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Abstract

A model is proposed to simulate the effects of high-amplitude vibrations on the spacer applied in
triple and quad bundles of conductors. In particular, the model predicts the amplitude of vertical and
transverse vibration at the attachment point of the spacer, the angle of spacer rotation, and thereby,
the torsion of the bundle, and the magnitude of the force acting on the spacer during the vibration
following ice shedding. The results are compared to those obtained for twin bundles in a recent
research work; thus, this study predicts how the number of subconductors in a bundle affects the
severity of vibration in the vicinity of the spacer.

INTRODUCTION

Dynamic loads on cables such as galloping, ice shedding or conductor breakage may induce high-
amplitude vibrations and damaging transient dynamic forces. Spacers and spacer dampers applied on
bundled conductors contribute to attenuate these vibrations. In this event, however, tension and stress
peaks usually occur in the vicinity of the spacer clamps. Furthermore, if an asymmetric load acts on
the bundle, then the torsion exerted on the bundle may also be significant. Asymmetric loads may
arise from ice shedding from one subconductor, from non-uniform ice load on different subconductors
or from the action of wind on non-uniformly iced conductor bundles. High asymmetric loads result in
significant angles of rotation when the bundle becomes unstable, and it will not untwist itself after
load removal [1-4]. The collapse angle at which the bundle loses its stability depends on the span
parameters, and is an important issue to be determined [3-4].

The finite element method was effectively applied to model ice shedding from overhead transmission
lines. Ice shedding from a single cable of a two-span section was simulated in [5] both numerically
and experimentally, and this model served as a basis for developing a finite element model of ice
shedding from conductor bundles [6]. This model simulates the vertical vibration of bundles, but it is
not applicable to predicting the angle of bundle rotation. A four-degree-of-freedom (4DOF) model of
spacers used in twin bundles was introduced in [7] to simulate both of the vertical vibration and the
rotation of bundle at the spacer attachment point following ice shedding. This idea will be applied in
the present paper to construct spacer models in triple and quad bundles and study their dynamics when
ice sheds from one subconductor in the bundle.

Spacers in triple and quad bundles

A wide variety of spacer design has been developed by different manufacturers. However, all of them
must satisfy the main requirement: keeping a constant distance between the subconductors. Spacer
dampers include elastic elements; and thus, they are also applicable to attenuate cable vibration.
Typical spacers consist of a rigid central frame and arms which are attached to the central frame by
flexible joints, while their free ends are clamped to the subconductors. The elasticity and damping of



such spacers are based on the flexibility of the joints. Arms are allowed to rotate a few degrees around
the joint with increasing resistance until the rotating part is blocked and further deformation is only
possible by elongation of the spacer material. Figure 1 shows a few examples of spacers which are
used in triple and quad bundles.

Figure 1: Spacers in triple and quad bundles

CONSTRUCTION OF MODEL

A 6DOF model and an 8DOF model are constructed to study the dynamics of spacers or spacer
dampers in triple and quad bundles, respectively. Simplified sketches of these models can be seen in
Figures 2 and 3. The conductors hang in the y-z plane in static equilibrium, and the spacers bring them
together at mid-span in the x-z plane. When ice sheds from a single cable, the cable may be assumed
to vibrate in the y-z vertical plane; however, the transverse movement cannot be neglected when
spacers bring subconductors together in a bundle. The symbols m, stand for the mass of the cables or

iced cables. The index i takes the values i=1,2,3 for triple bundles, and i=1,2,3,4 for quad bundles in
this discussion. The cable may be bare or iced; and, in what follows, cable properties concern cable-
ice composition in case of iced cable. The elastic and damping properties of the cable and the spacer
are modeled by springs and dampers, which are indicated only by lines and the symbols ¢;, ¢, d,
and d, in Figures 2 and 3 for the sake of simplicity. Thick continuous lines symbolize springs and
dampers accounting for the stiffness and damping of the cable, whereas thick dashed lines stand for
stiffness and damping of the spacer. The spacer is modeled by three and six spring-damper couples in
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Figure 2: 6DOF model of spacer in triple bundles Figure 3: 8DOF model of spacer in quad bundles



