
University of Huddersfield Repository

Wang, Jing

Spatio-Temporal Volume-based Video Event Detection

Original Citation

Wang, Jing (2012) Spatio-Temporal Volume-based Video Event Detection. Doctoral thesis, 
University of Huddersfield. 

This version is available at https://eprints.hud.ac.uk/id/eprint/17552/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



 

 

 

SPATIO-TEMPORAL VOLUME-BASED 

VIDEO EVENT DETECTION 

 

 

JING WANG 

 

 

A thesis submitted to the University of Huddersfield 

in partial fulfilment of the requirements for 

the degree of Doctor of Philosophy 

 

 

School of Computing and Engineering 

University of Huddersfield 

 

February 2012



I 

Copyright Statement 

I.  The author of this thesis (including any appendices and/or schedules to this 

thesis) owns any copyright in it (the “Copyright”) and he has given The University of 

Huddersfield the right to use such Copyright for any administrative, promotional, 

educational and/or teaching purposes. 

II.  Copies of this thesis, either in full or in extracts, may be made only in 

accordance with the regulations of the University Library. Details of these regulations 

may be obtained from the Librarian. This page must form part of any such copies 

made. 

III.  The ownership of any patents, designs, trademarks and any and all other 

intellectual property rights except for the Copyright (the “Intellectual Property 

Rights”) and any reproductions of copyright works, for example graphs and tables 

(“Reproductions”), which may be described in this thesis, may not be owned by the 

author and may be owned by third parties. Such Intellectual Property Rights and 

Reproductions cannot and must not be made available for use without the prior 

written permission of the owner(s) of the relevant Intellectual Property Rights and/or 

Reproductions. 



II 

Acknowledgements 

First and foremost, I would like to thank the School of Computing and Engineering at 

the University of Huddersfield for providing this great opportunity to undertake this 

research with their continuous support to the project and myself. 

I would like to thank my first supervisor, my director of studies, Dr. Zhijie Xu. With 

his great help during my research, I have changed from a young student into a 

researcher. He gives me many suggestions, fresh ideas, and an ideal experiment 

environment in the Computer Graphics, Imaging and Vision Research Group.  

I would also like to thank all my friends, family and so many excellent colleagues for 

all their support during my postgraduate study. 

 



III 

Abstract 

Online and offline video clips provide rich information on dynamic events that 

occurred over a period of time, for example, human actions, crowd behaviours, and 

other subject pattern changes. Although substantial progresses have been made in the 

last 3 decades on 2D image feature processing and their applications in areas such as 

face matching and objects recognition, video event detection still remains one of the 

most challenging fields in computer vision study due to the wide range of continuous 

and non-linear signals engaged by an imaging system, and the inherent semantic 

difficulties in machine-based understanding of the detected feature patterns. 

For bridging the gap between the pixel-level image features and the semantic 

“meanings” of a videoed single human event, this research has investigated the 

problem domain through employing the 3D Spatio-Temporal Volume (STV) structure 

and its global feature paradigm for event pattern recognition. The process pipeline 

follows an improved Pair-wise Region Comparison (I-PWRC) and a region 

intersection (RI) based 3D template matching approach for detecting and identifying 

human actions under uncontrolled real-world videoing conditions. To maintain the 

run-time performance of this innovative system design, this programme has also 

developed an efficient pre-filtering mechanism to reduce the amount of voxels 

(volumetric pixels) that need to be processed in each operational cycle. 

For further improving the system’s adaptability and robustness, several optimisation 

techniques, such as scale-invariant template matching and event location prediction 

mechanisms, have also been developed and implemented. The proposed design has 

been tested on various renowned online computer vision research databases and been 

benchmarked against other classic implementation strategies and systems. 

Satisfactory evaluation results have been obtained through statistical analyses on 

standard test criteria such as "Recall" rate and the processing efficiency. 
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Chapter 1. Research Background 

After 40 years of intensive research on image and video processing in academic 

societies, a wide spectrum of Computer Vision (CV) techniques and applications have 

been deeply permeated into people’s daily lives, for example, Closed Circuit 

Television (CCTV) surveillance systems, traffic control deployments, and medical 

and scientific imaging. By using ever more affordable videoing devices such as the 

digital camera, DV recorder and even the mobile phone, video data is becoming a 

popular media form stored and circulated over the Internet, as evidenced by the claim 

that more than 20 minutes of video clips are uploaded to various websites every 

second [Jarrett 2010]. In addition, CCTV surveillance systems have been increasingly 

installed in public areas for crime prevention, crowd control, and emergency 

management. A survey scheme carried out in 2011 reported that an estimation of 1.85 

million CCTV cameras existed in the UK [Fry 2011]. It is anticipated that 

accompanied by the advancement and the application trend of video formats and 

videoing devices, future video data processing and analysis technologies will have 

increased demands on effectiveness, automation, intelligence, and timeliness. 

However, compared with the fundamental video processing areas such as digitisation, 

encoding and compressing, higher level applications like vision-based video event 

detection are still facing many challenges, including video feature segmentation, 

classification, noise removal, tracking, and pattern recognition, which are often 

hampered by problems such as video quality, lighting and occlusion. 

In this research, an improved video event detection approach has been investigated to 

tackle part of the problems mentioned above through using various video assemblies, 
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feature extraction, and template matching algorithms. The research started from 

defining single human actions in the so-called Spatio-Temporal Volume (STV) space 

that was first proposed by [Adelson and Bergen 1985] to represent the global spatial 

and temporal information in a video. The STV and its corresponding data structures 

enable an event matching task to be transformed into a 3D model comparison and 

analysis operation. It is evident in this research that through appropriate 

transformations, static and dynamic information can be encapsulated into 

corresponding 3D “shapes”, whose envelopes and internal compositions can be 

extracted and studied in the global feature space. It is also observed in the project that 

many 2D pattern recognition techniques can be readily extended into the 3D 

volumetric domain for template-based matching processes. The main objective of this 

thesis is to record and discuss the key research findings as well as the corresponding 

development and evaluation.  

1.1. Brief Note on Computer Vision 

The very first question referred to as computer vision (CV), “how to build an artificial 

vision system for guiding robots to perform the same functions as human vision 

system does?” [Boden 2006] has been an extremely challenging one since the early 

stage of Artificial Intelligent (AI) research in the 1970s. As a key component to the 

modern AI-driven robots, visual cues are defined and acquired as special 2D signals 

from optical sensors, which share the same technological foundations as signals 

generated by other acoustic, pressure and temperature sensors. However, comparing 

with those conventional sensor signals, the real challenge is that vision signals 
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contains more than 80% information-entropy [Davison 2005], which can be explored 

to a great depth-evidence to the maxim “a picture is worth a thousand words”. 

For tackling the CV problems, many research questions have been introduced during 

its development. The hot-spots in chronological order on computer vision can be 

illustrated in Figure 1-1.  

 

Figure 1-1 CV Research hotspots timeline 

As shown in the figure, some of the early pioneering work had been focusing on 

image signal processing and optimisation strategies for enabling high-level image 

understanding. Being rooted to the traditional signal processing domains, such as 

filtering and frequency feature analysis, those researchers have facilitated a 

development in image quality enhancement, feature detection and camera calibration. 

Almost as a by-product, some research and pilot projects have started paying attention 

to video processing through adopting 2-dimensional (2D) image processing 

techniques onto the consecutive video frames [Wang and Cohen 2007]. 

Around the 1980s, many mathematical models for tackling image feature 

representation and content analysis problems were investigated such as [Katsuragawa 

et al 1988], [Yuille and Grzymacz 1988] and [Feddema et al. 1989]. These 

mathematical theories and their applications have provided a blueprint for the general 
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pattern recognition system structures that are essential for driving practical vision 

applications. Foundational methodologies and techniques, such as 3D reconstruction 

[Marin 1987] and shape from motion [Terzopoulos et al.1988] are among the 

prominent research landmarks from this work. 

Based on the developments in mathematical modelling and the fast growing 

processing speed of computer hardware in 1990s, research on computer vision 

techniques for solving real-world application problems became popular. One of the 

most spectacular achievements in modern computer vision research came from face 

recognition, which was actually the first time that a computer vision application can 

be declared as a real AI system. The developments on face recognition across the 

entire 90s had also improved the corresponding image segmentation, feature point 

extraction, and statistical pattern analysis methodologies.  

Entering the new millennium, motivated by the great success in face recognition, a 

number of leading CV research group have been studying problems such as gesture 

and action recognition [Bobick and Davis 2001], crowd behaviours [Zhao and Nevatia 

2002] and motion prediction [Bommer 2005]. Valid research outcomes on human 

detection, tracking, and action recognition methods have been applied in interpreting 

the semantic meanings involved in images and videos, for example, global and local 

feature based human action representation, skeleton model reconstruction, event 

template matching, and machine learning algorithms-based feature categorisation. 

Recently, the CV research has been experiencing a weight shift to the semantic-

informed application domains, for example, social-network-based online image/video 

retrieval [Stone et al. 2008], natural language assisted interactive video illustration 

[Fathi et al. 2011], and other diversified areas such as sparse feature representation 
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[Wright et al. 2009]. It is envisaged that with ever more powerful computers and 

digital image and video equipment, the demands for portable and real-time computer 

vision technologies and services will increase dramatically, which present both 

challenges and opportunities for the researchers in the field. 

1.2. Research Framework 

From the viewpoint of process modularisation, computer vision application systems 

often follow a process pipeline composed of three modules, data acquisition, feature 

extraction, and pattern recognition as illustrated in Figure 1-2. Each module can also 

be further divided into detailed operations depending on the deployed processing 

strategy and algorithms. For example, data acquisition often encompasses the stages 

from receiving sensory signals to data pre-processing such as filtering and 

decompressing. 

At the front-end of the framework, image capturing techniques play an important role 

in building a firm foundation for the entire vision system. For example, by using state-

of-the-art depth sensors [Foix et al. 2011] or multi-view point-based image capturing 

methods [Agarwala et al. 2006], 3D scenes can be reconstructed intuitively that save 

precious computational time for other maths-intensive and pattern-based operations. 
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Figure 1-2 CV Research framework 

Following the image capturing steps, vision signals are treated in a pre-processing 

module. Specific filtering techniques, such as compression [Sayood 1996], and de-

noise [Jong-Sen 1981] are involved in this step, which provide reliable datasets for the 

following feature extraction and pattern recognition steps. 

Based on the classic concept in Information Theory [Davison 2005], data needs to be 

processed and refined to generate information before knowledge can be abstracted 

and modelled from the information. The refinement and categorising works from data 

to information is realised in this pipeline through the feature extraction module. 

Generally speaking, an image feature is a mathematical representation of certain 

image characters bodies. For example, the skin colour model of human bodies can be 

represented by pixel groups acquired by image segmentation techniques introduced by 

[Yang and Ahuja 1998]. 

The tail-end of the CV research framework is the pattern recognition module, which 

translates the mathematical models into semantic descriptions of the subject that 

people can understand- from information to knowledge. Recent developments in this 

field have been focused on geometric-based methods such as model fitting [Hothorn 
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et al. 2010], contouring and aspect graphs [Giorgi et al. 2010]. Other probabilistic and 

inferential methods have also proven beneficial for this purpose. 

A comprehensive coverage of the entirety of the computer vision research framework 

is beyond the scope of this thesis. The video event detection methodology and the 

system prototype developed in this research had been focusing on the feature 

extraction and recognition modules to highlight the validity and robustness 

improvements of the proposed approach. 

1.3. Contribution to Knowledge 

The main contributions of this research are summarised as follows: 

 An innovative 3D volumetric segmentation method has been devised and 

implemented based on Graph Theory. When applied in segmenting 3D 

volumetric event models, the new approach generated superior effectiveness and 

efficiency over other conventional 2D-based image segmentation methods 

(Section 3.1 and 3.2). 

 Based on the improved STV feature sets, a volumetric shape matching algorithm 

has been developed and is capable of handling action events recorded in noisy 

real-world conditions. (Section 4.2 and 4.3). 

 The successful integration of feature point and feature-region-based template 

matching approaches to harness and augment the advantages from both the local 

and global feature domains (Section 5.1and 5.2). 
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1.4. Thesis Organisation 

This dissertation is arranged in the following order: Chapter 1 and 2 presents a 

comprehensive review of the project background and the state-of-the-art of the 

research domain. Chapter 3 focuses on the STV feature extraction techniques 

developed in the project. The developed STV pattern recognition method and the 

corresponding event template definition strategies have been introduced in Chapter 4. 

Chapter 5 reports the system integration and quality reassurance developed and 

deployed in the process pipeline. In Chapter 6, a series of quantitative experiments 

have been carried out and result have been analysed for evaluation. Chapter 7 

concludes the research with envisaged future works. 
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Chapter 2. Related Works 

Video event detection research encompasses a wide spectrum of studies on Digital 

Image Processing (DIP), video compressing, pattern analysis and even biological 

vision. Since its birth in the 1970s, the research outcomes have had impact on many 

fronts with extensive applications found in industry, such as traffic monitoring 

systems, CCTV-based security and surveillance networks, and robotic control. This 

chapter focuses on the prominent work to date on video event analysis and STV-based 

template matching, which starts with a detailed introduction on related and essential 

background knowledge. The Section 1 introduced fundamental techniques used in this 

research. Section 2 and 3 covered the feature definition and extraction strategies. 

Section 4 reviewed the methodologies used for the pattern recognition. Section 5 

highlighted the video event detection framework proposed in this project. The 

application and challenges involved in the related research area were introduced in 

Section 6 and 7, consecutively. 

2.1. Image and Video Feature 

2.1.1. Feature Points and Feature Space 

In image processing and pattern recognition, the concepts of “feature” and “feature 

space” are commonly used. Generally speaking, features are representations of image 

“signals” at information level as one or multiple mathematical models for further 

analysis. Features can be extracted from pixels, the fundamental elements of image, 

by using specific representation methods based on different applications. 
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For example, in a STV model, a voxel v, can be represented as a 6-dimension (6D) 

vector containing the location and colour information as denoted in Equation 2-1 

  bgrzyx ,,,,,v , 2-1 

where x, y, z denotes the coordinates of the voxel, and r, g, b denotes the red, green 

and blue colour values. 

A feature space is an n-dimensional coordinate system containing pre-defined feature 

“points”. Based on the complexity and entropy of extracted information, different 

image features and corresponding spaces can be divided into a two-level hierarchical 

structure: the low-level feature space contains feature points which can be directly 

abstracted from pixel/voxel and their neighbours based on their values and 

coordinates. The high-level features are built upon the low-level contents and defined 

based on semantic information. Actually, the accurate extraction and representation of 

high-level features are one of the research hot-spots in pattern recognition domain. 

Related research works such as Content-based Image Retrieval (CBIR) [Datta et al. 

2008], and texture-based image segmentation [Jain and Farrokhnia 1991] have been 

applied in many successful applications. 

2.1.2. Feature Definition Strategies 

Since the very beginning of the pattern recognition research in 1930s [Duda and Hart 

1973], abstracting appropriate features for pattern analysis has been a popular 

research area. Generally speaking, most matured feature extraction techniques can be 

classified into three categories: geometric features, statistical features and dynamic 

features. 
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 Geometric Features 

Geometric features are relatively easy to be defined and extracted from an image or a 

video frame. It often serves as the fundamental material for more complicated feature 

categories. One representative application of using geometric feature is the Optical 

Character Recognition (OCR) System [Mori et al. 1999]. The success of this 

application is one of the most significant milestones of the pattern recognition 

research of the 1990s and has seen many real-world adoptions in, e.g. hand writing 

recognition, and new Human Computer Interaction (HCI) design. 

Among the popular geometric features, the so-called Geometric Moment Invariants 

(GMI) feature, which was first introduced by Hu [1962], has been commanded as one 

of the most important contributions to abstract the geometric features from gray-level 

images. The linear transformations, such as scale and rotation changes are relative 

invariant in Hu’s feature space.  Many significant improvements based on this theory, 

such as [Moghaddam and Pentland 1997], [Rui 1999] and [Teague 1980], have also 

proved robust  in applying pattern analysis tasks. Although GMI features can be 

extracted effectively from high quality signals, their robustness often has to be 

maintained by many pre-processing steps i.e. noise removal. 

Features extracted from contours are also commonly used for recognition. Based on 

many well-developed edge detection approaches such as Sobel [Szeliski 2010], Canny 

[Forsyth 2003] and Prewitt [Szeliski 2010], object contours can be abstracted 

conveniently. For example, Wang and Xu [2010] investigated a human detection 

technique through human locations by combing segmentation and morphologic 

operations. It detects human head shapes before combining with other filtered results, 

such as limbs and torso based on spatial distances. Compared with the complex task 
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of modelling an entire human body, the shape of a human head is much simpler to 

define due to its relatively rigid “Ω” shape even when facing different directions, as 

shown in Figure 2-1. 

