cutting Forces Different Feeds (0.5 – 1.5nm) 

 
Feed 
(nm) 

Pass 1 Pass 2 Pass 3 

0.5  
 

Cutting Forces for Feed 0.5nm - Pass 1

-1.50E-07

-1.00E-07
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Cutting Forces for Feed 0.5nm - Pass 2
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Cutting Forces for Feed 0.5nm - Pass 3
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0.75 Cutting Forces for Feed 0.75nm - Pass1
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Cutting Forces for Feed 0.75nm - Pass3

-1.50E-07

-1.00E-07

-5.00E-08

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fx

Fy

Fz

 

1.0 Cutting Forces for Feed 1nm - Pass1
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Cutting Forces for Feed 1nm - Pass3
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1.25 Cutting Forces for Feed 1.25nm - Pass1
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Cutting Forces for Feed 1.25nm - Pass3
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-1.50E-07

-1.00E-07

-5.00E-08

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fx

Fy

Fz

 

Cutting Forces for Feed 1.5nm - Pass2

-1.50E-07

-1.00E-07

-5.00E-08

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

0 20000 40000 60000 80000 100000 120000 140000 160000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s

 (
N

)

Fx

Fy

Fz

 

Cutting Forces for Feed 1.5nm - Pass3
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Table C.13: Cutting Forces for Different Rake Angles (-5°, -10° and -15°) 

 

Rake 
Angle 
(degs) 

Pass 1 Pass 2 Pass 3 

-5  
 

Cutting Forces for Rake Angle (Negative 5) - Pass 1
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Cutting Forces for Rake Angle (Negative 5) - Pass 3
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-10 Cutting Forces for Rake Angle (Negative 10) - Pass 1

-2.00E-07

-1.50E-07

-1.00E-07

-5.00E-08

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

0 50000 100000 150000 200000 250000

No of Steps

C
u

tt
in

g
 F

o
rc

e
s
 (

N
)

Fx

Fy

Fz

 

Cutting Forces for Rake Angle (Negative 10) - Pass 2
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Cutting Forces for Rake Angle (Negative 10) - Pass 3
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-15 Cutting Forces for Rake Angle (Negative 15) - Pass 1
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Cutting Forces for Rake Angle (Negative 15) - Pass 3
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