triple and quad bundles, respectively. The symbols ¢, and d_ are indicated only once in Figure 3 for
simplicity, but all six parts of the spacer are assumed to have the same stiffness and damping. The
elasticity of spacer and the elasticity of cables in the vertical direction are represented by nonlinear
springs, ¢, and c,, respectively; whereas the elasticity of cables in the transverse direction are
modeled by the linear springs, c¢ ;. The dampers d,, d, and d  account for cable damping in the

vertical and transverse directions, and for spacer damping, respectively. The general coordinates of the
system are the transverse, x;, and vertical, z,, displacements of the masses, m,. In this section, first

the mass, spring and damping constants, and then the equations of motion will be determined.
Mass of Cable and Spacer

The mass of a spacer is significantly less than that of a cable, therefore the mass of spacer is included
in the mass of cable, m, :

2 2
m=\ 1 p PSPy oA 1)

where g, is the mass per unit length of bare cable, p,, is the density of ice, D, is the diameter of bare
cable, b, is the thickness of ice accumulation which is assumed to be circular, L is the length of the
span, p,, [ and A, are the density, length and cross-sectional area of spacer, respectively, and 7 is
the number of subconductors in the bundle.

Spring Constants of Cable

The elastic behavior of the conductors is described by the statics of the suspended cables [8]. Ice is
taken into account as a uniformly distributed load on the cable in the vertical direction. The force
which acts from the spacer at the attachment point is considered as a concentrated load with vertical
and transverse components. The distributed load is constant; thus, its effect is built in the cable
properties. As the point load varies during the vibration, the corresponding displacement is determined
by the spring characteristics, i.e. the load — displacement relationship describing cable elasticity. The
details for obtaining this relationship are provided in [7]. If the vertical component of the point load is
denoted by P., and the vertical displacement by w,, then the vertical load — vertical displacement

relationship takes the form:

figLh
w, = by K )
AH+h, )\ 2PH

where 1=+ piw;z((D + 2b)2 -D? )/ 4, g is the gravitational constant, and H is the initial tension of

cable including the additional tension due to ice load in case of iced cable. The increment in the cable

tension, /., due to the point load is obtained from a third order equation. The P.—w, relationship

may closely be approximated by a third order polynomial in the range of w, which arises during
vibration. The vertical displacement, w,, is exactly the general coordinate, z; and the spring force,
F

cz?

equilibrates the force, P, and the gravitational force, i.e. F, =—P. —mg. Thus, the vertical
spring force — vertical displacement relationship is defined by the following equation for each cable:
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The relation between the transverse load, P, , and transverse displacement, u ,, is obtained from:
U, =—== 4)

where the additional cable tension, /4, due to the load, P

X

s is calculated again from a third order

equation, and the P, —u, relation is approximated by a linear expression in the range of u, which
occurs during the vibration. The transverse displacement, u , , is equal to the general coordinate, x; and

the spring force, F

cx?

equilibrates the force, P ; thus, the transverse spring force — transverse
displacement relationship may simply be written for each cable as:

F =c X, )

Spring Constants of Spacer

The calculation of the spring constants accounting for the elasticity of spacer is based on [7]. In that
study, a nonlinear spring was assumed to be applied between the two conductors in the twin bundle. In
the present paper, the same nonlinear spring is applied between each pair of subconductors. The
spring characteristics consist of a cubic function until a critical deformation is reached at the point
where the rotation of the arms is blocked, and of a linear function in the region where further
deformation is possible only by elongation of the spacer material:

(6)

sij

c AL if Al <AL,
e e, Al if AL AL,

The indices #j stand for the three couples of subconductors in case of triple bundles, and the six
couples in case of quad bundles. The spring constants were determined in [7] as follows:

co,=-2EAAL, /(3L), c,=EA/l and c, =E, A, /(3lsAlj,). The elongation of the spacer, Al,,
for triple bundle may be expressed by the general coordinates:

Al,z:\/(ls/2+x,—)c2)2+(220+zz—z,0—zl)2 -1 (7)

and, similarly, the elongations A/, and Al,; for triple bundle, and A/,,, Al,, Al,, Al,,, Al,, and
Al,, for quad bundle may readily be formulated according to Figure 4. The symbols z,, stand for the

vertical coordinate of the cables in static equilibrium when force does not act from the spacer, and
Al is the elongation of the spacer in the limit case when the rotation of spacer arm 1s blocked.