 

Figure 2-1 “Ω”contours and matching result 

 Statistical Features 

Features defined by statistical methods have become more popular in the last 2 

decades partially attributing to the growing interests in face and gesture recognitions. 

Extracting statistical features usually requires various transformations from 2D image 

space to other n-dimension spaces.  

One classic statistic feature abstracted from gray-level images is the Haar-like feature 

introduced by Viola and Jones [2004]. Motivated by the early work of Papageorgiou 

et al. [1998], the Haar-like feature was initially applied in face detection applications 

with considerable success. This approach is sensitive to objects with high luminance 

contrast parts and is especially efficient in denoting objects with distinctive shape 

features.  

 Dynamic Features 

The demand for better understanding of video features and the practical call on 

automated video processing systems has motivated researchers to investigate dynamic 
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feature extraction methods and techniques. Different from the other two categories, 

typical dynamic features usually contain not only spatial but also temporal 

information that cannot be extracted from a single image or video frame. Beauchemin 

and Barron [1995] introduced the so-called energy flow for 2D motion analysis. The 

baseline of this method is coming from Horn [1987] which assumes the value of the 

pixel intensity is approximately constant during the studied model movement over a 

short period of time, which can be described as: 

    ttItI   ,, xxx , 2-2 

where I(x,t) indicated the pixel value at location x and the time t. The pixel can be 

found at location x+δx after a short period δt in a different frame, which can be 

applied in applications such as predictions [Baker et al. 2007] and tracking [Inoue et 

al. 1992]. 

The three categories briefly introduced above highlighted the most popular feature 

extraction techniques used in today’s computer vision systems. Based on different 

applications, specific techniques from these categories will need to be carefully 

selected or integrated for describing different patterns accurately.  

2.2. Spatio-temporal Volume Model 

The fundamental data structure for defining the feature space used in this research is 

based on 3D volume. In simple terms, volume data can be treated as arrays of 3D 

vectors. The element of a volume model is the so-called voxel (an acronym for 

volume-pixel). One classic application of volumetric models is the 3D visualization 

technique for X-ray Computed Tomography (CT) and Magnetic Resonance Imaging 
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(MRI) scanning, which acquires 2D slices to reconstruct “solid” 3D models that can 

be studied and manipulated using various optical formulations. 

 Defining Spatio-Temporal Volume 

As illustrated in Section 2.1.2, an appropriate feature for video event detection should 

be constructed along on both the spatial and temporal dimensions. Comparing with 

conventional spatio-temporal modelling approaches that extract feature from 

consecutive 2D frames, the research aimed at investigating a more intuitive 

representation of feature space directly before applying 3D feature extraction 

techniques for further analysis. 

 

Figure 2-2 Definition of Spatio-temporal Volume 

As illustrated in Figure 2-2, the STV defines a 3D volume space in a 3D coordinates 

system denoted by X, Y and T (time) axes. In a more observant manner, a STV model 

is composed of a stack of 2D arrays of pixels projecting along the orthogonal path 

parallel to the temporal axis. In this structure, the concept of an individual frame and 

its “feature” is replaced by an analogical voxel where its density, envelops and other 

characteristics are encapsulated in the volume space. The STV data structure enables 

the video event detection process to distinguish from a conventional frame-based 

mechanism such as optical flow becomes a real 3D analytical process. Through this 

transformation, dynamic information can be defined, extracted, and processed as 

Y

X
T
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global features rather than the most frame-based empirical local features. 

Conventional 2D image pattern recognition methods, shape analysis and matching 

algorithms are anticipated to be developed to adapting the 3D and volumetric natures 

of the video events. The detailed benefits of using the STV global features for event 

detection will be discussed in Section 4.1.1 

 Conversion between Video and STV 

The main challenge of building and using volumetric event model is caused by its 

substantial memory consumption. For example, an uncompressed 10-second video 

clip of 512×512 resolution recorded at 30 Frames per Second (FPS) consumes 43MB 

of memory space. In contrast, some advanced video compression algorithms can 

dramatically reduce the size of a video file without losing too much data details. 

Since the algorithms used in this project are mainly based on high computational 

complexity mechanisms such as sliding filter windows, iterative and looping 

operations, the data size of built STV models seriously affects the system 

performance. To ensure the system efficiency, this research only applied 3D 

volumetric-oriented processes on temporal related steps such as STV segmentation 

and event template shape matching. Additional steps on time independent feature 

processes such as noise removal were carried out on per-frame basis. 

As illustrated in Figure 2-3, the initial STV model building operation takes the form 

of the so-called First-In-First-Out (FIFO) mode. The “en-queue” operation pushes 

frames into a queue frame by frame (FBF) following the time order, which is released 

(“de-queued”) when all related operations are completed. This queuing function 

enables a dynamic “volume buffer” structure, which is refreshed in each frame by 

slipping across the entire input video footages. To further improve the proposed 
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system, a more efficient buffering mechanism is devised in the research, which will 

be discussed in Section 5.3.2 with more details. 

 

Figure 2-3 STV model construction operation 

2.3. Segmentation Methodologies 

The feature extraction technique used in this research is based on segmentation 

strategies. The segmentation in image processing and computer vision intends to 

produce a compact representation of the original data set by dividing through an 

image, a frame or a STV model into several sub-regions, which that could potentially 

bridge the gap between low-level features and application semantics. For example, 

after applying segmentation to a STV model, each voxel can be tagged by a 

customised label which represents the elements involved in each sub-region. 

It is often confusing by looking at the segmented components alone without knowing 

specific applications. This can be illustrated by using a classic 2D image processing 

example shown in Figure 2-4. The image is a famous psychological test which 

contains multiple human models. In the Figure 2-4 (b) and (c), two different 

segmentation results introduce completely different understanding of the image with 

......
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the first one showing the silhouetted of a side-face and the second one a chatting 

couple. In this example, pure computer vision and segmentation techniques might not 

offer any “extra” features to facilitate human’s perspective and cognitive processes.  

 

Figure 2-4 Different segmentation outputs based on same low-level features but different 
applications 

This research will focused on the low- and intermediate-level features for building 3D 

geometric shapes before applying them in geometric-based pattern recognition 

operations. 

2.3.1. Image Segmentation for Feature Extraction 

Real-world scenes are filled with colours and textures. These characteristics can be 

easily classified by the intuitive human vision system. So far, colour-based 

segmentation methods employed in computer vision have seen various degrees of 

success in many applications with some claimed to be even better than human vision 

cases. But for texture, generally considered as one of the higher-level and content-

based features, segmentation has proven a tough challenge. 

As illustrated in Figure 2-5, the 2D artificial image can be easily divided into 3 

regions visually - one shading area from white to gray, one solid colour ring, and a 

circle filled with high-frequency noise. In this image, the shaded area (low frequency 
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domain) should ideally be recognised as an entire block even if it crosses a wide 

brightness variation range. The enclosed circular area (high frequency domain) with 

black-white “pattern” should be recognised as a texture and treated as a single sub-

region. However, most of the existing segmentation approaches, such as [Wu and 

Leahy 1993], [Weiss 1999] and [Jianbo and Malik 2000], failed to tackle this region-

based problem.  

 

Figure 2-5 Artificial images contains gradients, solid and noise area 

2.3.2. 2D Segmentation Strategies 

Popular image segmentation approaches can be categorised as discontinuity- and 

similarity-based methods depending on the strategy applied to establish relationships 

between low-level features. Discontinuity methods segment images into distinctive 

areas by calculating boundaries between regions. These boundaries can be extracted 

by edge detection filters [Forsyth and Ponce 2003] or using the geometric model 

based Hough transformation [Duda and Hart 1972]. By contrast, similarity-based 

methods, such as the Region Threshold [Szeliski 2010] and the Region Growing 

[Adams and Bischof 1994] techniques, classify different regions through searching 

and organising feature points into different groups containing similar features, where 

features are distinctive. 
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The discontinuity and similarity concepts have been modelled by different algorithms 

that can be summarised into three types: Clustering Methods, Geometry Fitting and 

Probabilistic Methods 

 Clustering Methods 

These segmentation methods make decisions on if a component “belongs to a same 

group” based on pre-defined feature characteristics. These groups, known as clusters, 

organise feature sets into several sub-regions. The clustering methods are often 

unsupervised learning algorithms, which pre-define multiple “containers” for feature 

sets before classification. During the segmentation operation, each feature point is 

assigned to an appropriate container. In many cluster-based segmentation approaches 

such as K-mean [Forsyth and Ponce 2003], Mean Shift [Comaniciu 2002], Fuzzy C-

mean [Ahmed et al. 2002] and Graphic-based algorithms [Forsyth and Ponce 2003], 

the boundaries between containers are renewed while new elements are introduced.  

Clustering is a simple and flexible segmentation technique due to its unsupervised 

mechanism, where the feature spaces are easily composed. Therefore, clustering 

methods are widely used in time-sensitive applications. Another characteristic of 

clustering methods is induced by their flexibility on feature definition, either in “low” 

or “high” dimensional feature spaces. This advantage offers great benefit to this 

research in enabling volume-based segmentation methods from 2D to 3D. (Detailed in 

Section 3.2) 

One common problem for clustering is due to its rigidity one feature point can only 

belong to one container. Points close or on the boundaries of clusters may be assigned 

to incorrect groups (the “under-segmentation” problem). In addition, if all existing 

clusters are not suitable to some specific feature points, new clusters will be generated 
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even if the clusters contain only one element (the “over-segmentation” problem). 

Solutions of these problems during event detection are devised in this research and 

discussed in Section 4.3 and Section 5.2. 

 Geometric Model Fitting 

In many applications, the contents of interest in an image or video are predefined 

involving geometric shapes such as lines, curves, polygons, flat surfaces and circles. 

Model fitting-based segmentation approaches can find feature points belonging to a 

particular distribution to satisfy specific geometric shapes. 

The model fitting methods belong to discontinuity-based feature grouping strategy, 

which usually start from extracting spatial features and defining underlying geometric 

models. In practice, the model fitting approach is popular in some machine vision 

applications which can produce standard inspection. For example, in automated 

Printed Circuit Board (PCB) tooling systems, this technique can provide essential 

information on abnormality regarding sizes and locations of electronic components, 

welding spacing, and printing qualities.  

 Probabilistic Methods 

Different from the aforementioned local feature-based clustering and the model fitting 

methods, probabilistic methods segment image contents in global feature space. 

Probabilistic approaches, such as Wiener filtering-based background maintenance 

[Toyama et al. 1999], dynamic belief network [Koller et al.1994] and adaptive kernel 

region scanning [Mittal and Paragios 2004], represent the features globally by 

predicting some unknown parameters based on probabilistic theories, which are more 

robust to signal noise the local feature-based approaches. 
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2.4. Pattern Recognition Approaches 

After extracting available features from videos, the challenge for event detection 

moves onto the selection of appropriate pattern analysis methods. Based on the 

specific techniques applied during recognition, pattern analysis methods can be 

categorised into two main types: template matching and machine learning. 

 Template Matching 

A template is often referred as pre-defined representative models containing chosen 

features as illustrated in Figure 2-6. The template matching mechanism is a 

comparison process performed in the feature space by measuring the “distance” 

between at template and the unknown patterns based on their feature distributions. In 

addition, the dashed line showing in the figure denotes the system maintaining steps, 

which improves the image features represented by the templates after evaluating the 

performance of the system accuracy. 

For example, in 2009, Cui [2009] developed a template matching algorithm for 

matching 2D open curves. In this algorithm, the distance is calculated based on the 

cross-correlated confident normalised covariance [Lewis 1995]. The basic theory of 

the method is to compare two curves by correlating and evaluating curvature 

similarities through employing a curvature integral, which significantly reduces the 

problem caused by scaling and rotational transformations. 
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Figure 2-6 Template matching system pipeline 

 Machine Learning 

Compared with template matching, the machine learning approaches do not require 

model-matching during the recognition operation. The advantage of this method is 

that the system robustness can be strengthened and accuracy improved after each 

recognition cycle through feed-in adjustments generated from current detection results 

(as illustrated in the dashed line denoted in Figure 2-7). 

 

Figure 2-7 Machine learning system pipeline 
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But this model-free approach is at the expense of many preparation steps known as 

learning process. Based on different implementation strategies, the learning processes 

are used for composing feature classifiers [Scott 1992], decision trees [Quinlan 1986] 

and artificial neural networks [Hopfield 1988] for recognising unknown patterns.  

2.5. Video Event Definition and Human Action Detection 

Video event detection is a popular research area in computer vision aiming at finding 

and understanding pre-defined real-world “events” in a video in an online or offline 

style. In this research, a narrower definition of video events has been adopted that 

focuses on single human actions and gestures, which often enable applications in 

surveillance and security areas. The common process pipeline of video event 

detection integrates local or global event feature extraction, classification and 

recognition. Recent surveys on video event detection techniques by Moeslund [2001; 

2006] highlighted many applicable detection techniques in details, for example, the 

parking surveillance system, motion capturing for human interaction and performance 

analysis for athletes skill improvement. 

 

a b c d 

Figure 2-8 (a) “Waving” template, (b), (c), (d) selected snapshots of detected events 
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In this research, typical human gestures such as waving, walking, jumping, and 

running can be dissected and encapsulated into action “tablets”, or so-called “atomic 

events” [Reng et al. 2005] carrying semantic values and being further processed, for 

example through segmentation and recognition. 

The event detection system developed in this research had been focused on 

automatically detects and identifies real-world human activities. As illustrated in 

Figure 2-8, (a) is a “waving hand” event extracted from a public human activities 

database (see Section 6.1). The time duration of the event tablets set at 2 seconds 

[Gorelick 2007]. Figure 2-8 (b) to (d) are the snapshots of 3 identified “waving” 

events used as pattern videos for recognition which are approximate to 2 seconds each. 

It is obvious in this example that the background of the action template is relatively 

“clear” but the untreated videos were filled with background noise, i.e. texture patches, 

passing vehicles, and pedestrians.  

In addition, application-specific postures and posture changes can also be defined as 

“events”. For example, Figure 2-9 shows a “falling down” event extracted from the 

real-world CCTV recordings downloaded from the YouTube website. The video 

shows many pedestrians fell over on a pedestrian path near the entrance of a building. 

This application also demonstrated the need to track “changes” over video frames that 

are often affected by poor quality on video signals, in terms of low resolution, 

illumination variations, occlusion problems and “semantic” ambiguity. 
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Figure 2-9 Application-specific “fall down” event 

The main theoretical approach of this research is to integrate spatial and temporal 

features of the studied subject within a unified global space, where 3D volumetric 

features, taking the form of groups of “related” voxels can be analysed. The shapes 

and densities of those voxel “clouds” can represent object movements, silhouette 

transformations and even reveal “internal” characteristics such as “gain” patterns. One 

of the anticipated drawbacks of the volume-based approaches is its intrinsic 

difficulties in accessing and processing data in real-time. In this research, the 

algorithm-based optimisation and acceleration methods have been investigated with 

their potentials on improving STV-based operations discussed. There are two main 

focuses in this project: the investigation and development of effective volumetric 

event detection techniques based on innovative template matching algorithms; and the 

evaluation of the corresponding STV processing technique to enable “on-fly” 

volumetric event models/templates construction. 

2.5.1. Current Video Event Detection Research and Practices 

Generally speaking, a video event can be classified as single-human-based, such as 

gestures and postures; multi-human-based like crowd behaviours; and non-human-

based, for example, vehicle or abnormal object movements. For specific research 
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problems or applications, many pilot works have defined specific conditions to 

simplify the settings of system platforms. A survey on those conditions can be found 

in Popper’s Survey [2010]. The downside of this approach is the rigidity of the 

algorithms and its compromised suitability for challenging real-world settings. 

Single-human-based events have often been used for tracking individuals, recognising 

gestures, and monitoring the change of behaviours. [Guler et al. 2007] has published a 

paper on tracking individuals who had left a baggage behind and developed a real-

time prototype system for verifying the concept. A number of research papers have 

summarised progresses in this area such as [Zhou and Hu 2008] and [Matikainen et al. 

2009]. Popular computer vision databases such as KTH [Schuldt et al. 2004], 

Weizmann [Gorelick 2007] and Inria XMAS [Weinland et al. 2006] have also been 

focusing on adopting single-human models including shape, contour and stick 

skeleton for analytical tasks. [Wang and Suter 2007] also developed a human action 

recognition system through analysing human silhouette and Locality Preserving 

Projections (LPP), which reduced the dimensionality required for transforming human 

actions into low-dimensional spatio-temporal feature space. This development had 

improved the system tolerance on problems such as partial occlusion and noisy 

background.  

For multi-human-based events, particle flows and density models are often deployed 

to analyse crowd behaviours with individuals being treated as moving particles. 

Kilambi et al. [2006] have adopted a Kalman filter-based approach for estimating 

human group sizes which demonstrated superior performance over the traditional 

shape or Bayesian-based method. In addition, dynamic optical flow system [Fleet et al. 

