
University of Huddersfield Repository

Ikhlaq, Amir

Catalytic ozonation for the removal of anthropogenic organic contaminants in water

Original Citation

Ikhlaq, Amir (2012) Catalytic ozonation for the removal of anthropogenic organic contaminants in 
water. Doctoral thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/17495/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



i 

 

 

Catalytic ozonation for the removal of 

anthropogenic organic contaminants in water 

 

Amir Ikhlaq 

M.Sc (Chemistry), M.Phil (Chemistry) 

 

 

Submitted for the Degree of Doctor of Philosophy (PhD) 

 

 

 

 

United Kingdom 

July 2012 

http://www.google.co.uk/imgres?imgurl=http://halo.hud.ac.uk/silive/images/Hud_logo_1.jpg&imgrefurl=http://halo.hud.ac.uk/silive/&usg=__qEKBiqWUqrbj-WdYQYDSTDoWhPw=&h=346&w=623&sz=40&hl=en&start=18&zoom=1&tbnid=Vz84qF5dLO4cJM:&tbnh=76&tbnw=136&ei=auCuTa7-MI2bOuDXyOMB&prev=/search?q=University+Huddersfield+Logo&um=1&hl=en&sa=N&biw=1132&bih=677&tbm=isch&um=1&itbs=1


ii 

 

Abstract 

The ZSM-5 zeolites with varying silica to alumina ratios and with both hydrogen and 

sodium counter ions (Z1000H:SiO2/Al2O3 = 1000, Z900Na:SiO2/Al2O3 = 900, 

Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25) and γ-alumina have been selected 

as catalysts. The first investigation was initiated to study the mechanisms of catalytic 

ozonation on zeolites and alumina. The formation of reactive oxygen species (ROS) 

such as hydroxyl radicals (
o
OH), hydrogen peroxide (H2O2) and superoxide ion radical 

(
o
O2

-
) have been investigated by using coumarin (COU), amplex red and 4-chloro-7-

nitrobenzo-2-oxa-1,3-dizole (NBD-Cl) as probes respectively. The effects of hydroxyl 

radical scavenger and phosphates have also been studied to investigate the 

mechanism. The results show that alumina catalyses radical pathways involving ROS, 

showing its highest activity at pH close to the point of zero charge. However, zeolites 

do not promote the formation of ROS. The presence of phosphates and t-butanol 

(TBA) significantly reduces the formation of ROS in the case of alumina. However, in 

the case of zeolites TBA and phosphates do not have a significant effect on ROS 

formation.  

The second investigation involved the study of the efficiency of catalysts to remove 

organic contaminants. The ibuprofen and volatile organic chemicals (VOCs) such as 

cumene, 1,2-dichlorobenzene and 1,2,4-trichlorobenzene have been selected as target 

pollutants. The results show that within the family of zeolites, silica to alumina ratio is 

important for the adsorption of pollutants and for catalytic efficiency of zeolites. 

Therefore, Z1000H and Z900Na have been found to effectively catalyse the removal 

of VOCS and Z25H and Z25Na were the better catalysts for the removal of ibuprofen 

in its ionized form. The alumina was found to be ineffective for the removal of VOCs. 

However, alumina effectively removes ibuprofen. This is because of high adsorption 

of ibuprofen on alumina. Therefore, it is hypothesized that zeolites operate through a 

simple mechanism involving the direct reaction of adsorbed species on their surfaces; 

their activity depends upon their silica to alumina ratios and is insensitive to the nature 

of counter ions. The alumina operates through a radical mechanism involving the 

formation of ROS. Furthermore, the adsorption of pollutants plays an important role in 

the catalytic ozonation process. 
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CHAPTER 1-INTRODUCTION 
 

 “In this chapter the general introduction with a brief summary of the work has 

 been described. In addition, the overview of the literature related to the areas of 

 study has been provided”. 
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1.1 Overview 

Catalytic ozonation is one of the advanced oxidation techniques in which ozone is used 

together with a catalyst in both homogeneous and heterogeneous forms. This process 

gained much attention in the past few years because of its ability to remove pollutants 

effectively. Unfortunately, the mechanisms of the processes are still largely unknown and 

there have been different mechanisms proposed. Three possible reaction mechanisms 

reported to highlight the role of catalysts in the process [1]. 

1. Chemisorption of organic molecules on the surface of the catalyst and their 

reaction with adsorbed aqueous ozone. 

2. Chemisorption of ozone on the surface of the catalyst, which results in the 

formation of active oxygen species which then react with chemisorbed or non-

chemisorbed organic molecules. 

3. Chemisorption of ozone and organic molecules onto the catalyst and their 

interactions with one another resulting in the formation of active oxygen species. 

Recently, catalytic ozonation has been used for effective degradation of organic pollutants 

from water. The catalytic ozonation can be further divided into homogeneous and 

heterogeneous catalytic ozonation processes. The former involves ozone decomposition 

catalysed by transition metal ions and in the later the ozone decomposition is catalysed by 

solid catalysts. Heterogeneous catalytic ozonation has been successfully used for the 

effective removal of organic pollutants. Among the catalysts used are: Al2O3, TiO2, Fe2O3, 

Y-zeolites, activated carbons and ZSM-5 zeolites [2-11]. Unfortunately, despite several 

research groups having successfully used heterogeneous catalytic ozonation for pollution 

control, the mechanisms of these processes are still not clear [1, 12]. Furthermore, in order 
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to introduce this technique for water treatment on an industrial scale, it is important to 

understand the mechanism of the catalytic ozonation process. The following are vital 

points that are to be answered in order to understand the catalytic ozonation process [12]: 

- It is not clear whether a direct ozone attack or radical mechanism (the catalyst 

causes ozone decomposition leading to the formation of hydroxyl radicals) is 

responsible for the degradation of organic pollutants. 

- The pathways of aqueous ozone decomposition in catalytic ozonation processes 

are not clear and several mechanisms have been proposed. The major question is 

whether the formation of hydroxyl radicals is as a result of aqueous ozone 

decomposition on the surface of the catalyst, or indirectly as a result of secondary 

reactions. 

- It is not clear whether the adsorption of pollutants on the surface of the catalyst is 

vital for high reaction rates (some reports favour it and others oppose it). 

- What is the effect of natural water constituents such as phosphates, carbonates, 

bicarbonates, sulphates and natural organic matter on the catalytic activity? 

- What are the important factors that can affect the catalytic activity? 

The aim of this study was to verify the effectiveness and mechanism of catalytic ozonation 

on alumina and ZSM-5 zeolites with different silica to alumina ratios and counter ions 

(Z1000H: SiO2/Al2O3 = 1000, Z900Na: SiO2/Al2O3 = 900, Z25H: SiO2/Al2O3 = 25 and 

Z25Na: SiO2/Al2O3 = 25). 

Alumina has been reported by several authors as an effective catalyst of organic acids, 

chlorinated organic compounds, chlorinated phenols [13, 14], and natural organic matter 
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[3] ozonation in water. There are however reports indicating the lack of catalytic activity 

of alumina (e.g. ozonation of ethers and hydrocarbons [4, 15]). Furthermore, the 

importance of the adsorption of pollutants on the surface of the catalyst is questionable. 

Some authors considered adsorption as a vital step in catalytic ozonation [4, 16] while 

others opposed it and suggested that the adsorption of organic compounds is not important 

for effective removal of pollutants [17]. The surface properties of alumina were also 

considered vital for ozone decomposition. Furthermore, it was hypothesized that surface 

the hydroxyl groups of alumina are responsible for ozone decomposition and the highest 

catalytic activity of alumina was reported at its point of zero charge [18-20]. However, it 

has been reported by Lin et al [21] that aqueous ozone is not decomposed by alumina. 

Pocostales et al [2] hypothesized that aqueous ozone adsorbed on the surface of pollutants 

react directly with adsorbed organic compounds. In the light of the above discussion 

further investigations are required to evaluate the mechanism of catalytic ozonation on 

alumina. 

Recently high silica zeolites (HSZ) have also been tested as a catalyst and were found to 

be good adsorbents of ozone [22]. They have been also successfully applied as 

heterogeneous catalyst for pollution abatements. [11, 23, 24]. The hydrophobic nature of 

HSZ also attracts organic pollutants on its surface [25] and that results in enhanced 

reaction rates among ozone and pollutants on the zeolites surface [11]. It has been 

hypothesized by Valdes et al [26, 27] that Lewis and Bronsted acid sites of zeolites may 

decompose the aqueous ozone leading to the generation of hydroxyl radicals. 

Unfortunately, no extensive investigation has been undertaken in order to understand the 

process occurring during the ozonation in the presence of ZSM-5 zeolites. 
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In this study reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxide 

and the superoxide ion have been investigated in the ozonation of ZSM-5 zeolites and 

alumina, these investigations were undertaken in order to understand the mechanism of the 

ozonation process over alumina and ZSM-5 zeolites. For this purpose probe molecules 

such as coumarin (to investigate the formation of hydroxyl radicals), amplex red (to 

analyse the formation of hydrogen peroxide) and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole  

(to investigate the formation of superoxide ion) have been used in the ozonation process in 

the presence of alumina and ZSM-5 zeolites. 

 In order to investigate the effect of the nature of the pollutants on catalytic ozonation 

different types of pollutants such as VOCs (hydrocarbons; nonpolar compounds), 

pharmaceuticals (ibuprofen, polar compound) and organic acids (acetic acid; ozone 

resistant compound) have been selected. This investigation would be helpful to understand 

the effect of adsorption of pollutants on catalysts, as it was expected that hydrophobic 

compounds (VOCs) may be more likely to adsorb on the hydrophobic high silica zeolites 

than that of alumina in contrast to ibuprofen. 

Additionally, variables such as the pH of the solution, the surface properties of materials, 

the effect of inorganic ions, the effect of humic acids, the effect of silica to alumina ratios  

of ZSM-5 zeolites, the role of counter ions, the aqueous ozone decay rates, the effect of 

catalyst amounts and the reuse performance of the catalysts were studied in order to 

understand the processes occurring during the catalytic ozonation. Finally, on the bases of 

above studies the mechanism of ozonation on ZSM-5 zeolites and alumina has been 

hypothesized. In this work cumene, chlorobenzenes (1,2- dichlorobenzene and 1,2,4- 

trichlorobenzene), ibuprofen and acetic acid were used as target pollutants.  
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1.2 Main objectives 

1. To investigate mechanisms of catalytic ozonation of pollutants on ZSM-5 zeolites 

and alumina. 

2. To verify the phenomena influencing catalytic ozonation (e.g. sorption of organic 

pollutants on the surface of catalysts, the effect of the pH of the solution, surface 

properties of catalyst, inorganic ions and natural organic matter on degradation 

efficiency of catalytic ozonation. 

3. To verify the efficiency of catalytic ozonation towards common water pollutants 

(VOCs and pharmaceuticals). 

1.3 Organization of thesis 

Chapter 1 

A general introduction with a brief summary of the work and an overview of the literature 

related to the areas of study. 

Chapter 2 

This chapter has been divided into two parts. The first part (experimental) describes the 

materials, equipments and methods used in this research. The second part (method 

development and validation) describes the methods development and validation.  

Chapter 3  

Chapter 3 describes the characterization of ZSM-5 zeolites and alumina. The techniques 

used for characterization are FTIR, SEM, XRD and mass titration.  
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Chapter 4 

In this chapter the results of an investigation of the formation of the active oxygen species 

such as hydroxyl radicals, hydrogen peroxide and superoxide ion radical formation in the 

ozonation process on ZSM-5 zeolites and alumina have been presented. Coumarin, amplex 

red and NBD-Cl were used as probe molecules for an investigation of hydroxyl radicals, 

hydrogen peroxide and superoxide ions respectively. Furthermore, the effect of pH, 

catalyst dose, phosphates and t-butyl alcohol has been studied. The aqueous ozone 

decomposition rates (with and without catalysts) have been investigated at pH 3.0, 6.2 and 

13.0. On the bases of results from the above work, mechanisms of ozonation in the 

presence of zeolites and alumina have been proposed. 

Chapter 5 

 The results for the catalytic ozonation of organic pollutants such as VOCs, ibuprofen and 

acetic acid on ZSM-5 zeolites and alumina have been presented in this chapter. The VOCs 

selected are cumene, 1,2- dichlorobenzene and 1,2,4-trichlorobenzene. The effect of pH, 

adsorption, TBA, phosphates, humic acid, reuse performance of catalyst and catalyst 

efficiency in tap water is described. 

1.4 General overview of ozone 

Ozone is a triatomic molecule and is an allotrope of oxygen that is much less stable than 

the diatomic allotrope. It was derived from the Greek word ozein (to smell) and was 

known to accompany electrical storms, since ancient times. It was first discovered in 1840 

by a German chemist C. F. Schonbein and later on in 1856 Thomas Andrews showed that 

ozone was formed only by oxygen. In 1863 Soret found that the three volumes of oxygen 

produce two volumes of ozone [28]. 
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Ozone in the lower atmosphere is an air pollutant and is harmful for humans, animals and 

plants. However, stratospheric ozone protects life on earth from the harmful ultraviolet 

radiation from the sun [29, 30]. It has been used as a reagent in the synthesis of organic 

compounds, as a disinfectant, for the bleaching of natural fibbers and oxidant for water 

purification [31]. It is an environmental friendly oxidant since it decomposes to oxygen 

without producing self-derived by-products in oxidation reactions. Therefore, it has been 

used as an effective oxidant for the removal of organic pollutants from both the aqueous 

[32, 33] and the gas phases [34]. Recently, ozone has been used in advanced oxidation 

processes such as catalytic ozonation reactions and mineralization of pollutants was found 

to be much higher when compared with ozonation alone [31]. 

1.5 Physicochemical properties of ozone 

Ozone is a pale blue gas and is heavier than air. It is a very reactive and highly unstable 

gas and therefore cannot be stored and transported, so it has to be generated in „„situ‟‟ 

[31]. The molecule of ozone is considered to have resonance structure as shown in the Fig. 

1.1, characterized by end oxygen atoms with only six electrons. This indicates the 

electrophilic nature of ozone in most of its reactions. 
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   Figure 1.1: Resonance structures of ozone [35]. 

The solubility of ozone in aqueous solutions is 14 times higher than oxygen. The solubility 

of ozone in aqueous solutions is influenced by the presence of impurities such as heavy 

metal ions, metal oxides, temperature and pressure. Generally, the solubility of ozone 
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increases with an increase in pressure and decrease in temperature. The solubility of ozone 

at different temperatures is presented in Table 1.1. 

Table 1.1: Solubility of ozone in water [31] 

Temperature (
o
C) Solubility (kg m

-3
) 

0 1.09 

10 0.78 

20 0.57 

30 0.40 

40 0.27 

50 0.19 

60 0.14 

 

Some of the important physical properties of ozone are presented in Table 1.2.  

Table 1.2: Physical properties of ozone [31] 

Physical properties Value 

Boiling point (101 kPa) -111.9
 o
C 

Melting point -192.7 
o
C 

Molecular weight 48.0 u 

Critical pressure 5.53 M pa 

Critical temperature -12.1 
o
C 

Density, liquid (-112
 o
C) 1358 kg m

-3
 

Density, gas (0 
o
C, 101 kPa) 2.144 kg m

-3
 

Viscosity, liquid (- 183
 o

C) 1.57 × 10
-3

 Pa
.
s 

Heat of vaporization 15.2 KJ mol
-1 

Heat capacity, liquid (-183 to -145
 o
C) 1884 J kg

-1
K

-1 

Heat capacity, gas (25
 o
C) 818 J kg

-1
K

-1
 

Surface tension (-183 
o
C) 3.84 × 10

-2
 N m

-1 

 

Ozone has a higher oxidation potential than that of hydrogen peroxide, perhydroxyl 

radical, hypochlorous acid and chlorine. It may decompose to hydroxyl radicals by 

advanced oxidation catalysis hence it has a great potential in water treatment. The relative 

oxidation potentials are presented in Table 1.3. 
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Table 1.3: Relative oxidation potentials [31] 

Species Oxidation Potential, V 

Fluorine 3.06 

Hydroxyl radical 2.80 

Nascent oxygen 2.42 

Ozone 2.07 

Hydrogen peroxide 1.77 

Perhydroxyl radical 1.70 

Hypochlorous acid 1.49 

Chlorine 1.36 

1.6 Reactivity of ozone in water 

In aqueous media ozone can react with organic molecules in two different ways (Fig. 1.2). 

It can either react directly with a compound or it can produce hydroxyl radicals which then 

react with organic compounds [36, 37]. The direct and indirect pathways depend upon the 

pH of water. Normally, under acidic conditions (pH < 4) the direct pathway dominates, at 

neutral pH values (pH 7) both the indirect and direct pathways are important. However, 

at pH above 10 only indirect pathways dominate [36, 38]. 
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 Figure 1.2: Reactions  of ozone in aqueous phase [38]. 

1.6.1 Direct reactions of molecular ozone 

The direct reactions of molecular ozone with organic compounds are highly selective 

reactions and are characterized by very slow rate constants. Because of the chemical 

nature of ozone (Fig. 1) it can act as dipole, nucleophilic agent and electrophilic agent 

[35]. Following are the mechanisms for the direct attack of ozone on organic molecules. 

1.6.1.1 Cyclo addition (Criegee mechanism) 

As a result of its dipolar structure, the molecule of O3 may lead to 1-3 dipolar cyclo 

addition reaction with unsaturated organic compounds, with the formation of primary 

ozonide as shown in the Fig. 1.3. The Criegee‟s mechanism has three steps, as shown in 

the Fig. 1.3. In the first step, an unstable primary ozonide is formed. This breaks down in 

the second step to produce zwitterion (II), this zwitterions reacts in different ways 

depending upon the solvent system [39]. Theses are the decomposition of ozonide in inert 
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(Fig. 1.3a), participating (Fig. 1.3b) and so called abnormal ozonolysis that could 

developed in both participating and nonparticipatinf solvents (Fig. 1.3c). In such a reaction 

ketones, aldehydes and carboxylic acids can be formed (Fig. 1.3c) [39]. 
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 Figure 1.3: Cyclo addition of ozone in protic and aprotic solvents [39]. 
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1.6.1.2 Nucleophilic reactions 

The reactions of molecular ozone are very selective and limited to unsaturated aliphatic 

and aromatic compounds as well as to specific functional groups. Some of the functional 

groups, which undergo reactions with ozone, are shown in Fig. 1.4. In these reactions 

ozone acts as a nucleophile. The nuleophilic reaction is found locally on molecular sites 

showing an electron deficit and on carbon carrying electron withdrawing groups [40].                                                                                              
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   Figure 1.4: Organic groups open to attack by ozone [40]. 

1.6.1.3 Electrophilic reactions  

The molecular ozone may act as an electrophile in reactions with certain organic groups. 

These reactions take place with the compounds containing strong electronic density and 

particularly to certain aromatic organic compounds. For example the aromatic compounds 
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containing electron donating groups (OH, NH2 etc.) can have electrophilic reactions with 

ozone. In contrast, the aromatic compounds containing electron withdrawing groups (-

COOH, -NO2, Cl etc.) are less reactive with ozone. An example of the electrophilic 

reaction of ozone is presented in the Fig. 1.5.  
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 Figure 1.5: Electrophilic reaction of ozone with aromatic compounds [35]. 

The scheme presented in Fig. 1.5 indicate that initial attack of ozone on the organic 

compound containing electron donating group (OH), leads to the formation of 

hydroxylated by-products. Furthermore, these by-products may further react with ozone 

and lead to the opening of the aromatic cycle, which results in the formation of aliphatic 

products with carbonyl and carboxyl functional groups. 

1.6.1.4 Ozone reaction to aromatic nucleus: by-products  

The reaction products of ozone with aromatic compounds are usually ozonides of 

benzenes. The interaction of ozone with the aromatic ring results in the formation of 

ozonide and finally the destruction of the aromatic ring leading to the production of by-

products such as aldehydes, ketones and organic acids [41]. An example of a direct ozone 

attack to aromatic compounds is its reaction with cumene (Fig.1.6). This reaction 

suggested that first ozonide formed that may result in the formation of other products. The 

formation of some active oxygen species has also been reported during the ozonation of 

cumene that may further react with organic molecules and lead to the production of by-

products [42]. The reactions of ozone with a wide range of organic compounds including 
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aromatic compounds have been studied  previously [43]. Furthermore, the organic 

compounds studied have additional functionalities including ketone, aldehydes, carboxylic 

acids and halogens etc. The conclusion drawn from that work was that an addition reaction 

occurs between any type of the double bond and ozone to give addition products. The 

further ozonation of theses products results in the production of smaller fractions. The 

most common by-products reported were aldehydes, ketones and carboxylic acids [43]. 

Therefore, it is important to identify ozonation by-products such as carboxylic acids to 

understand the mechanism of the process. 
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  Figure 1.6: Reaction of ozone with cumene [42]. 
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1.6.2 Indirect reactions  

The indirect reaction involves the decomposition of ozone in water, resulting in the 

formation of reactive oxygen species such as hydroxyl radicals. These hydroxyl radicals 

are more reactive than molecular ozone and can quickly degrade organic compounds. The 

radical pathway is very complex and there are many factors that can affect the mechanism. 

The mechanism of ozone decomposition in water has been explained by Staehelin et al 

[45], and it can be divided in to three main steps (initiation, radical chain and termination). 

The initiation step involves the reaction of ozone with hydroxide ions (OH
-
), leading to the 

formation of superoxide ions (O2
o-

) and hydroperoxyl radicals HO2
o
 (Equation, 1.1). These 

reactions depend upon the pH of the water and occur at basic pH values, as there are more 

OH
-
 ions at these pH values (Equation 1.2). 

 O3 + OH
-
  O2

o-
 + HO2

o
  k1 = 70 M

-1
 s

-1
    1.1 

The hydroperoxyl radical is in an acid-base equilibrium and is more stable at acidic pH 

values. 

 HO2
o
           O2

o-
 + H

+
   pKa = 4.8         1.2 

The second stage a radical chain reaction starts when O3 reacts with O2
o-

, leading to the 

formation of ozonide anion radical (O3
o-

) (Equation 1.3) and this radical reacts with H
+
 

ions and is immediately decomposed to hydroxyl radicals (Equations 1.4, 1.5). 

 O3 + O2
o-

  O3
o-

 + O2   k2 = 1.6 × 10
9 

M
-1

 s
-1

    1.3 

 HO3
o
  O3

o-
 + H

+
   pKa = 6.2               1.4 

 HO3
o
  OH

o
 + O2   k3 = 1.1 × 10

8 
M

-1
 s

-1
    1.5 

The hydroxyl radicals may further react with ozone and formed HO4
o
 radicals [ref] 
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o
OH + O3  HO4

o
   k4 = 2.0 × 10

9 
M

-1
 s

-1
    1.6 

 HO4
o
  O2 + HO2

o
    k5 = 2.0 × 10

9 
M

-1
 s

-1
    1.7 

After the decay of HO4
o
 into O2 and HO2

o
 a new chain reaction starts as shown in equation 

1.1. Furthermore, the organic molecules (R), can also act as promoters and some of them 

may contain functional groups that may react with hydroxyl radicals and form organic 

radicals (Equation 1.8). 

 H2R + 
o
OH  HR

o
 + H2O       1.8 

The HR
o
 radical may further react with the O2 and these reactions lead to the OH

o
 radicals 

(Equations 1.9-1.11). 

 HR
o
 + O2  HRO2

o
        1.9 

 HRO2
o
  R + HO2

o
         1.10 

 HRO2
o
  RO + 

o
OH         1.11 

The indirect chain reaction of ozone in water is explained by the following scheme.  
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 Figure 1.7: Scheme of chain reaction of ozone in aqueous phase [44]. 

The inorganic ions such as carbonates, bicarbonates and phosphates can inhibit radical 

chains and act as hydroxyl radical scavengers (Equations 1.12, 1.13); especially the role of 

carbonates and bicarbonates is important as they are present in significant amount in water 

[36, 45]. 

 
o
OH + CO3

2-
  OH

-
 + CO3

o-
   k6 = 4.2 × 10

8 
M

-1
 s

-1
    1.12 

 
o
OH + HCO3

-
  OH

-
 + HCO3

o
  k7 = 1.5 × 10

7 
M

-1
 s

-1
    1.13 

The two radicals may also react to terminate the chain reaction as follows. 

 
o
OH + HO2

o
  O2 + H2O   k8 = 3.7× 10

10 
M

-1
 s

-1
    1.14 
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1.7 Applications of ozone in drinking water treatment 

Ozone is one of the strongest oxidants that can be implied for the removal of pollutants 

from drinking water. Due to the high oxidation and disinfection efficiency, ozone has been 

used in drinking water treatment for many years. Ozone has been applied for the removal 

of inorganic species from water. Pre-oxidation using ozone followed by the filtration or 

coagulation-flocculation-decantation have been used for the elimination of inorganic 

species from water. The metallic ions form insoluble species upon oxidation and can 

easily removed [46]. Another advantage of ozone is its ability to remove ammonia from 

water [46]. Another important application of ozone is its ability to kill microorganisms 

from water. It has been implied for the inactivation of bacteria, viruses and the control of 

algal growth. It can inactivate microorganisms such as protozoa, E. coli, Bacillus sublilis 

spores, Rotavirus and Giardia lamblia cysts [47]. Ozone can penetrate through the cell 

membrane of Escherichia coli and react with the cytoplasmic substances. In addition, the 

degradation of nucleic acids, is being one of the important factors responsible for cell 

killing [46]. The ozone can inactive the viruses by attacking their protein coat or direct 

damage of nucleic acids. It has been reported that ozone can attack both the protein coat 

and ribonucleic acids of tobacco mosaic virus [46].  

Ozone can remove effectively organic pollutants from drinking waters. However, it reacts 

slowly with some organic compounds such as organic acids, methyl tertiary butyl ethers 

(MTBE) and chlorinated organic compounds. [44]. Despite the many advantages of ozone 

treatment as discussed above, the major disadvantage of ozone is the formation of toxic 

by-products (e.g. organic acids). Therefore, it is important to imply advanced oxidation 

processes. Many advanced oxidation processes have been developed which have high 
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efficienciently of mineralize organic compounds, when compared with ozonation alone, 

for example catalytic ozonation, O3/UV, O3/H2O2 and UV/ H2O2 [48-51].  

1.8 Advanced oxidation processes (AOP) 

The processes which involve the formation of hydroxyl radicals in sufficient quantity to 

affect the water purification are known as advanced oxidation processes [44]. The most 

common advanced oxidation processes are O3/UV, O3/H2O2, UV/ H2O2 and catalytic 

ozonation. These processes are effective for the rapid removal of organic pollutants from 

water, since most of the organic pollutants are resistant to biological and chemical 

treatment advanced oxidation processes are  therefore one of the best options in the near 

future. The AOPs offers a variety of possible ways to produce hydroxyl radicals. The 

hydroxyl radicals can be produced by the direct use of ozone or of ozone and hydrogen 

peroxide. Various methods such as Fenton based systems, photocatalytic processes, 

acoustic cavitations methods, electrical, electrochemical methods and radiolysis have been 

used to produce hydroxyl radicals. Based on the way hydroxyl radicals are generated the 

AOPs may be classified into ultrasound, electrochemical, chemical and photochemical 

processes (Table 1.4). 
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Table 1.4: Classification of advanced oxidation processes on the bases of hydroxyl radical generation 

Process Production of hydroxyl 

radicals from ozone 

Peroxone-based Direct energy 

transfer 

Fenton homogeneous or 

heterogeneous processes 

Heterogeneous 

catalytic processes 

Photochemical O3-UV 

Ozone photolysis 

O3-H2O2-UV 

Ultraviolet peroxone 

Direct photolysis H2O2-Fe(II)/Fe(III)-UV 

Photo-Fenton process 

Catalysts-UV or 

Catalysts/O3/UV 

Chemical O3-OH
-
 

Alkaline ozonation 

O3-H2O2 

Peroxone process 

- H2O2-Fe(II)/Fe(III) 

Fenton likes and Fenton 

processes 

Catalytic ozonation 

e.g. metal oxides metals 

Ultrasound O3-US 

Ozone assisted cavitations 

O3-H2O2-US 

Ultrasound Peroxone 

Sonolysis H2O2-Fe(II)/Fe(III)-US 

Sono-Fenton and US 

Fenton like processes 

Catalytic ultrasonic 

processes 

Electrochemical Electrolytic generation of 

ozone 

Electrolytic generation 

of O3 

Anodic oxidation Electro-Fenton methods Wet electrocatalytic 

oxidation 
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1.9 Catalytic ozonation and its mechanisms 

The process in which ozone is used together with a catalyst in both homogeneous and 

heterogeneous forms is known as a catalytic ozonation process. It has gained significant 

attention in recent years as an effective removal of organic pollutants from water. 

However, the mechanisms of these processes are not well under-stood and there have been 

different proposals for the mechanisms of the catalytic ozonation process [12]. It is 

therefore, very important to understand the mechanism of catalytic ozonation in order to 

introduce it to larger scales.  

1.9.1 Homogeneous catalytic ozonation and its mechanisms 

In homogeneous catalytic ozonation the ozone decomposition takes place as a result of 

interactions of ozone with transition metal ions such as Fe(II), Mn(II), Ni(II), Co(II), 

Cd(II), Cu(II), Ag(I), Cr(III) and Zn(II) [1]. There have been two major mechanisms of 

homogeneous catalytic ozonation [52-54]. Some authors reported that metal ions can 

decompose ozone leading to the generation of hydroxyl radicals [55]. However, others 

suggested that metal ions form complexes with organic molecules, which are  

subsequently oxidised [56]. Several homogeneous catalysts have been successfully used 

for the degradation of organic pollutants and some of them are presented in Table 1.5. The 

homogeneous catalysts are usually in solution and therefore access to the pollutants is 

easier so there is improved activity. Another advantage of the homogeneous catalysts is 

that heat transfer for exothermic and endothermic reactions is not a problem. Furthermore, 

the mechanisms of homogeneous catalytic ozonation are simple and are better understood. 