The total spring forces that act at each point of mass from the spacer may be determined as a sum of
the forces developing in the springs which are connected to that point of mass (see Figure 4). For
triple bundles, the total spring force at mass m, has the form:

F,=(-F,,sin(z/6—a,)+F,sin(z/6+a,))i+(F,,cos(r/6—a, )+ F,;cos(r/6+a;)k (8)

sl



The vectors i and k are unit vectors in the direction of coordinates x and z, respectively, and the angles
a,, and o, are defined in Figure 4. The trigonometric functions of 7/6—¢«,, may be expressed by

the general coordinates as follows:

sin(7/6—a,,)=(1,/2+x,—x,)/(Al, +1)) and cos(z/6—a,, )=z, +2, —2,, — 2, )/(AL, +1.)
)

The forces F,, and F,, and the trigonometric functions of the angles 7/6+«,; and «,;, may be
written similarly with the help of Figure 4. For quad bundles, the total spring force at mass m, is
given by:

Fsl = (F;‘l2 Sin c¥12 +P;13 €Os alS + F'sl4 Sln(ﬂ-/4+ al4 ))i + (F;12 €Os al2 _F;‘13 Sin al3 +P;l4 COS(ﬂ'/4+ a14 ))k
(10)
The forces F,,, F, and F,,, and the trigonometric functions of the angles «,,, a,;, 7/4+a,,,

nl4+a,, a,, and a,, , are also obtained from Figure 4.
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Figure 4: Spring forces acting in spacer model (angles are measured from position of spacer in static
equilibrium)

Cable Damping and Spacer Damping

Cable damping forces result from structural damping and aerodynamic damping. The damping
constants are calculated from the formulae:

D, +2b,) - D;
dil :251' AiEi:ui +(( : ‘i) : J EioPice and di2 :%CDipApi (1D
for structural and aerodynamic damping, respectively; where & is the damping ratio, E,, is the
Young’s modulus of ice, C,, is the drag coefficient, p is air density, and 4,, =(D,+2b,)L is the

projected area of the iced cable. Damping constants in the transverse direction, d , and d ,,, are

obtained similarly. Then, the total damping force may be written as:

F, =-d,z _di2z.i2 and F,, =-dx _dxizxiz (12)



The structural damping of spacer is also considered in the model. If the spacer is assumed to be ice
free, the damping constant is calculated from the formula: d, =2& \E A p, , where E is

approximated as the tangent of the line drawn between the origin and the connection point of the cubic
and the linear part of the stress-strain curve. Then, the damping force has the following form:

F,, :dSAz',.j (13)

The total damping forces that act at each point of mass from the spacer are obtained exactly in the
same way as for the total spring forces, except that the spring forces F,; in (8) and (10) are replaced

by the damping forces £ .

Equations of Motion

The equations of motion are determined by means of the Lagrangian equations of the second kind

dOr_OT 4 k=1, . (14)

where g, =x,,k=1,...,nand g, =z, ,, k=n+l,..., 2n. The kinetic energy, 7, and the general force,

O, , are expressed as:
T:Z%mi(jcf+z'f) i=1,...n (15)

O =F,+F, ,+F +F,,, k=1,...,n and

cxk sxk

sz,k—n

0, :F;z,k—n+Fdz,k—n+F +Fdsz’k_”+ml.g, k=n+l1,...,2n (16)