2000] and trajectory matching algorithms [Porikli 2004] have both been deployed 
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based on the Hidden Markov Model (HMM) for handling the random movements of 

the monitored crowds. Research progresses on this front have seen concepts and 

prototypes developed for applications such as intelligent and adaptive traffic light 

control, and crowd emergency evacuation systems. In contrast to the single-human-

based events, crowd behaviours and events are sometimes difficult to define using 

explicit with accurate semantic interpretations. 

A wide range of non-human-based events exist that focused on the changes of 

arbitrary objects’ shapes, locations and other physical “statuses”. Compared with 

human-based events, these events often carry more image or pixel-level features. For 

example, an explosion can be described by the rate of colour, illumination, and shape 

changes for groups of pixels. Liu and Ahuja [2004] devised a fire detection system 

based on this principle, which employed spectral models containing colour templates 

describing contours of fire and the Fourier features at the frequency spectrum. Real-

time vision-based traffic control systems [Coifman et al. 1998] and  smoke detection 

system [Wieser and Brupbacher 2001] have also defined non-human events with clear 

semantic meanings. 

The research in this project has been concentrated on improving single-human-based 

event detection technologies with special attention focused on practical spatio-

temporal model for conceptual and contextual-level understanding of video-based 

events. 

2.5.2. Reviewing of STV-based Event Detection 

Stemmed from DIP techniques, traditional video event detection approaches relied on 

the spatial or frequency features being extracted from the per-frame-based 2D 

processes [Gavrila 1999]. However the Frame-by-Frame (FBF) mechanisms often 
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resulted in the loss of “contextual” information – a main contributor to defining 

“dynamic” video events. This drawback can lead to high false-positive rate during an 

event detection operation, for example, mixing an action or pose from two different 

persons crossed over in front of a video camera. One perceived solution for this 

problem is to construct video capsules which encapsulates both time-tag and frame 

patterns.  

A number of leading computer vision research groups have devised various integrated 

spatial and temporal techniques for video analysis, such as flow-based iterations 

[Beauchemin and Barron 1995], motion history image [Bobick and Davis 2001], and 

local interest points [Shi and Tomasi 1994], which have focused on the “durations” 

and “changes” of spatial features over time. But most of these features are gathered 

from consecutive frames on a small group of pre-determined pixels. The global 

changes over the entire scene and the 3D event exercisers – humans or objects – 

cannot be represented in their entirety.  

Constrained by the performance of computer capacity at time, most of the preliminary 

research on this innovative 3D voxel-based data processing and pattern analytical 

technique largely remained at the level of theoretical discussions until the middle of 

1990s, when a number of world-leading image processing research groups had 

attempted to map the STV models to their customised 2D projection planes before 

applying the normal pixel-based processing methods for further analysis. One of the 

representative methods from those approaches was using the so-called “clipping plan” 

for feature extraction along the time axis on a volume. The slice-based STV models 

have been successfully adopted to infer feature depth information [Baker and Bolles 

1989], generating dense displacement fields [Li et al. 2001], analysing camera 
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calibration settings [Kuhne et al. 2001], categorising human motion patterns [Ngo et 

al. 2003], and performing viewpoint synthesis [Rav-Acha and Peleg 2004]. 

For example, a human gait analysis method based on STV slices was introduced by 

[Niyogi and Adelson 1994]. As illustrated in the Figure 2-10, the “Y”-value of the 

slice was chosen at knee-height in the volume. The output “image” is composed by 

clipping the STV parallel to the X-T plain. The 2D image contains braid-style textures, 

where the feature of the gait can be abstracted effectively. For example, each joint of 

the braid represents the location and moment of the feet alternation; the slope defined 

by the line across these joins denotes the speed of the walking. Other information 

such as step length and cycle can also be easily extracted from this XT slice. 

 

Figure 2-10 STV slices used for human gait analysis 

Since the start of the new millennium, the “real” volumetric approaches for STV 

processing have been steadily gaining popularity. These new approaches have taken 

advantages of the 3D volumetric natures of feature points and emphasises on the 

alteration of shapes, envelopes, and density of those points in an enclosed space. 

Research advancements in many related areas such as volume visualization [Yeung 

and Boon-Lock 1997] and medical image processing [Peng et al. 2010] have 

contributed to the development of these improved voxel-based techniques. Generally 

speaking, most volumetric approaches have focused on global representations of the 
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studied subjects and are following a “top-down” [Popper 2010] processing pipeline 

which contains several phases such as global tracking, segmentation, modelling and 

recognition. Global representation has been proven as a valid and “cost effective” 

approach [Due et al. 1996] for most of the video event detection tasks. More recently, 

other advanced approaches that integrate the selected local features, such as optical 

flow, with STV-based global features have been proposed for specific systems and 

applications. A state-of-the-art review on STV and its applications carried out in this 

project has identified some important works in the field, for example, spatio-temporal 

cuboids prototyping methods [Dollár et al. r2005], inter-frame constrained local 

feature definitions [Jiang et al. 2006], and STV Bag-of-Words-based (BoW) volume 

feature points [Siva and Xiang 2010]. These approaches can be divided into geometric 

shape-oriented and spatio-temporal interest point-oriented method. 

 Global Feature-based Geometric Shape-Oriented Event Definition  

Shape-based STV methods treat original STV data sets as “sculpture”-like geometries 

formed by the distributed “point clouds”. Alper and Mubarak [2005] introduced a 

method to extract 3D human silhouettes from the volumetric space for shape matching. 

Based on the shape invariants, Alper’s method had applied the so-called “differential 

geometric surface properties”, such as peaks, pits, valleys and ridges as feature 

descriptors to denote specific events in the form of vectors in a feature space.  

In 2006, through “transplanting” motion history images onto the 3D STV model, 

[Weinland 2006] developed a set of view-invariant motion descriptors for human 

event definition that is capable of representing dynamic events captured in a video by 

applying Fourier transformations in a cylindrical coordinates system. This process 
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formed a solid foundation for the extraction of view-invariant features generated from 

event templates in the form of patterns in the frequency domain. 

A 3D shape-invariant analysis method, which was first proposed by Gorelick et al. 

[2007] is another significant progress in the field. By deploying Poisson distance 

equation Uxx+Uyy+Utt=‒1 and its Dirichlet boundary condition U(x,y,t)=0 [Gorelick et 

al. 2006] inside the STV-segmented shapes, the local space-time saliency features, 

2
5.1 UU  , and the Hessian-based space-time orientations features (the ratio of the 

eigenvalues of Hessian matrix of the Poisson equation), generated to describe 

different volumetric shape features, which are sensitive to the unique STV shapes 

generated by arms, torsos and legs. Based on the method, human gestures can be 

categorised into a number of types by applying a spectral classification algorithm 

[Tangelder and Veltkamp 2008]. 

 Local feature-based Spatio-temporal Interest Point-based Methods 

Spatio-temporal interest point was first introduced to the STV domain in 2003 by 

[Laptev and Lindeberg 2003]. Using this technique, the interest points can be 

effectively located on the rapid changing sections in a video sequence. By 

representing these “changes” using the so-called “Bag-of-Words” [Li and Perona 

2005] - a novel pattern recognition method - different events can be classified into 

various categories. [Niebles et al. 2008] had attempted in addressing the action 

categorization problems by using the “spatio-temporal words” - an extended version 

of the original “Bag-of-Words” method, which was facilitated by an unsupervised 

learning algorithm.  
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[Willems et al. 2008] devised a more robust model based on the same concept to 

tackle the dense- and scale-invariant interest point problems. By using the Hessian as 

a saliency measurement, feature points can then be represented invariantly both in the 

spatial and the temporal domain. Willems also proposed and tested the so-called 

“box-filter”, a 3D version of Haar-like filter, as a feature detector. Compared with 

other popular methods such as [Laptev and Lindeberg 2003] and [Oikonomopoulos et 

al. 2005], Willems’ method had shown superiority in terms of repeatability, accuracy 

and speed. 

2.6. Application Domains 

 

Figure 2-11 System hierarchical structure 

Figure 2-11 illustrates the process paradigm of a classic video event detection system. 

Based on fundamental studies over the last 30 years on DIP, feature extraction, 

pattern analysis and biological vision, variation modern video event detection 

techniques have been applied in a number of domains. Compared to traditional 

human-in-loop operational mode, the automated processing paradigm is “enjoying” a 

degree of success while still facing many challenges. Table 2-1 compared 3 main 

Recognition

Feature Extraction

Digital Signal Processing

Semantic Models

Analytical Mathematical Models

Video Data

HCI

Surveillance

Retrieval
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application domains where event detection techniques have been widely expected to 

make a substantial impact. 

Table 2-1 Application domains and performance demands (more solid stars means higher 
demand) 

In HCI, various computer games are pioneering the more intuitive and “intimate” 

interaction styles with computers via vision and other sensory devices, for example, 

Microsoft Kinect [Suma et al. 2011] and Six Sense projector [Zoran and Coelho 

2011]. These interaction devices track human gestures or posture changes in real-time 

based on advanced hardware support and innovative vision software algorithms. 

These systems are often established in controlled environments with steady indoor 

lighting conditions and small detection ranges. 

Surveillance is another important application area for the video event detection. For 

example, to detect various vandalism actions, such as graffiti drawing, the event 

detection system can assist an “early warning” mechanism through tracking certain 

pre-defined suspicious behaviors “over a period of time” before triggering or 

disarming alarms. However, compared to HCI applications, the event detection based 

intelligent surveillance systems are often based on more complicated “decision-

making” processes, hence, more suitable to an off-line operational mode. Other 

problems facing the surveillance and security applications include low-resolution 

visual signal, varied illumination conditions and longer-range detection scope.  

Application Real-time Accuracy 
Controlled 

environment 

High 
performance 

hardware 
Human Computer 
Interaction 

★★★★★	 ★★★☆☆ ★★★★☆ ★★★★★ 

Surveillance ★★☆☆☆ ★★★★★ ★☆☆☆☆ ★☆☆☆☆ 
Video Search & 
 Retrieval 

★☆☆☆☆ ★★☆☆☆ ★★☆☆☆ ★★☆☆☆ 
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The rapidly increasing digital media repositories and the explosion of web-based 

image and video databases present another challenge (and opportunity) to computer 

vision research in effective and efficient digital library management, for example, in 

sporting video analysis and editing, the problems such as keywords ambiguous and 

translation between different languages can be tackled by using CV-based video 

management techniques rather than traditional text-based retrieval system. 

2.7. Prominent Challenges for Video Event Detection 

The complexity exposed to video event detection tasks can be classified into three 

categories. Firstly, the boundary between an “event” signal and its “background” 

noise is often inexplicit, which renders the separation of the two signals impossible. In 

most of the current approaches, the background is often simplified as static sections in 

continuous video frames. However, this presumption is not always applicable in a 

complex scenario with multiple moving objects existed. Secondly, the semantic of an 

“event” in a video is ambiguous since the variations of potential “event makers” that 

are often defined by a particular application. For example, illumination, colour, shape, 

or texture changes over a defined period of time. Another difficulty is caused by the 

uncertainty of durations of video events. The time-elapsed factor for encapsulating a 

discrete event is closely coupled with video sampling rates which might be 

substantially varied for different videoing hardware.  

Finding solutions for these problems in specific cases are also the objectives of this 

research. In the following part of the thesis, these solutions will be discussed in detail 

in each chapter. 
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Chapter 3. Segmentation-based Shape Feature 

Extraction 

As mentioned in Section 2.2, STV voxels contain many low-level features such as 

colours, intensity and location, which provide fundamental data for constructing 

semantically higher-level features for different applications. In this research, the 

abstraction is mainly based on standard 2D and extended 3D segmentation techniques. 

The segmentation results intend to provide robust and sophisticated volumetric shapes 

and regional features for the following pattern recognition steps. 

 

Figure 3-1 Segmentation pipeline used in this research 

In this research, an innovative segmentation algorithm is developed based on a hybrid 

discontinuity and similarity segmentation model by combining Mean Shift (MS) 

clustering and the graph-based region description method. The progress pipeline of 

this approach is illustrated in Figure 3-1, which starts from a pre-segmentation 

process by using MS clustering. This straightforward and rapid operation provides 

roughly segmented sub-regions for graph-driven refinement using the STV sub-

regions rather than the primitive voxel data. The baseline graph representation 

algorithm is stemmed from the earlier research introduced by [Feizenszwalb and 

Huttenlocher 2004] and [Grundmann et al. 2010]. This advanced algorithm organises 
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the sub-regions based on their similar appearance in a graph. As shown in Figure 3-2, 

the artificial image in Figure 2-5 can be precisely segmented into 3 sub-regions that 

are to resemble human vision and perception functions. 

 

Figure 3-2 Segmentation output of Figure 2-5 by using newly developed approach 
introduced in this research 

In this research, improved clustering methods are used for video pre-. The rest of this 

chapter is organised in the following order: The baseline 2D graph-based 

segmentation algorithm is introduced in Section 3.1, Section 3.2 highlights the 

investigation and development of an innovative 3D volumetric segmentation approach. 

In section 3.3, the outputs of the devised algorithm is tested and evaluated by real-

world video footage. Section 3.4 concludes the work in the feature extraction stage 

and its relations to the following event detection steps. 

3.1. Baseline Methods for STV Feature Extraction 

One of the most important features used in this research is 3D shapes extracted from 

the STV. For representing shape features geometric distribution in a STV model, an 

Improved Pair-wise Region Comparison (I-PWRC) clustering segmentation method 

has been devised in this research. As introduced in Section 2.3, the non-supervised 
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clustering methods are considered more efficient than the geometric and probabilistic 

methods since the calculations on large amounts of STV voxels and maintenance 

checks on the geometric parameters can be extremely time-consuming. 

The baseline segmentation method adopted in this research is call “Pair-wise Region 

Comparison” (PWRC) [Feizenszwalb and Huttenlocher 2004]. This graph-based 

clustering method is a capable segmentation approach for classifying similar textures 

based on original intensity or colour features. The algorithm is based on a typical 

iteration mechanism and renews each cluster by comparing the so-called inner 

difference between neighbouring elements. In this research, this 2D graph similarity 

comparison mechanism is extended into 3D feature space for facilitating the video 

event detection demands in STV feature space.  

3.1.1. Baseline 2D PWRC 

This segmentation approach organises sub-regions based on their similar appearances 

in a graph G=(V,E) where V denotes a collection of vertices vi in the graph and E 

denotes the collection of edges ei between two vertices that    jiEvv ji  ,, . In the 

graph, edges are used to denote the differences between two vertices by assigning a 

weight value w[(vi, vj)], (i≠j)
 
to each edge. When applied, the PWRC evaluates image 

features by looking at the differences between two weighted edges. It is worth noting 

that the “difference” can be measured in spaces often represented in a multi-

dimensional vector format composed of elements.  

Based on the Graph theory and Felzenszwalb’s and Huttenlocher’s work, the image 

segmentation operation S is a clustering process of V. Components of S includes many 

subsets in the graph. In an ideal situation, the segmentation outputs should contain 

several segmented clusters C. The features involved in Ci, (i=1,2,…,n) should be 
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identical, and features in different clusters should be distinctive and separable. In 

addition, the weights of edge subset in Ci, should be relatively small compared to 

edges of any two vertices from different clusters. 

The output of the algorithm is a predication value, D, to determine if a boundary 

exists between regions, with each vertex needs to be located in an independent cluster 

Ci, (i=1,2,…,n). The similarity between different regions and the dissimilarity inside a 

region can then be compared. Depending on the thresholding “similarity factor”, two 

regions can be merged into a larger region. During the operation, the initially 

independent regions will keep evolving in an iterative style until reaching a “balanced” 

stage defined by the threshold. 

To model this process, a so-called “internal difference” Int(C) is defined for 

evaluating the element differences in a cluster, which is looking for a maximum edge 

weight in its Minimum Spanning Tree (MST) as shown in Equation 3-1. 

 
   

  ji
ECMSTvv

vvwCInt
ji

,max)(
,, 

 , 3-1 

where w denotes the weight of an edge. Int(C)=0 if C contains only one vertex 

element. Since the MST defines a minimum cost description in a graph, other 

components in the same connected graph should contain at least one edge that is 

larger than Int(C), which indicates the lower threshold of the internal feature 

difference.  

Equation 3-2 represents the minimum difference between two distinctive clusters 

which is the lower threshold for merging two regions. The Diff=∞ if there is no edge 

connecting C1 and C2. 
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The predication then follows based on the calculated differences between the two 

clusters and their internal difference, that is: 
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where |C| denotes the cluster size and k stands for a constant parameter to control the 

“sensitive factor” of segmentation. 

At the start of this algorithm, the entire graph is composed of only pixel values in an 

image. By calculating Diff(Ci, Cj) and MInt(Ci, Cj), regions can be formed by merging 

2 clusters if the difference between them is even smaller than their own inner 

differences. Since the regions are self-independent in the undirected graph, the region 

comparison can be initialised from any cluster. After traversing all edges in the graph, 

D represents a stable state with several regions formed; separating different feature 

points and storing similar ones in each region. In this algorithm, when |C|=1, since the 

internal difference is equal to 0 and Diff(Ci, Cj)≥0, the internal merging operation 

cannot be performed or to compare Int(C) with Diff(Ci, Cj) directly. This problem is 

resolved by adding a compensation factor k/|C| as illustrated in Equation 3-4. 