Despite the several advantages of homogeneous catalysts they have some disadvantages. 

For example, this process involves the introduction of toxic and harmful metals to water. 

Thus an undesirable and additional cost is required to remove these metals from water 
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after treatment. Furthermore, the homogeneous catalyst cannot be recycled or regenerated. 

Therefore, in order to avoid these problems heterogeneous catalysts have been suggested 

for  drinking water treatment. 

Table 1.5: Homogeneous catalytic ozonation  

Catalyst Organic compound References 

Mn(II), Fe(II), Fe(III), Cr(III), Ag(I), Cu(II), 

Zn(II), Cd(II), Co(II) 

Humic substances [54, 57] 

Mn(II), Fe(II), Fe(III) Chlorobenzenes [58] 

Mn(IV) Propionic acid [59] 

M(II), Fe(II) Simazine [60] 

Mn(II), Co(II), Fe(III), Fe(II) Lignin sulfonate [61] 

Co(II) Oxalic acid [56] 

Cu(II) Oxalic acid, pyruvic 

acid 

[59] 

Fe(II), Mn(II), Fe(III), Zn(II), Ni(II), Co(II) Azo dyes [62] 

Fe(III) Oxalic acid [55] 

Ce(III) Phenol [63] 

Mn(II), Mo(VI), Fe(II), Cu(II), Ni(II) Benzoic acid [64] 

1.9.2 Heterogeneous catalytic ozonation and its mechanisms 

In the heterogeneous catalytic process, ozone decomposition is catalysed by solid 

catalysts. Several materials have been used as heterogeneous catalysts and among the most 

widely used are metal oxides ( such as Al2O3, MnO2, TiO2, FeOOH and CeO2), metals 

(Cu, Ru, Pt, Co) on support (such as SiO2, Al2O3, TiO2, CeO2 and activated carbons), 

zeolites modified with metals and activated carbons. Following are some important 

catalysts and their mechanisms. 

1.9.2.1 Metal oxides as catalysts 

In the ozonation process several metal oxides have been successfully used as 

heterogeneous catalysts. Among them are Al2O3, TiO2, MnO2 and FeOOH. Some of the 

metal oxides and organic pollutants are presented in Table 1.6.  
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Table 1.6: Heterogeneous catalytic ozonation-metal oxides 

Catalyst Organic compound References 

Al2O3 Carboxylic acids, NOM, dimethylphthalate, 

chloroethanol,  

[1, 3, 17, 65-67] 

MnO2 Carboxylic acids (oxalic, pyruvic, sulfosalicylic, 

propionic, glyoxalic), phenol, NOM 

[55, 59, 68-70] 

γ-Al2O3 Pharmaceuticals (diclofenac, sulfamethoxazole, 

17α-ethlystradiol), methylisoborneol 

[2, 18] 

ß-Al2O3 Pyruvic acid [71] 

α-Al2O3, γ-Al2O3,  

γ-AlOOH 

2,4,6-trichloroanisole [19] 

TiO2 Carbamazepine, naproxen, nitrobenzene, clofibric 

acid, oxalic acid 

[6, 72-74] 

TiO2/ γ-Al2O3 Oxalic acid [75] 

Fe2O3/Al2O3 Oxalic acid [55] 

TiO2/AC Methylene blue [76] 

MgO Dye [77] 

NiO/CuO Dichloroacetic acid [78] 

NiO/Al2O3 Oxalic acid [79] 

ZnO p-chlorobenzoic acid [80] 

CuO/Al2O3 Alchlor, oxalic acid, substituted phenols  [59, 81, 82] 

 

Among the metal oxides alumina has been selected in this work and its mechanism has 

been investigated and compared with ZSM-5 zeolites.  

1.9.2.1.1 Mechanism of ozonation in the presence of alumina   

The chemistry of alumina is described in section 1.10. Alumina is one of the widely 

studied catalysts in the catalytic ozonation process. It has been applied in both aqueous 

and gaseous phases but unfortunately its mechanisms are largely unknown and there are 

conflicting reports on the mechanism of ozonation in the presence of alumina. Oyama et al 

[83] studied the decomposition of ozone in the gaseous phase on various materials such as 

Al2O3, MnO2, CoO4 and Fe2O3. However, he reported alumina as an inactive material. 

Since then it has been used mainly as catalyst support. 
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 Cooper at al [13] reported that aqueous ozone is decomposed by alumina. It was observed 

that the efficiency of ozonation in the presence of alumina is higher when compared with 

ozonation alone when the degradation of oxalic acid, chloroethanol and chlorophenol were 

investigated. However, no adsorption studies in above mentioned work make it difficult to 

understand the mechanism of the process. The catalytic activity of alumina is certainly 

questionable and there are contradictory reports in the literature. Some authors reported 

that alumina can remove some organic pollutants however others reported that alumina is 

not effective for some pollutants. It has been reported by Kasprzyk-Hordern et al [15] that 

alumina is not a good catalyst for the removal of hydrocarbons and no catalytic activity of 

alumina was observed for aromatic hydrocarbons such as cumene, chlorobenzene and 

ethers [4, 15]. Interestingly, in the same work it was reported that aqueous ozone 

decomposition is higher in the presence of alumina when compared with ozonation alone. 

It was suggested that adsorption of organic compounds is one of the important steps in 

catalytic ozonation. As ethers and hydrocarbons do not adsorb on alumina therefore this 

catalyst does not show high efficiency in their removal. 

Furthermore, Kasprzyk-Hordern et al [3] studied the removal of natural organic matter 

(NOM) during the ozonation in the presence of alumina. It was reported that alumina has 

high efficiency for NOM removal when compared with ozonation alone. Additionally, 

high adsorption capacity of alumina was reported towards NOM. It was therefore 

suggested that adsorption of pollutants on the surface of the catalyst is important for their 

effective degradation. 

Recently, Guzman-Perez et al [16] studied the removal of 2, 4-dichlorophenoxylacetic 

(2,4-D) acid ozonation in the presence of alumina. It has been reported that the adsorption 

of a pollutant plays an important role in the catalytic ozonation process. The ozonation in 
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the presence of alumina showed considerably high mineralization of total organic carbon 

(TOC) when compared with ozonation alone. Additionally, the removal of 2, 4-D was 

found to increase with the increase in pH. 

Ernest et al [17] studied the removal of organic acids such as oxalic acid, succinic acid and 

formic acid by ozonation on γ-Al2O3. In this investigation the highest removal was 

obtained for succinic acid and it was reported that the acid which adsorbs to the lowest 

extent (succinic acid) had the highest removal when compared with others. Furthermore, it 

was hypothesized that alumina generates hydroxyl radicals in the solution that react with 

organic pollutants present in the solution (Fig. 1.8).  

According to this mechanism the superoxide ion radical and 
o
O2H radicals can be 

produced by the interaction of aqueous ozone with the surface hydroxyl groups of alumina 

as shown in Figure 1.8b. This radical reacts subsequently with another ozone molecule to 

generate an O3
-
 radical (Fig. 1.8c). Finally, the ozonide radical decomposes to oxygen and 

hydroxyl radical. The formed hydroxyl radicals decompose organic pollutants. 

Unfortunately there has been no direct proof provided by Ernest et al [17] that confirms 

the formation of active oxygen species in the catalytic ozonation process.  
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 Figure 1.8: Mechanism of aqueous ozone decomposition by alumina [17]. 
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 Beltran et al [84] observed the similar results for the removal of oxalic acid by alumina 

ozonation in water. Additionally, experiments were performed in the presence of 

phosphates and it was reported that the catalytic activity of alumina was reduced in the 

presence of phosphate buffer. 

In contrast to the above study Lin et al [21] reported that aqueous ozone is not 

decomposed by alumina. However, Chen et al [18], while  studying the degradation of 2-

methylisoborneol by γ-Al2O3, observed high efficiency of catalytic process when 

compared with ozonation alone. In the same investigation, it was reported that the pH of 

solution plays an important role in the mechanism of catalytic ozonation. It was observed 

that at pH of solution close to the point of zero charge (pzc) of the material, the catalyst 

has the highest activity. Additionally, the removal of 2, 4, 6-trichloroanisole was also 

studied by the same group by using alumina oxides (γ-Al2O3, γ-AlOOH, and α-Al2O3). It 

was suggested that the highest density of surface hydroxyl groups and strongest surface 

bronsted acidity of catalyst are responsible for aqueous ozone decomposition. Similar 

results were obtained by Qi et al [19, 20] and reported that the highest activity of alumina 

is at pH = pHpzc and suggested that surface hydroxyl groups of alumina in their neutral 

form are more reactive to decompose aqueous ozone.  However, in the above reports it has 

not been proven that decomposition of ozone occurs on the surface of alumina. In contrast, 

Pocastales et al [2] investigated the removal of pharmaceuticals (diclofenac, 

sulfamethoxazole and 17α-ethynylstradiol) in the presence of γ-Al2O3/O3 and 

Co3O4/Al2O3/O3. It was reported that degradation of pharmaceuticals may be due to their 

adsorption on the surface of the catalyst and their reactions with adsorbed ozone and 

hydroxyl radicals in bulk solution. 
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As discussed above that Qi et al [20] studied the ozone decomposition catalysed by 

different forms of alumina. It was observed that γ-Al2O3 shows high catalytic activity as 

compared with α-Al2O3. The density of surface hydroxyl groups of γ-Al2O3 was found to 

be higher when compared to α-Al2O3. Therefore, it was assumed that high catalytic 

activity of γ-Al2O3 was due to the higher availibity of active sites (surface hydroxyl 

groups). Therefore, in the current investigation γ-Al2O3 alumina has been selected. 

The above discussion indicates that further in-depth analyses are required to understand 

the processes occurring during the ozonation of pollutants in the presence of alumina. 

Additionally, pathways of aqueous ozone decomposition in catalytic ozonation processes 

are not clear and as literature review indicates there are several mechanisms possible. The 

major question is whether the removal of pollutants occurs via direct attack of ozone on 

the catalyst surface or ozone is decomposed by the catalyst leading to the production of 

hydroxyl radicals. Furthermore, the understanding of the role of the adsorption of 

pollutants on the surface of the catalyst is vital to an understanding of the mechanism of 

catalytic ozonation on alumina. It is important to study variables such as the effect of pH 

of a solution and the effect of natural water constituents such as phosphates, carbonates, 

bicarbonates, sulphates and natural organic matter. 

1.9.2.1.2 Mechanism of ozonation in the presence of other metal oxides 

Among the metal oxides MnO2 is one of the most frequently used catalysts. It is reported 

that MnO2 can most efficiently decompose ozone in gas phase [83]. The activity in 

aqueous media is known to increase with a decrease in pH of the solution [85]. 

Unfortunately, there is a lack of understanding of the mechanism of catalytic ozonation on 

MnO2 and there are conflicting reports about its mechanism. It was reported by Tong et al 

[86] that adsorption of both ozone and organic compounds on the surface of MnO2 is 
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important. However, Dong et al [87] reported high catalytic activity of β-MnO2 nano wires 

for the removal of phenol and observed that the amount of adsorbed  phenol was only 8% 

therefore it was suggested that adsorption of pollutants is not important for the catalytic 

degradation of pollutants on MnO2. 

Another catalyst that has been used effectively is FeOOH. Granulated forms of iron have 

been used as an adsorbent of As(V) [88]. Park et al [89, 90] used commercially available 

goethite for the removal of natural organic matter from water. It has been reported that 

FeOOH decomposes aqueous ozone, which leads to the generation of 
o
OH radicals. 

Surface hydroxyl groups of FeOOH play an important role in ozone decomposition. 

Furthermore, higher decomposition of natural organic matter was observed at basic pH 

values. Additionally, Park et al [91] successfully removed p-chlorobenzoic acid (p-CBA) 

by catalytic ozonation on FeOOH and it has been hypothesized that surface reactions are 

important for the effective removal of pollutants. However, it was reported that 

decomposition of p-CBA is independent of TBA which may suggest that hydroxyl 

radicals do not have any role in the decomposition of p-CBA. Similar findings were 

reported by Beltran et al [92] and it was observed that TBA does not have a significant 

effect on the removal of oxalate by Fe2O3 /Al2O3/ O3. It was suggested that both ozone and 

organic compounds adsorb on the surface of the catalyst and reactions of molecular ozone 

on the surface lead to the degradation of oxalic acid. 

However, Zhang et al [93] studied the removal of nitrobenzene by FeOOH/O3 and found 

that FeOOH effectively remove nitrobenzene from water. It was observed that 

nitrobenzene does not adsorb on the surface of the catalyst. Furthermore, the catalytic 

ozonation process was found to proceed via a hydroxyl radical mechanism as shown in the 

Fig. 1.9. Figure 1.9 illustrates that ozone molecules can combine with the surface hydroxyl 
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groups of the catalyst, as its O and H are nucleophilic and electrophilic respectively. The 

combined species decompose to produce HO2
-
 ion. This ion may further react with the 

ozone molecule to produce hydroxyl radicals and superoxide ion radicals. It was assumed 

that superoxide ion can further react with ozone to produce hydroxyl radicals [93]. 

Additionally, Sui et al [94] investigated the removal of oxalic acid by FeOOH/O3 and 

reported that degradation of oxalic acid took place via radical mechanism. 
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 Figure 1.9: Scheme of mechanism of ozone decomposition by FeOOH [93]. 

Titania (TiO2) is a well-known catalyst in photo catalysis [95]. It has been used 

successfully in ozonation systems as an effective catalyst. Beltran et al [6] used TiO2 in the 

ozonation process for the removal of oxalic acid in water. It was reported that both the 

ozone and organic molecules adsorbed on to the surface of the catalysts which result in the 

degradation of oxalic acid. 

It was reported by Yang et al [5] that nano-TiO2 is active in the form of rutile and not 

anatase in the removal of nitrobenzene. Furthermore, Ye et al [96] studied the degradation 

of 4-chloronitro benzene (CNB) during the photo catalytic and catalytic ozonation in the 

presence of TiO2. It was observed that both processes have similar efficiency in the 

removal of CNB. 
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Titania has also been used in the removal of pharmaceuticals such as carbamazepine and 

naproxen from water [72]. It was reported that TiO2 decomposes aqueous ozone leading to 

the generation of hydroxyl radicals. Furthermore, Rosal et al [73] studied the catalytic 

ozonation of clofibric acid on titania. It was suggested that adsorption of both ozone and 

pollutants on the surface of catalyst are important for an effective removal of organic 

pollutants by catalytic ozonation on TiO2. Additionally, TiO2 was also used in 

combination with activated carbon for the removal of methylene blue. It was reported that 

TiO2/Ac/O3 has higher efficiency when compared with Ac/O3. Furthermore, it was 

hypothesized that enhanced removal in TiO2/Ac/O3 may be due to the generation of 

hydroxyl radicals. Colombo et al [97] studied the removal of bisphenol by the 

photocatalysis, catalytic ozonation, ozonation and combination of processes by using TiO2 

as catalyst. It has been reported that the combined process of catalytic ozonation and 

photocatalysis show the highest degradation of bisphenol when compared with other 

processes. It was further assumed that hydroxyl radicals formed during the process are 

responsible for bisphenol degradation. The above discussion indicates that there a 

conflicting reports about the mechanisms of catalytic ozonation in the presence of metal 

oxides and further investigations are required to understand the mechanism of the catalytic 

ozonation process. 

1.9.2.2 Other catalytic ozonation processes and catalysts: mechanisms 

In the catalytic ozonation process different types of materials have been tested as 

heterogeneous catalysts and supports. Among them are metals on support, activated 

carbons, minerals and non polar systems etc. Table 1.7 presents types of catalysts and 

organic molecules studied in the process of catalytic ozonation. 
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Table 1.7: Heterogeneous catalytic ozonation–metals on supports, activated carbons, 

minerals and non polar systems 

Catalyst Organic compound References 

Metals on Support   

Rh-CeO2 Pyruvic acid [98] 

Ru-CeO2/TiO2,Cu-ZrO2/Al2O3 Pyruvic acid, succinic acid [99] 

Ru (2%)/CeO2 Succinic acid [100] 

Ru (2%)/CeO2-TiO2 Chloroacetic and succinic acid [101] 

PdO/CeO2 Oxalate [102] 

V2O5/Al2O3, SiO2, TiO2 1, 2-dichlorobenzene [103] 

Activated carbons   

AC Phenolic compounds [104] 

AC Organic acid [9] 

AC Pharmaceuticals [105, 106] 

MnO2/GAC Nitrobenzene [107] 

Minerals   

Ceramic honeycomb (2MgO-2Al2-

O35-SiO2) 

Nitrobenzene [108, 109] 

Al2O3, TiO2 On SiO2 and NaX Phenol [110] 

Natural brucite (Mg(OH)2, 

94.7%;SiO2, 2.9%) 

Phenol [111] 

Raw bauxite, Iron modified bauxite 2,4,6-trichloroanisol [112, 113] 

Alumina silicates Pesticide dichlorvos [114] 

Non polar systems   

High silica zeolites Trichlorotoluence, Phenol [11, 23] 

Perfluorinated alumina, 

perfluorinated MCM-41 

Aromatic hydrocarbons, ethers, 

NOM, dyes, Humic acids 

[4, 15, 115-

119] 

Polydimethylsiloxane Phenol, chlorophenols, 

nitrobenzene 

[120, 121] 

 

Metals on supports have been used in catalytic ozonation reactions. Among them are 

ZrO2/Al2O3, CeO2, CeO2/TiO2 or Al2O3. The mechanisms of catalytic ozonation in the 

presence of metals on support are not clear. It has been reported that hydroxyl radicals are 

not formed in this process and adsorption of pollutants on the surface of the catalysts is 

important for their effective removal.  



33 

 

Activated carbons have also been successfully used in catalytic ozonation reactions. They 

have been used successfully to remove colour, dyes [122, 123], phenols [104], 

pharmaceuticals [105] and organic acids [9] from water. However, the mechanisms of 

catalytic reactions are not well understood and similar controversies appeared, as 

discussed previously in the case of metal oxides. For example it is not clear whether 

activated carbons decompose aqueous ozone leading to the generation of hydroxyl radicals 

or direct ozone attack is responsible for the degradation of organic pollutants from water. 

Some reports suggested that activated carbons promote radical formation [105]. Lui et al 

[124] studied the catalytic ozonation of oxalic acid in the presence of multi-walled carbon 

nanotubes (MWCNT) and proposed a free radical mechanism. It involves both surface 

reactions and bulk reactions between the active species and oxalic acid. In this work TBA 

has been used to identify the radical mechanism.  
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Figure 1.10: Scheme of catalytic ozonation of oxalic acid in the presence of MWCNT (R-

oxalic acid; O(s)- surface oxygenated chemicals; Rs-adsorbed oxalic acid [124]. 
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The mechanism in the Figure 1.10 shows that hydroxyl radicals can be formed in two 

ways. One, in which ozone reacts with the surface of MWCNT to generate H2O2, which 

further reacts with O3 to produce 
o
OH radicals. The other hypothesized possibility is that 

ozone interacts with the surface of MWCNT to generate hydroxyl radicals. It has been 

further reported that ozone may interact with the catalyst's surface to produce singlet 

oxygen which then reacts with the adsorbed oxalic acid to produce CO2 and H2O. 

However, others are opposed to it and suggested the direct reactions of ozone on the 

surface of activated carbons  [125]. Some of the organic compounds used in ozonation in 

the presence of activated carbons are listed in the Table 1.7. 

The minerals such as cordierite, perovskite and zeolites, pure or modified with metals and 

metal oxides have been tested in the ozonation process. Their mechanisms are also not 

well understood and further research is required to understand the process. Some of the 

minerals and the compound used in ozonation process are presented in Table 1.7. 

The non polar systems have also been used in the catalytic ozonation process because of 

the nonpolar nature of ozone. The ozone has a dipole moment of 0.46D, which indicates 

that the ozone molecule is  non-polar  hence it can be suggested that ozone has a high 

solubility in non-polar solvents [126]. In contrast, its solubility in polar solvents such as 

water is very low and it decreases with an increase in the pH of water. The solubility of 

ozone was found to be approximately 10 times higher in perfluorinated hydrocarbons 

(nonpolar solvents) than that of water [127, 128]. Therefore, hydrophobic materials and 

materials bonded with non-polar organic compounds have been implied in ozonation 

systems. It is assumed that oxidation of organic pollutants in the two phase non polar 

ozonation systems takes place via molecular ozone reactions. However, Gromadzka et al 

[129] studied the degradation of clofibric acid by ozonation in the presence of 
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perflorinated solvents, and it was observed that the degradation of clofibric acid took place 

via hydroxyl radical mechanism and was further reported that ozonation efficiency was 

decreased in the presence of TBA. A significant increase in the efficiency of pollutants 

removal such as ethers, humic acids, hydrocarbons, natural organic matter and organic 

dyes have been reported in ozonation in the presence of two phase non polar systems such 

as alumina or MCM-41 modified with perfluorooctanoic or perfluorooctadecanoic acids 

[4, 15, 115-119]. The other systems such as silica gel [130] and high silica zeolites (HSZ) 

[11, 23, 131] have been successfully used in ozonation systems. However, the mechanism 

of ozonation in the presence of high silica zeolites is still not well understood. The Figure 

1.11 shows the mechanism of nonpolar alumina bonded phase. It was hypothesized by 

Kasprzyk-Hordern et al [1, 3, 4] that the catalytic activity of perfluorinated catalysts 

mainly depends upon the hydropohbicity of catalysts and adsorption of organics on the 

surface of catalysts. The surface reactions between the adsorbed ozone and organic 

pollutants play a significant role in the removal of pollutants. 



36 

 

                  

  

alumina perfluorinated acid

O
3
 , 

RH
RHO

3
  

extraction of ozone and organic molecules 
to non-polar phase

oxidation on the surface

O
3
  

RH
RH

O
3
  

H
2
O ,CO

2
 ,RCOOH, RCHO

desorption of hydrophilic products

regeneration of the surface

 

Figure 1.11: Mechanism of ozonation in the presence of non-polar alumina bonded phase 

[1]. 

The idea of the using non-polar media in ozonation is promising; however, further 

investigations are required to understand the mechanism. Some of the two-phase 

ozonation systems and target organic pollutants are presented in Table 1.7. 

1.9.2.3 ZSM-5 zeolites in ozonation process: mechanisms 

The ZSM-5 zeolites have been recently used in ozonation systems for the removal of some 

organic pollutants. Fujita et al [22] investigated the adsorption of water dissolved ozone 

on high silica zeolites and found that ZSM-5 zeolites can adsorb aqueous ozone and 

stabilize it. Additionally, it was reported that silica to alumina ratios of zeolites are 
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important and observed that the higher the silica to alumina ratio the higher the adsorption 

of water dissolved ozone will be. The ZSM-5 zeolites have been successfully used in the 

ozonation process for the removal of organic pollutants such as phenol, n-hexadecane and 

trichloroethene [11, 23, 24]. Amin et al [23] studied the removal of phenol and chemical 

oxygen demand (COD) on four different types of zeolites (H-ZSM-5, H-Beta, H- 

Mordenite and H-USY). It was reported that these zeolites successfully removed phenol 

and COD from water. Additionally, among the zeolites, ZSM-5 was found to be the most 

effective catalysts. Based on the adsorption results it was assumed this may be because of 

the hydrophobicity of ZSM-5 zeolites that adsorbe phenol to higher extent and promote 

surface reactions. Therefore, in current study ZSM-5 zeolites have been selected to 

investigate the mechanism. However, it is important to to emphasis that other types of 

zeolites should be investigated in further research.  

Furthermore, the process was found to be pH dependent and zeolites were found to be a 

better catalyst at low pH values. It was hypothesized that this may be due to less stability 

of ozone at basic pH values. It was further hypothesized that both ozone and phenol 

adsorbed on the surface of zeolites and their reactions with each other results in the 

formation of oxidative products of phenol, CO2 and H2O (Fig. 1.12). However, no direct 

proof of this mechanism has been provided.  
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Figure 1.12: Mechanism of phenol removal during the ozonation in the presence of 

zeolites [23]. 

In opposed to above hypothesis, Valdes et al [26] reported that Lewis and Bronsted acid 

sites of zeolites may decompose the aqueous ozone leading to the generation of hydroxyl 

radicals. Unfortunately, no extensive investigation has been undertaken in order to 

understand the process occurring during the ozonation in the presence of ZSM-5 zeolites. 

Based on the previous reports, study on an understanding of zeolites mechanism (in 

ozonation process) is rather new and their application in water treatment requires the 

understanding of their mechanisms.  

The chemistry of zeolites, classification and their important parameters has been discussed 

in section 1.11.  

1.9.2.4 Discussion 

The above literature indicates that the mechanisms of heterogeneous catalytic ozonation 

processes are not well understood. There are many questions that have to be answered in 

order to understand the process. One of the major question is whether the catalysts (metal 

oxides and others) reacts with aqueous ozone leading to the generation of hydroxyl 

radicals or direct attack of ozone on the surface of catalysts is responsible for the 
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degradation of pollutants. It is important to notice here that although some reports [18-20] 

support the radical mechanisms however, ozonation in the same catalysts with some other 

pollutants have not been successful [4, 15]. The role of adsorption, surface properties of 

catalysts, effect of pH etc is important to understand the catalytic ozonation processes. In 

this research work an effort has been made to understand the catalytic ozonation process. 

For this purpose two different types of materials have been selected. Alumina is one of the 

widely used metal oxides in catalytic processes as heterogeneous catalysts and as support 

therefore it has been selected among the metal oxides. The catalytic ozonation process on 

alumina was compared with several ZSM-5 zeolites. Furthermore, in this work the 

catalytic ozonation of different type of pollutants such as VOCs, ibuprofen and acetic acid 

has been performed, this study may help to understand the role of adsorption and surface 

reactions in catalytic processes.   

1.10 Chemistry of Alumina 

Due to the growing applications of alumina in drinking and wastewater purification, it is 

important to know the structure of alumina and its possible interactions with water. The 

properties of metal oxide surfaces in aqueous media, including sorptive capacity and 

surface charging are determined by the nature of their functional groups. It is assumed that 

surface properties of metal oxides play an important role in the mechanism of catalytic 

ozonation [18-20]. It is therefore important to understand the chemistry of alumina. 

 1.10.1 Classification of Alumina 

The Haber (European) and American classifications of alumina have been provided in the 

Table 1.8. 

 

 



40 

 

Table 1.8: Classification of alumina [132] 

Chemistry α-group ß-group γ-group 

Haber 

classification 

   

Al2O3 corundum - gamma oxide 

Al2O3 H2O diaspore - boehmite 

(bauxite) 

Al2O3 3H2O does not exist - gibbsite 

American 

classification 

   

Al2O3 H2O boehmite diaspore - 

Al2O3 3H2O gibbsite bayerite nordstrandite 

 

It was reported by Stumpf et al that apart from the α-Al2O3, another six crystal structures 

of alumina occur: γ, δ, κ, ή, ί and χ-Al2O3. The sequence of particular type formation 

under the thermal processing of diaspore, boehmit, bayerite and gibbsite is as follows 

[132].     

       450ºC 

Diaspore   α-Al2O3 

     450ºC  600ºC     1050ºC     1200ºC 

Boehmite (AlOOH)  γ-Al2O3             δ-Al2O3  θ-Al2O3             α-Al2O3 

 

                                   230ºC                850ºC                       1200ºC 

Bayerite (Al (OH)3)  ή-Al2O3                  θ-Al2O3       α-Al2O3 

                                   

                                  250ºC                                    900 ºC                        1200ºC         

Gibbsite (Al (OH)3)               χ- Al2O3             κ-Al2O3         α-Al2O3 

There have been other classifications proposed by Munster et al and Lippens et al. All 

these structures are based on more or less closed packed oxygen lattice with alumina ions 

in the octahedral and tetrahedral interstices. Furthermore, the low temperature aluminas 

are characterized by cubic closed packed oxygen lattices; however the high temperature 

aluminas are characterized by hexagonal close-packed lattices [132]. The crystal structure 
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of corundum (α-Al2O3) consists of closed packed planes (A and B) of oxygen anions 

stacked in the sequence as shown in Figure 1.13. Figure 1.14, shows the complete stacking 

sequence of oxygen and alumina layers will form A-a-B-b-A-c-B-a-A-b-B-c-A.........[133]. 

   

Figure 1.13: (a) Corundum structure in α- Al2O3 , (b) top view of the corundum structure, 

and (c) octahedral structure of α- Al2O3 [133]. 

     

   Figure 1.14: Structure of α-Al2O3 [133]. 

In terms of catalytic activity the low temperature aluminas are more active than that of 

high temperature ones. This may be due to the lower surface area and different population 
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of surface active sites of high-temperature aluminas when compared with low-temperature 

ones [132]. 

1.10.2 Surface of Alumina 

The surface chemistry of alumina may play an important role in the catalytic process. It is 

important to know the active sites of catalysts in order to understand the mechanism of the 

process. The two main parameters determining the catalytic properties of alumina are 

acidity and basicity. Lewis acidity-basicity is the ability to accept-donate electron pairs. 

Bronstead acidity-basicity is the ability to accept and donate protons. The alumina can 

adsorb water molecules, depending on the temperature, yields to chemisorption or 

physisorption as dissociated form with the formation of surface hydroxyl groups. The 

surface hydroxyl groups of alumina are formed at higher temperatures and gradually 

expelled as H2O. However, even at higher temperature (800ºC-1000ºC) and in vacuum, 

some tenths of a percent of water are still retained in the alumina. The hydroxyl groups 

formed on the surface of alumina behave as Bronstead acid sites. Furthermore, the 

degradation of two neighbouring hydroxide (OH
-
) ions causes the formation of strained 

oxygen bridges on the surface of alumina (Fig. 1.15). The Lewis and Bronstead acid sites 

of alumina are considered to be the catalytic centres. Furthermore, it has been reported that 

surface hydroxyl groups of alumina (Bronstead acid sites) can interact with the ozone, 

leading to the formation of hydroxyl radicals [132]. 
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 Figure 1.15: Scheme of mechanism of ozone decomposition by [132]. 

