Computing and Library Services - delivering an inspiring information environment

Different transition-state structures for the reactions of β-lactams and analogous β-sultams with serine β-lactamases

Tsang, W.Y., Ahmed, Naveed, Hinchliffe, Paul S., Wood, J. Matthew, Harding, Lindsay P., Laws, Andrew P. and Page, Michael I. (2005) Different transition-state structures for the reactions of β-lactams and analogous β-sultams with serine β-lactamases. Journal of the American Chemical Society, 127 (49). pp. 17556-17564. ISSN 1520-5126

[img] PDF
Restricted to Repository staff only

Download (127kB)


β-Sultams are the sulfonyl analogues of β-lactams, and N-acyl β-sultams are novel inactivators
of the class C β-lactamase of Enterobacter cloacaeP99. They sulfonylate the active site serine residue to
form a sulfonate ester which subsequently undergoes C-O bond fission and formation of a dehydroalanine
residue by elimination of the sulfonate anion as shown by electrospray ionization mass spectroscopy. The
analogous N-acyl β-lactams are substrates for β-lactamase and undergo enzyme-catalyzed hydrolysis
presumably by the normal acylation-deacylation process. The rates of acylation of the enzyme by the
β-lactams, measured by the second-order rate constant for hydrolysis, kcat/ Km, and those of sulfonylation
by the β-sultams, measured by the second-order rate constant for inactivation, ki
, both show a similar pH
dependence to that exhibited by the β-lactamase-catalyzed hydrolysis of β-lactam antibiotics. Electronwithdrawing
groups in the aryl residue of the leaving group of N-aroyl β-lactams increase the rate of alkaline
hydrolysis and give a Bronsted βlg of -0.55, indicative of a late transition state for rate-limiting formation
of the tetrahedral intermediate. Interestingly, the corresponding Bronsted βlg for the β-lactamase-catalyzed
hydrolysis of the same substrates is -0.06, indicative of an earlier transition state for the enzyme-catalyzed
reaction. By contrast, although the Bronsted βlg for the alkaline hydrolysis of N-aroyl β-sultams is -0.73,
similar to that for the β-lactams, that for the sulfonylation of β-lactamase by these compounds is -1.46,
compatible with significant amide anion expulsion/S-N fission in the transition state. In this case, the enzyme
reaction displays a later transition state compared with hydroxide-ion-catalyzed hydrolysis of the β-sultam.