The sensitivity of the PWRC segmentation is controlled by the coefficient k with 

larger values leading to bigger segmented regions. When smaller values are applied, it 

can ensure most of the important boundaries are extracted. This research has chosen 
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smaller k for extracting 3D shapes as inputs for the following matching operations. 

Figure 3-3 provides snapshots of sample PWRC segmentation results. 

 

Figure 3-3 Snapshots of PWRC segmentation outputs 

3.1.2. I-PWRC for STV Segmentation 

As explained in Section 2.1.1 and 2.3, many segmentation approaches can be 

extended into 3D domain, including PWRC for video data segmentation. For STV, 

the I-PWRC graph is initialised by 3D features. Vertices are represented by 

volumetric features with the 26 connected neighbours of each voxel constructing the 

edges of the graph. Since the edge contains both spatial and temporal information, the 

alterations and “traces” can reflect the dynamic stages of the “tracked” objects during 

segmentation compared with the “static” feature-only FBF-based techniques.  
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During the initial feasibility experiments, it was observed that direct transformation of 

the 2D to the 3D PWRC led to several drawbacks. Firstly, the region C cannot be 

readily controlled by the factor k comprehensively. As illustrated in Figure 3-4, larger 

k values lead to larger segmented regions but missed out some segments of object 

boundaries. Smaller k values ensure all the object boundaries being abstracted but in a 

so-called over-segmentation style with large amount over-cut and cluttered areas. 

Secondly, during the region growing stage of PWRC, the internal difference Int(C) 

becomes less sensitive especially in the regions filled with random textures since the 

weights of the graph is based on simple voxel values (low level features) rather than 

region texture features. Thirdly, to generate a PWRC graph based on raw STV 

introduces huge amount of data, for example, 100×100×100 STV adjacency of the 

size (100×100×100)2, which cannot be readily handled by conventional computer 

memory, never mention other looping and branching operations on this data. 

The I-PWRC, on the other hand, deployed a different STV data manipulation strategy 

by combining the MS segmentation with a hierarchical data storage structure. It 

optimised the performance of factor k with a region feature-based representation 

 

 K=20 K=60 K=100 

Figure 3-4 Factor k is not flexible to deal with complex real-world environment 
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scheme for weight definitions and enabled the reduction of the data sizes for more 

effective STV segmentation. 

3.2. I-PWRC Implementation 

3.2.1. Pre-clustering Using Mean Shift Algorithm 

To apply PWRC to STV segmentation, the vertices in the initialised graph are un-

treated voxels. However, a large percentage of those voxels only contain background 

information, which has no contribution to the feature template matching operations 

and are filtered out using the innovative I-PWRC technique developed in this research. 

I-PWRC simplifies the initialised graph using MS-based clustering through removing 

redundant low-level features and combining similar voxels into small regions 

represented by graph vertices. Compared with the per-voxel-based initialisation, the 

vertices numbers are reduced significantly.  

In the I-PWRC, the pre-clustering is carried out using the MS model-seeking 

algorithm. Although sensitive to noise, the MS method can handle small groups 

effectively in feature space and controlling the segmented region sizes flexibly. 

Applying the so-called Parzen window density estimator [Duda and Hart 1973] in this 

research, the MS clustering occurs prior to the “primary” STV graph segmentation by 

using a Probability Density Function (PDF).  

Based on Comaniciu’s paper [2002], in a d-dimensional (Rd) feature space, if X 

denotes the collection of feature points with individual point represented as xi, 

i=1,2,…,n, the multivariate kernel density estimator with kernel KH(x) can be 

computed at the point x by 
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where H is a symmetric positive d×d bandwidth matrix. and  
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where Ck,d is a non-negative normalisation factor and the profile k is defined by a Gate 

Function (GF) 
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It also predigests H  from fully parameterized matrix to an identity matrix H=h2I, 

where h is the window size of the MS. It is the only bandwidth parameter need to be 

provided before MS operation, which is particularly suited to this project for its 

simplicity. 

After introducing Equation 3-6 into the kernel density estimator (Equation 3-5), the 

proximate expression can be rewritten as  
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with its quality measurable using the mean of the squared errors between the densities 

and their sum over the domain. 

The MS at runtime operation finds the peak values in the feature space and then 

classifies relevant feature points in vicinities. In the density estimator model 

introduced above, different peak values can belong to different maximum density 

areas, which mean ▽f(x)=0. This can be explained in the following expression: 
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and 
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where k’ is the derivative of the profile k. Therefore, Equation 3-9 is transform into 
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As proven by [Comaniciu 2002], the Mean Shift vector mh,G(x) in the above equation 

can be expressed as: 
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in the feature space.  

It is proven in the I-PWRC feasibility study, by carefully selecting the window size 

factor h on colour hc and location hl, the regions composed by MS are of a satisfactory 

standard with key feature identified which can be well controlled. For example, a 

small window size (hc=5 and hl=5) was tested on a 20-second video clip for the pre-

clustering process. It was observed that most important details relating to the event 

contents and volumetric boundaries were identified, which provided a valid 

foundation for the following I-PWRC and template matching processes. 
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3.2.2. Histogram-based region description 

After the pre-clustering process, the initialisation of the segmentation graph is carried 

out on region features rather than voxel features that reduce the quantity of the 

required vertices. To tackle the feature insensitivity problem during region growing 

stage in the traditional PWRC (see Section 3.1.1), this research introduced tools such 

as histogram and histogram distances to represent region textures in the weighted 

graph. 

 Colour representation 

The research has chosen the L*a*b* colour space to define complex high level 

features in a histogram due to its superior adaptability to human vision cases. (See 

[Forsyth 2003] and [MacEvoy 2010] for more details). 

There is no direct mapping and conversion algorithms from the classic RGB to 

L*a*b* colour space. Hence, an intermediate XYZ colour space is created by 

following transformations: 

    MBGRZYX  , 3-13 

where M  is the transformation constant. Based on CIE Standard Illuminate D65 

[Schanda 2007], the M  is defined by 
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M , 3-14 

Let W  denote any element in [R G B] vector, W’ is unified W value based on 
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The L*a*b* transformation from XYZ colour space can then be defined as: 
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where [Xr Yr Zr] is a reference white colour and defined as [0.95047 1 1.08883] based 

on CIE Standard Illuminate D65, and 
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 Graph representation 

 

After the colour transformation, high-level region features, such as textures, can be 

readily defined by the local colour histograms to denote vertex values of a graph. As 

illustrated in Figure 3-5, each region contains a normalised local histogram based on 

the L*a*b* colours. The distribution of these colours in the histogram embodied 

richer information than voxel-level features. For example, a texture containing flat 
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distribution of solid colours can be readily represented as multiple peaks in the 

histogram.  

Weights of edges in this new form of graph are defined by the histogram distance. In 

this research, a minimum distance method introduced by Cha [2002] has been adopted, 

which can be abstracted as follows: 

Suppose HX and HY are denoted as two different unified histograms that contain n 

elements each with individual element specified in the style of hX,i and hY,i, where 

i=1,2,…n. The distance D(HX, HY) of these two histograms can then been summarised 

as: 
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In the Equation, dmon denotes “nominal measurement” highlighting the existence of 

the histogram bins; dord denotes “ordinal measurement” for calculating the difference 

between the weights of each bin; dmod denotes “modulo measurement” which evaluate 

the arithmetic modulo along the angular values such as the distribution of colours in 

L*a*b* colour space. Each measurement can be modelled as: 
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Therefore, the weight defined by the minimum distance can be expressed as: 
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       jiji HvHvDjivvw ,,,  , 3-20 

3.2.3. Hierarchical Pair-wise Region Comparison 

As discussed in Section 3.2, region sensitivity of conventional PWRC is only 

controlled by factor k, and a fixed k value for the region growing operation is 

insufficient for feature grouping if texture number varies substantially. This drawback 

has resolved in this researched I-PWRC method by introducing a hierarchical 

segmentation structure using adaptable and dynamic k values. 

It is widely recognised that real-world images or video frames especially the outdoor 

scenes, often contain many large and uniform colour regions (i.e. sky and soil) as well 

as varied textures (i.e. flowers and grass). Most existing segmentation strategies are 

seemingly specialised in dealing with either prior or latter case. Hierarchical structure 

offers a practical approach to solve this problem by building a pyramid structure for 

storing and representing raw data, as illustrated in Figure 3-6. The low resolution 

images or frames at the top of the pyramid only need to “remember” large coloured 

blocks with minute details filtered out during the re-sampling operation. The bottom 

level, on the other hand, records all the details of the original dataset. 

 

 

Figure 3-6 I-PWRC Hierarchical graph representation 

Features from MS-based Pre-segmentation
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The hierarchical segmentation operation starts from the bottom to register all fine 

details, while the higher level operation builds up on lower level outputs. In the 

related graph, the edges and vertices should be inherited from the lower level but 

weights of each edge need to be reconstructed due to the changes of the cluster size 

|C|. In this research, based on the complexity of the video contents to be analysed, the 

number of hierarchical levels can be varied from 5 to 25. 

As the I-PWRC pushed up to the higher level, small regions are merged, which 

requires a dynamic mechanism for determining the k value denoted as k(C). Since 

larger k values suppose to “trigger” the merging actions among larger regions, the k(C) 

can be defined based on the largest region in the current hierarchical level, expressed 

as in Equation 3-21: 
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Ci is the region collection on the ith level in the hierarchical structure. The current k 

value is iterated and updated based on the region size of the lower level which is 

evaluated by the ratio, r, relating to the mean and the maximum region sizes. For 

keeping the most region details in the experiment, the initial k(C0)  and r were trialed 

and set at 0.17 and 2, respectively. 

3.3. Feasibility Studies  

As shown in Figure 3-7, a number of STV models were constructed based on self-

recorded video clips to conduct the feasibility test on the innovative I-PWRC 

technique. These clips were recorded at the university campus and containing many 
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solid colour areas such as ground and clear sky, as well as many small areas with 

different textures such as tree leaves, window frames and cars. 

 

After the MS-driven pre-segmentation is filtered, voxels are grouped and clustered 

into small regions for graph initialisation. These small regions contain subsets of 

 

 

 

 

 

 

Figure 3-7 Snapshots of video clips for I-PWRC feasibility test 
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accurate boundaries of the contents (3D shapes) in the STV model. In this experiment, 

the MS window size was set at 5 to 8 based on the complexity of the video inputs for 

extracting most of sub-region details. [Forsyth 2003].  

 

 

 

 

 

 

 

Figure 3-8 Sample segmentation outputs (see Figure 3-7) for original video inputs 
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The I-PWRC algorithm iterates in a hierarchical structure of 15-level during 

segmentation. The outputs are shown in the snapshots in Figure 3-8. It can be seen 

that most of the STV content boundaries have been found with even small textured 

areas highlighted accurately, which proves the design theorem of applying a dynamic 

k(C) for adaptive handling of both large solid colour areas and detail textures. 

Due to the 2D nature of the conventional PWRC, the 3D I-PWRC algorithms were 

also deployed on a 2D basis in this trial for comparative performance analysis. As 

shown in the Figure 3-9, the testing frames contain extremely bright and very dark 

regions, reflecting a substantial transition over a high dynamic range (HDR) 

illumination spectrum. The I-PWRC has shown its superior performance over the 

baseline algorithm on handling these scenarios. It is clearly visible in the Figure 3-9 

(b), the segmentation outputs still contain a large quantity of small “fake” regions near 

large boundaries of walls and poster frames due to the rigid k value applied in 

conventional PWRC; while Figure 3-9 (c) has shown optimised results. It is worth 

noting that even in the areas subjected to slow illumination changes, such as the 

window and the wall in Figure 3-9 (a), the improved method still performs better in 

finding the correct boundaries since the dynamic k value renews the inner difference 

parameter MInt on each hierarchical level. 

Close examination on I-PWRC segmentation performed in the trial still revealed 

regions where image/STV contents were over-segmented. The problem will be further 

tackled in the later stage of the event detection pipeline as covered in Chapter 4 and 5. 

More quantifiable tests and evaluations will be reported in Chapter 6. 
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 (a) Testing Frames (b) Baseline 2D PWRC (c) Improved PWRC 

Figure 3-9 Frame comparison between baseline PWRC and I-PWRC 
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3.4. Summary 

In this chapter, high-level features inherited from raw STV datasets have been refined 

and clustered using an innovative I-PWRC volumetric segmentation technique. The 

outputs of this step which describing shape and texture video contents, such as 

boundaries and distribution of segmented regions, will be used as inputs for patterns 

analysis-based event detection in the video event processing pipeline. Based on the 

theoretical research and practical trial, the clustering-based segmentation strategy 

applied in this project has proven its effectiveness when extended from 2D to 3D. The 

I-PWRC algorithms developed in this research and their implementation utilised a 

number of key concepts and techniques including MS, PWRC, histogram descriptions 

and hierarchical pyramid data structures. The feasibility trial has recorded satisfactory 

and promising result. In the next chapter, the “fake” regions often caused by over-

segmentation will be tackled in the event template matching stage. 
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Chapter 4. Volumetric Shape Extraction for 

Event Template Matching 

Compared to traditional FBF-based video analysis strategies, a significant advantage 

from using the STV model is rooted in its distinctive ability to provide 3D geometric 

descriptions for dynamic video content features recorded in footage, which providing 

a theoretical foundation for event template matching. As illustrated in Section 2.5, 

video event features can be abstracted and recognised by using either global feature-

based shape analysis methods; or local feature-based spatio-temporal interest point 

methods. A hybrid approach combined these features has been adopted in this 

research. 

By integrating shape and feature point-based strategies, an innovative event detection 

framework has been developed that is based on the output from the I-PWRC 

operations (see Chapter 3) to feed to the shape-based event template matching 

(introduced in this chapter) before being refined by the spatio-temporal interest 

points-related operations (discussed in the Chapter 5). So the rest of this chapter is 

organised as following: Section 4.1 introduces a semi-automated template definition 

tool for event template composition. Section 4.2 presents the development of STV 

shape-based template matching algorithms through highlighting the efficiency and 

accuracy improvements from the volumetric operations. Analysis on the shape 

matching algorithm and its compatibility with I-PWRC is discussed in Section 4.3. 

Section 4.4 summaries the template matching work and addresses the issue of 

refinement. 
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4.1. Event Template Definition 

STV-based template matching requires pre-built event templates being compared with 

event shapes segmented from video footages. An event shape might be a perfectly 

“cut” representing a video event of its entirety; or in a more complex way been “over-

cut”. Different strategies need to be formed to deal with these situations. 

4.1.1. Template Matching Strategy Design 

As illustrated in Figure 4-1, a “falling down” event is extracted and encapsulated in a 

volume structure that can be uniquely denoted by its geometric characteristics. These 

shape parameters can be used in geometric distribution analysis and shape matching 

in computerised and effective manner. 

 

As discussed in Section 2.5.2, many shape-based template matching algorithms, such 

as [Alper 2005], [Gorelick, Blank et al. 2007] and [Flitton, Breckon et al.2010], 

require “perfect boundaries” for functioning properly. But as explained in Section 3.3, 

meaningful video events are often difficult to identify and being separated from 

 

Figure 4-1 A “Falling down” event represented in STV model 
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uncontrolled backgrounds. Substantial numbers of fake regions may be generated 

along the way. For example, as illustrated in the Figure 3-8, the man in this video has 

been segmented into more than one part influenced by the texture of his clothes, 

which renders the “perfect boundaries”-based approaches invalid. In reality, these 

fake regions, named as over-segmented sub-regions, are common outputs from effort 

to separate signal from noise, especially in complex videoing environment. 

To tackle this problem, various techniques, such as Region Merging have been 

proposed to improve the segmentation results. Although proven theoretically sound, 

computational overhead and latencies caused by these pre-processing steps had often 

prohibited the idea’s practical usage [Wang et al. 2005]. In this project, a partial 

template matching technique has been devised and deployed for the STV-based event 

detection. 

4.1.2. Forming Event Template 

In a volumetric space, the matching process of a video event requires pre-defined 3D 

templates that provide geometries for comparison with 3D shapes retrieved from STV 

patterns. The template event shapes are representative models drawn from common or 

unique characters of a large group of similar events. 

An ideal STV event template should be formed by accurate boundaries of event 

shapes that require artificial assistance during the template composing stage. In many 

2D image processing applications, initial templates are generated by user-defined 

Regions of Interest (RoI). In the 3D volume space, STV event templates are defined 

by consecutive RoIs extracted in each frame in the event duration as shown in Figure 

4-2. Because a typical single human action event lasts through 30 to 150 frames 

[Schuldt et al. 2004], the tedious RoI definition task needs to be alleviated in real 
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applications. In this research, a semi-automated event template composing tool has 

been developed for this purpose. 