1.10.3 Surface hydroxyl groups of alumina and pH effect 

It has been reported that the surface hydroxyl groups of alumina can decompose aqueous 

ozone [18-20]. Therefore, in order to understand the mechanism of catalytic ozonation, it 

is very important to know the nature of surface hydroxyl groups on alumina in aqueous 

solutions. 

In aqueous solutions there would be greater complexity in the surface hydroxyl groups of 

alumina, as water molecules interact with the surface hydroxyl groups of alumina. The pH 

of water and the point of zero charge of alumina (pHPZC, point of zero charge, the pH 

value at which the net surface charge is zero) are also important to consider. Additionally, 

in aqueous solutions an electric double layer at the solid - liquid interface is formed as a 

result of the electrostatic interactions between the ions in the solution and the charged 

alumina ions. These interactions also depend upon the pH of the solution, as the 

concentration of positive (H
+
) and negative (OH

-
) ions changes with the change in pH of 

the solution. The properties of the surface of alumina strongly depend on the pH value. In 

acidic medium, below the point of zero charge of alumina, the surface is positively 

charged. In a basic medium (pH > pHpzc) the surface is negatively charged as shown in 

Figure 1.16 [132]. 
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 Figure 1.16: The surface of alumina and pH of solution [132]. 

1.11 Zeolites: an introduction 

Zeolites are crystalline aluminium silicates with an open, three dimensional frameworks 

constituting of tetrahedral SiO
4-

4 and AlO
5-

4 units linked through shared oxygen in a 

continuous array (Fig. 1.15) [134, 135]. In the eighteenth century a Swedish mineralogist, 

Cronstedt discovered zeolites. Zeolites can be classified as synthetic and natural zeolites. 

The synthetic zeolites are usually prepared in a media containing bases and cations. The 

principal raw materials used are silica and alumina. Furthermore, they can be 

manufactured according to desired structures. The examples are ZSM-5, ZSM-11 and 

silicate. The synthetic zeolites are not only applied in powder form but also as pellets and 

beads, which are manufactured by mechanical means after the addition of binders. Natural 

zeolites are formed as a result of a chemical reaction between volcanic glass and saline 

water for 50,000 years. 

In zeolites frameworks the tetrahedral coordination of alumina atoms generates charge 

deficiency, which is balanced by cations. These cations are not an integral part of the 

framework. The zeolites may adsorb water molecules depending upon their silica to 

alumina ratios. The greater the silica to alumina ratio the lesser will be the adsorption of 
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water molecules [136, 137]. The water can be removed thermally at around 400
 o

C to 500 

o
C and this leaves the zeolite in its active state. When the zeolite is dehydrated, the cations 

become highly mobile and can be replaced by ion exchange to varying degrees, depending 

on the zeolite structure and exchanging cations [138]. The type and number of cations may 

affect the catalytic properties of zeolites. 
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 Figure 1.17: Schematic representation of a zeolite in the H form [139]. 

1.11.1 Classification of molecular sieves 

The molecular sieves are classified on the bases of their pore size into macro porous, 

mesoporous and micro porous as shown in the Table 1.9 [140, 141]. The micro porous 

molecular sieves can be further divided into ultra large, large, medium and small openings 

depending on their channel size as shown in Table 1.9 [140, 141]. 
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Table 1.9: Classification of molecular sieves on the basis of pore size [140, 141]  

Definition Example Pore size (Å) 

Macro porous Porous glasses > 500 

 

Mesoporous MCM-41 

MCM-48 

 

20-200 

20-200 

 

Micro porous 

Ultra large UTD-1 7.5 

 VPI-5 12.1 

   

Large Zeolite-β 6.4-7.6 

 ZSM-12 5.5-5.9 

 Zeolite Y 7.4 

 

Medium ZSM-5 5.3-5.5 

 ZSM-48 5.3-5.6 

 

Small Zeolite-A 4.1 

1.11.2 Adsorption and separation 

Zeolites have been used for adsorption and separation of different type of compounds. The 

shape selective properties of zeolites are also the basis of their use in molecular 

adsorption. Their ability to exclude some molecules and adsorb certain molecules makes 

them a unique adsorbent [142]. The hydrophobic zeolites preferentially adsorb non-polar 

organic compounds. The cation containing zeolites are extensively used as desiccants due 

to their high affinity to adsorb water. Thus zeolites can separate molecules based on 

differences in shape, size and polarity. 

1.11.3 Significance of silica to alumina ratio 

The silica to alumina ratio (Si/Al) of zeolites plays an important role in their catalytic 

behaviour, ion exchange capacity and their ability to adsorb polar and non-polar 

molecules. The molecules can adsorb on external and internal surfaces, the relative 
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polarities of the solvent, adsorbent and solute play a significant role in the adsorption. The 

polarities depend upon the silica to alumina ratios [142, 143]. 

 The zeolites with low Si/Al ratio, having high concentrations of balancing H
+ 

ions are 

hydrophilic in nature and they possess strong affinity for polar molecules. The zeolites 

with high Si/Al ratio are hydrophobic and can adsorb hydrophobic compounds. The 

stability of zeolites crystal frame work also depends upon Si/Al ratio and increase with the 

increase of silica to alumina ratios [143]. 

The polarity of zeolites pores is an important property and it depends on the alumina 

content in zeolites. The hydrophobicity/hydrophilicity is related to the polarity of zeolites 

pores. The zeolites without alumina in the frameworks are more hydrophobic. The zeolites 

molecules may adsorb water molecules to some extent and zeolites with more polarity can 

adsorb more water molecules. These water molecules generate Bronstead acid sites on 

zeolites that are important in catalytic processes [136, 137].  

1.11.4 Acid properties of zeolites 

1.11.4.1 Bronsted acid sites 

Pure siliceous zeolites are electrically neutral. By replacing their silicon (tetrahedrally 

coordinated with oxygen atoms; having a formal charge of 4
+
) with aluminium (formal 

charge 3
+
) in the zeolite lattice, results in a negatively charged tetrahedron. The counter 

ions (such as Na
+
, K

+
, H

+
 etc.) compensate the negative charge. The Bronsted acid sites 

have been created when counter ions are H
+
. The protons (H

+
) are formally assigned to be 

bonded to the bridging oxygen of a Si-O-Al bond to form hydroxyl groups that act as 

Bronsted acid sites. Furthermore, the strength of these sites depends upon the structure of 

zeolites and their chemical composition [144]. These acid sites may be important to an 

understanding of the mechanism of catalytic process. It has been reported that Bronsted 
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acid sites in zeolites may decompose aqueous ozone [26]. In this work ZSM-5 zeolites 

with different composition and counter ions have been used to investigate this effect. 

1.11.4.2 Lewis acid sites 

Lewis acid sites are related to the formation of positively charged oxide clusters or ions 

within the porous structures of zeolites. These species are typically silica/alumina or 

alumina. They may be formed by the extraction of aluminium from the lattice, or metal 

ions exchanging for the protons of acid sites. It has been reported by Valdes et al [26] that 

in the case of natural zeolites the Lewis acid sites may generate at basic pH values in 

water (pH > pHPZC), and these sites may decompose aqueous ozone. However it is 

reported that in aqueous solutions water molecules adsorb on zeolites and block Lewis 

acid site [136, 137].  

1.11.5 Zeolites as catalyst 

Zeolites can act as catalysts for chemical reactions, which take place within the internal 

cavities. They are a useful catalyst for several reactions involving organic compounds and 

an important reaction is that involving hydrogen exchange zeolites, whose framework-

bound protons give rise to very high acidity. Metal loaded zeolites have also been used as 

catalysts for example titanium loaded ZSM-5 zeolites have been used in the production ε-

caprolactam and copper loaded zeolites have been used in NOx decomposition [145, 146]. 

The zeolites have been implied in crude oil cracking, isomerisation and hydrocarbon 

synthesis [147]. Zeolites can promote a wide range of reactions such as acid-base and 

metal induced reactions. Additionally, these reactions can take place within the pores of 

zeolites that allows a greater degree of product control. The zeolites pore size and shapes 

are important and can exert a steric influence on the reactions. The zeolites are often 

considered to act as shape selective catalysts [147]. 
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1.11.5.1 ZSM-5 zeolites as catalysts 

ZSM-5 is a synthetic heterogeneous catalyst developed by Mobil Oil. It belongs to three-

letter zeolites structure code MFI, family. The secondary building units in ZSM-5 zeolites 

are 5-1 rings (Fig. 1.18a). The ZSM-5 zeolites are constructed from pentasil units that are 

linked together to form pentasil chains as shown in figure 1.18c. 

  

Figure 1.18: (a) 5-1 secondary building unit, (b) the MFI structure and (c) pentasil chain 

It is a high silica zeolite (HSZ); the high silica content makes it hydrophobic in nature 

[120, 121]. The hydrophobicity of these materials makes them good adsorbents of 

hydrocarbons. When the silica ion is substituted by alumina, an extra positive charge is 

required to balance the overall charge. In aqueous solutions the water molecules are 

adsorbed on zeolites and form Bronstead acid sites and strength of these acid sites depends 

upon the alumina content of HSZ [136, 137].  
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1.12 Factors affecting the mechanism of catalytic ozonation 

Various factors such as pH of solution, adsorption of pollutants on catalyst surface, effect 

of hydroxyl radical scavengers (t-butanol), and the effect of inorganic ions (e.g. 

phosphates, carbonates, bicarbonates, sulfates) play an important role in an understanding 

of the mechanism of the catalytic ozonation process. In current research, the effect of 

above mentioned factors has been studied in ozonation over ZSM-5 zeolites and alumina. 

1.12.1 Effect of pH 

The pH of a solution plays an important role in the study of the mechanisms of catalytic 

ozonation, since it affects ozone decomposition. Furthermore, it determines the surface 

properties of the catalysts and properties of the analytes being oxidised. Ozonation 

reactions at different pH follow different mechanisms. It is well-known that the presence 

of OH
-
 ions in water leads to ozone decomposition and the generation of hydroxyl radicals 

(
o
OH), which then react with organics in a non-selective way [36]. The pH of a solution 

could also affect the surface properties of catalysts such as metal oxides. Alumina is a 

good example. At basic pH (pH > pHPZC) the surface of alumina is negatively charged (no 

surface hydroxyl groups present), at acidic pH (pH < pHPZC) its surface is positively 

charged, while at pH = pHPZC the surface of alumina is neutral (surface hydroxyl groups 

with no charge) [132].  

The pH of solutions may also change the surface properties of zeolites. For example, 

Valdes et al [27, 28] reported that the pH of a solution can affect the aqueous ozone decay 

rates in the presence of zeolites. It was stated that at pH > pHPZC zeolites are negatively 

charged and Lewis acid sites may be responsible for ozone decay. On the other hand at pH 

< pHPZC the surface will be positively charged and Bronsted acid sites on zeolites may be 

responsible for aqueous ozone decay and generation of hydroxyl radicals [26, 27]. It has to 



51 

 

be however noted here that zeolites (and aluminas) do not exhibit Lewis acidity in the 

presence of water as Lewis sites hydrate and becomes Bronsted sites [136, 137]. It is 

therefore important to investigate the effect of pH in order to understand the mechanism of 

catalytic ozonation processes. 

1.12.2 Effect of adsorption of pollutants 

An investigation of adsorption of pollutants on the surface of catalyst is an important 

factor, since it can affect the mechanism of the catalytic ozonation process. Furthermore,  

comparison between the efficiency of the removal of pollutants by adsorption alone, 

ozonation alone and catalytic ozonation can be used to determine the extent of removal of 

pollutants by catalytic effect. Some reports suggested that adsorption of pollutants on the 

surface of the catalyst is important. In contrast, some reports indicate that adsorption is not 

important in the catalytic ozonation process. 

Ernst et al [17] studied the degradation of organic acids by ozonation in the  presence of  

alumina and observed that the organic acid which adsorbed least had better degradation 

rate when compared with others. It was suggested that the degradation of pollutants occurs 

in the solution rather than on the surface of the catalyst.  

Kasperzyk-Hordern et al [15] studied the removal of hydrocarbons (cumene, 

chlorobenzenes) and observed that alumina did not adsorb these pollutants. Additionally, 

it was reported that alumina did not show any significant removal of pollutants by 

catalytic ozonation. In the same investigation alumina bonded with perfluorooctanoic acid 

showed higher catalytic activity and had higher adsorption of hydrocarbons on catalyst. 

The natural organic matter (NOM) has been removed by ozonation in the presence of 

alumina [3]. It was reported that alumina has high adsorption of natural organic matter and 
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it showed the catalytic effect. Therefore, it was hypothesized that surface reactions are 

important in catalytic ozonation and adsorption of pollutants plays an important role in 

catalytic ozonation. 

The organic molecules differ in the nature of the functional groups, they have different 

molecular weights and molecular sizes, therefore their sorption mechanism are diverse. 

The pH of the solution can affect the surface charging of organic compounds that have 

acidic, basic and amphoteric properties; they may be present in the form of cations or 

anions. The organic compounds may form stable complexes with metal cations and 

therefore, may result in the chemical dissolution of adsorbents. [132]. 

Apart from the functionality, the hydrophobicity and hydrophilicity of both organic 

molecule and adsorbent are important in the adsorption process. The metal oxides (e.g. 

Al2O3) are hydrophilic in nature therefore non-ionic, hydrophobic organic compounds 

such as chlorobenzenes, alklybenzenes and polycyclic aromatic hydrocarbons interact 

weakly and non-specifically with mineral surfaces [132]. 

An understanding of the adsorption of carboxylic acids on metal oxide surfaces is vital 

since these compounds are commonly present in the treated water. They are also the main 

oxidation by-products, which are resistant to ozone. The –COOH groups comprise a 

significant part of natural organic matter, which is a typical component of natural water. 

The adsorption of carboxylic acids on alumina is thought to occur via ligand exchange 

reaction, which results in the replacement of surface hydroxyl groups of alumina (Fig. 

1.19b) or by the esterification mechanism (Fig. 1.19a) [148].  

According to Karaman et al [148] surface coordination, or ligand exchange model, the 

anions of carboxylic acids replace the surface hydroxyl groups of alumina. The nature of 
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the interactions between the surface hydroxyl groups of alumina and carboxylic acids have 

been studied by several groups [132] and it is believed that carboxylic groups adsorb on 

the alumina surface by replacing the surface hydroxyl groups of alumina [4, 18-20]. It is 

therefore important to know the effect of carboxylic acids in ozonation process. 
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Figure 1.19: The esterification and ligand exchange mechanisms between hydroxyl 

groups on the alumina surface and carboxylic acids [148]. 

The adsorption of pollutants on zeolites depends upon various factors such as, 

composition, surface area, pore size, size of adsorbents and silica to alumina ratio. The 

zeolites have been used for the adsorption and separation of many types of organic 
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compounds such as nucleosides, nucleotides [142], and hydrocarbons [149] etc. The silica 

to alumina ratios, porosity and surface areas are found to be among the important factors 

that can affect adsorption.  

 The ZSM-5 zeolites are hydrophobic in nature and they have high adsorption capacity 

towards non polar compounds rather than polar organic compounds. They have been 

found to be good adsorbent of hydrocarbons [149]. It is therefore, important to investigate 

the effect of adsorption of different types of organic pollutants on the catalytic ozonation 

process. 

1.12.3 Effect of phosphates 

 Inorganic ions such as phosphates (PO4
3-

), carbonates (CO3
2-

) and sulphates (SO4
2-

) may 

be present in natural waters. These ions may adsorb on the catalyst surface and poison it 

[132]. It is therefore important to know the effect of these ions on the catalytic reactions. 

In this study phosphates have been selected, since they are harder bases than carbonates 

and sulphates and have the strongest affinity to adsorb on the surface of alumina [132]. It 

is known that the adsorption of phosphates occurs through the ligand exchange, which 

results in the replacement of surface hydroxyl groups of alumina and the deprotonation of 

phosphates [150]. It is a well-known fact that different forms of phosphates exist at 

different pH ranges (these are H3PO4, H2PO4
-
, HPO4

-2
 and PO4

-3
). Concentration of 

protonated forms of phosphates are highest at acidic pH, hence the surface hydroxyl 

groups of alumina may be rapidly replaced at acidic pH as phosphate adsorption was 

considered to occur through exchange via replacing the surface hydroxyl groups of 

alumina [150]. Ligand exchange can also take place in the presence of water molecules 

and other easily displaced ligands coordinatively bonded to the sites [151]. Additionally, it 

was reported that the catalytic activity of alumina was greatly reduced in the presence of 
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phosphates [84]. Therefore ozonation experiments in the presence of phosphates have 

been conducted in order to verify the importance of hydroxyl groups present on the 

surface of alumina in ozone decomposition and to understand the possible influence of 

phosphates on ozonation in the presence of ZSM-5 zeolites, since the effect of phosphates 

on ozonation in the presence of ZSM-5 zeolites has not been investigated previously. 

1.12.4 Effect of hydroxyl radical scavengers (t-butanol) 

Tertiary butanol (TBA) has been used in ozonation reactions in order to understand the 

mechanism of the process. t-butanol is a hydroxyl radical scavenger and reacts with
 

hydroxyl radicals (
o
OH) with a rate constant of 6×10

8
 M

-1
s

-1
 [152].  It reacts directly with 

ozone with a rate constant of 3×10
8
 M

-1
s

-1
 [153]. The 

o
OH radicals react with t-butanol by 

abstracting an H-atom mainly from the carbon (95%) and to a much lesser extent, from 

oxygen (Equations 1.15, 1.16) [154]. 

o
OH + (CH3)3COH  H2O + 

o
CH2C(CH3)2OH     (1.15) 

o
OH + (CH3)3COH  H2O + (CH3)3CO

o
      (1.16) 

TBA has been used in the ozonation process to understand whether the process involves 

hydroxyl radicals or direct attack of ozone decomposes the organic pollutants. The 

decrease in degradation rate of certain pollutants in the presence of TBA indicates the 

radical mechanism. 

1.13 Reactive oxygen species 

Reactive oxygen species (ROS) are highly reactive molecules containing oxygen. It has 

already been described (see 1.6.2) that aqueous ozone reacts with hydroxide ions in water 

leading to the production of ROS. Among them are superoxide radical (
o
O2

-
), molecular 

oxygen (O2), hydroxyl radicals (
o
OH), hydrogen peroxide (H2O2) and their conjugates. In 
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this research work formation of the superoxide radical (
o
O2

-
), hydroxyl radicals (

o
OH) and 

hydrogen peroxide (H2O2) have been investigated during the ozonation and catalytic 

ozonation process.  

1.13.1 Superoxide anion radical (
o
O2

-
) and its reactions 

The superoxide anion (
o
O2

-
) has both anionic and radical character. As described before 

(see 1.6.2) superoxide may exist in 
o
O2

-
 form or in the form of its conjugate acid 

(hydroperoxy radical, HOO
o
), depending on the pH of the water. Therefore, with regard to 

the superoxide anion, it is important to take into account the reactions of its conjugate 

acid. The reactivity of 
o
O2

-
 depends on its basicity and nuleophilicity in the reacting 

systems. It can be argued that the basicity of the superoxide anion would be greater in a 

aprotic medium than in a protic medium. This may be because 
o
O2

-
 is more basic without a 

solvation shell than when it is solvated. However, it is important to note that in the case of 

the reactions of superoxide with ascorbic acid and α-tocopherol, the reactivity is 

unexpectedly higher in aqueous solutions than in an aprotic solvent, dimethylformamide 

(DMF) [155]. This is because in the aprotic medium, the basicity of the proton donors is 

increased even more than that of superoxide anion. Hence, deprotonation by superoxide 

anion in aqueous solution is faster [155]. Therefore, basicity of superoxide ion doesn't 

only depend on the pka value, but also on the solvent system and acidity (or basicity) of 

the proton donor). 

The reactions of the superoxide anion as a nucleophile have been reported in aprotic 

media. However, there is little evidence indicating the nucleophilic activity in protic 

media [156]. This may be due to the strong solvation of superoxide anion by the protic 

solvents. On the other hand, superoxide anion is a strong nucleophile in aprotic media. It 

reacts with acyl halides, alkyl halides, esters and acyl anhydrides to produce peroxy 
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radical intermediates through nucleophilic substitution reactions as presented in Figure 

1.20 [155]. In these reactions superoxide anion undergoes an addition reaction with 

carbonyl groups and form radical anion intermediates. 
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Figure 1.20: The reactions between superoxide anion and an alkyl halide, an acyl halide, 

an ester and anhydride in aprotic media [155]. 

It has been reported that the superoxide anion can add to positively charged carbon-carbon 

double bonds (Fig. 1.21). Similar mechanism has also been suggested for carbon-nitrogen 

double bond containing compounds [157]. 
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Figure 1.21: The addition reaction between superoxide anion and unsaturated radical 

cation [157]. 
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In the case of hydrogen abstraction mechanisms superoxide anion reacts by abstracting a 

proton from the organic compound, as indicated by the reaction of hydroxylquinone (Fig. 

1.22). 
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Figure 1.22: Mechanism of formation of semi-quinone by the reaction between 

superoxide anion and catechol [157]. 

The superoxide anion can also undergo on electron transfer reactions with many organic 

compounds. Many aromatic compounds can undergo one-electron transfer reactions, such 

as nitro compounds (Fig. 1.23) and guinone, [158]. These reactions have been reported in 

both protic and aptotic media. 
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 Figure 1.23: Electron transfer reaction of superoxide anion with nitro compounds [158]. 

1.13.2 Hydroxyl radical (
o
OH) and its reactions 

The hydroxyl radicals are one of the most important ROS. They are known as the most 

reactive member of the radical family and are an important oxidant in the advanced 
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oxidation process. The reactions involving hydroxyl radicals are similar in both the 

aqueous and gas phase. There are three main mechanisms by which hydroxyl radicals 

react with organic compounds such as, hydrogen abstraction, electrophilic addition and 

electron transfer reactions.  

The hydrogen abstraction reactivity of hydroxyl radicals depends on the strength of the R-

H bond in the substrate which can be defined by the difference between the bond 

formation of the product (HO-H) and bond dissociation energies of the substrate (R-H) 

[156, 159]. These reactions can occur in aldehydes, ketones, esters, alcohols, alkanes, 

haloalkanes, carboxylic acids, thiols, amines and hydroperoxides [159]. 

The hydroxyl radicals react with alcohols via the hydrogen abstraction mechanism. The 

hydrogen abstraction can occur at both C-H and O-H. However, due to the lower bond 

dissociation energy of C-H bond than that of the O-H bond, it will be dominant at C-H 

bond. The reactions of primary, secondary and tertiary alcohol are presented in Figure 

1.24. 
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Figure 1.24: Hydrogen abstraction mechanism of hydroxyl radicals from methanol, 2-

propanol and 2-methyl-2-propanol [159]. 
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 In the case of aliphatic aldehydes, hydrogen atom abstraction by hydroxyl radicals occurs 

at the hydrogen attached to the carbonyl group [159]. Figure 1.25 indicates the hydrogen 

abstraction mechanism in the case of formaldehyde. 

 

oOH + CH H

O

CH

O

OH + H+

 

Figure 1.25: Hydrogen abstraction mechanism of hydroxyl radicals with formaldehyde 

[159]. 

The hydrogen abstraction mechanism also occurs when hydroxyl radicals react with 

alkanes. For example, hydrogen abstraction occurs in the case of 2-methylpentane (Fig. 

1.26). The reactivity of the tertiary C-H is higher because of the lower bond dissociation 

energy. Hydroxyl radicals also react with carboxylic acids via the hydrogen abstraction 

mechanism. Usually, the hydrogen abstraction occurs in the furthest position from the –

COOH group. However, α-hydroxy acids tend to react with hydroxyl radicals by α-

hydrogen abstraction [159]. 
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Figure 1.26: Hydrogen abstraction mechanism of hydroxyl radical from 2-methylpentane 

[159]. 

Another important mechanism by which hydroxyl radicals react with organic compounds 

is the electrophilic addition reaction. This reaction occurs in the organic compounds where 

the bond dissociation energy of C-H is too high to allow abstraction of hydrogen atoms. 

Among the organic compounds that react via electrophilic reactions are alkenes, alkynes, 

aromatic compounds and thiols. Following are some examples of these types of reactions. 

The reactions of unsaturated alkenes (Fig. 1.27 ) occurs by the addition of hydroxyl 

radical to the C-C double bond having less substituted carbon atoms [159]. Another 

example of the electrophilic addition reaction of hydroxyl radicals is their reactions with 
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aromatic compounds (Fig. 1.27). The conjugated π-system provides a relatively stable 

OH-adduct radical by delocalization. 

 

oOH + R CH CH
2

CH CH
2

R

OH

o

oOH +

H OH

.
 

 Figure 1.27: Electrophilic addition reactions of hydroxyl radicals [159]. 

The aromatic compounds may react with hydroxyl radicals by electron transfer reactions. 

For example, the electrons transfer pathways in the p-dimethoxybenzene (Fig. 1.28). 
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Figure 1.28: Reaction of hydroxyl radical and p-dimethoxybenzene by electron transfer 

mechanism [160]. 

1.13.3 Hydrogen peroxide (H2O2) and its reactions 

The hydrogen peroxide is one of the stable ROS. It has both nuleophilic and electrophilic 

properties. The electrophilic character arises from the fact that the bond between the two 

oxygen atoms can be easily polarized [161]. Hydrogen peroxide being a weak oxidant has 

limited ability to react with organic compounds such as olefins and aromatic hydrocarbons 
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[161]. In aqueous solutions the hydrogen peroxide dissociates into its derivatives 

depending on the pH. Under basic conditions it can be turned into hydroperoxy anion 

(HOO
-
) and in acidic media it turns into hydroxyl cation (O2H3

+
). Furthermore, in the 

presence of ultraviolet light or transition metals it turns to hydroxyl radicals [161] as 

shown in the Figure 1.29. 
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Figure 1.29: Direct activation modes of hydrogen peroxide [161]. 

The hydrogen peroxide can react with carboxylic acids and its derivatives to produce 

proxy acids as shown in Figure 1.30. 
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Figure 1.30: Reactions of hydrogen peroxide with carboxylic acids and esters [162]. 

 

The reactions of hydrogen peroxide with transition metals are very important since they 

results in the formation of hydroxyl radicals through Fenton-type reactions according to 

the following reaction: 
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H
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2 + Mn+ HOo
+ HO-
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 Figure 1.31: Reactions of hydrogen peroxide with transition metals. 

In alkaline conditions hydrogen peroxide is in equilibrium with hydroperoxy anion, which 

is a strong nucleophile, and can react with aldehydes, unsaturated ketons and quinines to 

form epoxides as shown in Figure 1.32 [162]. Furthermore, hydrogen peroxide reacts with 

aromatic aldehydes and ketones at basic pH and undergoes rearrangement reactions (Fig. 

1.33). 
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Figure 1.32: Epoxidation of unsaturated aldehydes or ketones by hydrogen peroxide in 

alkaline conditions [162]. 
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Figure 1.33: Oxidation of aromatic aldehyde by hydrogen peroxide in alkaline conditions 

[161]. 

1.13 Spectroscopic probes for the detection of reactive oxygen species 

The detection and measurement of reactive oxygen species (ROS) are vital in order to 

understand the mechanism of AOPs as described before. The probe-assisted spectroscopy 
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(spectrophotometry, electron spin resonance, fluorescence and luminescence) is the main 

tool for the detection of ROS. The probes are the compounds that selectively react with 

ROS to produce specific products that can be easily detected. They have been used in 

aqueous and biological assays for the detection of ROS. Despite the use of spectroscopic 

probes in ozonation and biological assays have some disadvantages. These include: the 

low stability of probes and their products [163]. However, the use of spectroscopy probes 

has many advantages as they provide an easy, economical and simple means for the 

detection and quantification of ROS production. Additionally, by detecting ROS from 

different catalytic processes the mechanisms can easily be understood. The spectroscopic 

probes have been successfully used in the ozonation and catalytic ozonation processes for 

an investigation of ROS [48, 163-165].   

The spectroscopic probes include the spin traps, hydroxylamines, spectrophotometric 

probes, luminescence probes and fluorescence probes. Among them fluorescence probes 

have wide range of advantages. For example, they have low background fluorescence, 

linear response to a wide range of ROS concentrations, higher sensitivity and have low 

detection limits [166]. Some of the probes that have been used to detect ROS in aqueous 

and biological assays have been listed in the Table 1.10. 
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Table 1.10 Spectroscopic probes for the detection of reactive oxygen species 

Probe    ROS 

 

Hydroxylamines  

1-Hydroxy-4-phosphonooxy-2,2,6,6-terramethylpiperidine (pp-H) 
o
O2

-
  [167] 

1-Hydroxy-2,2,6,6-terramethyl-4-oxo-piperidine (Tempone – H) 
o
O2

-
  [168] 

Spin traps  

5,5-Dimethyl-1-5pyrroline N-oxide (DMPO) 
o
OH radicals [163] 

5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) 
o
O2

-
   [169] 

Spectrophotometric probes  

Nitro Blue Tetrazolium (NBT) 
o
O2

-
   [170] 

2,3-Bis(1-methoxy-4-nitro-5-sulphophenyl)-5-

[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XXT) 

o
O2

-
   [171]

 

4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) 
o
O2

-
   [172, 173]

 

N,N-Diethyl-p-phenylenediamine (DPD) H2O2 [174] 

Fluorescence 
 

Coumarin (COU) 
o
OH radicals [175, 176]

 

4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) 
o
O2

-
   [172, 173]

 

Amplex red H2O2 [177] 

Terephthalic acid 
o
OH radicals [178] 

Luminescence probes 
 

5-Amino-2,3-dihydroxy-1,4-phthalayineidone (luminal) 
o
O2

-
   [179]

 

2-Methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazol(1,2- )pyrazin-

3-one (MCLA) 

o
O2

-
   [180]
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CHAPTER 2- EXPERIMENTAL 
 

 “This chapter is divided into two parts. The purpose of the first part (experimental) is 

 to provide the procedures of the experiments performed in this work and to provide 

 the information for each type of technique and the chemicals used in this work. 