Item Type: Article
Additional Information: UoA 18 (Chemistry) © 2005 American Chemical Society
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References: 1. Waley, S. G. In The Chemistry of -Lactams; Page, M. I., Ed., Blackie: Glasgow, 1992; pp 198-226; Frère, J.-M. Mol. Microbiol. 1995, 16, 385-395. [Medline] 2. Payne, D. J. J. Med. Microbiol. 1993, 39, 93-99; [ChemPort] [Medline] Nordmann, P.; Mariotte, S.; Naas, T.; Labia, R.; Nicolas, M. H. Antimicrob. Agents Chemother. 1993, 37, 939-946; [ChemPort] [Medline] Naas. T.; Vandel, L.; Sougakoff, W.; Livermore, D. M.; Nordmann, P. Antimicrob. Agents Chemother. 1994, 38, 1262-1270. [Medline] 3. Bush, K.; Jacoby, G. A.; Medeiros, A. A. Antimicrob. Agents Chemother. 1995, 39, 1211-1233; [ChemPort] [Medline] Rasmussen, B. A.; Bush, K. Antimicrob. Agents Chemother. 1997, 41, 223-232; [ChemPort] [Medline] webt.asp. 4. Hechler, U.; Van den Weghe, M.; Martin, H. H.; Frère, J.-M. J. Gen. Microbiol. 1989, 135, 1275-1290. [ChemPort] [Medline] 5. Page, M. I.; Laws, A. P. Chem. Commun. 1998, 1609-1617. [ChemPort] [CrossRef] 6. Galleni, M.; Lamotte-Brasseur, J.; Rossolini, G. M.; Spencer, J.; Dideberg, O.; Frère, J.-M. Antimicrob. Agents Chemother. 2001, 45, 660-663. [ChemPort] [Medline] [CrossRef] 7. Kelly, J. A.; Dideberg, O.; Charlier, P.; Wery, J. P.; Libert, M.; Moews, P. C.; Knox, J. R.; Duez, C.; Fraipont, CL.; Joris, B.; Dusart, J.; Frère, J.-M.; Ghuysen, J. M. Science 1986, 231, 1429-1431; [ChemPort] [Medline] Samraoui, B.; Sutton, B. J.; Todd, R. J.; Artymiuk, P. J.; Waley, S. G.; Phillips, D. C. Nature 1986, 320, 378-380; [ChemPort] [Medline] Knox, J. R.; Moews, P. C. J. Mol. Biol. 1991, 220, 435-455; Moews, P. C.; Knox, J. R.; Dideberg, O.; Charlier, P.; Frère, J.-M. Proteins 1990, 7, 156-171; [ChemPort] [Medline] Herzberg, O.; Moult, J. Science 1987, 236, 694-701; [ChemPort] [Medline] Herzberg, O. J. Mol. Biol. 1991, 217, 701-719; [CrossRef] Dideberg, O.; Charlier, P.; Wéry, J.-P.; Dehottay, P.; Dusart, J.; Erpicum, T.; Frère, J.-M.; Ghuysen, J.-M. Biochem. J. 1987, 245, 911-913; [ChemPort] [Medline] Lamotte-Brasseur, J.; Dive, G.; Dideberg, O.; Charlier, P.; Frère, J.-M.; Ghuysen, J.-M.; Biochem. J. 1991, 279, 213-221; [ChemPort] [Medline] Jelsch, C.; Mourey, L.; Masson, J.-M.; Samama, J.-P. Proteins 1993, 16, 364-383. [ChemPort] [Medline] 8. Oefner, C.; D'Arcy, A.; Daly, J. J.; Gubernator, K.; Charnas, R. L.; Heinze, I.; Hubschwerlen, C.; Winkler, F. K. Nature 1990, 343, 284-288; [ChemPort] [Medline] [CrossRef] Lobkovsky, E.; Moews, P. C.; Liu, H.; Zhao, H.; Frère, J.-M.; Knox, J. R. Proc. Natl. Acad. Sci. 1993, 90, 11257-11261; Lobkovsky, E.; Billings, E. M.; Moews, P. C.; Rahil, J.; Pratt, R. F.; Knox, J. R. Biochemistry 1994, 33, 6762-6772; [ChemPort] [Medline] Usher, K. C.; Blaszczak, L. C.; Weston, G. S.; Shoichet, B. K.; Remington, S. J. Biochemistry 1998, 37, 16082-16092.