 

Since the contours of event targets are drawn from consecutive frames, a 

straightforward method is to track the evolutional changes from previous RoIs in the 

immediate following frame and then renews the outlook of the contours using 

appropriate algorithms. An ideal set of algorithms for satisfying those acquirements 

are Active Contours (AC) techniques first introduced by Kass et al. [1988]. An AC 

algorithm combines model-based segmentation and tracking processes into a single 

operation. 

 

 

 

Figure 4-2 Building a “Waving” event template requires FBF-based RoI operations 
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4.1.3. AC Concepts 

The AC algorithm implemented in this project is based on Kass’ definition [1988] 

where an iteration process which ensures the so-called contour energy E becomes 

minimised. Pre-define a contour V with n points vi in a row which is denoted as 

V={v1,v2,…,vn}, where vi=(xi,yi) i=1,2,…,n. The definition of the E on vi=(xi,yi) can be 

expressed as  

    iii vv extint EEE   , 4-1 

The α and β are the weight constants. Eint is internal energy based on the shape of the 

contour and Eext is external energy depending on the image Gradient around the point 

vi. In addition, the internal energy reinforces the contour distribution and the 

grow/shrink tendency of a closed contour and the external energy drives contour 

points to the boundary of an object in the image. The output contour is decided by the 

minimum energy of these two factors. 

As illustrated in Figure 4-3, E is an m×m matrix, which serves as a searching window 

in the operation. The energy of current vi is located at the centre of the matrix and the 

rest of the matrix elements are energies of the neighbours of vi. The location of 

minimum value in this matrix is the centre of E for next iteration, which means the 

location of vi is modified to vi’ during the iteration by the current minimum energy. 

The iteration should be stopped only if vi = vi’. 
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4.1.4. AC Implementation Principles 

To ensure event detection proficiency, templates should be built with most 

representative event characteristics through carefully selecting video footages that 

should ideally only contain simple backgrounds and a single performer in each clip. 

Hence, the difference between background and event target is clearly distinguishable 

and easy to be identified by colour and intensity feature variables. In addition, STV 

event templates should be defined by “averaging” shape models created from multiple 

samples in each event category to improve the matching robustness under challenging 

real-world settings. Figure 4-4 illustrates the progression for defining a “waving” 

event template. 

 

Figure 4-3 The illustration of the active contour algorithm 
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After selecting a template video, the first frame of the video containing a specific 

human action event is manually initialised through marking the contour. Technically, 

the location and outline of the initial contour can be composed arbitrarily. However, 

the points defining the initial contour can only grow or shrink in the range of m×m 

matrix during each iteration. The time consumption can deteriorate rapidly if the 

initial contour is too far from the actual boundary of the event performer, which could 

also introduce risks of added noise and fake boundaries. For maintaining the 

 

(a) initial frame 

 

(b) initial active contour (AC) 

 

(c) AC for current RoI 

 

(d) initial contour for next frame 

 

(e) AC for “next” RoI 

 

(f) composed STV event shape 

Figure 4-4 Active Contour-based “Waving Template” Formation 
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efficiency of the template definition operation, the initial closed contour needs to 

include the entire event target (the action performer) and the size should be 

approximate to the region of the performer, see Figure 4-4(b). After calculating and 

registering the first contour as shown in Figure 4-4(c), the contour output can be 

refined and maintained automatically or manually. The RoI of current frame serves as 

the input contour for the next frame (Figure 4-4(d)). At the end of this contour 

tracking process, the final RoI group is “stacked up” as an STV (Figure 4-4(f)) using 

the method introduced in Section 2.2. 

Although the algorithm needs an initialised RoI at start and is often done manually, 

the accuracy of the output contour is generally sufficient to use for event template 

definition as proven in the experiment. In addition, the possible incorrect outputs, 

from each frame can still be maintained by operator intervention during the template 

definition process. The efficient semi-automated event template definition tool and 

editing mechanism had helped the construction of a set of high quality event 

templates in this project. 

4.2. Event Shape Matching 

4.2.1. Practical Issues 

The I-PWRC segmentation outputs provide shape and boundary features for 

representing event profiles in the STV space. It transforms the event recognition 

operation into a 3D shape matching process. Conventional pattern matching 

techniques analyse the distribution of boundary segments directly based on the 

assumption that it contains “perfectly cut boundaries”. However, as discussed earlier, 



Chapter 4 Volumetric Shape Extraction for Event Template Matching 

63 
 

it is difficult and rare for video events to be cleanly separated from uncontrolled 

backgrounds. As a consequence, many “fake” regions can be falsely identified as 

interested regions. These small regions caused by over-segmentation are commonly 

treated as problematic and considered the main cause to the low efficiency of the 

relevant pattern analysis algorithms due to extra filtering required to “clean” the 

region boundaries.  

In this research, the over-segmented volume boundaries are not viewed as “further 

improvement required” but an intermediate output that can be directly fed into the 

innovative 3D shape-based matching algorithm developed in this research. A close 

examination of the Figure 3-8 reveals that the over-segmentation has effectively 

identified all the intersected interested regions and identified all the minute shape 

boundary sections (sub-boundaries) of the volume. The proposed matching operation 

deploys a region filtering mechanism that directly operates on those segments through 

assessing a coefficient factor of the so-called Region Intersection Distance. Based on 

the early works from Ke et al. [2010], this approach can be classified into the “Region 

Intersection” (RI) matching category. One of the distinctive features of RI methods is 

their ability to perform shape-based event detection in challenging real-world setting 

where event signals are often immersed under complex background noises. The 

improved RI method devised in this research has explored the following design 

theorem. 

4.2.2. Region Intersection Strategy 

Rooted in Set Theory, RI-based shape matching calculates the differences (so-called 

“distance”) between a pre-built volumetric event template and the segmented STV 

patterns. For example, if denoting A and B as two binary shapes, the distance metric 
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describing their similarities can be defined as    BABA  \ . At run time, a pre-

defined template set T will be “sliding” across the STV space for matching patterns. 

Considering an input STV model V containing an event located at l=(x,y,t), the RI 

distance d can be represented as d(T,V;l). Since V is an over-segmented model and all 

its sub-regions can be considered exclusive-non-overlapping. If V is composed of k 

sub-regions as 
i

k
i VV 1  . The overall distance between the event template and the 

detected pattern can be written as: 

 
   




k

i
i lVTdlVTd

1

;,;, , 4-2 

As shown in Figure 4-5 (a), the template T is highlighted in red and the over-

segmented video volume V is composed of 15 sub-regions. The blue area highlight the 

 

Figure 4-5 RI template matching algorithm and four possible scenarios 
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“distance” between V and T. Based on the contribution from each sub-region Vi, the 

blue area can be calculated according to the “intersection” rules defined as followings: 

If a sub-region is completely enclosed by the template or does not intersect with the 

template boundaries, such as V1 and V11 in Figure 4-5 (a), then the distance can be 

defined as d(T,V;l)=0 (scenarios illustrated in Figure 4-5 (b) and (d)). Otherwise, the 

distance is defined as   ii VTlVTd ;, , an intersected area such as V2 (scenarios 

defined  in Figure 4-5 (c)). A more interesting case occurred as indicated by the sub-

region V4 in Figure 4-5 (a), where there is a large overlapped region with the template. 

In this case, the distance is defined as   444 ;, VTVlVTd  - scenarios illustrated in 

Figure 4-5 (e). These cases in dealing with different types of sub-regions can be 

summarized as: 

 
     

 







otherwiseVlTV

VVlTifVlT
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iii
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where T(l) denotes template placed at location l. 

However, deploying this strategy in the trials seems to cause high false positive rate 

especially when handing those small (over-segmented) regions, the RI distance can be 

normalised as: 

    
 VE

lVTd
lVTd

T

N ,

;,
;,

ˆ 
 , 4-4 

The normalisation factor  VE
T

,ˆ   contains every possible template T̂  that might be 

tested in the over-segmented volume V for RI matching, defined as 
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which can be simplified and approximated by E(V) as 
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, 4-6 

where  
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Since the function f(x) only depends on the size of sub-regions, the value of the 

normalisation factor can be therefore calculated independently and used as a Look Up 

Table (LUT) during the RI matching. 

As discussed in Section 2.7, the variations of potential “event makers” can be 

substantial. By using the over-segmented STV sub-regions and RI matching, most 

image-based variations can be recorded and described comprehensively. After sliding 

the template set across the volume in a “searching window” manner, RI method is 

capable of marking all locations with a matching distance less than certain threshold, 

standing for a likely event. 

4.3. Renovating the RI method 

To address some of the implementation issues concerning the original RI method, this 

project has developed a number of performance augmenting techniques. 

4.3.1. Improved Region Filtering 

Original RI-based shape matching algorithms often compare a group of “connected” 

pattern segments with the entire template shape using the intersection rules. This 
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mechanism has shown its robustness when applied to “imperfect” segmentation 

outputs. Another function of the RI approach is its ability in combining over-

segmented “small” regions into an “integrated” larger piece for a one-off 

intersectional test. This characteristic reduces the strict demands on initial video 

quality and format - a must-have for many other video processing approaches - as 

reviewed by Moeslund and Granum [2001]. 

However for 3D volume-based shape matching, the RI algorithm can be practically 

slow due to the amount of data to process and the redundant calculations involved on 

“non-contributions” regions. As indicated in Equation 4-2, at location l, the overall 

distance between an event template and a shape pattern is an exhaustive aggregation 

of the sub-distance from “1” to “k” standing for all the over-segmented sub-regions in 

a STV. It is clearly demonstrated by Equation 4-3, the sub-regions that are completely 

enclosed by or separated from the template boundaries will make no contribution to 

the effective distance. In practice, during a template matching operation, most sub-

regions will not be intersected with a template especially when the over-segmented 

regions are much smaller than the event template. This fact is the root cause for the 

invalid looping operations and delays. To improve the efficiency of the RI-based 

process, a filtering mechanism has been introduced in this project to make early 

detection on invalid regions in a volume. 

The improved RI approach is based on the over-segmentation outputs from the I-

PWRC operations (see Section 3.2). In reality, any segmentation algorithms that 

preserve object boundaries are suitable to this practice, which takes advantage of the 

concept that any intersected regions must be “close” to the template location in a STV 
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model. Figure 4-6 illustrates a developed pre-processing system in this research to 

improve the efficiency of the RI-based template-matching operations. 

 

 

The actual implementation of this step starts from defining a STV event template as a 

binary volume Tbw that contains “1s” for the silhouettes and “0s” for other voxels, as 

illustrated in the example in Figure 4-7. The boundary of the shape’s surface Tsur can 

be calculated using 2D morphological boundaries extracted by 

 
bwbwsur TsTT  , 4-8 

where s is the structuring element composed of 3×3×3 voxels with the  denotes the 

morphological dilation operation. In the volume, only the surface voxels are denoted 

 

Figure 4-7 Binary form STV Shape of a waving template 

 

Figure 4-6 Region filtering pipeline 
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as “1s” for generating its surface counterpart Tsur that will be tested in each RI 

matching step at a random location l: 

    



Si

isur lVTdTlVTd
~

;,;, , 4-9 

where S
~

 is an “intersection list” accumulated from the filtering process over the 

entire sub-region sets (i=1,2,…,k) expressed as   SVTlistS sur  ,
~

. The list function, 

which is based on the geometrical distribution of Tsur  in V, is defined as: 

     VTascendfilterVTlist sursur , , 4-10 

where ascend(•) marks an ascending sort of the product Tsur  and V at location l. The 

filter(•) stands for the accumulation of each of the non-zero entries from the sorted list. 

It is worth noting that once the relative positions of T and Tsur are specified in the 

candidate volume V, each Vi can be matched independently. 

In this project, the filtering mechanism is automatically applied when a new position l 

is assigned at runtime. This simple process is efficient and only involves the 

morphological dilation, ascending sorting and some array operations.  

4.3.2. Histogram-Verified Coefficient Factors 

The RI operation introduced above can detect most event corresponding shapes in an 

over-segmented STV. However, the accuracy of this method can be further improved 

for real-world settings, through verifying the coefficient factor of RI distance before 

applying it for thresholding. As evaluated in Section 3.3, real-life video inputs usually 

contain both large uniform colour areas and small textured regions. The I-PWRC 

segmentation method can classify these contents in an over-segmented style consisted 

of both large and small sub-regions. However some extremely small regions around 

the large objects close to the real event shape boundaries can produce substantial 
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normalised RI distances, which leads to misidentification of the real event objects and 

a potential cause of the system’s false-negative outputs. In the new approach, 

“rewards” have been designed to add “weights” to the larger sub-regions that 

effectively reduce the distance values. On the contrary, “punishments” have been 

given to the extremely small sub-regions intersected with the event template. 

The evaluation scheme is automatically generated from a quantifying process on the 

intersected regions’ local histograms to record the sizes and the numbers of the 

intersected sub-regions as shown in Figure 4-8. 

 

The local histograms discussed above can be used to compare with the benchmarking 

histograms inherited from the controlled and ideal RI matching scenarios. As 

illustrated in Figure 4-9, when the event actors and backgrounds are perfectly 

segmented, all feature points on the contour of the template will be closely coupled to 

 

Figure 4-8 Local histograms used for evaluating the intersected regions 
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match to the segmented patterns, therefore the histogram will show a straight line 

lying on the horizontal “size” axis-effectively marking a zero distance.  

 

For real world scenarios, there are three different situations while calculating the 

coefficient factors as illustrated in Figure 4-8 (a), (b) and (c), where the event 

templates are denoted by the artificial ellipses. In Figure 4-8 (a), the intersection parts 

are mainly composed by a large quantity of small sub-regions. The distribution 

histogram illustrated at the right hand side shows a single peak near the original point. 

In Figure 4-8 (b), the histogram is showing a largely flat curve with small fluctuations 

indicating fewer but larger intersected regional blocks. Figure 4-8(c) contains both 

large and small intersectional parts, where the smaller regions are in dominance; 

therefore the diagram shows a prominent peak in the histogram with smaller 

variations on other places. Through using the histograms, the distribution of different 

types of intersectional groups can be evaluated using the normalised χ2 distance 

between the current histogram and a “perfect” one. 

The coefficient factor can then be expressed as a linear transformation from the 

histogram distance, as denoted in Equation 4-11:  

 

Figure 4-9 A Local histogram registering a “perfect” matching 

size

qu
an

tit
y



Chapter 4 Volumetric Shape Extraction for Event Template Matching 

72 
 

       lVTCbalVTdlVTd NN ;,;,;,
~

 , 4-11 

where C(T,V;l) is the normalised χ2 distance of the histograms. The lower limit a and 

slope b control the degree of the correction of the RI distance. The value of the 

coefficient factor should be around 1, which is the threshold in switching between 

“rewarding” and “punishing”. In the experiments, the range of changes is in between 

0.6 and 1.4, which has been proven suitable for most of the video datasets tested. 

4.4. Summary and Discussions 

In this chapter, research work on event template definition and matching have been 

reported based on the I-PWRC segmentation outputs introduced in the previous 

chapter. One of the key techniques developed for this event detection stage is an 

improved Region Intersection-based shape matching method, which can handle the 

shape features generated from the over-segmentation operation. The baseline RI 

method adopted has been improved by a pre-filtering mechanism for optimising the 

input data. In the system design, the histogram distributions of the over-segmentation 

regions have also been used in the form of coefficient factors to verify the distance 

calculated for thresholding at run-time. 

The research system of its current form can only handle video events that possess 

distinctive shape changes in the STV space. It cannot register motion occurred “inside” 

of a volume, for example, a front view of a human hand-clapping event. It is 

envisaged that the future works need to examine other modelling techniques, such as 

3D articulated human body modelling for tackling the occlusion problems and to 

enhance the adaptability of the STV-based approach. 
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Chapter 5. Implementation Strategy and 

System Prototyping 

STV shape-based event detection is a top-down process that involves event shape 

construction, segmentation and template matching operations. A modularised design 

of a prototype system has been adopted and been proved as a valid and effective 

approach. The event detection system prototyped in this programme has developed a 

process pipeline as illustrated in Figure 5-1. The functional modules (enclosed by 

solid-rectangles) denote the methodologies devised and utilised in the system. The 

modules marked by dashed-rectangles represent system optimisation techniques 

implemented. The system begins with a video signal acquisition module that 

generates STV models in the volume buffer. The I-PWRC segmentation then takes 

place on the models for extracting event shapes prior to the improved RI template 

matching operations. The benchmark event template formulation tasks are considered 

an off-line operation in this research. 

In this chapter, the implementation strategies for improving system adaptability and 

performance robustness for challenging real-world scenarios have been discussed. 