 In the second part (method development and validation) the method development 

 and validation is  described”.  
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2.1 PART 1 - Experimental 

2.1.1 Reagents and chemicals  

All the experiments were undertaken with ultrapure deionized water. The ZSM-5 zeolites 

with different silica to alumina ratios and counter ions (Z1000H:SiO2/Al2O3 = 1000, 

Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25) and γ-

alumina has been used as catalysts in the present work. The zeolites were obtained from 

Zeochem, Switzerland and γ-alumina was obtained from Alcoa Inc, USA.  

For the determination of aqueous ozone, analytical grade potassium indigo trisulfonate 

(purity, 99 %), sodium dihydrogen phosphate (purity, 99 %) and concentrated phosphoric 

acid were purchased from Sigma-Aldrich, U.K. For ozone dose experiments (gas-phase 

ozone), analytical grades potassium iodide (KI) and sodium thiosulfate (Na2S2O3) were 

obtained from Fisher Scientific, U.K. The concentrated H2SO4 and starch were purchased 

from Sigma-Aldrich, U.K. 

Coumarin and 7-hydroxy coumarin have been used in an investigation of hydroxyl 

radicals in ozonation in the presence of alumina and ZSM-5 zeolites. Both the coumarin 

and 7-hydroxy coumarin were of HPLC grade (purity, 99 %). The GC grade 99.7 % pure 

tert-butanol was used to investigate the scavenging effect of hydroxyl radicals. The 

phosphates effect has been investigated by using sodium di-hydrogen phosphate 

(Analytical grade; Purity, 99 %). Amplex red and resorufin (HPLC grade; purity 99) have 

been implied to investigate the formation of hydrogen peroxide in the ozonation and 

catalytic ozonation processes. The 4-chloro-7-nitrobenzo-2-oxa-1, 3-dizole (NBD-Cl) and 

potassium superoxide (analytical grade; purity, 99%) have been used for an investigation 
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of superoxide ion radical. All the above mentioned chemicals were purchased from 

Sigma-Aldrich, U.K. 

For the ozonation and catalytic ozonation of VOCs, cumene and dichlorobenzene used 

were of GC grade with 99.9% purity and were purchased from Sigma-Aldrich U.K. The 

1,2,4-trichlorobenzene was purchased from Across Organics, USA is having 99% purity. 

HPLC grade hexane (for liquid-liquid extractions), ibuprofen (purity, 99%), organic acids 

such as oxalic acid, succinic acid, formic acid and acetic acid (99% pure; ACS reagent 

grade), tetra butyl ammonium hydroxide (1M in water; ion chromatography grade) and 

heptaflourobutyric acid (purity 99.5%; GC grade) were purchased from Sigma-Aldrich, 

U.K.
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2.1.2 Equipments 

Table 2.1: Summary of techniques, instruments used and their applications 

Techniques Instrument Applications 

UV-Vis spectroscopy Shimadzu UV-160A UV-Visible spectrophotometer To analyse coumarin, NBD-Cl and aqueous ozone. 

Fluorescence 

spectroscopy 

Hitachi  F-4500 Fluorescence Spectrophotometer To analyse 7-hydroxy coumarin, resorufin and NBD-Cl product 

for the determination of hydroxyl radicals, hydrogen peroxide 

and superoxide ion radicals respectively in water. 

Corona discharge ozone 

generation 

Azco HTU-5000GE-120 ozone generator in line with moisture 

absorbing  column 

To produce ozone from pure oxygen, which is used in ozonation 

and catalytic ozonation experiments. 

Flow control Watson Marlow, 323 peristaltic pump To have a uniform flow of ozone at a fixed rate, during the 

ozonation and catalytic ozonation experiments. 

Gas chromatography-

mass spectrometry 

Agilent GC-MS; J&W Scientific, HP-5MS 19091S-431column To analyse of VOCs (cumene, 1,2-dichlorobenzene, 1,2,4-

trichlorobenzene).  

Ion chromatography Dionex, DX-120 ion chromatograph 

1. Ion Pac- ICE-ASI 9X250 mm column; AMMS-TCE 300 anion 

micro membrane suppressor 

2. Ion Pac As14 analytical column (4×250 mm); Ion Pac AG14 

guard column (4×250 mm); ED-50A electrochemical detector 

To investigate organic acids 

To investigate phosphates 

High-performance liquid 

chromatography 

Gilson 307 HPLC/UV  equipped with Phenomenex Kintex 2.6µ C18 

100A (100× 4.60) column 

To analyse ibuprofen. 

Fourier transform 

spectroscopy 

Nicolet, 380 FTIR spectrophotometer Catalysts characterization. 

Scanning electron 

microscopy 

JEOL JSM-6060 scanning electron microscope To observe the surface morphology of catalysts. 
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2.1.3 Methods 

2.1.3.1 Characterization of catalysts 

The physicochemical properties such as surface areas and porosities of the studied 

catalysts were determined either by the manufacturers or by our group in previous work 

[4]. They were measured by nitrogen adsorption at 77K.  Surface areas were determined 

from the desorption isotherms applying the BET equation and porosities were determined 

from the adsorption isotherms using the Kelvin equation and the BJH method. The surface 

morphology of catalysts has been characterized by scanning electron microscopy (SEM). 

The SEM studies were carried out using a JEOL JSM-6060 microscope. The images were 

taken with 100 µA emission current by a tungsten filament and 12 KV of accelerator 

voltage. The catalysts were secured onto brass stubs with carbon conductive tape; sputter 

coated with gold, and viewed the surface under JEOL JSM-6060 microscope. The pre-

treatment of catalysts was done by coating with an evaporated Au film in a Polaron Sc 

7620 sputter coater metallization to increase the catalyst electric conductivity. The 

characterization of functional groups of catalysts has been done with the use of Nicolet 

380 FTIR spectrophotometer. For this purpose first of all a background spectrum was 

collected, after that spectrum of the sample was collected by placing small amount of 

sample on the sample plate and applied the plunger to press the sample firmly against the 

plate. Finally, the sample key on the keypad was pressed to collect the spectrum. 

The points of zero charge of different catalysts were determined by the mass titration 

method as described by Preocanin et al [181]. In the case of mass titration, subsequent 

portions of materials are added to an electrolyte solution (NaCl), and the pH of 

equilibrated dispersion is measured. The pH of the system changes gradually and 

approaches to a constant value, which is equal to the point of zero charge. The counter ion 
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association shifts the pH either to the acidic region (cations adsorption) or to the basic 

region (anion). Mass titration method therefore enables the detection of the association of 

both anions and cations [181]. Before the measurement, the materials were washed with 

deionised water and dried in an oven at 108 
o
C. Subsequently, catalysts (0.1 g) were added 

to 25 mL of 10
-3 

mol/dm
3
 electrolyte solution (NaCl) with continuous stirring. After each 

portion of the catalyst was added to the solution, the pH of the equilibrated dispersion was 

measured. The pH of the solution changed gradually and become constant at a certain 

point and that pH was identified as the point of zero charge (pHPZC). It is important to note 

that experiments have been performed at initial pH 4.0 and 9.8. 

For the X-ray diffraction (XRD) studies, dry catalyst samples were grounded with the help 

of mortar and pestle. The fine power catalysts were packed on the sample holder. The 

diffraction pattern measurements were recorded in the high angle 2θ range of 2-80
o
. The 

scan speed and step were 0.5
o
 min

-1
 and 0.02

o
, respectively. 

2.1.3.2 Ozonation experiments  

The ozonation experiments have been performed in semi-batch (Fig. 2.1) and semi-

continuous (Fig. 2.2) reactors. The experiments aiming to investigate the formation of 

hydroxyl radicals, superoxide ion radical and hydrogen peroxide have been performed in a 

semi-batch reactor. The ozonation of selected pollutants such as VOCs, ibuprofen and 

acetic acid were performed in semi-continuous reactor. 

2.1.3.2.1 Ozonation experiments in semi-batch reactor  

The ozonation experiments in the semi-batch reactor (Fig. 2.1) have been performed in 

order to investigate the formation of hydroxyl radicals, superoxide ion radical and 

hydrogen peroxide during the ozonation and catalytic ozonation processes, for this 
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purpose probes such as coumarin, NBD-Cl and amplex red have been used respectively. 

The procedures are as follows. 

 

 

  Figure 2.1: Scheme of semi-batch ozonation system. 

2.1.3.2.1.1 Ozonation of coumarin, NBD-Cl and 7-hydroxy coumarin 

Aqueous solution (190 mL) of either NBD-Cl or 7-hydroxy coumarin (20 ppm) was 

transferred to the reactor containing 2.0 g of the catalysts and was subsequently stirred (at 

200 rpm) over a period of 30 minutes (temperature; 25
o
C). Ozone was generated from 

pure oxygen by an HTL-500GE/20 ozone generator (Azon, Canada) and was continuously 

introduced to the column by means of a ceramic sparger (flow rate: 0.6 mg/min). Samples 

were collected at 5 minute intervals and were quenched with 0.025M Na2SO3 in order to 

remove any residual ozone and were filtered (PTFE 0.45 µm syringe filter). All the 

experiments were performed in the dark and the samples were analysed immediately after 

collection.  
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In the case of 7-hydroxy coumarin the collected samples during the ozonation (7HC) 

experiments were diluted with ultrapure water (1 mL of sample was diluted to 25 mL) and 

were analysed with a Hitachi F-4500 fluorescence spectrophotometer. 

2.1.3.2.1.2 Ozonation to determine hydrogen peroxide 

The ozonation experiments aiming to investigate the hydrogen peroxide have been 

performed by using amplex red as a probe. All experiments were conducted according to 

the procedure described above but with one exception: the ultra-pure deionized water (190 

mL) was ozonated without the addition of amplex red. After filtration, 1 mL of the sample 

was immediately added to 3 mL of the solution of amplex red (20 mg/L) and left for 30 

minutes (optimum time of H2O2 reaction with amplex red) and then analysed with an F-

4500 Fluorescence Spectrometer (Hitachi, Japan). All the experiments were performed in 

triplicate and were performed in the dark (the reactor was covered with aluminium foil 

during the experiments).  

2.1.3.2.1.3 Ozonation to investigate TBA and phosphates effect  

The ozonation experiments in the presence of tertiary butyl alcohol (TBA) and phosphates 

have been performed as described above by adding either phosphates (sodium dihydrogen 

phosphate) or TBA (50 mg/L) to the aqueous solutions placed in the semi-batch reactor 

just before the ozonation process. 

2.1.3.2.1.4 Ozonation to investigate the effect of catalyst amount  

In order to investigate the effect of catalyst amount on the efficiency of catalytic 

ozonation, experiments were performed by undertaking ozonation experiments in the 

presence of various amounts of selected catalysts (2.0-8.0 g) according to the procedure 

described in section 2.1.3.2.1.1. 
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2.1.3.2.1.5 Kinetics of aqueous ozone decay 

Ozone decay rates were investigated in pure water (in the absence of pollutants) in the 

semi-batch reactor (Fig. 2.1) and over pH range 3-13. The pH was adjusted using 

concentrated HCl or concentrated NaOH solution. A saturated solution of ozone was 

prepared with water (190 mL) by introducing ozone at a rate of 1.5 mg/min for 1 hour in 

the semi-batch reactor. 0.95 g of catalyst (alumina, ZSM-5 zeolites) was added into 190 

mL of ozone saturated solution (initial ozone concentration: 1.5-3.0 mg/L, the variable 

initial ozone concentration is due to the different initial pH of solution), and the mixed 

suspension was stirred continuously for a period of one hour (temperature: 25
o
C). Samples 

were collected every 10 min, filtered (PTFE 0.45 µm syringe filter), quenched with indigo 

reagent and analysed for aqueous ozone by indigo method. Aqueous ozone decay was also 

studied in experiments in which ozonation was used alone without the addition of a 

catalyst. The aqueous ozone decay was found to follow first order kinetics, as the graphs 

between ln [A] vs time (A = the concentration of aqueous ozone at time t) were linear in 

ozonation and ozonation in the presence of catalysts. Therefore, first order rate constants 

for ozone decomposition were determined using ln [A] conc /time plots and the value of rate 

constant was determined from the slope of the graph. Similar experiments were performed 

in the presence of 50 mg/L of TBA. All experiments have been performed three times and 

average rates of reactions have been determined.  

2.1.3.2.2 Ozonation experiments in semi-continuous reactor  

The ozonation experiments in the semi-continuous reactor (Fig. 2.2) have been performed 

in order to investigate the removal of pollutants such as VOCs, ibuprofen and acetic acid 

during the ozonation and catalytic ozonation processes. Additionally, experiments aiming 
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to investigate the effect of TBA, phosphates and tap water have also been performed in the 

semi-continuous reactor. 

 

 

  Figure 2.2: Scheme of semi-continuous ozonation system. 

2.1.3.2.2.1 Ozonation of VOCs, ibuprofen and acetic acid 

The ozonation experiments were conducted at room temperature (20
o
C) in a semi-

continuous mode as shown in Figure 2.2 (column length, 70 cm; width, 31 mm). Aqueous 

solution (490 mL) saturated with pollutants (20 mg/L), was transferred to the column 

containing 5.0 g of the catalyst. The water was recirculated over the period of 30 minutes 

with a flow rate of 15 mL/min. Ozone was generated from pure oxygen by AZCO HTU-

5000GE-120 ozone generator and was continuously introduced to the column by means of 

a ceramic sparger, and a flow rate of 0.1 mg/min for VOCs ozonation and 0.5 mg/min for 
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ibuprofen and acetic acid ozonation. The samples were collected at 5 minute intervals and 

were quenched with 0.025M Na2SO3 in order to remove any residual ozone. All the 

samples were filtered (PTFE 0.45 µm syringe filter) prior to the analysis.  

In the case of VOCs, the loss of VOCs due to volatization was determined by adding 490 

mL of VOCs solution to the reaction column and re-circulated for 30 minutes. All the 

experiments were performed in triplicate at room temperatures. 

In the case of the VOCs experiments it is important to mention that before the ozonation 

experiments the saturated solution of VOCs was prepared by directly spiking the 

appropriate volumes of VOCs required to prepare 1000 mg/L solution in a flask 

containing ultra pure water. The volumetric flask was filled up to the 1000 mL mark and 

the solution was poured into a glass stoppered bottle, shacken manually for 5 minutes and 

placed in a dark place for 24 hrs. After 24 hrs 500 mL of saturated solution was pumped 

out from the middle portion of bottle using a Watson Marlow 323 pump and that solution 

was used in the ozonation and catalytic ozonation experiments. 

2.1.3.2.2.2 Ozonation to investigate TBA and phosphates effect  

The ozonation experiments in the presence of tertiary butyl alcohol (TBA) and phosphates 

have been performed as described above by adding phosphates (sodium dihydrogen 

phosphate) and TBA (50 mg/L) to the semi-continuous reactor and following the above 

procedure. 

2.1.3.2.2.3 Ozonation in the presence of drinking water 

The efficiency of ozonation in the presence of ZSM-5 zeolites and alumina has been 

investigated by formally contaminating tap water with pollutants (VOCs and ibuprofen). 

The solutions were ozonated as described earlier (section 2.1.3.2.2.1). The aim of this 
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investigation was to find whether the naturally present substances like sulphates, 

phosphates, carbonates and bicarbonates in drinking water can cause a decrease in the 

efficiency of ozonation in the presence of zeolites and alumina. In order to remove any 

residual chlorine in the tap water, 500 mL of the sample was taken in a glass bottle and 

was shaken manually and placed in a dark place for 24 hours, and then the solution of 

pollutants was prepared as described above. The amount of residual chlorine was 

determined by the iodometric method [182]. 

2.1.3.2.2.4 Reuse performance of catalyst 

The reuse performances of catalyst for the removal of VOCs and ibuprofen have been 

investigated in the semi-continuous reactor (Fig. 2.2). For this purpose 5.0 g of catalyst 

was added in the 490 mL solution containing pollutants (VOCs; 19 mg/L, 3.5 mg/L and 

0.5 mg/L of cumene, dichlorobenzene and trichlorobenzene respectively and ibuprofen; 20 

mg/L). The ozonation time was fixed to 30 minutes and experiments were performed for 6 

hours, after every 30 minutes a fresh solution of pollutants was introduced in a semi-

continuous reactor. 

2.1.3.3 Adsorption experiments  

The adsorption experiments have been performed in order to compare the removal of 

organic compounds with catalytic ozonation and adsorption only. For this purpose the 

experiments have been performed in both the semi-batch (Fig. 2.1) and the semi-

continuous reactors (Fig. 2.2). The adsorption of phosphates and humic acid on zeolites 

and alumina has also been determined. Furthermore, adsorption capacities of pollutants on 

zeolites and alumina have been determined using glass tubes. 
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2.1.3.3.1 Adsorption experiments in semi-batch reactor 

The adsorption of the probe molecules and phosphates has been performed in the semi-

batch reactor (Fig. 2.1). The procedures are as follows 

2.1.3.3.1.1 Adsorption of probes  

The adsorption experiments have been conducted in the semi-batch reactor (Fig. 2.1) in 

order to investigate the adsorption of the probe molecules (coumarin, NBD-Cl, 7HC) over 

ZSM-5 zeolites and alumina. The extent to which COU, NBD-Cl were removed from the 

aqueous solution by physical adsorption on the catalysts was measured, so that this effect 

could be separated from the removal of these compounds by ozonation. For these 

measurements 2.0 g of the catalysts were added to 190 mL of probe solution (20 mg/L) 

and stirred for 30 minutes (rate, 200 rpm). Experiments were performed at 25
o
C 

temperature. The samples were collected every 5 minutes and were filtered (PTFE 0.45 

µm syringe filter). All the experiments were performed in the dark and samples were 

analysed immediately after collection with the use of Shimadzu UV-160A UV-Visible 

spectrophotometer. It is important to note here that the experiments were performed 

separately for each compound to investigate its adsorption on ZSM-5 zeolites and 

alumina. 

2.1.3.3.1.2 Adsorption of phosphates  

The adsorption of phosphates (50 mg/L) on the catalysts has been investigated in the semi-

batch reactor. The ozonated samples in the presence of phosphates (50 mg/L) were 

collected every 5 minutes and were filtered (PTFE 0.45 µm syringe filter). The samples 

were analysed with the use of the Dionex DX-120 system. The experiments in semi-batch 

reactor were performed by using 2.0 g of catalysts. All the experiments were carried out at 

25
o
C temperature. 
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2.1.3.3.2 Adsorption experiments in semi-continuous reactor  

The adsorption experiments have been conducted in the semi-continuous reactor in order 

to investigate the adsorption of VOCs, ibuprofen and acetic acid on zeolites and alumina. 

Additionally, the adsorption of phosphates and humic acid has also been investigated in 

semi-continuous reactor (Fig. 2.2). The procedures are as follows 

2.1.3.3.2.1 Adsorption of pollutants  

The adsorption experiments of selected pollutants such as VOCs (cumene, 

chlorobenzenes), ibuprofen and acetic acid have been performed in the semi-continuous 

reactor. For this purpose 5.0 g of the catalysts were added to 490 mL of saturated VOCs 

solution (cumene, 19.1 mg/L; 1,2-dichlorobenzene, 3.5 mg/L; 1,2,4-trichlorobenzene, 0.5 

mg/L), ibuprofen (20 mg/L) and acetic acid (20 mg/L) solutions. The solutions were 

recirculated for 30 minutes (flow rate, 15 mL/min). The samples were collected after 

every 5 minutes and were filtered (PTFE 0.45 µm syringe filter) prior to the analysis.  

2.1.3.3.2.2 Adsorption of humic acid  

The experiments aiming to understand the extent of adsorption of humic acid on the ZSM-

5 zeolites and alumina have been performed in the semi-continuous reactor. The 

experiments were performed by adding 5.0 g of the catalyst to 490 mL of humic acid 

solution (7 mg/L). The solution was recirculated for 30 minutes (flow rate, 15 mL/min). 

The samples were collected after every 5 minutes, filtered and were analysed with 

Shimadzu UV-160A UV-Visible spectrophotometer.  

2.1.3.3.2.3 Adsorption of phosphates  

The experiments in the semi-continuous reactor have been performed using 5.0 g of 

catalysts. The ozonated samples in the presence of phosphates were collected every 5 
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minutes and were filtered (PTFE 0.45 µm syringe filter). The samples were analysed with 

the use of the Dionex DX-120 system. All the experiments were carried out at ambient 

temperatures. 

2.1.3.3.3 Determination of adsorption capacities  

The adsorption capacities of VOCs and ibuprofen on ZSM-5 zeolites and alumina have 

been determined using glass test tubes of 25 mL capacity. The procedures are as follows. 

2.1.3.3.3.1 Determination of adsorption capacities of catalysts towards VOCs  

In order to undertake the adsorption capacity experiments the optimum time of adsorption 

was determined (equilibrium time) by shaking the test tubes containing 25 mL of VOCs 

solutions (closed, no headspace) for 2.5 hours and after every 30 minute sample was 

removed and analysed. The adsorption capacity of alumina and zeolites towards VOCs 

was determined by using varying amounts of materials (0.1 g to 2.0 g) added to 25 mL of 

saturated solution of VOCs in a test tube without headspace but with continuous shaking 

over the period of 1 hour (equilibrium time), with Gallenkemp flask shaker. The 

experiments were performed at room temperature (20
o
C) and an initial pH of 6.2. The 

adsorption data were found to fit the Langmuir adsorption model (linear Langmuir 

adsorption isotherms). Therefore, adsorption capacities were determined from Langmuir 

isotherms. The Langmuir isotherm can be described by following equation [183]. 

1/q = 1/qm.b (1/ce) + 1/qm 

Where q = sorbed concentration (mass adsorbate/mass adsorbent) 

qm = maximum capacity of adsorbent for adsorbate 

ce = aqueous concentration of adsorbate at equiblirium (mass/ volume) 

b = measure of affinity of adsorbate for adsorbent 
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The graph between 1/qe vs 1/Ce indicated the straight line, hence the adsorption capacity 

was determined from the intercept (1/qm) [183].  

2.1.3.3.3.2 Determination of adsorption capacities of catalysts towards ibuprofen  

The adsorption capacity of alumina and zeolites towards ibuprofen has been determined 

by adding 1.0 g of catalyst to 25 mL of ibuprofen solution with various initial 

concentrations in a test tube without head-space, but with continuous shaking 

(Gallenkemp flask shaker, Gallenkemp, UK). The samples were filtered and were 

analysed after 4 hours (optimum time). The experiments were performed at room 

temperatures (20
o
C). The initial pH of the solution was adjusted to 7.2 with NaOH and 

HCl. The data was found to best fitted in the Langmuir adsorption model.  

The Langmuir adsorption model can be represented as follows [183]. 

Ce/qe = 1/bqm + Ce/qm 

Here, Ce, qm, qe and b have been described in above section. 

The adsorption capacities were calculated by plotting a graph between Ce/qe vs Ce and the 

maximum adsorption capacity qm was determined from the slope of the graph [183].  

2.1.3.4 Analytical procedures 

2.1.3.4.1 Ozone Dose (ozone in gas phase) 

Iodometric method [182] has been used for the determination of ozone in the gas phase. 

Gaseous ozone in in-gas and off-gas was continuously introduced to two sets of glass 

bottles, each filled with 200 mL of 2% KI, through a ceramic sparger (Fig. 2.1, Fig. 2.2). 

After acidification of 200 mL of the 2% KI solution with 10 mL of 1N HCl, the liberated 

iodine was titrated with standard 0.005N Na2S2O3 using a starch indicator. The volume of 

titrant was noted and ozone dose was calculated by following formula: 
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Here A= the volume of titrant used in trap A 

B = volume of titrant used in trap B 

N = normality of titrant 

T = total time of ozonation 

Following are the procedures used to prepare reagents which have been used in the 

determination of ozone dose. 

2.1.3.4.1.1 Starch indicator solution 

 In order to prepare the starch indicator solution, 5.0 g of starch was added to a little cold 

water and grounded in a mortar to a thin paste. It was poured into 1L of deionised water; 

stirred and left to settle overnight. The clear supernatant was used and was preserved with 

1.25 g salicylic acid and 4.0 g zinc chloride. 

2.1.3.4.1.2 Standardization of Na2S2O3 

Standard solution of sodium thiosulfate (0.1N) was prepared and standardized by titrating 

with potassium dichromate (normality, 0.1N).  

Normality of Na2S2O3 = 1/mL Na2S2O3 consumed.   

2.1.3.4.1.3 Preparation of calibration curve  

The calibration curve has been prepared by passing ozone gas through a KI trap for a fixed 

interval of times (1, 2, 3, 4, 5, 6 minutes) in 250 mL volumetric flask containing a known 

volume (200 mL) of 2 % KI solution and the rest of the procedure is  described above. A 

calibration curve was prepared between ozone concentractions and ozonation time.  
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2.1.3.4.2 Aqueous ozone (Indigo colorimetric method) 

The concentration of ozone dissolved in the aqueous phase was determined by the indigo 

method [182]. The difference in absorption of light at 600 nm between blank and sample 

was measured with a Shimadzu UV-160A UV-Visible Spectrophotometer. The calibration 

curve was established before analysis. The concentration of ozone was determined by the 

following calculations: 

mg O3/L = 100×∆A/f×b×V 

ΔA = difference in absorbance between sample and blank 

b = path length of cell, cm. 

v = volume of sample in mL 

f = constant = 0.42 

Following procedures have been used to prepare reagents which were used in aqueous 

ozone studies. 

2.1.3.4.2.1 Indigo stock solution 

In order to prepare indigo stock solution, 500 mL of distilled water and 1mL of 

concentrated phosphoric acid was added to a 1L volumetric flask. Then 770 mg potassium 

of indigo trisulfonate was added and the flask was filled with deionized water to the mark. 

A 1:100 dilution exhibits an absorbance of 0.20 ± 0.01 cm at 600 nm [182].  

2.1.3.4.2.2 Indigo reagent I 

The indigo reagent I was prepared by adding 20 mL indigo stock solution to a 1L 

volumetric flask, 10.0 g of sodium dihydrogen phosphate (NaH2PO4) and 7 mL 

concentrated phosphoric acid was added and diluted up to the mark. The indigo solution I 

is used for ozone concentrations ranges 0.01 to 0.1 mg O3/L [182]. 
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2.1.3.4.2.3 Indigo reagent II 

 The indigo reagent II was prepared by following the procedure as an indigo solution I 

with the exception of adding 100 mL indigo stock solution instead of 20 mL. The indigo 

solution II is used for ozone concentrations greater than 0.1 mg O3/L [182]. 

2.1.3.4.2.4 Calibration curve  

The calibration curves have been prepared by ozonating deionized water for fixed 

intervals of time (1, 2, 3, 4, 5, 6 minutes), and then indigo reagent II and sample were 

mixed in 10: 90 ratios. The sample was put into 1 cm glass cell and absorbance at 600 nm 

has been determined by Shimadzu UV-160A UV-Visible Spectrophotometer. The 

calibration curve has been established between absorbance vs. ozone concentration. 

 2.1.3.4.3 Analysis of coumarin 

Coumarin concentration was measured through absorbance at 277 nm (Shimadzu UV-

160A UV-Visible Spectrophotometer) in a 1.0 cm cell following filtration of the working 

solution, and using a suitable calibration curve.   

2.1.3.4.4 Analysis of 7-hydroxy coumarin 

The concentration of 7HC was determined by fluorescence intensity at 455 nm (excited at 

332 nm) using a Hitachi F-4500 Fluorescence Spectrometer. Both the emission and 

excitation slits were set to 5.0 nm. A calibration curve was prepared over the appropriate 

concentration range. Samples were filtered (PTFE 0.45 µm syringe filter) prior to the 

analysis [175, 176, 184].  

2.1.3.4.5 Analysis of resorufin  

The concentration of H2O2 was determined from its fluorescence emission spectrum 

(excited at 563 nm) of resorufin with the use of F-4500 fluorescence spectrometer 
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(Hitachi, Japan). Both the emission and excitation slits were set to 5.0 nm.  Fluorescence 

at 587 nm was recorded [177] and the calibration curves were established by reacting 

hydrogen peroxide (concentration ranges 0 – 170 µg/L of H2O2 formed from 30% aqueous 

solution of H2O2) with amplex red reagent (20 mg/L) for 30 minutes. Due to the fact that 

amplex red reaction with H2O2 is pH dependent, calibration curves were established at 

different pH values: 6.2, 8.8 and 13.0.  

2.1.3.4.6 Analysis of NBD-Cl 

The 4-chloro-7-nitrobenzo-2-oxa-1, 3-dizole (NBD-Cl) was analysed with the use of 

Shimadzu UV-160A UV-Visible Spectrophotometer by recording the absorption at 343 

nm. This was obtained by plotting absorbance at 343 nm against NBD-Cl concentration. 

All samples were filtered through a PTFE 0.45 µm syringe filter, placed in 1 cm silica 

cells and were analysed.  