[Full text - ACS] [ChemPort] [Medline] 9. Maveyraud, L.; Golemi, D.; Kotra, L. P.; Tranier, S.; Vakulenko, S.; Mobashery, S.; Samama, J. P. Struct. Fold. Des. 2000, 8, 1289; [ChemPort] [CrossRef] Maveyraud, L.; Golemi-Kotra, D.; Ishiwata, A.; Meroueh, O.; Mobashery, S.; Samama, J. P. J. Am. Chem. Soc. 2002, 124, 2461-2465.[Full text - ACS] [ChemPort] [Medline] 10. Leung, Y.-C.; Robinson, C. V.; Aplin, R. T.; Waley, S. G. Biochem. J. 1994, 299, 671-678; [ChemPort] [Medline] Brown, R. P.; Aplin, R. T.; Schofield, C. J. Biochemistry 1996, 35, 12421-12432.[Full text - ACS] [ChemPort] [Medline] 11. Fisher, J.; Belasco, J. G.; Khosla, S.; Knowles, J. R. Biochemistry 1980, 19, 2895-2901; [ChemPort] [Medline] Wilkinson, A.-S.; Bryant, P. K.; Meroueh, S. O.; Page, M. G.; Mobashery, S.; Wharton, C. W. Biochemistry 2003, 42, 1950-1957.[Full text - ACS] [ChemPort] [Medline] 12. Page. M. I.; Vilanova, B.; Layland, N. J. J. Am. Chem. Soc. 1995, 117, 12092-12095. 13. Christensen, H.; Martin, M. T.; Waley, S. G. Biochem. J. 1990, 266, 853-861. [ChemPort] [Medline] 14. Strynadka, N. C.; Adachi, H.; Jensen, S. E.; Johns, K.; Sielecki, A.; Betzel, C.; Sutoh, K.; James, M. N. Nature 1992, 359, 700-705; [ChemPort] [Medline] [CrossRef] Beadle, B. M.; Shoichet, B. K. Antimicrob. Agents Chemother. 2002, 46, 3978-3980. [ChemPort] [Medline] [CrossRef] 15. Matagne, A.; Frère, J.-M. Biochim. Biophys. Acta 1995, 1246, 109-127. [Medline] [CrossRef] 16. Minasov, G.; Wang, X.; Shoichet, B. K. J. Am. Chem. Soc. 2002, 124, 5333-5340.[Full text - ACS] [ChemPort] [Medline] 17. Page, M. I. Curr. Pharm. Des. 1999, 5, 895-913. [ChemPort] [Medline] 18. Damblon, C.; Zhao, G. H.; Jamin, M.; Ledent, P.; Dubus, A.; Vanhove, M.; Raquet, X.; Christiaens, L.; Frère, J.-M. Biochem. J. 1995, 309, 431-436; [ChemPort] [Medline] Xu, Y.; Soto, G.; Hirsch, K. R.; Pratt, R. F. Biochemistry 1996, 35, 3595-3603;[Full text - ACS] [ChemPort] [Medline] Murphy, B. P.; Pratt, R. F. Biochemistry 1991, 30, 3640-3649. 19. Dubus, A., Normark, S.; Kania, M.; Page, M. G. Biochemistry 1994, 33, 8577-8586; [ChemPort] [Medline] Dubus. A., Ledent, P., Lamotte-Brasseur, J., Frère, J.-M. Proteins 1996, 25, 473-485. [Medline] 20. Page, M. I. Acc. Chem. Res. 2004, 37, 297-303.[Full text - ACS] [ChemPort] [Medline] 21. Wood, J. M.; Page, M. I. Trends Heterocycl. Chem. 2002, 8, 19-34. [ChemPort] 22. King, J. F.; Rathore, R.; Lam, J. Y. L.; Guo, Z. R.; Klassen, D. F. J. Am. Chem. Soc. 1992, 114, 3028-3033. [ChemPort] 23. Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page, M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385.[Full text - ACS] [ChemPort] 24. Baxter, N. J.; Laws, A. P.; Rigoreau, L.; Page, M. I. J. Chem. Soc., Perkin Trans 2 1996, 2245-2246. [ChemPort] [CrossRef] 25. Page, M. I.; Williams, A. In Organic and BioOrganic Mechanisms; Longman, 1997. 26. Pratt, R. F. Science 1989, 246, 917-919; [ChemPort] [Medline] Rahil, J.; Pratt, R. F. Biochem. J. 1991, 275, 793-795. [ChemPort] [Medline] 27. Llinás, A.; Ahmed, N.; Cordaro, M.; Laws, A. P.; Frère, J.