Section 5.1 introduces a STV shape transformation algorithm and an adaptive 

template scaling scheme for handling model size and orientation problems. An 

efficiency-enhancement method for the RI matching procedures is discussed in detail 

in Section 5.2. Section 5.3 to 5.5 presents the system prototyping techniques and 

functional modules empowered by a unique data structure for handling the huge STV 

data files. 
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Figure 5-1 System pipeline 

5.1. STV Normalisation 

Video footage can contain events of arbitrary sizes, locations, and orientations in the 

scene depending on the camera positions. In addition, the same events can have 

variations in terms of their durations as they are subject to different event actors and 

video frame rates (see examples in Figure 5-2). Although the devised volumetric 

template matching approach possesses a certain degree of “tolerance” to those factors 

through threshold setting, the matching accuracy is still heavily influenced by system 

initialisation conditions. The system implementation strategy alleviates these 

uncertainties by introducing a “calibration” mechanism to normalise the segmented 

STV event models. 



Chapter 5 Implementation Strategy and System Prototyping 

75 
 

 

Arguably, some local features can help to relieve the calibration/initialisation 

problems such as [Dollár 2005], [Niebles 2008] and [Bregonzio 2010]. However, 

those methods often involve time-consuming iterative or recursive computational 

machine learning processes. In addition, complex real-world settings often introduce 

strong noises. Therefore, local features-based techniques, such as BoW are difficult to 

deploy due to the time order problems and local features’ inherent sensitivity to noise 

signals [Wallach 2006]. 

In this research, the variations of the event model’s scales and orientations can be 

manipulated and standardised by the STV geometric transformation operations and 

achieving “normalised” models in the spatial and temporal domain. 

5.1.1. Hierarchical and Multi-scaled Templates 

One of the perceived solutions to solve the scale variation problem is to use the 

pyramid-like hierarchical templates that follow the linear model construction and re-

scaling approach often used in image filtering and visualisation like mipmapping 

[Williams 1983]. 

The number of pyramid layers need to be selected carefully based on the adopted 

baseline RI matching techniques, which are often subject to the sensitivity of the RI 

 

The “running” event 

template 

 

Scaling variations 

 

Orientational variations 

Figure 5-2 Case for STV normalisation 
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distance thresholds. Higher threshold values ensure lower false negative rates but 

limit the system’s adaptability. In contrast, when applying lower thresholds, the shape 

matching outputs produce more positive results but also bringing in higher “risks” of 

high false-positive rate. For choosing the most suitable threshold, Th, for the RI 

template matching, the evaluation can be assessed by using the so-called “Receiver 

Operator Characteristic curves (ROC curves)”, “Precision Recall Curve (PRC)” and 

Area under Curves (AUC) especially the AUC-PRC (see Section 6.2.1.).  

Literally, the threshold range can encompass from 0 to |T| (see Equation 4-3), the 

“relative threshold percentage” can be calculated by dividing the best threshold value 

by the |T|. Based on the theory introduced by Davis and Goadrich [2006], Th/|T| is 

proportional to the system tolerance of the scale or orientation changes in a certain 

range, which also indicates the adaptability when introducing more re-scaled levels of 

the templates during the detection. 

The tactic for deciding the number of templates needed in this system design is based 

on the following reference table, see Table 5-1. 

relative threshold 

percentage （ TTh ） 

Number of re-

sclaed templates 

Linear re-scaled factors 

 ts  ,  

≥80% 5×5 0.6/0.8/1/1.2/1.4 

60%~80% 3×3 0.75/1/1.25 

≤60% 1×1 1 

Table 5-1 Relations between the thresholds and the number of templates 

Since the statistical distribution of the relative thresholds approximately obeys the 

Gaussian distribution, the entire range of the threshold has been divided into three 

sub-ranges based on the “three-sigma rule” [Fukelsheim 1994]. The upper/lower 

limitations of each re-scaled factor are based on the concept that “re-scaled template 
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should improve the detection accuracy” [Agarwal et al. 2004] compared with 

applying the original template based on the same Th/|T|. The number of templates is 

designed based on the Davis and Goadrich’s conclusion introduced above and the fact 

of the system run-time performance during the experiments. 

As indicated in the table, the number of templates in each threshold category contains 

a n×n grid of templates where n denotes the folds of scale changes in the spatial or 

temporal domain, where linear factors are denoted as s  (spatial) and t  (temporal). 

After determine the number of re-scaled templates, the linear re-scaled factors are 

deployed to the original STV templates along the spatio and temporal directions. 

5.1.2. Normalising the Multi-scaled Templates 

A problem for using the multi-scaled templates is that the RI distance varies when 

measured against different scaled templates and the matching outputs will be 

inconsistent to fixed threshold, for example, the RI distance can grow significantly if 

using a larger scaled template of an event. 

This problem can be resolved by using a normalisation factor in conjunction with the 

coefficient factor (Equation 4-11) introduced in Section 4.3.2, expressed in Equation 

5-1. 

       
ts

NN lVTCbalVTdlVTd
 2

1
;,;,;,

~
 , 5-1 

where the linear re-scaling factor   can be referred as normalisation parameters in the 

spatio-temporal domain. 

5.2. RI Interest Area Identification 
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Through sliding a searching “window” across a digital image to identify per-defined 

patterns is a widely used technique for automatic recognition, such as [Papageorgiou 

1998] and [Viola and Jones 2004]. But it was also made clear in this research that the 

time consumption of using sliding “window” for huge data involved in the STV 

structure is grown magnificently. 

Recalling the previous discussions on single human-based action event definitions 

(see Section 2.5), it is safe to presume that those events are mainly caused by dynamic 

objects. After removing the static areas from a STV by filtering, the searching range 

can be narrowed down on these “interest” areas for event detection, rather than 

exploring the entire 3D cube. In this research, the interest areas are defined by a group 

of 3D feature points, whose locations and distributions along the temporal axis in 

volume space indicate the possible event-occurring areas 

In STV space, the dynamic information can be represented by the non-linear 

trajectories of the interest points with the length of a trajectory denoting the “duration” 

of an event (of events). 

5.2.1. Locating the Interest Feature Points 

In the classic computer vision research domain, the interest feature point theory is 

often applied when describing image contents using a number of 2D points to “mark 

out” the distinctive regions within an image. These representative regions often stand 

for edges, corners, or other spatial features containing certain distinctions in the image. 

Frequency domain filtering can often facilitate the enhancement of those features. 

Since the features are based on pixels and their neighbours, the interest feature point 

method is considered a local feature-based technique.  
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The 3D interest point extraction method developed in this programme is simulated by 

Lowe’s Scale Invariant Feature Transform (SIFT) [2004], which can abstract scale, 

rotation and illumination independent image features from 2D patterns. The SIFT 

feature abstraction algorithm is illustrated in Figure 5-3. After two convolutions on 

each scale level by using the Gaussian kernel [Lindeberg 1994], “Difference-of-

Gaussian”(DoG) image pyramids can be composed for extracting feature points. As 

illustrated in Figure 5-4, the SIFT feature is determined by comparing the candidate 

pixel (marked by “dot” in the figure) with its neighbours on the current, the higher 

and the lower scale levels. Based on the “cascading” principles [Viola and Jones 2004] 

and the key point localisation filters [Lowe 2004], the “maximum” or “minimum” 

pixels are denoted as SIFT feature points in the pyramid. 

 

 

Figure 5-3 SIFT process flowchart 

2 2
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Figure 5-5 (a) shows an SIFT feature extraction example. In contrast, Figure 5-5 (b) 

shows the same snapshot in (a) subjecting to a rotation of 10 degrees and reduced 

brightness of 20%, as well as the horizontal factor of 4.5 and the vertical factor of 2.9. 

An empirical study seems to show that most of the feature points marking the human 

body have been preserved during the transformation indicating a robust feature point 

extraction performance. 

 

The SIFT method can be directly applied to STV data. A number of research groups 

have piloted the STV-based 3D SIFT feature extraction algorithms, such as [Dalal and 

Trigges 2005], [Lopes 2009] and [Flitton 2010]. In this research, SIFT features are 

extracted from the 2D XY, XT and YT planes along each of a STV model in a cyclic 

 

(a) (b) 

Figure 5-5 SIFT Features 

 

Figure 5-4 SIFT candidate comparison 
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fashion to reduce the time consumption of the algorithm’s 3D counterpart. Similar as 

SIFT features applied on 2D image plane, the interest points abstracted from XT and 

YT planes of STV contain geometric transformations - and illumination - independt 

features which also sensitive to the “high frequency” area such as corners and edges. 

Due to the temporal information are naturally involved in these plains, the “corners” 

and “edges” are actually produced by moving objects of videos. The possible event 

area can be located based on the coordinates of SIFT features, which is sufficient to 

satisfy the needs in the proposed system pipeline for locating the RI interest areas. 

5.2.2. SIFT-based Interest Area Formulation 

The SIFT feature points extracted in the previous section are used for tracking and 

evaluating the 3D trajectories in the STV space. The tracking approach follows the 

principles of the typical frame-based flow tracking algorithm introduced by [Horn and 

Schunck 1981]. The “stable” trajectories with the life span surpassing 300ms in this 

design will be kept for further processing. 

Equation 5-2 defines the Interest Area (IA) in this research based on the SIFT feature 

point set p and their related trajectories TP: 

 
 

n

i
isS

1

,


 rl , 5-2 

where S denotes the distribution of the interest areas for the searching window 

composed of n element regions (Si)); n is equal to the quantity of SIFT points 

belonging to pi. l and r represent the location and range consecutively that 

    tyxtyx ,,,, pl  , 
5-3 

and 
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 )(square pTr  , 
5-4 

In the Equation 5-4, the range of interest areas are defined by a series of 2D squares 

whose barycentre is located by Equation 5-3 in the XY-plan of the STV space. The 

2D squares can form a 3D “tube” along the STV’s temporal axis. As illustrated in 

Figure 5-6, the tendency of the tube is largely conforming its enclosing SIFT 

trajectories. Based on the experiments carried out in this research, for keeping the 

most effective and accurate system run-time performance, the size of square, denoted 

as s, has been trialed and classified into 3 pixel-level categories based on the average 

event time durations: 5×5, 9×9 and 15×15, that are associated with the trajectories 

length l falling into the ranges of 300ms≤l<1000ms, 1000ms≤l<2000ms, l≥2000ms, 

respectively. 

 

In the feasibility experiments, it was observed that the time consumed by this extra 

feature processing step was approximately 120ms – a small latency in return for 

significantly improved overall system efficiency. Through identifying and locating 

interest areas from the entire STV models, RI searching window can be readily 

located on the high probability regions before applying the RI matching steps, see 

Figure 5-7.  

 

Figure 5-6 3D Interest area construction 

Interesting area
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5.3. System Modularisation and Data Pre-processing 

The investigation on STV-based video event detection and system prototyping in this 

research focuses on three aspects: rapid and lean STV model construction, adaptive 

feature segmentation, and optimised shape-based template matching. 

(b) 

(a) (c) 

Figure 5-8 System hardware platform 

 

Figure 5-7 Efficiency improvement from interest area identification 
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As illustrated in Figure 5-8 (a), the system prototype has been setup on a host PC 

equipped of an AMD 2.62 GHz Athlon CPU with 2G RAM. The video signals are 

captured by a consumer grade CCTV camera (Figure 5-8 (b)) and a PCI analog image 

data acquisition card (Figure 5-8 (c)). The device algorithms in this research were 

initially tested on the simulation tools such as LabVIEW and Simulink with extensive 

use of MATLAB and OpenCV 2.2 programming APIs and functions.  

5.3.1. Data Filtering Consideration  

The challenges of this research at the data acquisition stage can be concludes as two 

aspects. Firstly, original STV models are often extremely large in data size due to 

their volumetric 3D nature and rich per-voxel characteristics. Secondly, the volume 

data processing techniques are generally inherited from 2D segmentation algorithm 

such as the PWRC method introduced in Chapter 3, which involves many looping and 

branching programming structures that can introduce serious latency to the 

computational efficiency. These problems often hampered the effort in the past in 

adopting the STV-based methods in real-world settings, especially for those time-

critical applications. 

A straightforward approach for relieving the negative impact from the huge STV data 

size is to reduce the total voxel quantities that need to be handled by relevant 

algorithms. This data reduction operation can be performed by specific software 

engineering techniques such as data reconstruction, compression, and pre-filtering to 

remove the so-called “non-contribution” or redundant voxels at the initial STV 

construction stage. In this research, the optimisation technique developed and 

deployed for this purpose was based on an “on the fly” computer memory 

management strategy called volume buffering. 
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5.3.2. STV Buffering Technique 

Live video inputs vary greatly from sensors and video codec (that is data format and 

compression style adopted) parameters such as resolution, colour setting and video 

length. It is both unnecessary and impractical to transform an entire video file into a 

single STV volume. A solution proposed in this research has adopted an “on the fly” 

or procedural mode to generate fixed-length transitional STVs based on the pre-

defined event durations before pushing them into the queue-like process pipeline. 

At runtime the system starts with building a buffer (assigning memory) to the 

incoming video stream. The index of the first frame and the size of a STV model are 

customisable and dependant on the pre-defined action template sizes. Once the last 

event matching step is completed, the buffer assigned for holding the STV model will 

be freed from the memory to avoid accumulating memory footprints for the next cycle. 

The benefit of this design is achieved through harnessing an efficient computer data 

structure - queue - that enables a first-come-first-serve operational order and its 

intrinsic flexibility in handling arbitrary sizes of data packets. Figure 5-9 illustrates 

the STV construction and registration operations engaged in this design. Currently, 

the assignment of the starting frame’s index number has been simplified by halving 

the previous STV chunk (except the first “on-fly” STV which starts from frame No.0) 

and using its “middle” frame as the beginning for the next model. A more robust 

sampling approach, for example a one-third start from the previous STV or even an 

arbitrary starter, should see a more adaptable reconstruction process with an improved 

chance to encapsulate an event occurred but this will have longer latency. As shown 

in Table 5-2, this process has been implemented as shown in the pseudo code, where 
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the setting of the STV size and the starting position has been parameterised for 

improving the process’s adaptability. 

 

Pseudocode volumeBuffering (input videoFile) 
 
START: 
//Initialization 
Allocate appropriate buffer size “L” based on videoFile configuration; 
Calculate number of time-tablets “I” based on event template durations; 
Calculate the remainder frames ”N” at the end of the videoFile; 
 
//Traverse through entire the video volume  
Loop ( I ) 

//Calculate the new starting point and length “R” of the input STV 
 if (at the end of video)   
  R = N; 
 else 

R = L; 
 
//STV-based template matching 

Release tested STV; 
Compose and renew STV; 
RI matching; 

END 

Table 5-2 Volume buffer Pseudo code 

 

Figure 5-9 Volume buffer procedures 
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5.4. STV Feature Extraction  

 

 MS-driven Pre-clustering 

When applying MS in 2D segmentation and clustering, the inputs from an image 

model are often restricted to the space coordinates and the colour values of all the 2D 

pixels. In turn, the defined feature space is of 5 degrees of freedom (x,y,r,g,b), in 

which (x,y) denotes the space coordinates and (r,g,b) represents the colour of a pixel. 

 

Figure 5-10 The flowchart of the MS pre-segmentation algorithm 
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In the case of a 3D STV model, its feature space naturally extends to 6D as 

(x,y,z,r,g,b), where (x,y,z) denotes the space coordinates of a voxel and (r,g,b) for the 

relevant colours. Therefore, a multivariate kernel density estimation process similar to 

its 2D counterpart can be implemented in the order as shown in Figure 5-10 (refer to 

Equation 3-11 in Section 3.2.1) 

In this STV pre-clustering process, an iterative operation is carried out on each feature 

point that shifts the current feature density centre to the densest local region 

controlled by the bandwidth parameters. This design effectively reduced the graph 

vertices for the following I-PWRC processes. 

 Composing histogram-based region graph 

The region description words for I-PWRC segmentation have been implemented as 

four distinctive functions in the system as illustrated in the Figure 5-11, these 

functions handle the tasks of colour space transformation, region histogram 

representation, histogram distance calculation, and graph composition, respectively.  

Based on the Equation 3-13 to 3-17 in Section 3.2.2, the colour space of each voxel 

can be transformed from RGB to L*a*b*colour domain. This colour information is in 

turn used for defining STV region textures inherited from the MS pre-clustering 

results in the form of local histograms, which are literally the vertices of the 

constructed region graph. After calculating the histogram distances based on 

Equations 3-18 and 3-19, the graph can be saved as the so-called Dictionary of Keys 

(DoK) for the following I-PWRC operations. It is worth noting that the colour 

histogram of many small regions can consume as much system memory as larger 

regions, especially at the early iterative stage of I-PWRC. To alleviate this problem, in 
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the design, the histograms are modelled as a 2-column-table containing all the non-

zero L*a*b* vectors. 

 

 I-PWRC Development 

Based on the above discussion, the I-PWRC method devised in the research has been 

implemented in a more reliable and efficient manner for dealing with STV models. 

Table 5-3 provides the pseudo code for the I-PWRC operations engaged in the 

process pipeline.  