2.1.3.4.7 Analysis of NBD-Cl Product 

An identification of NBD-Cl product (reaction product of superoxide ion and NBD-Cl 

[172, 173] was conducted by recording fluorescence emission spectrum (excited at 470 

nm) with an F-4500 fluorescence spectrometer (Hitachi, Japan). Both the emission and 

excitation slits were set to 5.0 nm during the measurements. Fluorescence at 550 nm was 

recorded [173]. The formation of NBD-Cl product was confirmed by reacting KO2 (source 

of superoxide) and NBD-Cl. The amount of superoxide ion radical was quantified by 

plotting fluorescence at 550 nm against 
o
O2

-
 concentration (using 100 µM of NBD-Cl and 

different concentrations of KO2 that are in the range of 0 – 100 µM and the calibration 

curves have been established at pH values, 3.0, 6.2, 8.8 and 13.0.). All the aqueous 

samples were mixed with acetonitrile prior to the analysis (1 mL of an aqueous solution of 
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NBD-Cl product with 2 mL of acetonitrile) [173]. All the samples were filtered (PTFE 

0.45 µm syringe filter) prior to the analysis.  

2.1.3.4.8 Analysis of VOCs  

The concentrations of cumene and chlorobenzenes have been determined by Agilent gas 

chromatography coupled with mass spectrophotometry (GC/MS). After liquid-liquid 

extraction (hexane: water, 1:5, extraction time, 1min) 1µL of the extractant solution was 

injected using an auto sampler and a split-less mode. The temperature programme used 

was as follows: column oven temperature was 50
o
C for 4 minutes then 50

o
C per minute to 

200 
o
C. The carrier gas flow rate was 1.3 mL/min, the scan mode was selected ion storage 

with mass range of 50-500 and mass transfer line temperature was 280
o
C.  

2.1.3.4.9 Analysis of ibuprofen 

The concentration of ibuprofen has been determined by Gilson 506C HPLC equipped with 

UV-visible detector. The column used for the elution was Phenomenex Kinetex 2.6 µm 

C18 100 Å column (100 × 4.60 mm). After collecting samples from ozonation and catalytic 

ozonation experiments 30 µL of the solution was injected using an auto sampler. The 

mobile phase used was methanol/ water (70: 30 v/v) and 1% acetic acid (pH 3). It was 

passed through the column at a flow rate of 0.4 mL /min. The calibration curves have been 

established before analysis.   

2.1.3.4.10 Analysis of humic acid 

Humic acid concentration was measured through absorbance at 254 nm with the use of 

Shimadzu UV-160A UV-Visible Spectrophotometer. The sample was placed in a 1.0 cm 

cell following filtration of the working solution, and using a suitable calibration curve [3]. 
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2.1.3.4.11 Analysis of phosphates  

Phosphate concentrations were determined by ion chromatography using a DIONEX DX-

120 system with Ion Pac As14 analytical column (4 × 250 mm) and Ion Pac AG14 guard 

column (4 × 250 mm) coupled to an ED-50A electrochemical detector (Dionex, USA). 

Analyses were performed using an isocratic method at a flow rate of 0.82 mL/min and a 

constant temperature of 30
o
C. The mobile phase used was a mixture of the 3.5 mM 

sodium carbonate and 1.0 mM sodium hydrogen carbonate (0.742 g sodium carbonate was 

added in 2 L deionised water and 0.168 g sodium hydrogen carbonate in 2 L deionised 

water (Both solutions have been mixed together). The injection volume of the sample was 

25 µL. The calibration curve was established before analysis.  

2.1.3.4.12 Analysis of organic acids  

The organic acids have been analysed with the use of Dionex DX-120 ion 

chromatograph, equipped with Ion Pac- ICE-ASI 9 x 250 mm column and AMMS-TCE 

300 anion micro membrane suppressor. Heptafluorobutyric acid (1.0 mM) was used as 

eluent and tetra butyl ammonium hydroxide (5 mM) was used as regenerant. The injection 

volume was 25 µL; cell temperature, 30
o
C; eluent flow rate, 0.82 mL/min and regenerant 

flow rate was 5 mL/min.  

2.1.3.4.13 Determination of residual chlorine 

For the determination of residual chlorine 500 mL of tap water sample was taken and 

adjusted with 5 mL of acetic acid to reduce the pH (3.0-4.0). After this, 1.0 g of KI was 

added and the sample was titrated with 0.01 N Na2S2O3 from a burette until yellow colour. 

At this stage 1 mL of starch solution was added and was further titrated until the blue 

colour disappeared. A blank titration was performed using ultra-pure deionised water. This 
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is performed in order to determine the contribution of oxidizing or reducing impurities. 

The blank also compensates for the concentration of iodine bond to starch at the end point 

[182]. All the experiments were performed three times and the concentration of residual 

chlorine was calculated by using following relationship: 

                                 

mg of Cl/L = (A - B) × N ×35450/mL of sample 

 

A = mL of titration for sample 

B = mL of titration for blank 

N = normality of Na2S2O3 

2.2 PART 2 – Method development and validation 

Part 2 of chapter 2 describes the development and validation of methods that have been 

used in this study. A suitable method is important for the analysis of probes and organic 

pollutants in the bulk and in aqueous solutions. It is indeed important to develop a simple, 

sensitive, accurate, precise and reproducible method for the determination of organic 

compounds. The methods have been developed and validated for the analysis of volatile 

organic chemicals (VOCs; cumene, dichlorobenzene, trichorobenzene) with gas-

chromatography-mass spectrometry (GC/MS), ibuprofen with high-performance liquid 

chromatography coupled by UV-visible detector (HPLC/UV), organic acids with ion 

chromatography coupled with electrochemical detector (IC/ECD), coumarin (COU), 4-

chloro-7-nitrobenzo-2-oxa-1,3-dizole (NBD-Cl) concentrations with UV-visible 

spectrophotometer and 7-hydroxy coumarin and resorufin with fluorescence 

spectrophotometer. 



90 

 

2.2.1 Analysis of coumarin, NBD-Cl with UV-Vis spectrophotometer 

2.2.1.1 Preparation of stock solutions of COU and NBD-Cl 

The 500 µg/mL stock solution of COU and NBD-Cl was prepared by dissolving 

(separately) 50 mg of analytes in 50 mL ultrapure deionised water, transferred them to 100 

mL volumetric flasks and volumes were made up to the mark with ultrapure deionised 

water. The solution pH was adjusted to pH 6.2 with NaOH or HCl.  

2.2.1.2 Verification of maximum absorbance of COU and NBD-Cl 

In order to determine λmax values of COU and NBD-Cl, standard solutions of appropriate 

concentrations have been prepared from the stock solutions by diluting the stock solutions. 

The maximum absorbance (λmax) was determined for COU and NBD-Cl by placing the 

standards in 1 cm silica cells and analysed with Shimadzu UV-160A UV-vis 

spectrophotometer in wavelength scan mode. The (λmax) values were found to be 277 nm 

and 343 nm for COU and NBD-Cl respectively (Fig. 2.3). 

 

 

 

 

 

 

  Figure 2.3: UV-vis scans of (a) coumarin and (b) NBD-Cl.  

2.2.1.3 Method validation for COU and NBD-Cl 

First of all calibration curves were prepared by preparing known standards from stock 

solutions in suitable concentration range and an average of such 3 sets were prepared. The 

  

  

 

 

 

  

    

277 nm 

0 

0.6 

1.2 

1.8 

240 340 440 540 640 740 

A
b

so
r
b

a
n

c
e 

Wavelength [nm] 

(a) COU 

343 nm 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

270 370 470 570 670 770 

A
b

so
rb

a
n

ce
 

Wavelength [nm] 

(b) NBD-Cl  



91 

 

standards were analysed with Shimadzu UV-160A UV-vis spectrophotometer at λmax 

values of COU and NDB-Cl. The calibration curves were drawn by plotting a graph 

between absorbance and concentrations, for COU and NBD-Cl. The relationship between 

the concentrations and absorbance was found to be linear for both COU and NBD-Cl 

(concentration range: 0 – 20 mg/L). The linear regression coefficant (R
2
) values were 

0.9914 and 0.9994 for COU and NBD-Cl respectively.  

The above described methods have been validated in term of their linearity, precision and 

accuracy. Additionally, the limit of detections (LODs) and quantifications (LOQs) have 

been determined. The followings are the procedures and results of validation. 

2.2.1.3.1 Linearity  

The linearity of the method was determined by using three sets of calibration standards 

and calibration curves were prepared. The average correlation co-efficient and regression 

line equation was determined. 

2.2.1.3.2 Accuracy  

The accuracy of the assay was calculated by spiking known amounts of compounds in 

ultrapure deionised water and their response was recorded from the instrument. The 

concentrations were calculated from calibration curves and the accuracy was determined 

as a percentage of the amount obtained.  

2.2.1.3.3 Precision 

The precision of the assay was determined by using three sets of concentrations. Three 

standards were prepared for each concentration and were analysed at three different times 

of points in the same day for intra-day precision. The inter-day precision was determined 
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by analysing samples at three different time of point on three different days. The % RSD 

was calculated. The precision in λmax values has also been determined. 

2.2.1.3.4 Limit of detection and limit of quantification 

The limits of detection (LOD) and limit of quantification (LOQ) were determined by using 

signal to noise method. The limit of detection of each compound was determined by 

considering the concentrations at which the signal (S) to noise (N) ratio, S/N > 3. The 

limit of quantification was taken as five times the limit of detection [185].  

2.2.2 Analysis of 7HC and resorufin with fluorescence spectrophotometer 

The analysis of 7HC and resorufin has been performed by Hitachi F-4500 fluorescence 

spectrophotometer [175, 177].  

2.2.2.1 Preparation of stock solutions of 7HC and resorufin 

The stock solutions of 7HC and resorufin have been prepared as described in section 

2.2.1.1. 

2.2.2.2 Emission wavelength values of 7HC and resorufin 

In order to determine the values of emission wavelength (at which maximum fluorescence 

values may be obtained for 7HC and resorufin), standard solutions of suitable 

concentrations have been prepared from the stock solutions by diluting the stock solutions. 

The emission wavelengths were determined for 7HC and resorufin by placing the 

standards in glass cells and analysed with Hitachi F-4500 fluorescence spectrophotometer 

in scan mode. The maximum fluorescence values have been obtained at 455 nm and 563  

nm for 7HC and resorufin respectively (Fig. 2.4). 
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  Figure 2.4: Fluorescence scans of (a) 7HC and (b) resorufin. 

2.2.2.3 Method validations for 7HC and resorufin 

The calibration curves of 7HC and resorufin have been prepared by analysing the 

standards with Hitachi F-4500 fluorescence spectrophotometer in photometric mode using 

emission wavelengths of 455 nm and 563 nm for 7HC and resorufin respectively. The 

standards have been prepared from stock solutions in a suitable concentration range. The 

results indicate a linear relationship between the concentration of analytes and 

fluorescence in a concentration range: 0 - 20 mg/L. The linear regression (R
2
) values were 

found to be 0.9997 and 0.9777 for COU and NBD-Cl respectively. Finally the method has 

been validated in terms of linearity, accuracy and precision as described in section 2.2.1.3. 

2.2.3 Analysis of VOCs with gas chromatography-mass spectrometry 

The method has been developed for the analysis of VOCs such as cumene, 1,2-

dichlorobenzene and 1,2,4-trichlorobenzene with the use of Agilent GC-MS equipped 

with J&W Scientific HP-5MS 19091S-431 column. 

  

  

 

 

 

  

    

455 nm 

0 

200 

400 

600 

800 

1000 

0 200 400 600 800 

F
lu

o
re

sc
en

ce
 

Wavelenght (nm) 

(a) 7-hydroxy coumarin 

563 nm 

0 

1000 

2000 

3000 

4000 

0 200 400 600 800 

F
lu

o
re

sc
e
n

ce
 

Wavelength (nm) 

(b) Resorufin 

 

 



94 

 

2.2.3.1 Preparation of stock solutions of VOCs 

For the method development, 1000 ppm stock solutions of VOCs have been prepared by 

spiking appropriate volumes (11.6 µL, 7.7 µL and 6.9 µL for cumene, dichlorobenzene 

and trichlorobenzene respectively) of VOCs necessary to make a 1000 ppm solution in 

hexane using 10 mL volumetric flask and was filled up to the mark. 

2.2.3.2 Method development 

The key parameters for the method development for VOCs analysis are the column oven‟s 

temperature, the carrier gas flow rate and the inlet conditions. 1µL of VOCs solution was 

injected using split-less mode. The temperature programme used was as follows: the 

column oven temperature was 50
o
C for 4 minutes then 50

o
C per minute to 200 

o
C. The 

carrier gas flow rate was 1.3 mL/min, on MS the scan mode was set to selected ion storage 

with mass range of 50-500 and mass transfer line temperature was 280
o
C. The 

chromatogram obtained by this method is shown in Figure 2.5.  

   

Figure 2.5: Gass chromatograms of VOCs (cumene, dichlorobenzene and 

trichlorobenzene). 
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2.2.3.3 Method validations for VOCs  

First of all calibration curves of VOCs have been prepared from the stock solution 

containing the mixture of VOCs. For this purpose the stock solution is diluted necessary to 

prepare standard solutions in the concentration range of 10 – 100 ppm. The standards were 

injected to the GC/MS and calibration curves have been drawn by plotting a graph 

between peak areas and concentrations of VOCs. The relationship was found to be linear 

as indicated by the linear regression values, which are 0.9937, 0.9970 and 0.9961 for 

cumene, dichlorobenzene and trichlorobenzene respectively. Finally, method has been 

validated in term of accuracy, linearity and precision as described in section 2.2.1.3. The 

retention times have also been validated. 

2.2.4 Analysis of ibuprofen with high-performance liquid chromatography 

The concentrations of ibuprofen have been determined by developing a method on Gilson 

506C HPLC equipped with UV-visible detector. The column used for elution was 

Phenomenex Kinetex 2.6 µm C18 column (100 × 4.60 mm).   

2.2.4.1 Method development 

The method has been developed for the determination of ibuprofen with HPLC/UV. The 

key parameters varied were flow rate and composition of the mobile phase. The mobile 

phase used was methanol/ water (70: 30 v/v) and was passed through the column at a flow 

rate of 0.4 mL /min. The pH of the mobile phase was adjusted to 3.0 by using acetic acid. 

The retention time of the method was 12.16 minutes.  

2.2.4.2 Method validation for ibuprofen  

The stock solution of ibuprofen was prepared by dissolving 100 mg of ibuprofen in 100 

mL of deionized water (concentration, 1000 mg/L). From the stock solution standards of 

known concentrations have been prepared (0 – 100 mg/L). The calibration curves have 
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been drawn by plotting a graph between concentrations of ibuprofen vs peak area. The 

results show a linear relationship as indicated by the R
2
 value, 0.9990. The accuracy and 

precision were determined as described before. 

2.2.5 Analysis of organic acids with ion chromatography 

The organic acids have been analysed with the use of Dionex DX-120 ion chromatograph, 

equipped with Ion Pac- ICE-AS1 9 × 250 mm column and AMMS-ICE 300 anion micro 

membrane suppressor. The method has been developed for acetic, formic, succinic and 

oxalic acid. Heptafluorobutyric acid (1.0 mM) was used as eluent and tetra butyl 

ammonium hydroxide (5 mM) was used as regenerant. The injection volume was 25 µL; 

cell temperature, 30
o
C; eluent flow rate, 0.82 mL/min and regenerant flow rate was 5 

mL/min. 

2.2.5.1 Preparation of eluent and regenerant 

The stock solution (1 M) of heptaflurobutyric acid (eluent) was prepared by diluting 130.5 

mL (calculated from mass/density) of heptaflurobutyric acid to 1 liter by adding deionized 

water. Then 1 mL of stock solution was taken and diluted to 1 liter to prepare 1.0 mM 

heptafluorobutyric acid eluent. To prepare 5 mM solution from 1 M solution of tetra butyl 

ammonium hydroxide 5 mL of 1 M solution was diluted to 1000 mL. 

2.2.5.2 Preparation of acid solutions 

The stock solutions (1000 ppm) of acids (oxalic acid, succinic acid, formic acid and acetic 

acid) have been prepared by directly adding their appropriate quantities (95.3 μL, 81.97 

μL, 0.1g and 0.1g for acetic, formic, succinic and oxalic acid respectively) in 100 mL 

volumetric flask and then were filled up to mark with ultra-pure water.  
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2.2.5.3 Method development 

The conditions of the developed method were as follows.: (i) the eluent, 1mM 

heptafluorobutyric acid; (ii) flow rate, 0.82 mL/min; (iii) regenerant's flow, 5 mL/min; (iv) 

injection volume, 25 µL and (v) cell temperature,  30
o
C. A chromatogram of all acids 

separated with the developed method is presented in Fig. 2.6. 

  

Figure 2.6:  Ion chromatogram of organic acids (oxalic acid, succinic acid, formic acid, 

acetic acid). 

2.2.5.4 Validations 

First of all calibration curves of organic acids have been prepared by dilution stock 

solution to produce standards from 0 – 100 mg/L. Then these standards were analysed on 

IC. Each standard was injected three times and the average peak area was used for the 

preparation of calibration curves. The calibration curves were drawn between 

concentration vs peak areas. The relationship was found to be linear for all studied acids in 

the concentration range of 0 – 100 mg/L. The linear regression values were 0.9720, 

0.9985, 0.9959 and 0.9978 for oxalic, succinic, formic and acetic acid respectively. 

Finally, linearity, precision and accuracy have been determined as described in section 

2.2.1.3. The limits of detection and quantifications have been determined as described in 

section 2.2.1.3. 
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2.2.6 Analysis of phosphates with ion chromatography 

Phosphate concentrations were determined by ion chromatography using a DIONEX DX-

120 system with Ion Pac As14 analytical column (4 × 250 mm) and Ion Pac AG14 guard 

column (4 × 250 mm) coupled to an ED-50A electrochemical detector (Dionex, USA).  

2.2.6.1 Method Development  

The method has been developed by using ion chromatography. The main variable was the 

mobile phase flow rate, following method has been developed. Analyses were performed 

using an isocratic method at a flow rate of 0.82 mL/min and a constant temperature of 

30
o
C. The mobile phase used was a mixture of the 3.5 mm sodium carbonate and 1.0 mM 

sodium hydrogen carbonate (0.742 g sodium carbonate was added in 2 L deionised water 

and 0.168 g sodium hydrogen carbonate in 2 L deionised water. The retention time of the 

phosphate peak was 8.1 minutes (Fig. 2.7).  

  

   Figure 2.7: Ion chromatogram of phosphates (concentration, 100 mg/L). 
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2.2.6.2 Method Validations 

Firstly calibration curve has been prepared by using standard solutions (0 – 100 ppm) 

prepared from 1000 ppm stock solution. The relationship between concentration of 

phosphates and average peak areas was found to be linear (R
2
, 0.9972; concentration 

range: 0 -100 mg/L). Finally, precision, linearity and accuracy have been determined as 

described in section 2.2.1.3.   

2.2.6 Results and discussion of method validation 

The result shows that the precision of the methods and instruments (discussed in method 

development), both inter-day and intra-day are very good, as all RSD values for respective 

compounds are less than 1% (Table 2.2). The results show that the calibration data (Table 

2.3) of all analytes were found to be linear. A representative plot, described by the 

equation y = mx + c, show that detectors responses were found to be linear over the 

concentration ranges with R
2
 > 0.99. The precision data for both intra-day and inter-day 

analysis indicate that the precision is acceptable, as % RSD is less than 5%. Intra-day 

precision were in the ranged from 0.5 – 3.5% (Table 2.3) and the % RSD for inter-day 

ranged from 1.3 to 4.9%. The studies further revealed that the methods are highly accurate 

as accuracy was found to be 97- 99%. The results indicated that all the methods were 

precise and accurate therefore can be implied for further studies. 
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Table 2.2: Intra-day and inter-day precision results for λmax (UV), Emission wavelength 

(Fluorescence) and retention times (GC/MS, HPLC/UV, IC)  

Compounds % RSD intra-day % RSD inter-day 

Coumarin 0.099 0.996 

NBD-Cl 0.064 0.762 

7-hydroxy coumarin 0.087 0.987 

Resorufin 0.997 0.155 

Cumene 0.129 0.213 

Dichlorobenzene 0.185 0.365 

Trichlorobenzene 0.102 0.288 

Ibuprofen 0.098 0.998 

Oxalic acid 0.079 0.970 

Succinic acid 0.186 0.330 

Formic acid 0.055 0.066 

Acetic acid 0.687 0.176 

Phosphates 0.129 0.239 
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Table 2.3: Method validation data (n = 3) 

 

Method/technique Analytes Regression line 
equation 

Correlation 

coefficient  

(R
2
) 

Accuracy 

(%) 
Precision (%RSD) LOD 

(mg/L) 
LOQ 

(mg/L) 
Intra-day              Inter-day 

UV-vis spectroscopy coumarin   y = 0.0725x-0.007 0.9914 99 2.0 3.1 0.06 0.3 

NBD- Cl y = 0.045x-0.0215 0.9994 99 1.5 1.3 0.07 0.35 

Fluorescence spectroscopy 7HC y = 8745x+65.69  0.9997 98 1.2 2.5 0.02 0.1 

resorufin y = 10.956x+82.38 0.9777 97 3.5 3.8 0.005 0.025 

Gas chromatography- mass 

spectrometry 

cumene y = 77006x-234542 0.9937 98 3.3 4.5 0.2 1.0 

dichlorobenzene y = 119559x+44388 0.9970 98 2.2 4.9 0.5 2.5 

trichlorobenzene y = 146528x+39492 0.9961 99 2.1 4.2 0.3 1.5 

High-performance  

liquid chromatography 

ibuprofen y = 163146x+41948 0.9990 99 0.5 1.1 0.3 1.5 

Ion chromatography oxalic acid y = 0.0622x-0.5902 0.9720 97 0.5 2.5 5 25 

succinic acid y = 0.0606x-0.0045 0.9985 99 1.3 2.1 0.15 0.75 

formic acid y = 0.0457x-0.0566 0.9959 98 0.5 0.9 0.13 0.65 

acetic acid y = 0.02862x-0.0144 0.9978 99 1.1 1.5 0.10 0.5 

phosphates y = 0.062x-0.0448 0.9972 98 1.1 4 0.5 2.5 
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CHAPTER 3 - CHARACTERIZATION 
 

“In this chapter the results of characterization of ZSM-5 zeolites and γ-Al2O3 have been 

provided. The information about surface areas, pore size and composition of catalysts 

has been obtained from the manufacturers. In addition, the catalysts have been 

characterised by mass titration, FTIR, SEM and XRD techniques”. 
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3.1 Introduction 

The aim of this chapter is to characterize the ZSM-5 zeolites and γ-alumina, which have 

been used as catalysts in the present work. The catalyst composition, pore size, surface 

morphology and nature of active sites are vital in the catalytic process. For example the 

silica to alumina ratios of zeolites play a significant role in the catalytic process, since they 

can affect the extent of adsorption of hydrophilic and hydrophobic compounds on the 

catalyst surface [149]. The Bronsted (surface hydroxyl groups) and Lewis acid sites of the 

catalyst may affect the aqueous ozone decomposition [19, 20, 26]. It has been reported 

that the strength of surface hydroxyl groups of alumina can affect the aqueous ozone 

decomposition [20]. It is therefore important to characterize the surface hydroxyl groups 

of the catalysts. The point of zero charge is another important property of catalysts. It is 

the pH at which the net charge on the surface of the material equals zero (surface is 

electrically neutral). It has been reported by some authors that the highest catalytic activity 

of alumina is at its point of zero charge (pHpzc) [18, 19]. Additionally, it was  assumed that 

point of zero charge is an important property that can affect the mechanism of ozonation 

in the presence of zeolites [26]. Therefore, it is important to determine the point of zero 

charge of the catalysts. The surface morphology of catalysts may also be helpful to an 

understanding of catalytic process. The SEM images have been used previously to 

compare the surface of alumina before and after reuse performance experiments for the 

degradation of natural organic matter in drinking waters. It was hypothesized that the 

significant change in the surface of the catalyst may be due to the adsorption of inorganic 

carbon on alumina [132]. The ZSM-5 zeolites and γ-alumina have been characterized by 

various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD) 

and the Fourier transformed infrared spectroscopy (FTIR). These techniques have been 
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used to understand surface morphology, surface hydroxyl groups and elemental 

composition respectively. 

3.2 Results 

3.2.1 Physicochemical properties of catalysts 

The physicochemical properties of the studied catalysts are presented in Table 3.1.  

Surface areas and porosities were determined either by the manufacturers or by our group 

in previous work [4]. They were measured by nitrogen adsorption at 77K.  Surface areas 

were determined from the adsorption isotherms applying the BET equation and porosities 

were determined from the desorption isotherms using the Kelvin equation and the BJH 

method.   

  

Table 3.1: Physicochemical properties of ZSM-5 zeolites and alumina  

 

Material SiO
2,
 

wt% 

Al
2
O

3,
 

wt. % 

Na
2
O, 

wt.% 

SiO2/Al2O3  

mol ratio 

Surface 

area (m2/g) 

Average 

pore size 

(Å) 

Crystal  

size  (μm) 

Z900Na 98 0.2 1.3 900 ± 5 300 5.3 2-5 

Z25Na 90 6.1 3.7 30 ± 5 300 5.3 <1 

Z1000H 99 0.1 0.04 1000 ± 5 300 5.3 <1 

Z25H 96 5.4 0.1 30 ± 5 300 5.3 <1 

Alumina 0 100 0 - 190 47.8 - 

 

The surface areas and porosities of the four zeolites are, as expected, essentially the same, 

and are substantially greater than the surface area of the alumina which, in line with this, 

exhibits very much larger pores than the zeolites.  
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3.2.2 Point of zero charge 

The pHPZC values for zeolites (Z1000H: SiO2/Al2O3 = 1000, Z900Na: SiO2/Al2O3 = 900, 

Z25H: SiO2/Al2O3 = 25 and Z25Na: SiO2/Al2O3 = 25) and alumina are consistent with 

compositions, with the zeolites in acid form showing lower values than the sodium forms 

and the alumina (Fig. 3.1). The Zeolites were characterized by different pHPZC values. 

Z25H was found to have the lowest pHPZC, which denoted 5 ± 0.2, Z1000H was 

characterised by pHPZC of 7.5 ± 0.2. On the other hand, Z900Na and Z25Na had pHPZC 

within the range of 9.2 - 9.5. The point of zero charge of γ-alumina was found to be 8.9 ± 

0.1 (Fig. 3.1). The pHPZC values of γ-alumina have been reported in the range of 8.0 – 9.7 

[132]. From the Figure 3.1 it can be seen that in the case of initial pH 4.0, by the addition 

of alumina the pH of the solution increases and becomes constant after some time. The 

increase in pH is due to the adsorption of H
+
 ions from the solution on alumina surface 

(Fig. 1.16). The decrease in pH in the case of experiments at initial pH 9.8 may be due to 

the release of H
+
 ions from alumina surface in the solution (Fig. 1.16). In the case of 

zeolites the initial variation in pH by adding catalysts may be due to the exchange of Na
+
 

and H
+
 ions, depending upon the initial pH of the solution. 
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Figure 3.1:  Point of zero charges (pHPZC) of ZSM-5 zeolites and alumina (catalyst = 0.1 -

1.0 g; T = 25
o
C; electrolyte NaCl = 10

-3
 mol/dm

3
; V = 190 mL; SD ± 0.15). 

3.2.3 FTIR studies 

The IR region in the range of 3000 - 3700 cm
-1

 is important to assign, it gives important 

information about the surface hydroxyl groups present in the catalyst that are 

considered to be active catalytic sites [18, 20]. The IR spectra of ZSM-5 zeolites and 

alumina are shown in the Figure 3.2. The IR region in the range of 3000 - 3700 cm
-1

 

(Fig. 3.2) can be assigned to the hydroxyl groups. The alumina shows strong bands in 
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this region when compared with ZSM-5 zeolites. This is because of the surface 

hydroxyl groups in alumina. Qi et al [20] investigated the density of surface hydroxyl 

groups of different forms of alumina by using Grignard method. The results indicated 

that γ-Al2O3 has high density of surface hydroxyl groups then that of α-Al2O3; these are 

3.17 × 10
-5

 mol/m
2
 and 0.27 × 10

-5
 mol/m

2
 for γ-Al2O3 and α-Al2O3 respectively.  

  

 Figure 3.2:  FT-IR spectra of ZSM-5 zeolites and γ-alumina. 

The ZSM-5 zeolites (Z1000H, Z900Na, Z25H) show very weak bands around 3000 - 3700 

cm
-1

 (Fig. 3.2). These may be assigned to the internal hydrogen bonded silanol groups 

[186].  

3.2.4 SEM studies 

The surface morphology of ZSM-5 zeolites and alumina has been characterized by SEM 

(Fig. 3.3). The SEM analyses are not conclusive and indicate that catalysts are not very 

well defined in morphology. Therefore, it is important to do XRD to investigate the nature 

of catalysts.  
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                                Figure 3.3: SEM images of ZSM-5 zeolites and alumina. 

3.2.5 X-Ray diffraction studies 

XRD patterns of ZSM-5 zeolites and alumina are presented in figure 3.4. The peaks at 2θ  

7-10 and 22-25 confirmed ZSM-5 zeoliters [187]. The patterns further indicate the 

crystalline nature of ZSM-5 zeolites and amorphous nature of alumina. 
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                                Fig. 3.4 XRD patterns of ZSM-5 zeolites and alumina 

3.3 Summary of results 

The ZSM-5 zeolites have been characterized by similar pore size and surface areas with 

different silica to alumina ratios and counter ions (Z1000H:SiO2/Al2O3 = 1000, 

Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25). The 

catalysts have been characterized by using SEM, XRD and FTIR techniques. The points of 

zero charges (pHPZC) have been determined by mass transfer method. The H-forms had 

low pHPZC. The Z25H has the lowest pHPZC (5.5) which is consistent with the composition 

of zeolites. The pHPZC of alumina was found to be 8.9.  The ZSM-5 zeolites show weak 

bands around 3000 – 3700 cm
-1

 region. However, alumina shows the strong bands, which 

indicate the highest density of surface hydroxyl groups in the case of alumina. The 

scanning electron microscopy (SEM) pattern indicates that all the catalysts are porous in 
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nature. The XRD patterns indicated that all zeolites are crystalline in nature and alumina 

was found to have amorphous nature. 

