University of Huddersfield Repository

Unver, Ertu, Howard, Chris and Swann, David

Design & Development of Scalp Cooling Cap

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/17743/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Design & Development of Scalp Cooling Cap

By:

Dr Ertu Unver, PhD, MSc, PG Cert, BSc, HEA, aIED, Senior Lecturer, School of Art, Design and Architecture, 3D Digital & Product Design

Chris Howard, BA (Hons), Senior Lecturer, School of Art, Design and Architecture, Product Design

Dr, David Swann, PhD, MA, BA(Hons), HEA, Reader, School of Art, Design and Architecture, Department of Architecture and 3D

Project Dates: Phase 1: May 2012 – 2013 on-going

This presentation is strictly confidential and owned by Paxman-Coolers Ltd, University of Huddersfield. It may not be published, in full or in part, without the consent of the Authors and Paxman Coolers Ltd.
Current Product:

Current product is wound length of silicone tubes
Individually hand made, slow & expensive to manufacture, 5 different sizes,
Project Aims and Objectives:

Stage 1:
- **Preliminary Research into European/Far-East human head size/shape** data and availability.
- **3D Scanning of the volunteer’s** head creation of 3D CAD model.
- **Produce suitable method of cap design & tool design to suit supplier’s production method.**
- In collaboration with Paxman and their supplier the **following objectives** were agreed:
 - Improve Conductivity
 - Improve Cap Fit
 - Improve Patient Comfort and Ergonomics
 - Improve the Ability to Mass-Produce
 - Minimise the number of size options
 - Reduce Manufacturing Cost
 - Identify optimal flow pattern within the Cap Design
- **Digital 3D CAD model** of the agreed cap design.
- **Liaise with Primasil to create a Working Prototype** of the agreed design to fit the agreed head size, Design Modifications following testing.

Stage 2:
UK head sizes:
- Creation of 3D CAD models of multiple UK head sizes, the variation depends on the design solution produced in stage one.
- Working with Primasil, to produce relevant mould and tools, pattern, etc. for each UK sizes which can be used for mass production.

Far East head sizes:
- Research into Far East head sizes, 3D Rapid Prototyping of a single head,
- Creation of 3D cad models of multiple head sizes for Far East
- Produce relevant mould and tools, pattern, etc. for each Far East sizes
Literature review: See Project Report

Paxman History

Introduction to the Paxman Hair Loss Reduction System
Cooling Caps

Research into Effectiveness of Scalp Cooling
Scalp Cooling Prevention
Paxman Scalp Cooling experiment in UK (1997-2010)
Norwegian observational study (2000-2001)
Netherland Study -1 (2006 - 2010)
Netherland Study – 2 (2006 - 2010)
Research by Wim PM Breed, Corina JG van den Hurk and Mijke Peerbooms, (2011)

Patent Search
Inventor: Yvonne Olofsson, Patent No / Pub No: 6,156,059
Inventor: Freddy Pachys, Patent No / Pub No: 5,603,728
Inventor: Randy Leong, Patent No / Pub No: 5,950,234
Inventor: Robert W. Kramer, Patent No / Pub No: 4,566,455
Inventor: Kenneth J. Maxted, Patent No / Pub No: 5,342,411
Other related patents include

Head Size Research
CAESAR Project
Size China Project

Experiments
Non-contact 3D Laser Scanning and Processing
Concept development
Tool Design
Prototyping
Experiment 2
Future Work

References
Primasil proposed a new production method which could create hollow form silicon mouldings using a two stage vacuum forming technique.

The technique could possibly be used to create a scalp cooler.
The aim was to achieve a flat silicon moulding which could then be fitted to a 3D head shape.
3D Scanning:

Although over twenty different scans were taken from various angles, only eight scans were used to create an accurate surface as seen in figure. The scanning process took just over an hour. Geomagic Studio software is used for the processing of data including capturing and cleaning.
The 3d scanned data enabled the team to construct a 3D surface of a full head which was used as a reference to construct a NURBs surface. This process involves using a standard 3D human head and modifying the head shape to fit the scan data.
Chosen Concept

After the concept chosen the team started working on a method to create surfaces which could be converted into a tool where hollow channels could be created. Using the 3D NURBs surfaces 3D solid model created which was used to construct the grooves required for the moulding process.
A 3D Computer model for male and female tool of the mould was created. The two parts assemble to produce the channels with 1.0mm dividers. Each tool half has 5mm channels giving a total internal tube diameter of 10mm.
The tool was produced using a **EOS 3D laser sintering machine** and **PA2200 material**. (Fine Polyamide PA 2200 for EOSINT P). Normally the tool would CNC manufactured in Aluminium at a much higher cost.
Although the principle of the method was successful, the sheet silicon thickness used had to be increased because of tearing during moulding. The extra thickness led to problems with internal channel bonding and reduced flexibility.
To rectify the tearing problem a second redesigned tool was produced with larger channels of 15mm which reduced the number of channels.

We are awaiting the next prototypes.
Future Work

We are also looking at alternative production methods. One method involves bespoke 3D printed caps in a soft, flexible rubber material for individual use. Reducing 3D printing cost may make this route viable with further development.
Questions / Comments