 

Figure 5-11 Constructing histogram-based region graph for I-PWRC 
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Table 5-3 Pseudo code for the I-PWRC method 

5.5. Event Shape Matching 

 Region Filtering Implementation 

As discussed in Section 4.3.1, the purpose of the improved region filtering algorithm 

is to generate a candidate list in the form of a 1D array containing the labels of the 

intersected regions from the I-PWRC segmentation outputs. Figure 5-12 illustrates the 

algorithm and its key operational functions that are further clarified in Figure 5-13 

through highlighting the core processes empowered by Equation 4-8 to 4-10 

explained in Section 4.3.1. 

Pseudocode Improved Pair-wise Region Comparison 

INPUT 
1. Spatio-temporal Volume  
2. Mean Shift window size factor: ch  and lh  

3. Initialised Pair-wise Region Comparison factor  0Ck  

4. Hierarchical levels n  

OUTPUT 
STV with Labelled segmentation regions 1nC  

ALGORITHM 
Initialise 0C  with STV-based Mean Shift segmentation. (Equation 3-11 and 3-12) 

Transform STV colour space from RGB to L*a*b*.(Equation 3-13 to 3-17) 
Loop i  from 1 to 1n  
 Build histogram for each region in 1iC  

Represent 1iC  as graph: 

The vertexes value is L*a*b* colour 
The weight of edges are Cha’s minimum histogram distances. (Equation 

3-20) 
 Calculate  ik C  (Equation 3-21) 

 Calculate iC based on original PWRC method (Equation 3-3) 

 Build next hierarchical level on lower resolution (Except the last loop) 
End Loop 
Output iC  

END Pseudo code 
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Recalling Figure 4-5, the I-PWRC produces many regions that are marked with the 

“non-contributing” label (the “0”s) in the array. Another optimising strategy applied 

in the programme is to form a “linked list” rather than directly using the 1D array for 

representing 3D matrices, which will omit the “0”s during the list initialisation, hence 

reducing the overall data size. 

 Histogram-verified Coefficient Calculation 

The improved RI algorithm has been implemented in the style indicated in Figure 

5-14, excepting the main morphological operations involved, the Coefficient Factor-

driven verification operations for the RI distance as shown in the right side of the 

flowchart 

 

Figure 5-13 Processes for filtering out the “non-contributing” sub-regions 

1 1 5 5 5 7 7 7 3 2 2 2 4 4 6 6V

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0Tbw

0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 2 0 2 0 0 6 0

0 0 0 0 0 0 0 0 0 0 0 0 1

1 2 6

Tsur

Tsur×V

ascend(Tsur×V)

filter(•)

2 2 6

 

Figure 5-12 Region Filtering algorithm 
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It is worth noting that the DoK imported from I-PWRC can also form a Linked-List of 

a structures (STRUCT in programming term) containing the region label indices and 

the distribution of the over-segmented regions. This structure has been used as a “data 

report” in the system prototype for calculating the RI distances and the histogram-

verified coefficient factors during template matching. As indicated by the experiment 

results detailed in the following chapter, this programming approach is more effective 

in maintaining the STV features. 

 

Figure 5-14 STV-based RI matching algorithm 
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5.6. Summary and Discussion 

In this chapter, a number of practical optimisation techniques have been introduced 

for improving the robustness and efficiency of the proposed event detection system. 

The multi-scaled template mechanism has been used to improve the shape matching 

performance based on the RI distance transformation. After combing the normalised 

parameters with a coefficient factor, the RI distance can be adapted to spatial and 

temporal changes of the event performers in real applications. The overall system 

efficiency has also been improved by using the optimisation techniques such as 

“interest area” and “volume buffering” for controlling data sizes. The former method 

is a filtering operation that “predicts” the areas with high probability for containing 

the targeted events. The latter technique relies on an innovative buffering data 

structure for improving the runtime performances, hence enhancing the system 

prototype’s suitability for handling arbitrary video file sizes based on better computer 

memory management. 
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Chapter 6. Experiment and Evaluation 

The runtime performance of the devised event detection techniques and a system 

prototype have been tested and analysed in this chapter. Following the order of the 

process pipeline, the precision and efficiency of the STV-based shape matching 

processes have been assessed and benchmarked against other classic systems and 

algorithms. Various popular colour spaces and RI template formats have been 

examined to highlight the proficiency of the newly developed feature extraction and 

pattern recognition techniques. The evaluation on the overall system performance has 

been focusing on the robustness of its modularised design as detailed in Chapter 5. 

Both controlled and uncontrolled video settings and inputs have been applied in the 

experiments to assess the system’s adaptability and robustness for real applications. 

6.1. Test Data Acquisition 

Several public datasets have been utilised in the experiment designs for their 

popularity in CV research areas and benchmarking potentials. Among those tested 

datasets, 2 open-access online video library sources and a self-made one have finally 

been adopted for relevant experiments due to their representativeness underpinning 

distinctive characteristics as listed in the Table 6-1. Selected frames taken from these 

datasets are illustrated from Figure 6-1 to Figure 6-3, respectively. 
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Name Event Categories: 
Perfor

mers 

Foreground 

Situation 

Background 

Situation 

Weizmann 

[Gorelick et 

al. 2007] 

Wave/Walk/Run/Bend/S

kip/Side/Jump 
9 

Single human 

Clear Boundaries 
Solid Colour 

KTH 

[Schuldt et 

al. 2004] 

Wave/Walk/Run/Boxing/ 25 

Single human 

Multiple Viewpoint 

Clear Boundaries 

Solid Colour 

Campus Wave/Walk/Run/Bend 3 
Single human 

Complex textures 

Complex textures 

and moving objects 

Table 6-1 Selected datasets used for evaluations 

 

Since the clips from the Weizmann video library contain mostly static and relatively 

static simple backgrounds with only one actor in each file, it is considered an ideal 

source for generating event templates in this project. The datasets provide clear 

human contours, taken from a fixed video camera position with fixed internal 

parameters that can be readily used to define human actions models using Active 

Contour segmentation techniques.  

 

Figure 6-1 Snapshots from Weizmann datasets
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In contrast, the KTH dataset contains more than 25 event performers and variant actor 

scales and camera positions that are ideal to test the devised STV event processing 

techniques and algorithms against other existing approaches using the same dataset. 

Further variations have been added into the experiments, for example, the 

illuminations of the KTH video clips had been changed to ±20% in each test to 

analyse the process stability, which guarantees sufficient light for human vision 

system and also avoids unnecessary glared areas hampering the recognition operations. 

 

 

Figure 6-3 Snapshots from the self-made Campus datasets 

 

Figure 6-2 Snapshots from KTH datasets 
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To evaluate the proposed STV-based event detection theories and the prototype’s 

robustness performance under real application conditions, a large set of footages have 

been recorded in this programme at the University of Huddersfield campus. Selected 

snapshots are shown in Figure 6-3. This dataset is focused on system robustness 

performance under complex background and illumination changes. These challenging 

backgrounds both contain large blocks of uniform colour regions and many small 

textured areas from static and moving objects similar to typical real-world dynamic 

noises CV tasks are facing. 

6.2. System Performance Evaluations 

6.2.1. Evaluation Benchmark 

In typical pattern recognition systems, especially the binary decision making systems, 

the recognition accuracy is often evaluated by two statistical figures: false positive 

and false negative rate. The false positive rate, on one aspect, highlights how many 

actual negative samples are treated as positive ones. For, example, in a “waving” 

event detection system, a false positive case means the background noise is mistaken 

to a human “waving” event. The false negative instance, on the contract, means 

positive cases being overlooked and are treated as negative samples. The relationship 

between false positive and false negative can be illustrated in the so-called confusion 

matrix as shown in Table 6-2. (T, F, P, N are the abbreviations of True, False, Positive 

and Negative, respectively). 

 Actual Positive Actual Negative 

Predict Positive TP FP 

Predict Negative FN TN 

Table 6-2 Confusion matrix 
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In the experiment and evaluation part of this thesis, the performance of the system 

accuracy is evaluated by changing the prediction threshold from 100% to 0% to form 

the “Receiver Operator Characteristic curves (ROC curves)” and “Precision Recall 

Curve (PRC). The definition of those curves can be explained by following equations, 

more details can be found from in Davis and Goadrich’s paper [2006]. 

FNTP

TP


Recall  

FPTP

TP


Precision  

recallRatePositiveTrue 



FNTP

TP
 

TNFP

FP


RatePositiveFalse  

6.2.2. Efficiency Measurements 

The overall time consumption of the devised STV event matching algorithms is 

composed of three parts: STV construction, model segmentation, and RI-matching. 

Based on the preliminary trials, the main deciding factor for the system efficiency is 

the total number of selected sub-regions accumulated at segmentation stage. Hence, 

the efficiency evaluation designed in the experiments has largely focused on this part 

as well as RI-based matching, which takes the assembled sub-regions as the input. As 

illustrated in Figure 6-4(a), a mock event template is defined as a volumetric sphere. 

Therefore the contributing-to-non-contributing voxel ratio is controlled by the sphere 

size within the model. Experiments have been carried out to establish the relationships 

between a template’s size inherent and its time consumptions at the template matching 

stage. Figure 6-4(b) shows a 512×512×512 STV block that can be considered as a 

volumetric model formed by the same number of small cubical “bounding” boxes 

organised in an octree style. The total number of sub-regions n need that to be tested 

for intersections in the I-PWRC pipeline are defined as 80, 81, 82 and 83 - representing 

different hierarchical levels of segmentation. This simplified design provides an 

indicator on the relationships between the STV segmentation sizes and their matching 
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speeds. To further simplify the benchmark design, the position of the mocking event 

template has always been fixed at the centre of the STV. 

A mockinging event 

template 
On-fly STV model Size - related RI Derformance 

 

(a) (b) (c) 

Figure 6-4 Artificial event model and STV hierachical strcture for efficiency evaluations 

 

(a) (b) 

Figure 6-5 Improvements on time consumptions from the “Filtering” and “RI Matching” 
phases 

Figure 6-5 demonstrates the time consumptions of the original RI method and the 

improved one developed in this research at different segmentation levels. As indicated 

in Figure 6-5(a), at the segmentation level n=81 (level 1 division in an Octree), the 

original method outperforms the proposed method by a fold due to the latter’s extra 

filtering operations. However, when the segmentation level increases to 83 as shown 

in Figure 6-5(b), the new approach has displayed a 10-plus efficiency gain. Based on 

the experiments, the original RI method runs faster if the size of each sub-region is 

r
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not “too small” compared with the template; while the improved RI method produces 

a far superior performance under real application conditions when complex and 

dynamic events have to be extracted through over-segmentation to preserve details. 

The event template size used for RI matching is also a contributing factor to the 

efficiency of the devised algorithms. When an inputting STV is extensively over-

segmented to handle noisy signals, the increase of a template’s size can bring extra 

cost to the operational time but still only counting as a fractional cost of the entire 

processing time. 

6.2.3. Matching Accuracy Evaluations 

Experiments were carried out in this research to assess the event detection accuracy 

based on the theoretical structure of the system as introduced in Chapter 3 and 4.  

One of the main objectives of these tests was to establish the ground truths on event 

detection accuracy of the proposed method. The experiments started from the KTH 

video libraries. Table 6-3 lists the values of the parameters used in the experiments, 

where the event templates were defined by averaging the minimum of four volumetric 

contours extracted from each event category. 

MS PWRC 
Active 

Contour 

Coefficient 

Factor 

rH  sH  k(C0) n      a  b  

5 5 0.2 7 0.14 1.17 0.8 0.6 

Table 6-3 Parameters used for KTH Dataset 
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Figure 6-6 shows the test results of the detection accuracy based on the confusion 

matrix acquired from the KTH dataset. The average accuracy of the developed system 

is 82.0%, which is slightly better than many popular methods as listed in Table 6-4. 

As illustrated in the confusion matrix, certain events such as the jog-and-run and the 

boxing-and-clap pairs are difficult to distinguish due to their silhouette similarities 

and minute variations on the temporal axis. One possible solution to such a problem is 

to combine the machine learning algorithms with the local spatio-temporal features 

for differentiating the details of human gestures. 

Methods and techniques 
Event Detection 

Accuracy 

This Method: PWRC + RI + CF(Coefficient factor)   82.0% 

Ke et al.’s MS (Mean shift) + RI + Flow [2010] 80.9% 

Schuldt et al. [2004] 71.7% 

Dollár et al. [2005] 81.2% 

Niebles et al. [2008] 81.5% 

Table 6-4 Matching accuracy performance compared with other approaches 

The self-made Campus datasets have also been tested, which contain mixed action 

events recorded under different uncontrolled and real-world conditions. The length of 

 

Figure 6-6 The KTH confusion matrix 
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each video clip is about 10 minutes. The prototype system’s robustness has then been 

validated by using the ROC curves and PRC as illustrated in Figure 6-7. 

Figure 6-7 presents the ROC curves generated from relevant experiments to highlight 

the performance variations on the proposed event detection algorithms recorded at an 

incremental the threshold value (+10% for each plot in the curves). It is evident from 

the results that the proposed method can produce a better performance through 

integrating the coefficient factor mechanism as explain in Section 4.3.2. In addition, 

the innovative Hierarchical I-PWRC technique can abstract more accurate shape 

features in comparison with other clustering based segmentation methods. 

 ROC curves PRC 
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Figure 6-7 Template matching results (ROC and RP curves) on the campus dataset 

6.2.4. Model Compatibility Evaluations 

As discussed in relevant sections, various new algorithms have been introduced into 

the process pipeline. Their integration smoothness will have a major impact on the 

overall system performance. This experiment aims at assessing the system module 

compatibilities, especially between the data preparation (MS pre-clustering) and the I-

PWRC segmentation; and the RI matching operations. The normalised RI distance 
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introduced in Section 4.2.2 (see Equation 4-4) has been used as the main indicator for 

the compatibility performance. 

The STV event templates deployed in this experiment have been drawn from the 

Weizmann’s datasets with the test videos coming from the Campus’ dataset. As 

extensively covered in Section 3.2, both the STV preparation and the region graph 

construction stages have employed segmentation operations. 

As illustrated in Figure 6-8, smaller over-segmented regions produced by MS 

( 15,15  lc hh ) are often used in the conventional RI matching applications which 

contain finite region boundary sections, but are often too small to be assembled to 

represent the event pattern shapes effectively. Although this problem can be partially 

relieved by using the normalised distance and the coefficient factor during RI 

matching, a more fundamental solution still has to come from the accurate 

segmentation outputs. 

As shown in Figure 6-9, larger MS-driven over-segmented sub-regions ( 3015  ch  

and 3015  lh ) encapsulate uniform coloured regions well but are easily confused 

by similar colours from separate objects and missed out on some small textured areas 

completely, especially in the low illumination and contrast areas. The balance 

between choosing larger or smaller segmented regions can be a tricky one and is only 

controlled by the MS clustering window size h  The time consuming job on adjusting 

this sensitive parameter can reduce accuracy, adaptability and robustness of the 

overall system. This effect can be illustrated by the confusion matrix shown in Figure 

6-10, which compares the detection accuracy using conventional RI method (based on 

MS) and the I-PWRC segmentation method. 
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Waving Bending Running 

 

 

 

 

 

Figure 6-8 MS over-segmentation result (hc=5, hl=5) on 3 events 

 

 

 



Chapter 6 Experiment and Evaluation 

106 
 

Waving Bending Running 

 

 

 

 

 

 

Figure 6-9 MS segmentation results (hc=15, hl=15) on 3 events 
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It is evident in the experiment that the I-PWRC method has been benefitted greatly 

from its hierarchical structure and the dynamic parameter controls. The accuracy 

performance, therefore, is much better than the benchmarked MS-only approaches. 

Similar conclusion can be reached by comparing the I-PWRC-empowered method 

with Coefficient Factor (CF)-boosted RI method as shown in Figure 6-10(c) and 

Figure 6-10(d). The event detection accuracy has improved by more than 9% by using 

I-PWRC. 

(a) MS+RI, average accuracy = 57.1% (b) I-PWRC+RI, average accuracy = 80.2% 

(c) MS+RI+CF average accuracy = 61.1% (d) I-PWRC+RI+CF average accuracy = 

90.1% 

Figure 6-10 MS and I-PWRC based RI matching confusion matrices 
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Based on the experimental results, the I-PWRC method has proven its effectiveness 

for providing quality outputs for the RI matching operations, especially under 

complex real world conditions. Accompanied by the optimisation measures employed 

at the template matching stages, the process pipeline and its various operational 

models have shown sound compatibility. 

6.2.5. Matching Performance within Different Colour Spaces 

Similar to the gray-scale-based intensity features in image processing, colour features 

are becoming more popular in modern DIP and video processing backed up by many 

new segmentation and matching algorithms as detailed in Chapter 2. This experiment 

has focused on the devised algorithm performances in different colour spaces, which 

highlight the system accuracy improvement contributed by low-level features. 