3.4 Conclusions 

1. The zeolites have a high surface area as compared with alumina.  

2. The FT-IR studies show that alumina has stronger bands of surface hydroxyl 

groups as compared with zeolites.  

3. The zeolites with H-forms have low point of zero charge values (pHPZC) as 

compared with sodium forms.  

4. The XRD patterns indicate the crystalline nature of ZSM-5 zeolites and 

amorphous nature of alumina. 
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CHAPTER 4 -MECHANISMS OF 

CATALYTIC OZONATION 

 

“In this chapter the results of an investigation of active oxygen species such as 

hydroxyl radicals, hydrogen peroxide and superoxide ion radical formation in 

ozonation process on ZSM-5 zeolites and alumina have been presented. The 

coumarin, amplex red and NBD-Cl were used as probe molecules for an 

investigation of hydroxyl radicals, hydrogen peroxide and superoxide ion 

respectively”. 
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4.1 Introduction 

Ozone in water is unstable and undergoes reactions with some water matrix components. 

The decomposition of ozone in water leads to the formation of reactive oxygen species 

(ROS), which include the super oxide ion (
o
O2

-
), hydroxyl radicals (oOH) and hydrogen 

peroxide (H2O2). An investigation of the formation of ROS may give relevant information 

to understand the mechanism of the catalytic ozonation process. 

The aim of this study has been to investigate the mechanism of catalytic ozonation (and in 

particular the formation of hydroxyl radicals, super oxide ion and hydrogen per oxide) on 

several ZSM-5 zeolites and alumina. Coumarin (COU), 4-chloro-7-nitrobenzo-2-oxa-1,3-

dizole (NBD-Cl) and amplex red have been used as probe molecules as these are known to 

react with hydroxyl radicals, super oxide ion and hydrogen peroxide respectively, leading 

to the formation of fluorescent products. In this study the catalytic properties of alumina 

are compared with those of a series of silicalite ZSM-5 zeolites with different silica to 

alumina ratios and with both sodium and hydrogen counter ions (Z1000H:SiO2/Al2O3 = 

1000, Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25). 

This chapter is focussing on the production of fluorescence products (7-hydroxycoumarin, 

resorufin and NBD-Cl product) as indicators of a radical mechanism. Further experiments 

have been performed in the presence of tert-butyl alcohol (TBA), which is a known radical 

scavenger. They have also been performed in the presence of phosphate ions, which may 

adsorb on the catalyst surface and replace the surface hydroxyl groups of alumina that 

may be responsible for ozone decomposition [18-20]. Therefore, the effect of phosphates 

may help to understand the role of surface hydroxyl groups of alumina in catalytic 

processes and their possible effect on ozonation in the presence of ZSM-5. 
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4.1.1 An investigation of hydroxyl radicals formation 

According to the traditional catalytic ozonation theory, molecular ozone can oxidize 

organic substances via a direct route or can undergo decomposition via a chain reaction 

mechanism (chapter 1) leading to the formation of ROS. The hydroxyl radicals are one of 

the most important ROS. Therefore, the measurement of hydroxyl radicals is useful to 

investigate the mechanisms of catalytic ozonation processes. In this work coumarin 

(COU) has been used as a probe molecule as it is known to react with hydroxyl radicals 

leading to the formation of fluorescent 7-hydroxycoumarin (7HC) (Fig. 4.1). Coumarin is 

also a reasonable representative of the constituents in natural organic matter typically 

found in water [188-190]. Furthermore, it is used in the pharmaceutical industry as a 

precursor molecule in the synthesis of anticoagulant pharmaceuticals [191].  

 

O O

+ 2oOH

O OOH

+ H
2
O

Coumarin (COU) 7-Hydroxycoumarin (7HC)

 

Figure 4.1: Formation of 7-hydroxycoumarin in the reaction of coumarin with hydroxyl 

radicals. 

In this research coumarin was used as a radical probe, to investigate whether the 

mechanism for the degradation of pollutants on alumina and ZSM-5 zeolites involved the 

formation of hydroxyl radicals. 

4.1.1.1 
o
OH radicals formation during the ozonation of water 

It is well-known that aqueous ozone reacts in water, leading to the production of ROS 

such as hydroxyl radicals. The mechanism of ozone decomposition, leading to the 

formation of hydroxyl radicals has been discussed in chapter 1 (section 1.6.2). The 
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formation of 
o
OH radicals depends on the pH of water and their concentration increases 

with the increase of pH. This may be due to the increase in hydroxide ions in the water as 

discussed in chapter 1. 

4.1.1.2 
o
OH radicals formation during the catalytic ozonation  

The formation of hydroxyl radicls during the catalytic ozonation processes has been 

investigated for many years in order to differentiate between radical and non radical 

mechanism. There have been several reports indicating the formation of hydroxyl radicals 

in various catalytic ozonation systems as discussed in chapter 1. It is not clear whether 

ozonation in the presence of alumina results in the formation of hydroxyl radicals, some 

reports indicated the 
o
OH radicals formation [18-20] and others opposed it [21]. Usually, 

TBA has been used to differentiate between the radical and non radical mechanism in the 

ozonation in the presence of alumina [18-20]. However, there has been no direct proof of 

the formation of hydroxyl radicals. Similarly, the formation of 
o
OH radicals in the 

presence of ZSM-5 zeolites is not well known therefore it is important to investigate the 

formation of hydroxyl radicals during the catalytic ozonation processes in the presence of 

alumina and ZSM-5 zeolites. 

4.1.1.3 Methods for 
o
OH radicals determination  

Previously, various spin traps coupled with transient absorption in UV-Vis range and 

electron paramagnetic resonance (EPR) detection have been successfully applied for the 

detection of hydroxyl radicals during the ozonation process. Other methods such as 

luminescence [192], UV-Visible absorption [193] and fluorescence [194], have also been 

applied to measure hydroxyl radicals. Recently, it has been proved that several molecules 

such as terephthalic acid [195] and coumarin [196-199] produce strong luminescent 

compounds with hydroxyl radicals. Hence coumarin has been used for the first time as a 
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probe molecule for detecting and measuring hydroxyl radicals formed during the 

ozonation in the presence of alumina and ZSM-5 zeolites.  

4.1.2 An investigation of hydrogen peroxide formation 

Hydrogen peroxide is the only stable active oxygen species in the AOPs; the formation of 

hydrogen peroxide may give relevant information on the radical reactions taking place. 

Furthermore, hydrogen peroxide is one of the important oxidants and is often used as an 

agent to generate hydroxyl radicals in an advanced oxidation process [200]. Hydrogen 

peroxide also acts as a hydroxyl radical scavenger and is generated by the combination of 

two hydroxyl radicals [201]. Thus the measurement of H2O2 concentrations has been 

useful to evaluate and analyse AOP mechanisms. In this research work amplex red has 

been used as a probe to investigate the formation of hydrogen peroxide since amplex red 

has been known to react selectively to form highly fluorescent resorufin (Fig. 4.2). 

O

N

OH

CH3

O

OH

H
2
O

2
-H

2
O

O

N

OOH

Amplex red Resorufin

-CH
3
COOH

 

 Figure 4.2: Formation of resorufin in the reaction of amplex red with hydrogen peroxide. 

4.1.2.1 H2O2 formation during the ozonation of water 

Staehellin et al [36, 201] studied ozone decomposition in water and found out that the 

aqueous ozone may react with hydroxide ions (OH
-
) or organic molecules to generate 

reactive oxygen species. Hydrogen peroxide formation can result from O3 decomposition 

or from the ozonation of organic compounds. In the first case ozone reacts with OH
-
 ions 
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in aqueous solutions to generate H2O2 (Equations 4.1 and 4.2). The stability of forming 

H2O2 depends upon the pH of the solution and it decreases  with the increase in pH 

(Equation 4.2) [36]. It is worth mentioning here that H2O2 also reacts with O3, but only 

when present in the ionized form (pH > 11.6) (Equation 4.3) [36]. The reaction leads to 

the generation of hydroxyl radicals and superoxide ion [36]. The superoxide ion (
o
O2

-
) 

reacts with ozone to form 
o
O3

-
 ion, which then reacts with water molecules to form 

hydroxyl radical (Equations 4.4-4.5) [36, 201]:   

O3 + OH
-
    HO2

-
 + O2          (4.1)  

H2O2          HO2
-
 + H

+
  pKa = 11.6        (4.2) 

O3 + HO2
-
  OH

o
+ 

o
O2

-
 + O2         (4.3) 

O3 +  
o
O2

-
  

o
O3

-
 + O2         (4.4) 

o
O3

-
 + H2O  HO

o
 + OH

-
 + O2          (4.5) 

The hydroxyl radicals can then interact further with O3: 

HO
o
 + O3   HO2

o
 + O2                     k = 3.0 × 10

9
 M

-1
s

-1
     (4.6) 

However, scavengers (carbonates, phosphates and bicarbonates) compete for the hydroxyl 

radicals [36]: 

HO
o
 + CO3

2-
  OH

-
 +  

o
CO3

-
    k = 4.2 × 10

8
 M

-1
s

-1
     (4.7) 

HO
o
 + HCO3

-
  OH

-
 +  HCO3

o
    k = 1.5 × 10

7
 M

-1
s

-1
       (4.8) 

HO
o
 + HPO4

2-
  OH

-
 + 

o
HPO4

-
   k = 5 × 10

6
 M

-1
s

-1
       (4.9) 

Two hydroxyl radicals may also combine to form H2O2 [201]: 

HO
o
 + HO

o
  H2O2     k = 5 × 10

9
 M

-1
s

-1
      (4.10) 

Furthermore, H2O2 may also be formed as a result of the reaction of O3 with organic 

solutes; 

O3 + M  Moxid + H2O2        (4.11) 
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The reactions of hydroxyl radicals with organic molecules (M) can initiate a radical chain 

reaction [36]:  

 HO
o

 + M  R
o
         (4.12) 

R
o
 + O2  ROO

o
          (4.13) 

ROO
o
  Moxid  + HO2

o
         (4.14) 

4.1.2.2 H2O2 formation during the catalytic ozonation 

The formation of H2O2 in catalytic ozonation processes has been reported by some authors 

and such phenomena have been observed during the aqueous ozone decomposition in the 

presence of granular activated carbon [202] and catalytic ozonation of nitrobenzene in the 

presence of modified ceramic honeycomb [203]. Alvarez et al [202] reported that H2O2 

formed in ozonation on granular activated carbon was due to the interaction of ozone with 

the surface of the catalyst. However, it was reported by Zhao et al [203] that the formation 

of H2O2 in catalytic ozonation of nitrobenzene on a ceramic honeycomb was due to the 

reactions of adsorbed O3 and nitrobenzene. Furthermore, H2O2 formation was higher in 

catalytic ozonation when compared with ozonation alone [203]. It has been reported by 

Zhang et al that H2O2 formed during the ozonation in the presence of ZSM-5 zeolites. 

However, the formed hydrogen peroxide was less than ozonation alone [204]. It is 

therefore important to study the formation of H2O2 in ozonation on other catalysts such as 

alumina and ZSM-5 zeolites in order to understand the mechanism of the catalytic 

ozonation process.  

4.1.2.3 Methods for H2O2 determination in water 

Various methods have been used to measure H2O2 in AOPs. Among them are 

spectrophotometric methods employing N, N–diethyl-p-phenylenediamine (DPD) [174], 

using copper (II) ion with 2,9-dimethyl-1,10-phenanthroline (DMP) [205] and a 
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fluorometric method employing p-hydroxylphenyl acetic acid (POHPAA) [206]. Amplex 

red has been used before as an effective probe in biological assays [166, 177, 207]. This is 

because it selectively reacts with H2O2, which then leads to the formation of fluorescent 

resorufin [166, 177, 207]. Based on the previous reports it has been considered that other 

ROS may not interfere with the reaction between amplex red and hydrogen peroxide. In 

this work amplex red has been used as a probe for detecting and measuring hydrogen 

peroxide formed during the ozonation alone and ozonation in the presence of  alumina and 

ZSM-5 zeolites with different silica to alumina ratios (Z1000H:SiO2/Al2O3 = 1000, 

Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25). 

4.1.3 An investigation of superoxide ion radical formation 

The high reactivity of ozone molecule gives rise to different reactions with some water 

matrix components. These reactions lead to the formation of ROS. The superoxide ion is 

an important and short-lived entity, constituting the fundamental part of AOPs. Hence the 

formation of superoxide ion may give the relevant information on the radical reactions 

taking place. 

4.1.3.1 
o
O2

- 
formation during the ozonation of water 

The ozone in water may react with hydroxide ions (OH
-
) leading to the formation of ROS 

[36]. The superoxide ion is one of these species and may be formed as described below. 

Two hypotheses were presented to describe the formation of 
o
O2

-
 in water as a result of the 

reaction between ozone and hydroxyl ions (OH
-
).  In the first hypothesis, ozone reacts 

with OH
-
 ions in aqueous solutions to generate 

o
O2

-
 (Equations 4.15, 4.16). The formation 

of 
o
O2

-
 depends upon the pH of the solution and decreases with the decrease in pH of the 

solution (Equation 4.16) [36]. It is worth mentioning here that 
o
O2

-
 also reacts with O3, 
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leading to the formation of 
o
O3

-
 which then react with water molecules to form hydroxyl 

radicals (Equation 4.17, 4.18) [36].  

O3 + OH
-
    HO2

o
 + 

o
O2

-
         (4.15)  

HO2
o

          
o
O2

-
 + H

+
 , pKa = 4.8        (4.16) 

O3 +  
o
O2

-
  

o
O3

-
 + O2         (4.17) 

o
O3

-
 + H2O  HO

o
 + OH

-
 + O2          (4.18) 

In the second hypothesis, O3 reacts with OH
-
 ions to form HO2

- 
ions  which further react 

with ozone to form OH
o
 radicals , O2 and 

o
O2

-
 (Equation 4.1, 4.3). Furthermore, the H2O2 

may also be formed and its stability depends upon the pH of the solution (which is when 

pH > 11.6) [36]. The 
o
O2

-
 may further react with O3 to form 

o
O3

-
 , which reacts with water 

to form hydroxyl radicals (Equation 4.4, 4.5).   

4.1.3.2 
o
O2

- 
formation during the catalytic ozonation 

The formation of superoxide ion radical (
o
O2

-
) in catalytic ozonation processes  has been 

reported in the presence of modified FeOOH [93]. Additionally, it was hypothesized by 

Zhang et al [93] that the reaction of ozone with the surface hydroxyl groups of FeOOH 

results in the formation of 
o
O2

-
 anion and hydroxyl radicals. Ernst et al [17] hypothesized 

that 
o
O2

- 
may form in the catalytic ozonation of alumina leading to the generation of 

hydroxyl radicals however no proof of the formation of superoxide ion radical was 

provided in that investigation. Staehelin et al [36] hypothesized that the production of 

highly O3 selective 
o
O2

-
 anion promotes the reaction to produce hydroxyl radicals (HO

o
). 

It is therefore important to study the formation of superoxide ion (
o
O2

-
) in the ozonation on 

alumina and ZSM-5 zeolites in order to understand the mechanism of the catalytic 

ozonation process. 
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4.1.3.3 Methods for 
o
O2

- 
determination  

The concentration of 
o
O2

-
 has been determined by various methods in aqueous and 

biological systems. Among the frequently used methods is the electron paramagnetic 

resonance ( EPR ) spin trapping [208] and spectrophotometric methods employing nitro-

substituted aromatics such as nitroblue tetrazolium (NBT) [209]. In this research 4-chloro-

7-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) was used as a probe molecule for the first time to 

detect 
o
O2

-
 in the ozonation process in the presence of ZSM-5 zeolites and alumina. The 

NBD-Cl has been used before as an effective probe in aqueous systems and biological 

assays [172, 173]. The reason to select NBD-Cl (Fig. 4.3) as a probe had been due to its 

selective reaction with 
o
O2

-
 leading to the formation of the fluorescent product at 550 nm 

which can be detected at low levels by fluorescence spectroscopy [166, 172, 173]. 

   

N

NO

Cl

N
+

O

O

4-chloro-7-nitrobenz-2-oxa-1,3-diazole 
  (NBD-Cl)

 

        Figure 4.3: Structure of NBD-Cl. 

4.2 Results and discussion 

The results have been divided into three main sections. The first part describes the results 

obtained in catalytic ozonation of coumarin on zeolites and alumina. The second part 

describes an investigation of hydrogen peroxide and in the final part the results of the 

superoxide ion radical investigation have been presented. Furthermore,  experiments have 

been performed to study the influence of the main variables affecting the mechanism of 
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the catalytic ozonation process (i.e. solution pH, presence of 
o
OH scavenger tert-butyl 

alcohol, presence of phosphates and the effect of catalyst dose). 

4.2.1 PART 1 – An investigation of hydroxyl radical formation 

4.2.1.1 Adsorption of coumarin on Al2O3 and ZSM-5 zeolites in the absence of ozone 

The data presented in Figure 4.4 as the percentage of total coumarin concentration 

removed from the solution with time in the reactor, at various pHs. The data show clearly 

that the four zeolites adsorb coumarin to a similar extent and more effectively than 

alumina. There is relatively little dependence of adsorption capacity on solution pH.  After 

30 minutes, the zeolites typically adsorb 25 % (2.5 mg/g) of the coumarin at pH 3.0 and 

15 % (1.5 mg/g) at pH 13.0, whereas the alumina adsorbs 5% or less at both pHs. It is 

worth noting that adsorption of 5% of the coumarin corresponds to only 0.5 mg coumarin 

per gram of catalyst. Referring to the Figure 4.4, the rate of coumarin adsorption on ZSM-

5 zeolites and alumina is consistent to some extent over the pH range 3.0-8.8, but in all 

cases, show a dramatic fall at pH 13.0. It is likely that the surface is fully populated with 

OH
-
 ions at this pH therefore it is suggested that it might be this that reduces the rate of 

adsorption of coumarin. 

 

 

 

 

 

 

 



122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Removal of coumarin by adsorption (Co (COU) = 20 mg/L; T =25 
o
C; pH = 3.0, 

6.2, 8.8 and 13.0; adsorbent = 2.0 g; V = 190 mL; SD ± 1.5%). 

4.2.1.2 Catalytic ozonation of coumarin and the effect of pH 

Figure 4.5 shows the percentage removal of coumarin with time for the same catalysts and 

at the same pH values but in the presence of ozone.  Data is also shown in the percentage 

removal under the action of ozone alone. The first thing to note is that at pH 13.0, 

ozonation is effective in decomposing coumarin, producing 60% removal after 30 

minutes, but the presence of the catalysts does not affect the extent of decomposition. At 

lower pH the catalytic effect is observed. By considering the difference between ozonation 
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alone and ozonation in the presence of a catalyst, alumina is most effective at pH 8.8 (Fig. 

4.5e, t = 30 minutes).  The zeolites have a relatively small effect at this pH, with the low 

silica zeolites having almost no effect and the high silica zeolites have a similar effect to 

the alumina.  As the pH reduces the activity of the zeolites increases and at pH 3.0 all the 

zeolites lead to complete removal of the coumarin after 30 minutes compared with 

ozonation alone and ozonation/alumina (which leads to only 30-40% removal).  

It is possible to rationalise these results to some extent.  At pH 13.0, none of the catalysts 

shows activity. This is most likely because they are all well above their pHPZC and their 

surfaces are essentially covered with hydroxide ions. It is known that hydroxide ions 

promote the decomposition of ozone so any reaction of coumarin with ozone on the 

surface of the catalysts would be unlikely.   

Alumina shows its highest activity at pH 8.8, close to its pHPZC of 8.9.  This suggests that 

the most active surface for catalytic ozonation is the one dominated by neutral hydroxyl 

groups. The O of protonated surface hydroxyl group is weaker in nucleophilicity than the 

O of a neutral state hydroxyl group. Therefore, the protonation of the surface hydroxyl 

group will be a disadvantage to the surface binding of ozone [210]. This pH dependence 

of alumina‟s activity has been noted before [18-20]. 

It is important to note that over the time scale of the experiments the zeolites will 

equilibrate with the external pH, for example at pH 3.0 the Na-form of the zeolites will go 

to acid form. However, 30 minutes may not be that long so there may not be much 

exchange, the results further support is assumption as there was no significant change in 

the pH was obserbed, during the adsorption, ozonation and catalytic ozonation 

experiments. Therefore, Na-form and H-forms can be compared to some extent. 
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Figure 4.5: Removal of coumarin by ozonation alone and ozonation in the presence of 

Al2O3 and ZSM-5 zeolites (Co (COU) = 20 mg/L; T = 25 
o
C; pH = 3.0, 6.2, 8.8 and 13.0; O3 

= 0.6 mg/min; t = 30 minutes; catalyst = 2.0 g; V = 190 mL; SD ± 5 %). 
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The zeolites appear to be most active at acidic pH. For example the removal of COU on 

studied zeolites was 90% at pH 3.0 and only 68% at pH 13.0 (Fig. 4.5). It has been 

suggested by others that Bronsted acid groups on zeolites might promote ozone decay and 

even lead to the generation of hydroxyl radicals. This possibility is investigated in the 

following experiments. It is also worth noting that the pH of the solution did not change 

significantly (± 0.1) after 30 min ozonation with and without catalysts.  

4.2.1.3 Formation of 7-hydroxycoumarin  

The formation of 7HC, a hydroxylated transformation product of COU, was monitored 

during the ozonation of coumarin. This product is thought to be an indicator of a radical 

mechanism of decomposition. The data presented in Figure 4.6, shows that, at pH 3.0, 

almost no 7HC is formed with any of the catalysts. The results at pH 3.0 are not 

conclusive in terms of radical and non radical mechanism since 7HC is not the only 

hydroxylated product formed during ozonation and catalytic ozonation process, Other 

researchers have detected following isomers 3HC, 4HC, 5HC, 6HC and 8-

hydroxycoumarin [197]. At pH 6.2 and 8.8, alumina results in the significant 7HC 

generation, in contrast to the zeolites which result in negligible amounts of the product. 

This strongly suggests that alumina does indeed promote decomposition of coumarin by a 

radical mechanism, at least at a pH close to the pHPZC.  Based on several reports [196-

199], it is assumed that superoxide ion, HO2
o
 and H2O2 do not interfere with the reaction 

between hydroxyl radicals and COU to produce 7HC. Additionally, in this work a mixture 

of 5 mL of 30% H2O2 and 195 mL of 20 mg/L COU was treated in a semi-batch reactor 

for 30 min and no significant fluorescence was observed.  

The 7HC concentration profiles shown in Figures 4.6b and 4.6c indicated that in the case 

of alumina the 7HC concentration rises over the first 10-15 minutes and then decreases. It 
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seems likely that this decrease is due to subsequent reaction of 7HC with more ozone, 

perhaps under catalytic action. Although we suspect that the low yield of 7HC reflects a 

relatively low concentration of formed hydroxyl radicals, an alternating explanation could 

be that negligibly low fluorescent isomers of 7HC are formed in its place. As mentioned 

earlier that other researchers have detected following isomers 3HC, 4HC, 5HC, 6HC and 

8-hydroxycoumarin [197]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Formation of 7-hydroxycoumarin as a result of ozonation of coumarin (Co 

(COU) = 20 mg/L; T = 25 
o
C; pH = 3.0, 6.2, 8.8 and 13.0; O3 = 0.6 mg/min; catalyst = 2.0 g; 
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V = 190 mL; excitation wavelength = 332 nm; emission wavelength = 455 nm; SD ± 5 

µg/L). 

At the highest pH of 13.0, the zeolites also appear to promote the formation of 7HC. In 

fact, it is likely that higher concentrations of hydroxide ions at pH 13.0 may simply be 

acting as precursors for hydroxyl radicals, quite independently of whether a catalyst is 

present. 

4.2.1.4 The aqueous ozone depletion 

The concentration of ozone in solution during the reaction of coumarin is shown in Figure 

4.7. Monitoring of aqueous ozone concentrations in coumarin ozonation experiments 

undertaken at pH 3.0 and 6.2 and 8.8 revealed that the highest concentrations of aqueous 

ozone have been observed during the ozonation alone, decreased during the ozonation in 

the presence of zeolites, and were the lowest in the presence of alumina. At pH 13.0 

aqueous ozone concentrations were at a similar level in all studied ozonation systems (Fig. 

4.7d). Low concentrations of aqueous ozone in the presence of alumina are an indication 

that its decay rate is higher in the presence of alumina.   

Further experiments were performed to investigate the rate at which ozone decomposition 

(or at least ozone removal) occurs on the alumina and zeolite studies in the absence of any 

organic compounds, the idea being that at least part of the ozone reduction observed as 

coumarin is removed might in fact be due simply to decomposition of ozone on the 

catalyst surface.   
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Figure 4.7: Aqueous ozone concentration during ozonation alone and ozonation in the 

presence of Al2O3 and ZSM-5 zeolites (Co (COU) = 20 mg/L; T = 25 
o
C; pH = 3, 6.2, 8.8 and 

13; O3 = 0.6 mg/min; catalyst = 2 g; V = 190 mL; SD ± 0.3 mg/L). 

First order rate constants for the decomposition of ozone in the presence and absence of 

the five catalysts studied are shown in Table 4.1 (data is also shown for the rates of ozone 

decomposition in the presence of TBA, referred to later).  Rate data for the decomposition 

reaction without TBA shows that at pHs 3.0 and 6.2 the catalysts do catalyses ozone 

decomposition, and alumina appears to catalyse the process more effectively than the 
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zeolites.  At pH 13.0 the rates for all studied systems are similar. The fast decay of 

aqueous ozone at pH 3.0 and 6.2 in the alumina/ozone system may be due to the 

interaction of aqueous ozone with the surface hydroxyl groups of alumina. It is reasonable 

that this effect is not observed at pH 13.0, where the pH is much higher than the pHPZC of 

alumina, and where the surface would be negatively charged.  

In contrast to our results, it has been reported by Lin et al [21] that aqueous ozone is not 

decomposed by alumina. On the other hand other authors have observed aqueous ozone 

decay in the presence of alumina [3, 13, 14]. Researchers have claimed that aqueous ozone 

decay on alumina at pH close to the pHPZC involved hydroxyl radicals, which increased 

the rate of ozone decay [18-20]. 

Table 4.1: Effect of TBA and pH of solution on the first-order ozone decay rate constants 

in the presence and absence of alumina and ZSM-5 zeolites 

Process k overall ×(10
-3

 s
-1

) k overall ×(10
-3

s
-1

) k overall ×(10
-3

s
-1

) 

pH 3.0 pH 6.0 pH 13.0 

No TBA With TBA No TBA With TBA No TBA With TBA 

O
3
 0.38 ± 0.03 0.35 ± 0.01 0.66 ± 0.01 0.51 ± 0.01 4.1 ± 0.1 3.1 ± 0.2 

O3/Alumina 0.61 ± 0.03 0.41 ± 0.01 0.98 ± 0.06 0.64 ± 0.02 4.2 ± 0.1 2.9 ± 0.2 

O3/Z 25H 0.52 ± 0.02 0.47 ± 0.08 0.86 ± 0.03 0.77 ± 0.05 4.3 ± 0.3 3.1 ± 0.3 

O3/Z1000H 0.46 ± 0.01 0.43 ± 0.01 0.77 ± 0.04 0.70 ± 0.03 4.3 ± 0.1 3.3 ± 0.3 

O3/Z25Na 0.47 ± 0.03 0.43 ± 0.01 0.76 ± 0.04 0.71 ± 0.04 4.3 ± 0.2 2.9 ± 0.2 

O3/Z900Na 0.45 ± 0.01 0.43 ± 0.01 0.75 ± 0.02 0.72 ± 0.06 4.3 ± 0.1 3.1 ± 0.3 

 

Table 4.1 shows that the zeolite catalysts have a less pronounced effect on ozone 

decomposition than alumina.  The previous observation that zeolites tend not to promote 

radical mechanisms (coumarin removal results in relatively little 7HC production) 

suggests that reductions in ozone concentration may be due to adsorption on the zeolite 

surface rather than by ozone decomposition on the surface.  Indeed, Fujita et al [22] found 
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that high silica zeolites reduce the aqueous ozone concentrations and proposed that it may 

be due simply to the adsorption of ozone.  Others in contrast [26] reported that acid sites 

on zeolites might be responsible for aqueous ozone decomposition.  

Furthermore, as can be observed from Table 4.1, the effect of the radical scavenger TBA 

on the rate of ozone removal can be seen. The results show clearly that at pH 3.0 and 6.2, 

TBA reduces the rate of ozone removal on alumina but has no significant effect on ozone 

loss over the zeolites. This is yet more evidence for a radical ozone decomposition 

pathway occurring in the presence of alumina but a non-radical route in the presence of 

zeolites. 

At the highest pH of 13.0, TBA reduces ozone loss over all catalysts and, importantly, in 

the absence of any catalysts, to about the same extent. This is almost certainly a 

consequence of the high hydroxide ion concentration in solution at this pH, which will 

inevitably lead to the generation of hydroxyl radicals independently of whether a catalyst 

is used or not. 

4.2.1.5 Effect of hydroxyl radical scavengers  

The evidence presented above suggests that catalytic ozonation of organic compounds on 

alumina takes place, at least to an extent, by a radical mechanism. On the other hand 

catalytic ozonation on zeolites most probably, an adsorption process of both ozone and 

organic molecules, which is followed by oxidative reactions between adsorbed ozone and 

organic compound on the catalyst surface. Further experiments to investigate this were 

carried out by observing the effect of the radical scavenger, TBA, on the rate of removal 

of coumarin and the rate of production of 7HC. The data was taken at pH 6.2 and is shown 

in Figure 4.8.  
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Figure 4.8: Effect of TBA on the removal of coumarin by O3, Al2O3/O3 and HZSM-5/O3 

(Co (COU) = 20 mg/L; TBA = 50 mg/L; T = 25 
o
C; pH = 6.2; O3 = 0.6 mg/min; catalyst = 

2.0 g; V = 190 mL; SD ± 5%). 