DYNAMIC EFFECTS OF ICE SHEDDING FROM ONE SUBCONDUCTOR

The results of simulations for different ice shedding scenarios are presented in this section. All cables
are loaded with ice initially, and then full shedding is assumed from one of the cables. The ice
thickness is varied through consecutive simulations between 10 mm and 60 mm. Triple- and quad-
bundled Bersfort conductors are modeled with a length of 200 m and sag of 6 m. Conductor data are

as follows: D = 35.6 mm, A = 747.1mm”’, u = 2.37 kg/m and E = 67.6 GPa. The damping ratio of
cable is assumed to be 2 %, whereas the drag coefficient is set at 1.25. The ice parameters are defined
to correspond to glaze ice accretion, so that the density and Young’s modulus of the ice take the

values: p,, =900 kg/m’ and E, = 10 GPa, respectively. The spacer material is aluminum, so that its
density and Young’s modulus are: p, =2700 kg/m’ and E,= 70 GPa, respectively. The distance
between the subconductors is 0.5 m, which determines the length of spacer: /.= 0.5 m, with the
exception of the diagonal parts in the spacer for quad bundles, whose length is \/Els. For

simplification, the cross-section of spacer is cylindrical and constant, with an area of 4, = 0.0025 m’.
The damping ratio of spacer is 20 %.



Figure 5 shows spacer positions in static equilibrium after ice sheds from one subconductor and after
the vibration decays. Results for twin bundles are also presented, which are based on the simulations
carried out with the model of [7]. It should be clear that the limit angle for twin and quad bundles is
90", whereas this limit is 120" for triple bundle if we assume that the bundle does not collapse during
vibration. Figure 5 shows that the rotation of bundle may be significant even in static equilibrium with
an asymmetric load; the angle of rotation approaches the mentioned limits for the highest ice load.
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Figure 5: Spacer positions in the static equilibrium of the system when one cable is bare (b) and the other one(s) are

iced (1)
Cable properties are defined in the simulations so that initially, one cable is bare while the other ones
are iced. However, even the bare cable is assumed to be in the same position it would be in static
equilibrium if it were covered by ice. Since this does not correspond to the equilibrium position of the
bare cable, vibration is initiated. Figure 6 shows the maximum angle of rotation of the spacer and,
consequently, that of the bundle at the spacer attachment during vibration for different ice thicknesses.
Simulation results obtained for twin bundles in [7] are also presented, which makes it possible to
compare rotation angles for twin, triple and quad bundles. According to this comparison, the
maximum angle of rotation decreases with an increase in the number of subconductors. However, this
angle exceeds 90° even for quad bundles when the ice load is 50 mm or higher, which means that the
mid-point of the unloaded cable is pulled above that of a loaded one and that a risk of torsional
instability appears (see [2-3]). In case of twin and triple bundles, this happens even for lower ice
thicknesses, i.e. around 20-30 mm.
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Figure 6 : Maximum angle of bundle rotation during
vibration following ice shedding
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Figure 7: Maximum force acting on spacer during
vibration following ice shedding



The maximum force which acts on the spacer during the vibration is presented in Figure 7. This peak
force is highest for the triple bundle and lowest for the quad bundle. The results shown in Figures 6
and 7 predict that the most stable configuration is the quad bundle.

CONCLUSIONS

A model for studying the dynamic behavior of spacers and conductor bundles in the vicinity of the
spacer has been developed in the present paper for triple and quad bundles. Several different ice
shedding scenarios were simulated, the maximum angle of bundle rotation as well as the maximum
force acting on the spacer during the resulting vibration were calculated, and the simulation results
were compared to those obtained in a previous study for twin bundle. The spacer position in the static
equilibrium arising after the decay of ice-shedding-induced vibration was also presented, which
predicts that the rotation of spacer, and thereby that of the bundle, may be significant even in static
equilibrium if the ice load is strongly asymmetric. The maximum angle of rotation during the
vibration of conductor bundles approaches the value above which the bundle becomes unstable.
According to the simulation results, the most stable configuration, i.e. the one with the lowest angle of
rotation and lowest force developing in the spacer, is the quad bundle.
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