The datasets used in this experiment are the same as the ones deployed in Section 

6.2.3. As illustrated in Figure 6-11, the average accuracies calculated from the 

confusion matrices based on the I-PWRC segmentation outputs are very close and 

maximum differences are within 1%. 
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Overall, the group of CIE colours (XYZ, LUV, Lab, L*a*b* and UVW) performed 

better than others due to their human perception-based colour representations. In 

addition, the Luminance plus Chrominance group (TUV and YCbDr) have shown 

identical detection accuracies comparing with the Hue and Saturation (HSV, HSL) 

group. 

As a conclusion, although most of today’s commercial video imaging sensors and 

equipment still adopt RGB-based colour settings, for automating video analysis and 

event detection tasks in the future, more human perception-based and computationally 

efficient colour models should have been deployed.  

6.2.6. Template representation and Matching Performance 

In the system and experiment design, the event templates are composed by averaging 

a number of event models extracted from each event clip group. The purpose of this 

experiment is to establish the relationships between the matching accuracy and the 

template representativeness denoted by the number of samples used for generating a 

 

Figure 6-11 KTH datasets average detection accuracy based on different colour spaces 
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template. The event samples were selected from the Weizmann dataset and the test 

videos were coming from the Campus video dataset. The matching accuracy 

performances of each event category are illustrated in Figure 6-12. 

 

It is evident in the figure that the matching accuracies for all event categories peaked 

around the sample size of 7. Further increasing the sample size produces small 

variations on matching accuracy with the event groups such as “walking” and 

“bending” even shows a small drop on accuracy due to unnecessary sample details. 

6.3. Scale-Invariant Event Detection 

Figure 6-13 (a), (b) and (c) provided direct comparisons between a benchmarking 

confusion matrices generated from the KTH dataset using a standard matching 

approach and the multi-scaled templates introduced in Section 5.1.  

 

Figure 6-12 Accuracy impact of average template numbers 
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(a) Benchmarking detection results (without robustness measures and average accuracy at 

82.0%)  

  

(b) Improved by multi-scaled templates 

(average accuracy=83.4%) 

(c) Improved by normalised multi-scaled 

templates (average accuracy=85.1%) 

Figure 6-13 KTH confusion matrices after employing the using multi-scaled templates 

Through examining Figure 6-13 (a) and (b), it is clear that the multi-scaled templates 

have introduced consistent accuracy improvements on all tested KTH samples which 

contain large variations on event spatio and temporal features. The “false-negative” 

incidents, such as the miss-identification of run from walk have been reduced 

significantly through employing the multi-scale templates. In addition, the inherent 

“double check” mechanism from using the multi-scaled templates has also improved 

the “true-positive” rate through cutting the “false-positive” parts. By using the multi-

scaled templates, the tested dataset has seen an average improvement at 1.4%. As 

shown in the Figure 6-13(c), the accuracy further improved to 3.1% by using the 
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normalised version of the multi-scaled templates. The test results on the Campus 

datasets are illustrated in Figure 6-14. 

 

6.4. Test on Uncontrolled Video Inputs 

Partially serving as a proof-of-concept as well as performance evaluations on system 

performance, the afore-discussed experiment results have proven the validity of the 

devised STV-based event detection approach and the practicality of its corresponding 

system design. The experiments introduced in this section have been focusing on the 

real-world system performance when subjected to random noise and other challenging 

real application conditions such as dynamic background and illumination changes. 

 

Figure 6-14 Normalised multi-scaled templates applied on the Campus dataset 
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The real-world CCTV video files were downloaded from various public websites. 

Figure 6-15 shows the snapshots of a number of pedestrians tripping and falling down 

on a spot near the entrance of a building. The CCTV postures are controlled by a 

rotational motor with adjustable focal length. The experiment intended to detect and 

denote all the “falling down” events from the video footage that lasted for about 8 

minutes-there are 12 actual “falling down” events captured on the tape confirmed by 

visual observations. It is clearly visible from the selected snapshots, the background 

of the video was filled with noise signal, i.e. moving vehicles and passing pedestrians. 

The “falling down” event template is generated from the test video itself. 

 

Figure 6-15 Selected frames from a “people falling down” video clip 
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Figure 6-16 shows the I-PWRC segmentation process applied on the input video. 

Once the 3D over-segmentation regions are generated, the template is then being used 

to “scan” through the entire spatio-temporal domain for matching operations. Figure 

6-17 compares the RPC drawn from a number of classic matching algorithms (see 

Table 6-4), which shows a slightly superior performance from the improved RI 

method. The experiment had set the threshold at 60% for a positive match in between 

the pre-defined event template and the on the fly STV models. 

 

Figure 6-17 Performance comparisons between classic approaches 

 

Figure 6-16 Over-segmented sub-regions from the “falling down” event 
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Chapter 7. Conclusions and Future Work 

7.1. Programme Summaries 

This research programme has been focusing on tackling problems in video event 

detection based on the so-called Spatio-temporal Volume and its related voxel-based 

features. In this research, video contents have been modelled as volumetric shapes for 

event recognition through devising innovative feature extraction and shape matching 

techniques. 

7.1.1. I-PWRC Validity and Practicality  

In this dissertation, STV feature extraction problems are identified and investigated by 

harnessing the advancement and potential of classic image segmentation and pattern 

recognition techniques. An innovative image segmentation technique has been 

developed in this research during the feature extraction phase of the operational 

pipeline. The proposed extended Pair-wise Region Comparison (I-PWRC) method 

established a set of hierarchical segmentation operations for classifying STV regions 

based on regional colour and texture features. Its baseline algorithm follows an 

iterative mechanism and updates each cluster in every cycle by comparing their inner 

difference and similarities with neighbouring clusters. In this research, a graph-

oriented comparison approach has been successfully implemented into the STV space. 

Based on the theoretical study and practical trials, the I-PWRC segmentation strategy 

developed in this project has proven its effectiveness and efficiency when extended 

from 2D to 3D feature spaces. The 3D segmentation approach is not merely an 
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extension of the feature vectors from their original forms, but a methodology 

remodelling through analysing STV feature characters and their spares matrix nature. 

The system prototype developed in the project further verified the innovative 

approach’s practicality through series tests on volumetric models and their huge 

amount of data. This research has opened up valuable algorithm design approach 

when dealing with problems rising from data structural and scale changes. 

Currently, the system pipeline employed a separate MS pre-clustering operation for 

reducing the complexity of the I-PWRC graph initialisation, the performance of the 

system has therefore been partially depending on the output qualities of the MS 

clustering process. The additional parameters engaged for maintaining the MS 

performance on different datasets increase the variety of the overall segmentation 

performance due to the empirical maintenance during the feature extraction steps. It is 

anticipated that this problem can be tackled by integrating the MS-based pre-

clustering and I-PWRC segmentation into one unified operation through harnessing 

the recent advancements in the so-called sparse feature representation. 

In this research, the developed texture-based graph feature representation method has 

been proven as an effective approach for 3D feature segmentation that is a 

significantly improvement from the conventional per-frame and pixel level operations. 

The I-PWRC produces a global STV feature representation, while the texture and its 

histogram representation enhance the segmentation accuracy through applying local 

features to the global representation. This hybrid approach had been stimulated by the 

classic success in face recognition when combining the local and global features such 

as the Eigen-face method. One of the drawbacks for the texture-based representation 

rooted from its computational cost that hampered its applications. This problem will 
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be ideally dealt with by the computer hardware and programming paradigm shifts, 

such as Cell-CPU, multi-core and Graphic Process Unit (GPU)-driven hardware 

acceleration and parallel computing. 

7.1.2. 3D RI Matching Adaptability and Robustness 

Based on the early works from Ke et al.’s[2010], an improved Region Intersection (RI) 

method has been developed for recognising video events by comparing the global 

features assembled from the over-segmented I-PWRC outputs with the event 

templates. The matching outputs are then further refined by deploying an evaluation 

scheme called coefficient factors to assess the matching (RI) distances. These devised 

recognition procedures have shown their distinctive advantages when dealing with 

real-world video inputs containing dynamic background and noisy signals. This 

research has also introduced the scale-invariant templates for matching calibration. 

Based on the test results, these developments can improve the robustness performance 

of the RI matching in uncontrolled videoing conditions, especially when the video 

inputs contain camera posture transformations. 

It is worth noting that histogram representation and its distancing measurement have 

been applied in the coefficient factor phase for boosting the matching performance. 

Similar histogram-based methods have also been successfully deployed for 

representing textures in the I-PWRC segmentation stage in the research pipeline, as in 

many other successful vision applications, such as [Dalal and Trigges 2005], [Wang 

and Mori 2009] and [Grundmann 2010]. The usage of histograms therefore can be 

recognised as an important tool for bridging the gaps between low-level and high-

level feature representation methods, and individual feature points and feature groups 

in different feature spaces.  
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Another interesting finding from this research is that the 3D RI matching approach is 

a adaptable global feature-based technique for comparing the feature distributions 

from over-segmented STV regions with the pre-defined 3D event templates. While 

many recent publications have focused on local STV features such as spatial body 

part relationships (see Section 2.5), the evaluation in this research has shown superior 

and/or comparable detection accuracy under identical video settings using the devised 

“global” feature-oriented methods. The rationale of this phenomenon can be 

summarised as: firstly, the STV feature space provides natural and comprehensive 

information for modelling video content and their dynamics defined as over-

segmented feature regions. This intuitive global representation simplifies the 

matching process into a so called “in-class variations” operation, which is ideal for 

maintaining system robustness in comparison to complex local feature-based methods. 

Secondly, since most local feature-based event detection techniques require machine 

learning strategies for establishing event categories and matching rules for a particular 

event, the computational expensive deductive reasoning procedures are not suitable 

for the inherently large-scale STV models. The 3D RI matching theory, only based on 

Set Theory, is an effective method for the STV template matching.  

As explained in Section 4.4, the over-segmentation design currently employed in the 

research cannot comprehensively represent event information which is “inside” a STV 

model (i.e. a concave shape). The global representation strategy is seemingly lacking 

in intrinsic characteristics in dealing with video occlusion problems, which justifies 

the motivation in this research to apply a hybrid (global and local features) 

mechanism for the problem. Other envisaged optimisation strategies have been 

discussed in Chapter 5 and classified as follow-on works of this programme. 
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7.1.3. Function Modularisation and System Integration 

To maintain runtime performance of the research system, the process pipeline within 

the system prototype adopted a modularised design and has been enhanced by a 

number of optimisation techniques, for example, the volume buffering mechanism for 

storing STV data through composing models based on the incoming video streams in 

a compact and on the fly style to control the runtime memory consumption. The 

research prototype has also demonstrated the innovative interest area-based (not 

interest point) data structures for improving computational efficiency of the system. 

The interest areas predict and highlight the likely event-occurring areas before 

deploying the sliding window filtering mechanisms for shape matching using the 

SIFT feature points. Experiments carried out in the project have justified the 

feasibility and flexibility of these optimisation designs.  

In the experiments, (see Section 6.4), under challenging videoing conditions, a 

combination of those measures in addition to the scale-invariant templates mechanism 

have ensured a satisfactory overall system performance against other benchmarking 

methods and systems. 

Although there are still many issues to be studied and resolved, the STV-based video 

event detection strategy and the related techniques developed in this research have 

revealed the validity and potential of the approach for tackling the challenging 

problems rooted from real-world video processing and semantic interpretation for a 

wide spectrum of applications. 
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7.2. Future Work 

The STV model and its related algorithms investigated in this research have justified 

their values in tackling the challenging problem of video-based event detection, which 

is considered a small step towards the ultimate solution for real-time intelligent and 

automated complex event detection and recognition. Although this “Holy Grail” in the 

CV field cannot be readily achieved just using current knowledge and techniques, 

many worthwhile attempts aimed at that goal had offered remarkable ideas and 

initiatives that will facilitate future efforts. This section covers a broad discussion on 

several related research and development directions for future exploration. 

 Compressed 3D Video Feature  

Current STV-based volume data techniques are mainly based on extending 2D DIP 

algorithms into 3D domains. However, this approach often suffers from the so-called 

“curse-of-dimensionality” due to the complex model structures and feature definitions 

introduced. For example, to apply classic PWRC techniques directly into a 3D feature 

domain, the initial 8× pixel linkages for each feature point assessed will be expanded 

to 26× potential voxel connections. Considering the iterative processing natures of 

many relevant operations, the computational burden generated from such a shift can 

be daunting and even impractical at time. In this research many remedial measures 

have been taken to address the issue, such as MS pre-segmentation and region 

histogram representation, which observed relative success to the proposed 

methodology. On the other hand, the full potentials of 3D PWRC were not entirely 

realised due to the quality of segmentation being partially affected by the outputs of 

the pre-processing steps. 
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One possible solution to this problem is to renovate the conventional method for 

video STV construction. Motivated by the rapidly evolving video compressing 

techniques, the design principle is to move away from the current STV data structure 

that relies on uncompressed video frames, and can only be processed by voxel-based 

algorithms, to a new paradigm based on compressed video formats and to integrate 

relevant video compressing algorithms (codec) with appropriate feature processing 

techniques. It is anticipated that efforts along this direction will transform the spatial 

feature dominated STV processing into a frequency feature analysis domain, hence, 

enabling many powerful and mature analytical models and tools to be used. 

 Comprehensive Local and Global Hybridisation 

In a typical computer vision application, the “meaningful” information is 

fundamentally represented by pre-defined features, which determine the appropriate 

analytical methodologies in the following processing steps. Based on the 

uncompressed low-level voxel characteristics, such as colour, intensity and spatial 

positions, the features used for event detection in this research were predominantly 

based on 3D shapes, regions textures, and sudden colour/intensity changes (interest 

feature points). Determined by the inherent nature of those features, the research 

problems have been tackled by investigating specific global segmentation and 

template matching techniques. However, as discussed in relevant sections, local 

feature-based analysis can still provide substantial benefits on result verification and 

performance enhancement. For example, the popular Active Contour method for 

tracking might rely on manual selection of event targets at the start. But its inherent 

energy minimisation procedures will enable the rest of the processes to be automated. 

Another classic example is the so-called “Optical Flow” that had been a research 
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hotspot for almost 2 decades. It has been widely used in motion estimation from 

multiple and continuous frames. It is envisaged that to combine the strength of voxel-

based and “flow”-based features, the “concave” event shape identification problem 

can be alleviated. If facilitated by appropriate machine learning algorithms, the entire 

process might even be integrated and automated for practical applications. 

 New Sensor Technologies 

Benefited from the advancements of sensor technologies, such as Charge-Coupled 

Devices (CCDs) / Complementary Metal–Oxide–Semiconductor (CMOS) image 

sensors and depth sensors, many legacy software/algorithm-driven calculations have 

been moved to hardware paradigms and being directly “measured” and recorded, 

which might lead to a revolution for future video and CCTV applications.  

In 2004, the first off-the-shelf time-of-flight (ToF) camera has been released by 

Advanced Scientific Concepts (R), Inc. [2011]. Combined with traditional CCD 

sensor technology, ToF introduced an extra depth sensor that measures the distance 

between a target object and the lens before producing a 3D depth map of the captured 

scene. Analogical to the radar system, ToF measures the temporal duration of light 

leaving and reflected back to the camera, to register range information with an 

effective distance up to 60m, and a resolution of about 1cm. Different from 

conventional 3D reconstruction techniques, this added dimension enables 3D 

reconstruction from a single camera instead of two or more cameras working with 

time-consuming 3D reconstruction algorithms. The technology has been successfully 

applied in modern video game designs. To apply the ToF in video event detection 

should reduce the burden being carried by most of today’s application systems in 
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terms of background removal, human body segmentation, and occlusion detection. It 

should also provide accurate object contours for image-based rendering.  

Benefiting from current hardware developments in image sensors, some features such 

as speed and depth, which cannot easily be abstracted from video cameras, can boost 

the performance of video event detection significantly.  

 Computational Hardware Acceleration 

The RI-based template matching in the research system is considered as the most 

complicated operation counting at 70% of total CPU time consumption. Although this 

project was not initially targeting real-time applications, the operational efficiency 

still plays a vital role for the proposed method’s future success and wider applications. 

One perspective solution to improve the system efficiency is through employing 

hardware acceleration by adopting parallel computing architectures, for example, 

through harnessing data parallelism embedded in modern Graphics Processing Units 

(GPUs) to facilitate inherent data intensive and filter-driven video feature 

computations. The Compute Unified Device Architecture (CUDA) developing 

platform from nVIDIA [2011] has provided implementation tools for this purpose. 

GPU is skilled in processing a same algorithm on large quantity of data, many 

important steps in the research pipeline can be accelerated by using this device. For 

example, the interesting feature points of STV can be extracted by translating the 

voxel data as 3D textures, which can be processed by fragment shading of GPU. The 

following machine learning steps can also gain great benefit by defining the feature 

points as texture (2D or 3D), which can be deployed by various shading languages as 

texture maps during processing. These improvements provide a possible real-time 

solution through accelerating the volume-based operations developed in this research.
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