The comparison of Figures 4.8a and 4.8b shows that TBA reduces the rate of removal of 

coumarin both under ozonation alone and under ozonation in the presence of alumina.  

This suggests that alumina-catalysed ozonation involves a radical mechanism. In contrast, 

in the presence of all four of the zeolites, TBA has a negligible effect on the rate of 

coumarin removal (Figure 4.8c). This data suggests strongly that alumina catalyses a 
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radical mechanism and the zeolites operate by a mechanism in which radical processes are 

not important. Figure 4.8d provides further evidence as it shows that the production of 

7HC by alumina-catalysed ozonation is stopped altogether by the presence of TBA, 

consistent with 7HC being produced over alumina by a radical mechanism which can be  

suppressed by the radical scavenger. 

4.2.1.6 Effect of phosphates 

Experiments with added phosphate ions (50 mg/L) were carried out on the basis that 

phosphate ions which are hard Lewis bases can displace hydroxide ions on the surface of 

alumina. These ions have high affinity towards alumina ions (Al) on the surface of 

alumina [132] and their adsorption occurring through the exchange of surface hydroxyl 

groups of alumina. This may verify the importance of hydroxyl groups present on the 

surface of alumina in ozone decomposition and to understand the possible influence of 

phosphates on ozonation in the presence of ZSM-5 zeolites. 

Figure 4.9 shows the effect of added phosphate ion on the rate of removal of coumarin at 

pH 6.2. In the presence of alumina, phosphate reduces the rate of coumarin removal 

(Figure 4.9a). The effect of phosphate under zeolite catalysts is considerably lower (Figure 

4.9b). Consistent with this is the extent to which phosphate ion is adsorbed by alumina 

compared with the zeolites which adsorb almost no phosphate (Figure 4.9c). The data in 

Figure 4.9d shows that 7HC production over alumina is reduced by phosphate, suggesting 

that phosphate poisons the surface sites responsible for the radical mechanisms – 

presumably hydroxyl groups. Overall adsorption of coumarin by both alumina and the 

zeolites is not affected significantly by phosphate, suggesting that only a small fraction on 

the adsorbed coumarin is linked to the critical sites for radical formation (Figures 4.9e and 

4.9f). This might suggest that hydroxyl groups on the surface of alumina might not be 
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responsible for adsorption of COU but only ozone decomposition and hydroxyl radical 

formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Effect of phosphates on the removal of coumarin in O3, Al2O3/O3 and ZSM-

5/O3 and adsorption of coumarin (Co (COU) = 20 mg/L; O3 = 0.6 mg/min; T = 25
o
C; pH = 

6.2; phosphates = 50 mg/L; catalyst = 2.0 g; V = 190 mL; SD ± 3%). 
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Similar results indicating the effect of phosphates on the catalytic activity of alumina have 

been reported by others. Beltran et al [84] observed that the catalytic activity of alumina 

was greatly reduced in the presence of phosphates. Alvarez et al [71] found that the 

presence of phosphates reduced the adsorption of pyruvic acid on the surface of alumina.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Effect of pH and phosphates on the removal of coumarin in Al2O3/O3 and 

adsorption of coumarin (Co (COU) = 20 mg/L; O3 = 0.6 mg/min; T = 25
o
C; pH = 3.0, 6.2, 8.8 

and 13.0; phosphates = 50 mg/L; catalyst = 2 g; V = 190 mL; SD ± 3%). 

The effect of phosphate at other pH values is shown in Figure 4.10. The adsorption of 

phosphates on alumina increases with a decrease in the pH of solution and is the highest 
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at pH 3.0 (22% on 2.0 g of alumina in 30 min). The results presented in Figures 4.10c 

and 4.10d show that the effect of phosphate on 7HC production over alumina is the 

greatest at acidic pH.  It seems reasonable to propose that at the lower pH, most of the 

hydroxyl radicals that take part in 7HC production are generated on the alumina surface, 

and so added phosphate reduces the rate of 7HC production significantly. As the pH 

increases, two effects take hold. Firstly, the amount of phosphate adsorbed decreases and 

secondly because hydroxyl radicals formed from hydroxide ions in solution becomes 

increasingly important, adsorbed phosphate has no influence on these ions. It is 

important to note that the difference in efficiencies of COU removal in catalytic 

ozonation on alumina and ozonation alone were also the highest at pH 3 and this 

decreased with the increase in pH (Fig. 4.10b).    

It is a well-known fact that different forms of phosphates exist at different pH ranges 

(these are H3PO4, H2PO4
-
, HPO4

-2
 and PO4

-3
). Concentration of protonated forms of 

phosphates is the highest at acidic pH, hence the surface hydroxyl groups of alumina 

may be rapidly replaced at acidic pH as phosphate adsorption was considered to occur 

through the exchange of surface hydroxyl groups of alumina [150]. The ligand exchange 

can also take place in the presence of water molecules and other easily displaced ligands 

coordinatively bonded to the sites [151]. The above results clearly indicate the 

importance of the effects phosphates (and other charged molecules with high affinity 

towards the surface of alumina) can have on the catalytic activity of materials used in 

catalytic ozonation of water micropollutants. 
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4.2.1.7 Effect of catalyst amount 

In order to investigate the effect of catalyst amount on the efficiency of catalytic 

ozonation, HZSM-5 (Z1000H and Z25H) and alumina were studied. Ozonation 

experiments were performed in the presence of 2.0, 4.0 and 6.0 g of catalysts at pH 6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Effect of catalyst amount on the removal of coumarin by Al2O3/O3 and 

HZSM-5/O3 (Co (COU) = 20 mg/L; T = 25
o
C; pH = 6.2; O3 = 0.6 mg/min; catalyst dose = 2.0 

g, 4.0 g and 6.0 g; V = 190 mL; SD ± 4%). 

The results (Fig. 4.11) show an expected increase in COU removal with the catalyst 

amount for both alumina and two acidic zeolites. It has not been possible to reliably 
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determine the rates to establish the precise link between catalyst quantity and rate of 

removal.  

The yield of 7HC over alumina (Figure 4.11d) also increases with an increase in catalyst 

amount, confirming that the decomposition route involving hydroxyl radicals also takes 

place only on the catalyst surface at this pH.  With the increase of catalyst amount there is 

some decrease in 7HC with time after the initial rise, and this suggests that in the presence 

of such a large amount of catalyst the 7HC itself can and does decompose. 

4.2.1.8 7-Hydroxycoumarin ozonation 

It has been mentioned above that it appears that 7HC, the product of free radical 

decomposition of coumarin, might be decomposed on the catalysts used in this study. We 

have investigated this by studying both adsorption and ozonation of 7HC in the presence 

of alumina, the Z25H and the Z1000H catalysts. The results are presented in Figure 4.12.   

It is clear that none of these catalyst adsorbs 7HC significantly (Figure 4.12b).  However, 

all of them promote its removal, presumably degradation, by ozonation.  Ozone alone is 

active in degrading 7HC but all four catalyst increase the rate of decomposition, with 

alumina being very much more active than the two acid zeolites.  This validates our earlier 

assumptions that decreases in 7HC concentrations after its formation from coumarin could 

be due to degradation by catalytic ozonation of 7HC, largely on the surface of the catalyst. 

The outcome of this study revealed that adsorption of coumarin and its transformation by-

product, 7-hydroxycoumarin, is vital in catalytic processes and that catalytic ozonation of 

coumarin in the presence of alumina leads not only to the formation of its hydroxylated 

transformation by-products, but also its further degradation. It also explains why the 

observed formation of 7HC during the ozonation of COU in the presence of alumina slows 

down and then decreases after a specific period of time (Fig. 4.12d). 
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Figure 4.12: Removal of 7-hydroxycoumarin by O3, Al2O3/O3 and ZSM-5/O3 (Co (7HC) = 

20 mg/L; T = 25
o
C; pH = 6.2; O3 = 0.6 mg/min; catalyst = 2.0 g; V = 190 mL; SD ± 2%).   

4.2.2 PART 2 – An investigation of hydrogen peroxide 

4.2.2.1 The formation of hydrogen peroxide and the effect of pH 

The experiments have been performed at pH values 6.2, 8.8 and 13.0 as shown in the 

Figure 4.13. The results clearly indicate that high concentrations of H2O2 are formed with 

Al2O3/O3 at both pH 6.2 and 8.8 when compared with ozonation alone. For example, the 

concentration of H2O2 was (at pH 6.2, after 30 minutes ozonation) 234.5 µg/L for 

Al2O3/O3 and only 114 µg/L for O3 alone. It has been reported previously that alumina 

shows catalytic activity near or below its point of zero charge and when the pH becomes 

higher, catalytic activity is greatly reduced [18-20]. Al2O3 catalytic activity is directly 

related to its capacity to decompose ozone on its surface hydroxyl groups, which leads to 

the formation of hydroxyl radicals [18-20]. In contrast, at pH 13 the presence of alumina 

did not result in any increase in H2O2 production. It was therefore concluded that H2O2 

formation in Al2O3/O3 related to ozone decomposition and it was higher at pH 8.8 than 6.2 

in the first 5 to 10 minutes of ozonation (Fig 4.13a, b). This is because the catalytic 
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activity of alumina is the highest near its point of zero charge. Furthermore, it was 

observed that at pH 6.2 H2O2, production was very rapid for the first 10 to 15 minutes 

(Fig. 4.13a) and then slowed. This may be due to adsorption and decomposition of H2O2 

on alumina [211]. It was also observed that at basic pH (Fig. 4.13b, c), the rate of H2O2 

formation in the first five minutes was high and then it decreased for both ozonation and 

catalytic ozonation process. This may be because of the low stability of H2O2 at basic pH 

values [36]. Furthermore, H2O2 may further adsorb and decompose on the catalyst surface 

[211]. Additionally, it is hypothesized that resorufin (the product of the reaction between 

H2O2 and amplex red) may be decomposed by the oxidative species (such as ozone and 

hydroxyl radicals) in the system.  

The results for ZSM-5 zeolites clearly indicate that no significant increase in H2O2 

formation was observed at any pH when compared with ozonation alone. It is therefore 

assumed that ZSM-5 zeolites mainly act as adsorbents of ozone and do not decompose 

aqueous ozone leading to the formation of free reactive oxidative species such as 

hydrogen peroxide or hydroxyl radicals.  
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Figure 4.13: Formation of hydrogen peroxide in ozonation alone and catalytic ozonation 

(C0Amp = 20 mg/L; O3 = 0.6 mg/min; T = 25
o
C; pH = 6.2, 8.8 and 13.0; pHt30min = pH ± 

0.2; catalyst amount = 2.0 g; V = 190 mL; SD ± 5 µg/L). 

4.2.2.2 Effect of hydroxyl radical scavengers  

The hydroxyl radicals may combine to form stable H2O2 [201, 211]. The formation of 

hydroxyl radical in the catalytic ozonation process has been investigated by the use of 

hydroxyl radical scavengers such as TBA. It is a well-known fact that hydroxyl radicals 

have a higher oxidation potential than hydrogen peroxide (H2O2 relative oxidation 

potential is 1.77eV and 
o
OH radicals relative oxidation potential is 2.80eV) [31]. The 

influence of TBA on the reaction of amplex red with H2O2 was investigated by reacting 
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amplex red with H2O2 in the presence of TBA for 1 hour. It has been observed that TBA 

did not have any significant effect on the reaction between amplex red and H2O2 (the 

concentrations of resorufin with and without TBA were the same).  

The results presented in Fig. 4.14b clearly indicate that in the presence of alumina, TBA 

inhibits the formation of H2O2. For example at pH 6.2 after 30 minutes ozonation time the 

H2O2 concentration was 234.5 µg/L and in the presence of TBA it was reduced to 81.9 

µg/L. Furthermore, it has been observed that the decrease of H2O2 concentration also took 

place in the case of O3 alone. As shown in the Fig. 4.14a the concentration of H2O2 in the 

ozonation alone was 114 µg/L and was reduced to 87.2 µg/L, in the presence of TBA. 

However, the decrease in H2O2 concentration in O3 alone (in the presence of TBA) was 

not as great as in the case of Al2O3/O3. This suggests that 
o
OH radicals play an important 

role in the formation of H2O2 and the presence of alumina generates more 
o
OH radicals 

compared with ozonation alone [18-20].  

The results presented in Fig. 4.14c, d show that TBA did not have any effect on H2O2 

formed in the presence of HZSM-5 zeolites (both Z1000H and Z25H). The amount of 

H2O2 formed in the presence of zeolites was lower than in ozonation alone.  It has been 

already discussed that ZSM-5 zeolites may mainly act as adsorbents of both ozone and 

organic contaminants and do not lead to the formation of free reactive oxygen species 

such as hydroxyl radicals and above results further supports this view. 
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Figure 4.14: Effect of TBA on the formation of hydrogen peroxide by O3, Al2O3/O3 and 

HZSM-5/O3 (CoAmp = 20 mg/L; O3 = 0.6 mg/min; TBA = 50 mg/L; T = 25
o
C; pH = 6.2; 

pHt30min = 6.2 ± 0.2; O3 = 0.6 mg/min; catalyst amount = 2.0 g; V = 190 mL; SD ± 4 

µg/L). 

4.2.2.3 Effect of phosphates 

The effect of phosphates on the formation of H2O2 was studied with O3 alone, and in the 

presence of HZSM-5 (Z25H and Z1000H) zeolites and alumina at pH 6.2 (Fig. 4.15). The 

results indicate that the presence of phosphates did not have a significant effect on H2O2 
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formed during the ozonation in the presence of HZSM-5 zeolites. On the other hand, the 

H2O2 concentration was significantly reduced during the ozonation in the presence of 

alumina after 30 minutes, from 234.5 µg/L to 101 µg/L at pH 6.2 (Fig. 4.15b). The 

presence of phosphates slightly reduced the H2O2 formation with O3 alone (Fig, 4.15a). 

This is presumably due to the radical scavenger effect of phosphates. This effect is not 

seen with HZSM-5 zeolites and this may simply be because of adsorption of phosphates 

on zeolites, which resulted in the reduction of the concentrations of phosphates in the 

solution. The adsorption studies of phosphates on HZSM-5 and alumina (Fig. 4.15e) 

revealed that, alumina had much higher adsorption for phosphates than HZSM-5 (14.5 % 

on 2.0 g of alumina and 3.4 %, 3.1 % on Z25H and Z1000H respectively, in 30 min). It is 

therefore suggested that the decrease in H2O2 formation in the presence of phosphates in 

the case of Al2O3/O3 is the result of a decrease in available surface hydroxyl groups. As 

discussed before, interaction of ozone with surface hydroxyl groups results in the 

formation of hydroxyl radicals and these hydroxyl radicals combine to form H2O2.  
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Figure 4.15: Effect of phosphates on the formation of hydrogen peroxide in O3, Al2O3/O3 

and HZSM-5/O3 (CoAmp =20 mg/L; O3 = 0.6 mg/min; phosphates = 50 mg/L; T = 25
o
C; 

pHo, 6.2; pHt30min = 6.2 ± 0.2; catalyst amount = 2.0 g; V = 190 mL; SD ± 10 µg/L). 

  

  

    

  

   

    

0 

100 

200 

300 

400 

500 

0 5 10 15 20 25 30 

H
2
O

2
 [
µ

g
/L

] 

Time [min] 

(a) O3 alone 

O3 O3(Phos) 

0 

100 

200 

300 

400 

500 

0 5 10 15 20 25 30 

H
2
O

2
 [

µ
g

/L
] 

Time [min] 

(b)  Al2O3/O3 

Al2O3 Al2O3(Phos) 

0 

100 

200 

300 

400 

500 

0 5 10 15 20 25 30 

H
2
O

2
 [
µ

g
/L

] 
 

Time [min] 

(c)  Z25H/O3 

Z25H/O3 Z25H/O3(Phos) 

0 

100 

200 

300 

400 

500 

0 5 10 15 20 25 30 

H
2
O

2
 [

µ
g

/L
] 

Time [min] 

(d) Z1000H/O3 

Z1000H/O3 Z1000H/O3(Phos) 

0 

2000 

4000 

6000 

8000 

10000 

0 5 10 15 20 25 30 

P
h

o
sp

h
a

te
s 

a
d

so
rb

ed
 [

µ
g

/L
] 

Time [min] 

(e) Phosphates adsorption 

Al2O3 Z25H Z1000H 



145 

 

4.2.2.4 Effect of catalyst amount 

The results presented in Fig. 4.16 show that with an increase in the catalyst amount the 

concentration of H2O2 formed increased in the case of Al2O3/O3. This may be due to the 

increase in hydroxyl radical formation in line with the increase in catalyst amount, which 

leads to the formation of H2O2. Additionally, it was noticed that H2O2 was formed rapidly 

in the first 10 to 15 minutes of ozonation (Fig. 4.16a). This may be due to the adsorption 

and decomposition of H2O2 on alumina.  

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Effect of catalyst dose on the formation of hydrogen peroxide in O3, 

Al2O3/O3 and HZSM-5/O3, (CoAmp= 20 mg/L; catalyst = 2.0 mg/L, 8.0 mg/L; T = 25
o
C; 

pH = 6.2; pHt30min = 6.2 ± 0.2; V = 190 mL; SD ± 4 µg/L). 

  

    

0 

200 

400 

600 

800 

1000 

0 5 10 15 20 25 30 

H
2
O

2
 [

µ
g

/L
] 

Time [min] 

(a) Al2O3/O3  

Al2O3/O3 (8g) Al2O3/O3 (2g) 

0 

100 

200 

300 

400 

500 

0 5 10 15 20 25 30 

H
2
O

2
 [

µ
g

/L
] 

 

Time [min] 

(b) Z25H/O3 

Z25H(8g) Z25H(2g) 

0 

100 

200 

300 

400 

500 

0 5 10 15 20 25 30 

H
2
O

2
 [

µ
g

/L
] 

 

Time [min] 

(c) Z1000H/O3 

Z1000H/O3 (8g) Z1000H/O3 (2g) 



146 

 

The experiments conducted in the presence of HZSM-5 zeolites (Fig. 4.16b, c) indicate 

that zeolites did not have any effect on the formation of H2O2. As discussed before this 

may be because ZSM-5 zeolites mainly act as adsorbents of ozone and do not initiate 

advanced oxidation mechanism that leads to the generation of free reactive oxygen 

species. The results presented by Fujita et al [11, 22] suggested that ozone may adsorbed 

on ZSM-5 zeolite surface. Additionally, Carlone et al [212] reported that interactions of 

ozone and zeolites on the surface of zeolites are responsible for the removal of pollutants 

and sorption into the pores is not important due to the speed of reaction. Therefore, further 

investigation is required to study the surface reactions in the presence of different types of 

pollutants (hydrophilic, hydrophobic). 

4.2.3 PART 3 – An investigation of superoxide ion radical 

4.2.3.1 Adsorption of NBD-Cl on Al2O3 and ZSM-5 zeolites 

The adsorption data is shown in Figure 4.17 as the percentage of total NBD-Cl 

concentration was removed from the solution with time, at various pHs. The data shows 

that alumina adsorbed more effectively than zeolites. The adsorption of NBD-Cl on all 

catalysts was found to be very low. For example only about 4 - 5% of NBD-Cl was 

adsorbed on 2.0 g of alumina within 30 minutes contact time at studied pH values (3.0, 

6.2, 8.8 and 13) as shown in Figure 4.17. Furthermore, the zeolites with higher alumina 

content (Z25H, Z25Na) had slightly higher adsorption when compared with high silica 

zeolites (Z1000H, Z900Na). For example about 4% of NBD-Cl was adsorbed on Z25H 

and Z25Na at all studied pH values. However, only 3 - 3.5% of NBD-Cl was adsorbed on 

Z1000H and Z900Na (Fig. 4.17). The data for experiments carried out at different pH 

values shows that the adsorption of NBD-Cl decreases to some extent at basic pH. It may 
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be because the surface is fully populated with OH
-
 ions at this pH and this phenomenon 

might result in the decrease of % adsorption of NBD-Cl.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Removal of NBD-Cl by adsorption on ZSM-5 zeolites and alumina (Co (NBD-

Cl) = 20 mg/L; T = 25
o
C; pH = 3.0, 6.2, 8.8 and 13.0; catalyst amount = 2.0 g; V = 190 

mL; SD ± 0.5%). 

4.2.3.2 The catalytic ozonation of NBD-Cl and the effect of pH 

In the present investigation the experiments have been performed at pH values 3.0, 6.2, 

8.8 and 13.0. The data in Figure 4.18 shows the percentage removal of NBD-Cl with time. 
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The data  clearly indicated that (Fig. 4.18) catalytic ozonation of NBD-Cl in the presence 

of alumina shows higher removal of NBD-Cl when compared with ozonation alone and 

ozonation in the presence of ZSM-5 zeolites at pH 8.8 (Fig. 4.18). The efficiency of 

ozonation in the presence of alumina has been found to increase with the increase in pH 

and was the highest near point of zero charge of alumina (pHPZC) as shown in Figure 

4.18e. For example at pH 8.8 the NBD-Cl removal was 30% higher than ozonation alone 

(Fig. 4.18e). This is in contrast with the ozonation in the presence of ZSM-5 zeolites. In 

the case of ZSM-5 zeolites the NBD-Cl removal decrease with the increase in pH of the 

solution (Fig. 4.18), which indicates that ozonation in the presence of ZSM-5 zeolites may 

follow different mechanism than that of ozonation in the presence of alumina. 

Additionally, the experiments revealed that all studied catalysts were ineffective during 

the ozonation at pH 13.0 (had similar removal of NBD-Cl when compared with ozonation 

alone (Fig. 4.18d). This may be due to the high concentration of OH
-
 ions that are 

responsible for high rates of aqueous ozonation decomposition at pH 13.0 [36]. The low 

catalytic activity of alumina at pH 13 may be due to changes in its surface properties. As 

discussed before, at pH 13.0 the surface of alumina does not have protonated surface 

hydroxyl groups, which are believed to be responsible for ozone decomposition [20]. It is 

also worth noting that the pH of the solution did not change significantly (± 0.1) after 30 

min ozonation with and without catalysts.  
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Figure 4.18: Removal of NBD-Cl by alumina and zeolites, Co (NBD-Cl), = 20 mg/L; T = 

25
o
C; pH = 3.0, 6.2, 8.8 and 13.0; T = 30 minutes; O3 = 0.6 mg/min; catalyst = 2.0 g; V = 

190 mL; SD ± 4%. 

  

  

    

 

 

 

 

 

 

 

0 

20 

40 

60 

80 

100 

0 5 10 15 20 25 30 

N
B

D
-C

l 
re

m
o

v
a

l 
[%

] 

Time [min] 

(a) pH 3.0 

O3 Al2O3/O3 
Z25H/O3 Z25Na/O3 
Z1000H/O3 Z900Na/O3 

0 

20 

40 

60 

80 

100 

0 5 10 15 20 25 30 

N
B

D
-C

l 
re

m
o

v
a

l 
[%

] 

Time [min] 

(b) pH 6.2 

O3 Al2O3/O3 
Z25H/O3 Z25Na/O3 
Z1000H/O3 Z900Na/O3 

0 

20 

40 

60 

80 

100 

0 5 10 15 20 25 30 

N
B

D
-C

l 
re

m
o

v
a

l 
[%

] 

Time [min] 

(c) pH 8.8 

O3 Al2O3/O3 
Z25H/O3 Z25Na/O3 
Z1000H/O3 Z900Na/O3 

0 

20 

40 

60 

80 

100 

0 5 10 15 20 25 30 

N
B

D
-C

l 
re

m
o

v
a

l 
[%

] 

Time [min] 

(d) pH 13.0 

O3 Al2O3/O3 
Z25H/O3 Z25Na/O3 
Z1000H/O3 Z900Na/O3 

0 

20 

40 

60 

80 

100 

0 2 4 6 8 10 12 14 

C
O

3
-O

3
 [

%
] 

pH 

(e) Al2O3/O3 



150 

 

4.2.3.3 Formation of superoxide ion radical (
o
O2

-
) 

The formation of superoxide ion radical has been monitored during the ozonation of NBD-

Cl. The results clearly indicated that the formation of 
o
O2

-
 in the presence of alumina was 

the highest at pH = 8.8 (pH = pHPZC) when compared with ozonation alone (Fig. 4.19b). It 

is important to note that during the first 10 to 15 minutes the 
o
O2

-
 formation rate increased 

and after about 15 to 20 minutes it decreased (Fig. 4.19b). This may be due to the reaction 

of NBD-Cl product with ozone and other oxidative species present in the system. 

Additionally, NBD-Cl may be adsorbed on the catalyst surface. It is interesting to note 

that there has been no significant fluorescence at pH 3.0. This may be because of low 

yields of 
o
O2

-
 as its formation is higher at basic pH value [36]. In contrast to Al2O3/O3, the 

ZSM-5 zeolites did not show significantly higher fluorescence when compared with 

ozonation alone at all pH values (Fig. 4.19). This leads to the conclusion that ozonation in 

the presence of ZSM-5 zeolites does not result in the formation of superoxide ion radicals. 

It is important to note that significantly high fluorescence was observed at pH 13 in all 

studied ozonation systems (Fig. 4.19c). This may be due to the presence of high 

concentration of OH
-
 ions in the solution at this pH value that leading to the high aqueous 

ozone decomposition and formation of super oxide ion radical [36]. 
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Figure 4.19: Formation of superoxide ion radical in the ozonation of NBD-Cl (Co (NBD-Cl) 

= 20 mg/L; T = 25
o
C; pH = 6.2, 8.8 and 13.0; O3 = 0.6 mg/min; catalyst = 2.0 g; V = 190 

mL; excitation wavelength = 470 nm; emission wavelength = 550 nm; SD ± 5 µg/L). 

4.2.3.4 Effect of hydroxyl radical scavengers  

The ozonation experiments have been performed in the presence of tertiary butyl alcohol 

(TBA) in order to understand the role of superoxide ion radical (
o
O2

-
 in the formation of 
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hydroxyl radicals) and to investigate the effect of TBA on the removal of NBD-Cl by 

catalytic ozonation on alumina and HZSM-5 zeolites. The results indicate that the 

presence of TBA did not have any significant effect on the removal of NBD-Cl in the 

presence of ZSM-5 zeolites. For example NBD-Cl removal was 50% with and without 

TBA when HZSM-5 zeolites have been used (Fig. 4.20c).  Furthermore, no significant 

change in 
o
O2

-
 concentration was observed in the case of HZSM-5/O3 zeolites (Fig. 4.20e) 

and ozonation alone (Fig. 4.20f) with or without TBA. This indicates that ZSM-5 zeolites 

did not generate 
o
O2

-
 and 

o
OH radicals.   

Furthermore, it has been observed that a small decrease in NBD-Cl concentration took 

place in the case of O3 alone undertaken in the presence of TBA. For example 40% and 

35% of NBD-Cl was removed after 30 minutes ozonation at pH 8.8 when ozonation was 

conducted with and without TBA respectively (Fig. 4.20a). Similarly, there has been some 

limited decrease in the NBD-Cl removal (3% after 30 min ozonation time) in the case of 

ozonation in the presence of alumina when TBA was added to the solution. However, it 

was only 3% less when compared with percentage removal without TBA in 30 minutes of 

ozonation (Fig. 4.20b). This may be because of 
o
O2

-
 scavenger effect of NBD-Cl [173]. It 

further suggested that superoxide ion radical plays an important role in the formation of 

hydroxyl radicals [36]. Therefore, it is hypothesized that in the presence of NBD-Cl 

formation of 
o
O2

-
 is restricted therefore the generation of hydroxyl radicals may also 

restricted. It further signifies the role of 
o
O2

- 
in the formation of hydroxyl radicals, in the 

catalytic ozonation process in the presence of alumina.   
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Figure 4.20: Effect of TBA on the removal of NBD-Cl and formation of super oxide ion 

in O3, Al2O3/O3 and ZSM-5/O3 (Co (NBD-Cl) = 20 mg/L; O3 = 0.6 mg/min; T = 25
o
C; pH = 

8.8; TBA = 50 mg/L; catalyst = 2.0 g; V = 190 mL; SD ± 5). 
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4.2.3.5 Effect of phosphates 

The effect of phosphates on the formation 
o
O2

-
 and removal of NBD-Cl  was investigated 

in the presence of O3 alone, ozonation in the presence of HZSM-5 (Z25H and Z1000H) 

zeolites and alumina at pH 8.8 (Fig. 4.21). The results presented in Fig 4.21b indicate that 

the presence of phosphates did not have any significant effect on the removal of NBD-Cl 

in ozonation on HZSM-5 zeolites. Furthermore, no significant change in superoxide ion 

concentration has been observed with or without phosphates in the case of ZSM-5 zeolites 

(Fig. 4.21e) and ozonation alone (Fig. 4.21f). However, the formation of superoxide ion 

radical was significantly reduced in the presence of phosphates, when ozonation was 

conducted in the presence of alumina. For example 180.5 µg/L of superoxide has been 

formed in the case of Al2O3/O3 (in the absence of phosphates) in the first 10 minutes and it 

was reduced to 120.5µg/L of superoxide in the presence of phosphates (Fig. 4.21c). 