-M.; Delmarcelle, M.; Silvaggi, N. R.; Kelly, J. A.; Page, M. I. Biochemistry 2005, 44, 7738-7746.[Full text - ACS] [ChemPort] 28. Hinchliffe, P. S.; Wood, J. M.; Davis, A. M.; Austin, R. P.; Page, M. I. Org. Biomol. Chem. 2003, 1, 67-80. [ChemPort] [Medline] [CrossRef] 29. Photaki, I. J. Am. Chem. Soc. 1963, 85, 1123-1126; [ChemPort] Samuel, D.; Silver, B. L. J. Chem. Soc. 1963, 85, 1197-1198. [ChemPort] [CrossRef] 30. Anderson, L.; Kelly, J. J. J. Am. Chem. Soc. 1959, 81, 2275-2276. [ChemPort] 31. Ako, H.; Foster, R. J.; Ryan, C. A. Biochemistry 1974, 13, 132-139; [ChemPort] [Medline] Weiner, H.; White, W. N.; Hoare, D. G.; Koshland Jr., D. E. J. Am. Chem. Soc. 1966, 88, 3851-3859. [Medline] 32. Galleni, M.; Lindberg, F.; Normark, S.; Cole, S.; Honore, N.; Joris, B.; Frère, J.-M. Biochem. J. 1988, 250, 753-760; [ChemPort] [Medline] Rahil, J.; Pratt, R. F. Biochemistry 1992, 31, 5869-5878. [ChemPort] [Medline] 33. Madonna, M. J., Zhu, Y. F.; Lampen, J. O. Nucleic Acids Res. 1987, 15, 1877; [ChemPort] [Medline] Patchornik, A.; Sokolovsky, M. J. Am. Chem. Soc. 1964, 86, 1860-1861; Ziegler, K. J. Biol. Chem. 1964, 239, 2713-2714; Creamer, L. K.; Matheson, A. R. N. Z. J. Dairy Sci. Technol. 1977, 12, 253-259 34. Cohen, S. A.; Pratt, R. F. Biochemistry 1980, 19, 3996-4003. [ChemPort] [Medline] 35. Macdonald, S. J. F.; Belton, D. J.; Buckley, D. M.; Spooner, J. E.; Anson, M. S.; Harrison, L. A.; Mills, K.; Upton, R. J.; Dowle, M. D.; Smith, R. A.; Molloy, C. R.; Risley, C. J. Med. Chem. 1998, 41, 3919-3922;[Full text - ACS] [ChemPort] [Medline] Macdonald, S. J. F., et al. Bioorg. Med. Chem. Lett. 2001, 11, 243-246; [Medline] [CrossRef] Macdonald, S. J. F., et al. Bioorg. Med. Chem. Lett. 2001, 11, 895-898. [Medline] [CrossRef] 36. Menger, F. M. Acc. Chem. Res. 1985, 18, 128-134; [ChemPort] Menger, F. M. Acc. Chem. Res. 1993, 26, 206-212; [ChemPort] Dafforn, A.; Koshland, D. E., Jr. Proc. Natl. Acad. Sci. 1971, 68, 2463-2467; [ChemPort] Kirby, A. J. Acc. Chem. Res. 1997, 30, 290-296;[Full text - ACS] [ChemPort] Kirby, A. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 706-724. [CrossRef] 37. Page, M. I.; Laws, A. P.; Slater, M. J.; Stone, J. R. Pure Appl. Chem. 1995, 67, 711-717; [ChemPort] Laws, A. P.; Page, M. I.; Slater, M. J. Bioorg. Med. Chem. Lett. 1993, 3, 2317-2322. [ChemPort] [CrossRef] 38. Williams, A. Adv. Phys. Org. Chem. 1992, 27, 1-55. 39. Proctor, P.; Gensmantel, N. P.; Page, M. I. J. Chem. Soc., Perkin Trans. 2. 1982, 1185-1192; Page, M. I. Adv. Phys. Org. Chem. 1987, 23, 165-270. 40. Faist, V.; Drusch, S.; Kiesner, C.; Elmadfa, I.; Erbersdobler, H. F. Int. Dairy J. 2000, 10, 339-346. [ChemPort] [CrossRef]
Depositing User: Sara Taylor
Date Deposited: 14 May 2007
Last Modified: 28 Aug 2021 23:36


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©