Furthermore, the NBD-Cl removal percentage was significantly reduced in the presence of 

phosphates. For example (at pH 8.8, after 30 minutes ozonation time) the removal of 

NBD-Cl was reduced from the initial value (without phosphates) of 80% to 60% (in the 

presence of phosphates) (Fig. 4.21b). Similar to the results presented in part 1, the 

adsorption studies of phosphates on HZSM-5 and alumina (Fig. 4.21d) revealed that, as 

expected, at studied conditions (pH 8.8) alumina has the much higher adsorption capacity 

towards phosphates than HZSM-5 (8% on 2.0 g of alumina and 2.2%, 2% on Z25H and 

Z1000H respectively, in 30 min). It is suggested that the decrease in 
o
O2

-
 formation in the 

presence of phosphates in the case of Al2O3/O3 is resulting from a decrease of available 

surface OH groups. As discussed before, interaction of ozone with surface hydroxyl 

groups results in the formation of 
o
O2

-
 [17].  
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Figure 4.21: Effect of phosphates on the removal of NBD-Cl and formation of superoxide 

ion in O3, Al2O3/O3 and ZSM-5/O3 (Co (NBD-Cl) = 20 mg/L; O3 = 0.6 mg/min; T = 25
o
C; pH 

= 8.8; phosphates = 50 mg/L catalyst = 2.0 g; V = 190 mL; SD ± 5). 
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4.2.3.6 Effect of catalyst amount 

In order to study the effect of catalyst amount on the removal of NBD-Cl and formation of 

superoxide ion radical, HZSM-5 (Z1000H and Z25H) and alumina were selected. 

Experiments have been performed by using 2.0 g, 4.0 g and 8.0 g of catalysts in the semi-

batch (190 mL of 20 ppm NBD-Cl solution in water) reactor at pH 8.8. The results 

presented in Fig. 4.22 show that with the increase in the catalyst amount the NBD-Cl 

percentage removal increased for both Al2O3/O3 and HZSM-5/O3. For example ozonation 

in the presence of 6.0 g of alumina resulted in the removal of 90% of NBD-Cl in 30 

minutes and it was only 72% when 2.0 g of alumina was used (Fig. 4.22a). It is important 

to note here, although the removal of NBD-Cl increased in the presence of HZSM-5 

zeolites when the catalyst amount is increased. However, no significant 
o
O2

- 
formation was 

observed even at a higher amount. This clearly suggests that ZSM-5 zeolites do not form 

superoxide ion radical. In contrast to ZSM-5 zeolites an investigation of 
o
O2

-
 formation 

revealed that in the case of Al2O3/O3, the 
o
O2

-
 increases with an increase of the catalyst 

amount (Fig. 4.22d). It is worth mentioning here that the increase in 
o
O2

-
 formation was 

not linear. A sharp increase during the first 10 minutes of ozonation was observed and 

then it decreased. Therefore, it is assumed that the NBD-Cl product (an indicator of 
o
O2

-
 

formation) might be degraded during the catalytic ozonation. On the other hand no 

significant increase in 
o
O2

-
 formation was observed in the case of ZSM-5/O3 (Fig. 4.22e, 

f). 
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Figure 4.22: Effect of catalyst amount on the removal of NBD-Cl and formation of 

superoxide ion by Al2O3/O3 and HZSM-5/O3 (Co (NBD-Cl) = 20 mg/L; T = 25
o
C; pH = 8.8; 

O3 = 0.6 mg/min; catalyst amount = 2.0 g, 4.0 g and 6.0 g; V = 190 mL; SD ± 5). 
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4.3 Proposed mechanism of ozonation in the presence of alumina 

The above results are important in explaining the mechanisms of catalytic ozonation. It is 

almost certain that alumina promotes the formation of hydroxyl radicals, hydrogen 

peroxide and superoxide ion, and it has been confirmed by using coumarin, amplex red 

and NBD-Cl respectively as probe molecules. Additionally, the studies of the TBA effect 

further support this hypothesis. The mechanism of ozonation in the presence of alumina 

has been proposed in the Fig 4.23. Similar mechanism has been suggested by Ernst et al 

[17]. However, no clear evidence has been provided in that work. On the basis of current 

investigation it is hypothesized that aqueous ozone interacts with the surface hydroxyl 

groups of alumina to promote its decomposition and this has been supported by the results 

of the experiments investigating the phosphates effect. The interactions of aqueous ozone 

with the surface hydroxyl groups of alumina result in the formation of superoxide ion 

radical as shown in Figure 4.23. The formation of superoxide ion during the ozonation in 

the presence of alumina has been confirmed in this work with the NBD-Cl probe and 

provides strong evidence to support this hypothesis. Furthermore, the decrease in the 

superoxide ion production in the presence of phosphates further supports this hypothesis 

(section 4.2.3.5). It has been hypothesised by some researchers that the surface hydroxyl 

groups of catalysts interact with the aqueous ozone leading to the formation of O2H
o
 and 

superoxide ion radical [7, 17, 93]. This may be due to the dipole nature of ozone that 

reacts with the surface hydroxyl groups of catalysts to produce O2H
o
 with the release of 

O2.   

It is further hypothesized that another O3 molecule reacts with superoxide or O2H
o
 to 

produce an ozonide O3 or O3H
o
 radical (Fig. 4.23) [36]. The O3H

o
 radical quickly reduce 

to produce hydroxyl radicals. However, this process is pH dependent at basic pH (pKa, 
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6.2) O3H
o
 exists in the form of its conjugate base 

o
O3

-
 [36]. Therefore, at basic pH 

o
O3

-
 

reacts with H2O to produce hydroxyl radicals (Fig. 4.23) [36]. The formed hydroxyl 

radicals may combine with one another [201, 211] to form H2O2. The stability and 

formation of H2O2 depends upon the pH of the solution and the concentration of hydroxyl 

radicals. The presence of H2O2 has been confirmed by the use of amplex red as a probe 

molecule. Additionally, the TBA effect clearly indicates that production of hydroxyl 

radicals is essential for the formation of H2O2.  
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          Figure 4.23: A proposed mechanism of ozonation in the presence of alumina. 
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4.4 Proposed mechanism of ozonation in the presence of ZSM-5 zeolites 

In the case of the zeolite catalysts we found that hydroxyl radicals are not involved in the 

catalytic ozonation process. Additionally, zeolites do not promote the formation of 

hydrogen peroxide and superoxide ion radical. However, the zeolites do catalyse the 

ozonation of organic compounds as clearly seen from the removal of coumarin and NBD-

Cl. We propose that the zeolite acts simply as a reactive surface on which the reaction 

between O3 and the organic molecule can take place with reduced activation energy (Fig. 

4.24). Within the family of ZSM-5 zeolites the activity of zeolites is directly related to the 

silica to alumina ratios. The evidence for this suggestion is strong, as indicated by their 

adsorption and removal of probes (P). The study of TBA effect further supports this 

hypothesis. The fact that the hydrogen and sodium forms of the zeolite behave 

indistinguishably suggests that surface acid sites are not involved in the ozonation 

reactions, and the ozone reaction with the organic molecule is relatively simple. 
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Figure 4.24: A proposed mechanism of ozonation in the presence of ZSM-5 zeolites (P = 

Probe molecules). 
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4.5 Summary of results 

The mechanisms of ozonation in the presence of ZSM-5 zeolites and γ-alumina in water 

have been studied. The formation of reactive oxygen species (ROS) such as hydroxyl 

radicals (
o
OH), hydrogen peroxide (H2O2) and superoxide ion radical (

o
O2

-
) have been 

investigated in ozonation in the presence of ZSM-5 zeolites and alumina using coumarin 

(COU), amplex red and 4-chloro-7-nitrobenzo-2-oxa-1,3-dizole (NBD-Cl) as  probes. The 

effect of the radical scavenger (t-butanol) and phosphates has also been used to study the 

possible involvement of radicals and the role of surface hydroxyl groups of catalysts.  

Four ZSM-5 zeolites with varying silica to alumina ratios and with both hydrogen and 

sodium counter ions were used in the study (Z1000H:SiO2/Al2O3 = 1000, 

Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25).  The 

results show that both zeolites and the alumina catalyse the removal of coumarin and 

NBD-Cl from aqueous solution by ozonation. The alumina is generally more active than 

zeolites and it catalyses a radical pathway involving ROS, showing its highest activity at 

pH close to the point of zero charge where surface hydroxyl groups are most susceptible to 

conversion of ozone to superoxide radical, hydroxyl radicals and hydrogen peroxide. The 

presence of phosphates and tertiary butyl alcohol (TBA) significantly reduces the 

formation of ROS in the case of alumina, which indicates the critical importance of 

surface hydroxyl groups of alumina in ozone decomposition. However, in the case of 

zeolites TBA and phosphates did not have a significant effect on ROS production. This is 

because zeolites operate through a simple adsorption process, leading to a direct reaction 

between adsorbed probes and adsorbed ozone.  Their activity depends to an extent on the 

silica to alumina ratio of the zeolite but is not influenced by the nature of the zeolite 

counter ion. 
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4.6 Conclusions 

The overall conclusions of the work presented in chapter 4 are as follows. 

1 The ozonation in the presence of alumina involves the formation of reactive oxygen 

species. Ozone degradation in the presence of alumina occurs by a radical 

mechanism, almost certainly involving hydroxyl radicals, superoxide ion radicals 

and hydrogen peroxide which are formed by the decomposition of aqueous ozone 

due to the reaction between ozone and surface hydroxyl groups (which are most 

reactive at pH close to the pHPZC). The hydroxyl radicals in the catalytic ozonation 

on alumina are responsible for the production of hydrogen peroxide. 

2 The ozonation in the presence of ZSM-5 zeolites do not involve the formation of 

reactive oxygen species such as hydroxyl radicals, superoxide ion radical and 

hydrogen peroxide. However, ZSM-5 zeolites are effective in the catalytic ozonation 

of coumarin and NBD-Cl but they do not act through a radical mechanism.  Their 

activity arises through their ability to adsorb ozone and probes and so promote a 

surface reaction between the two molecules. The activity of the zeolites is 

independent of their acidity, supporting this view. Activity shows some dependence 

on the hydrophobicity of the zeolite, with the more hydrophobic materials adsorbing 

more coumarin and hence showing higher activity towards its decomposition. 
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CHAPTER 5 - CATALYTIC 

OZONATION OF ORGANIC 

CONTAMINANTS 

 
“In this chapter results for the catalytic ozonation of organic pollutants such 

as VOCs, ibuprofen and acetic acid on ZSM-5 zeolites and alumina have 

been presented in this chapter. The VOCs selected are cumene, 1,2- 

dichlorobenzene and 1,2,4-trichlorobenzene. The effect of pH, adsorption, 

TBA, phosphates, humic acid, reuse performance of catalyst and catalyst 

efficiency in tap water is described. 
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5.1 Introduction 

The heterogeneous catalytic ozonation has been used for the degradation of organic 

compounds such as pharmaceuticals, pesticides, dyes, aromatic hydrocarbons and organic 

acids etc. Many catalysts have been successfully implied for the degradation of organic 

acids. Among them are, activated carbons [9], Al2O3 [3] and TiO2 [6] etc. It has been 

reported that a catalyst may be effective for some pollutants and ineffective for others. For 

example, alumina has been reported as an effective catalyst for natural organic matter [3] 

and chlorinated organic compounds [14]. However, some reports indicate a lack of catalytic 

activity of alumina for hydrocarbons [15] and ethers [4]. Therefore, it is important to study 

the removal efficiency of catalysts in the presence of different types of pollutants.  

The pharmaceuticals have been recognized as an important class of pollutants. Although 

they are present in trace amounts in the aquatic environment but their long term exposure is 

a potential risk to aquatic life and human beings, as they have been detected in drinking 

water [213]. In recent few years ozonation and catalytic ozonation have been successfully 

used for the removal of pharmaceuticals in water [2, 214, 215]. In the case of 

pharmaceuticals, ibuprofen (Fig. 5.1) has been selected in this study as target pollutant. The 

removal of ibuprofen in ozonation in the presence of ZSM-5 zeolites has not been 

previously studied. Therefore, it is important to investigate the removal of ibuprofen in 

water.  

   

CH3

CH3

O

OH

CH3

Ibuprofen
 

      Figure 5.1: Structure of ibuprofen. 



166 

 

The ozonation efficiency of zeolites and alumina have also been investigated using volatile 

organic chemicals (VOCs) such as cumene, 1,2-dichlorobenzene and 1,2,4-trichlorobenzene 

(Fig. 5.2). The VOCs have been recognized as an important class of pollutants. They have 

been detected in drinking water [216]. The chlorinated aromatic compounds are a class of 

highly toxic and widely used organic pollutants that is highly resistant to ozonation [217]. 

Therefore, catalytic ozonation is required for the effective removal of these pollutants from 

water. The catalytic ozonation has been successfully used for the removal of VOCs from 

both aqueous media [15, 218] and air [219, 220].  

 

  

Cl

Cl

Cl

Cl

Cl

(a) Cumene (b) 1,2- dichlorobenzene

(c) 1,2,4- trichlorobenzene
 

   Figure 5.2: Structure of VOCs.  

The ozonation experiments have also been performed to study the removal of acetic acid in 

water in the presence of zeolites and alumina. The organic acids have been identified as one 

of the most common ozonation by-products and the most widely studied organic acids are 

acetic acid, oxalic acid, oxamic acid, formic acid and succinic acid. The short chain organic 

acids are highly resistant to direct ozone attack. Therefore, advanced oxidation catalysts are 

required for their effective removal in water. The organic acids have been found as by-

products of the ozonation of VOCs and ibuprofen in the presence of ZSM-5 zeolites, 

therefore it is important to investigate their removal in the presence of catalysts.  
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In the present study, the detailed investigation of parameters such as effect of pH, 

adsorption, effect of inorganic ions, effect of radical scavengers and natural organic matter 

on the removal of pollutants have also been investigated.  

The aim of this study was to investigate the efficiency of zeolites and alumina for the 

removal of different pollutants and to study the role of the above mentioned parameters on 

the mechanism of catalytic ozonation. The results presented in the chapter 4 shows that 

alumina follows the radical mechanism and zeolites operate through simple adsorption 

mechanisms. This study may further help to understand the role of adsorption, surface 

reactions and the nature of pollutants in the catalytic process. 

5.2 Results and discussion 

This selection is divided into three parts. In the first part the results of ozonation of 

ibuprofen in the presence of zeolites and alumina have been presented. The second part 

discusses the results for VOCs removal and in the final part the removal of acetic acid has 

been discussed. 

5.2.1 Part 1 ozonation of ibuprofen in water 

5.2.1.1 Adsorption of ibuprofen on Al2O3 and ZSM-5 zeolites  

The adsorption studies of contaminants on the surface of the catalyst are vital in catalytic 

ozonation. The adsorption capacities of ibuprofen on alumina and ZSM-5 zeolites have been 

determined using Langmuir adsorption plots as described in section 2.1.3.3.3.2. The results 

presented in Table 5.1 indicate that the high silica zeolites have significantly lower 

adsorption capacities as opposed to alumina. For example, the adsorption capacity of 

alumina towards ibuprofen is 5.9 mg/g and it was only 2.7 mg/g in the case of Z25Na. This 

may be because of the hydrophobicity of zeolites. At pH 7.2, ibuprofen will be ionized and 

may be attracted towards hydrophilic materials. 
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  Table 5.1: Adsorption capacities of ibuprofen on Al2O3 and ZSM-5 zeolites 

Adsorbent      Q (mg/g)                      R
2
 

Z1000H 0.99 ± 0.20 0.963 ± 0.02 

Z900Na 0.99 ± 0.07 0.988 ± 0.03 

Z25H 2.46 ± 0.35 0.975 ± 0.01 

Z25Na 2.67 ± 0.35 0.973 ± 0.02 

Al2O3 5.87 ± 0.7 0.934 ± 0.04 

 

The results presented in Figure 5.3 show that the high silica zeolites have higher percentage 

adsorption of ibuprofen at pH 3.0 when compared with alumina while alumina has high 

adsorption at pH 7.2 and 13.0. This may be explained with respect to the ionization of 

ibuprofen at different pH. As the pKa of ibuprofen is 4.9, when the pH > pKa (2 units) the 

ibuprofen is ionized and if pH< pKa (2 units) then it will remains fully unionized, so at pH 

7.2 and 13.0 ibuprofen will be ionized. Therefore, alumina has shown high adsorption at pH 

> 7. On the other hand, at pH lower than its pKa ibuprofen (in its protonated form) was 

found to show higher affinity towards ZSM-5 zeolites due to the utilisation of hydrophobic 

interactions. The low adsorption of ibuprofen at pH 13.0 (Fig. 5.3c) when compared with 

neutral pH may be due to the influence of hydroxide ions, since the surface of the catalyst 

will be fully populated with hydroxide ions at this pH. However, it is interesting to note here 

that adsorption of ibuprofen is the highest at pH 7.2 as compared with adsorption at pH 3.0 

in the case of alumina. This may be due to the electrostatic forces of interaction between the 

positive charge alumina and negatively charged ibuprofen at this pH. Therefore, the surface 

charges on the catalyst and pollutants are also vital in the adsorption process. 
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Figure 5.3: Removal of ibuprofen by adsorption (Co (ibu) = 15 mg/L; T = 20
o
C; pH, 3.0, 7.2 

and 13.0; adsorbent dose = 5.0 g; V = 490 mL). 

5.2.1.2 The catalytic ozonation and the effect of pH 

In this study the pH values have been selected by considering the protonated and ionised 

forms of ibuprofen as well as the pH values above and below the point of zero charges of 

catalysts. Therefore, experiments have been performed using pH 3.0, 7.2 and 13.0. In this 

work the pH 7.2 (instead of 6.2) is selected because the pKa of ibuprofen is 4.9, when the 

pH > pKa (2 units) the ibuprofen will be ionized. Therefore, by selecting these pH values 
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the effect of ionized and unionized forms of ibuprofen could be studied. The results 

presented in Figure 5.4 show that catalytic ozonation in the presence of ZSM-5 zeolites and 

alumina has been effective at pH 3.0 and 7.2, while at pH 13.0 the catalysts were 

ineffective. This may be due to the high concentration of OH
-
 ions that are responsible for 

high rates of aqueous ozonation decomposition at pH 13 [36]. 

At pH 13.0 (Fig. 5.4c), the surfaces of the catalysts are essentially covered with hydroxide 

ions. It is known that hydroxide ions promote the decomposition of ozone so any reaction of 

ibuprofen with ozone on the surface of the catalysts would be unlikely. The results 

presented in chapter 4 further support this hypothesis, since alumina and zeolites do not 

promote the formation of reactive oxygen species at pH 13.0 when compared with 

ozonation alone. An alternate explanation could be that at pH 13.0 the ibuprofen is 

negatively charged therefore due to the repulsive forces, the adsorption of ibuprofen on the 

surface of alumina may be lower. The adsorption results clearly support this hypothesis. The 

higher removal of ibuprofen at pH 7.2 in the presence of alumina when compared with 

ZSM-5 zeolites may be due to high adsorption of ibuprofen on alumina at pH 7.2. The result 

indicates that the catalytic activity of ZSM-5 zeolites increases with the decrease in pH and 

is the highest at pH 3.0. For example, at pH 3.0 the removal of ibuprofen in the presence of 

zeolites was 28 % (Fig. 5.4a) higher than that of ozonation alone in 30 minutes and at pH 

7.2 it becomes 22 % (Fig. 5.4b). This may be due to the high adsorption of ibuprofen on 

zeolites at pH 3.0. Additionally, ozone is more stabilized at low pH and zeolites may favour 

molecular ozone reactions. The similar results have been obtained in the case of coumarin 

and NBD-Cl (chapter 4) removal on zeolites. In contrast to ZSM-5 zeolites the catalytic 

activity of alumina increases with the increase of pH. For example 83 % ibuprofen was 

removed at pH 7.2 (Fig. 5.4b) and at pH 3.0 the removal of ibuprofen was reduced to 58 % 



171 

 

in the presence of alumina. These results are consistent with an investigation of reactive 

oxygen species (ROS) formation in chapter 4. This suggested that with the increase in pH 

the generation of ROS in the presence of alumina increases and the removal of ibuprofen 

increases. The adsorption of ibuprofen on the alumina is also an important factor, as 

alumina has high adsorption of ibuprofen at pH 7.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Removal of ibuprofen by ozonation alone and catalytic ozonation (Co (ibu) = 15 

mg/L; O3 = 0.5 mg/min; T = 20
o
C; pH = 3.0, 7.2 and 13.0; catalyst dose = 5.0 g; V = 490 

mL). 
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5.2.1.3 Formation of organic acids  

The acetic, formic and succinic acids have been identified at pH 3.0 when ZSM-5 zeolites 

were used as catalysts (Fig. 5.5). They have not been identified when alumina was used as 

catalyst. It has been hypothesized in chapter 4 that zeolites may adsorb ozone and organic 

compounds on their surface and their reactions with one another results in the degradation 

of the pollutant. Criegee mechanism [44] suggested that reactions of ozone with the organic 

molecules results in the formation of organic acids, as presented in chapter 1 (section 

1.6.1.1). The alumina generates hydroxyl radicals as confirmed by coumarin ozonation 

(chapter 4). The hydroxyl radicals react also with organic acids formed in the solution. 

Based on the previous reports [17], it is assumed that organic acids formed due to the 

ozonation process further degraded by alumina. Furthermore, acidic by-products have not 

been observed at pH 7.2 and 13.0. This may be because of hydroxide ions in solution which 

can decompose aqueous ozone and can generate hydroxyl radicals.  
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Figure 5.5: Formation of organic acids during catalytic ozonation on zeolites (Co (ibu) = 15 

mg/L; T = 20
o
C; pH = 3.0; T = 30 minutes; O3 = 0.5mg/min; catalyst = 5.0 g; V = 490 mL). 

5.2.1.4 Aqueous ozone decay 

It is clear from Fig. 5.6 that the amount of aqueous ozone is lower at pH 7.2 and 3 for ZSM-

5 zeolites and Al2O3 when compared with ozonation alone. The results presented in Figure 

5.6c show that there is no significant difference in ozone decay at pH 13.0 for alumina, 

zeolites and ozonation alone. This is because aqueous ozone is not stabilized at this pH and 

is decomposed quickly into hydroxyl radicals. Furthermore, the surface of alumina is 
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negatively charged at this pH. The aqueous ozone decay rates presented in chapter 4 

(section, 4.2.1.4) show the similar trend at different pH values. The results presented in 

Figure 5.6 (aqueous ozone concentration during the ibuprofen removal) can be compared to 

some extent with the ibuprofen removal data presented in Figure 5.4. It is interesting to note 

that there seems to be some relationship between ozone decay and ibuprofen removal. The 

Figure 5.6b has shown that at pH 7.2 the consumption of ozone is the highest in the 

presence of alumina and this corresponds to the highest level of ibuprofen removal (Fig. 

5.6b) when compared with zeolites and ozonation alone. Additionally, it has already been 

investigated that as the pH approaches the point of zero charge of alumina, its activity 

increases (chapter 4). Therefore, higher removal of ibuprofen at pH 7.2 may be due to 

higher catalytic activity and more aqueous ozone decay. At pH 13.0 the ozone decay is 

somewhat similar in ozonation alone and catalytic ozonation (Fig. 5.6c), the ibuprofen 

removal studies at the same pH shows the similar removal. It has been observed that ozone 

decay increase with an increase in pH and this trend is similar in the case of ibuprofen 

removal (Fig. 5.6). The adsorption of ibuprofen may also be an important factor that cannot 

be ignored. The high removal of ibuprofen in the presence of zeolites when compared with 

ozonation alone at pH 3.0 may be due to their high adsorption. The ozone decay results also 

indicate that lesser aqueous ozone is present in the case of zeolites at pH 3.0 when compared 

with ozonation alone.  
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Figure 5.6: The effect of pH on aqueous ozone decay (amount of catalyst = 5 mg/L; O3 = 

0.5mg/min; T = 30 minutes; pH = 3.0, 7.2 and 13.0; T = 20
o
C; V = 490 mL). 

5.2.1.5 Effect of hydroxyl radical scavengers on ibuprofen removal 

The effect of tertiary butyl alcohol (TBA) on the catalytic ozonation at different pH values 

has been investigated in order to understand the mechanism of ibuprofen removal by 

alumina and ZSM-5 zeolites. It has already been reported in chapter 4 that alumina follows 

the radical mechanism and zeolites do not decompose ozone to generate hydroxyl radicals. 
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In this study formation of radicals has been investigated in the presence of ibuprofen. The 

Figure 5.7 shows that TBA did not have any effect on the catalytic ozonation of ibuprofen 

under the investigated pH conditions when ZSM-5 zeolites were used. However, in the case 

of alumina TBA inhibits the removal of ibuprofen and this effect is higher with the increase 

in pH. For example at pH 7.2 the removal of ibuprofen was 82 % in 30 minutes and in the 

presence of TBA it reduced to 43 % (Fig. 5.7b). The high difference in the % removal of 

ibuprofen with and without TBA at pH13.0 may be due to the hydroxide ions in the solution 

that react with ozone to generate hydroxyl radicals. Similar effects can be observed in the 

case of ozonation alone at pH 13.0 (Fig. 5.7a). From the experimental data it may be 

assumed that hydroxyl radicals may not be the dominating active species in the ZSM-5/O3 

ozonation process while ozonation in the presence of alumina follows advanced oxidation 

mechanism, leading to the production of hydroxyl radicals. This hypothesis is supported by 

the results presented in Figure 5.7. The TBA did not have any significant effect in the case 

of ozonation in the presence of ZSM-5 zeolites. This suggested that zeolites do not 

decompose aqueous ozone leading to the production of hydroxyl radicals and this has been 

confirmed by the previous results presented in chapter 4. The results further indicate that 

within the family of zeolites the nature of counter ions does not have a significant effect on 

the mechanism of the process. 
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Figure 5.7: Effect of TBA on ozonation alone, ZSM-5/O3 and Al2O3/O3 (Co (ibu) =15 mg/L; 

T = 20
o
C; pH = 3.0, 7.2 and 13.0; T = 30 minutes; O3 = 0.5 mg/min; TBA = 50 mg/L; V = 

490 mL). 
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5.2.1.6 Effect of phosphates 

The results indicate that the activity of alumina was greatly reduced in the presence of 

phosphates especially at pH 3.0 (Fig 5.8b). These results are consistent with the findings 

presented in chapter 4. The presence of phosphates reduces the formation of reactive oxygen 

species and hence the catalytic activity of alumina is reduced. 

  

 

 

 

 

 

Figure 5.8: Effect of phosphates O3 and Al2O3/O3 (Co (ibu) = 15 mg/L; T = 20
o
C; pH = 3.0, 

7.2 and 13.0; T = 30 minutes; O3 = 0.5 mg/L; phosphates = 50 mg/L; V= 490 mL). 

The above Figure 5.8 clearly shows that the catalytic activity of Al2O3/O3 was reduced at 

pH 3.0, while this effect was insignificant at pH 13.0 when compared with ozonation alone. 

The decrease in the ibuprofen removal for O3 at pH 7.2 and 13.0 in the presence of 

phosphates may be due to the radical scavenger effect of phosphates and hydroxide ions. 

The adsorption studies reveal that % adsorption of phosphates onto alumina at pH 3.0 was 

the highest (Fig. 5.9a). For example the phosphate adsorption on alumina was 27% at pH 

3.0 and at pH 13.0) and it was only 3.5%. As discussed  previously (chapter 4) that 

phosphates adsorption is thought to occur through the ligand exchange, which results in the 

replacement of surface hydroxyl groups of alumina and the deprotonation of phosphates 

[150].  
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Figure 5.9: The adsorption of phosphates onto ZSM-5 zeolites and alumina (T = 20
o
C; pH 

= 3.0, 7.2 and 13.0; T = 30 minutes; phosphates = 50 mg/L: adsorbent dose = 5 mg; V = 490 

mL). 

The phosphate adsorption on alumina and zeolites decreases with the increase in pH this is 

because the presences of hydroxide ions that can suppress the adsorption of phosphates as 

hydroxide ions are stronger base. The results show that the percentage adsorption of 

phosphates in the case of ZSM-5 zeolite was very low when compared with alumina. For 

example Z25H only adsorb 4 % phosphates at pH 3.0 (Fig. 5.9b). The zeolites with high 

alumina content have slightly better adsorption (Fig. 5.9b, c, d). 
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The data presented in Figure 5.10 clearly shows that the presence of phosphates in the water 

does not have a significant effect on the catalytic activity of ZSM-5 zeolites with different 

silica to alumina ratios and counter ions at all studied pH values. This is because phosphates 

do not adsorb on zeolites and do not influence catalytic process involving direct ozone 

reactions between adsorbed species. The alumina behaves differently to ZSM-5 zeolites as 

the decomposition of ibuprofen in the Al2O3/O3 system is reduced in the presence of 

phosphates. 
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Figure 5.10: Effect of phosphates ZSM-5/O3 (Co (ibu) = 15 mg/L; T = 20
o
C; pH = 3.0, 7.2 

and 13.0; T = 30 minutes; O3 = 0.5 mg/L; phosphates = 50 mg/L; V= 490 mL). 

5.2.1.7 Effect of humic acid 

Humic substances (HS) are an important component of natural organic matter and consist of 

many different classes of high molecular weight organic compounds, mainly fulvic acid 

(FA) and humic acid (HA). They contain both aromatic and aliphatic structural components 
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with carboxylic, ketonic and alcoholic functional groups. Because of the large carboxylic 

acid content the humic substances are negatively charged in the pH range in neutral waters 

(pKa1 value is around 4 for protonation of carboxyl groups and around pKa2 8 for 

protonation of phenolate groups). At basic pH a large part of phenolic and carboxylic groups 

are deprotonized [221] and due this reason the molecule becomes more hydrophilic. The 

Figure 5.11 indicates that the % removal of ibuprofen in the presence of alumina has been 

decreased when humic acid is present in the solution. For example the % removal of 

ibuprofen was 83% (reaction time, 30 minutes) in the absence of humic acid and it 

decreased to 60% in the presence of humic acid. In contrast, humic acids do not have a 

significant effect on the ozonation of ibuprofen in the presence of zeolites (Fig. 5.11c, d, e, 

f). 

The adsorption results further reveal that alumina has high adsorption of humic acid on its 

surface in contrast to zeolites. This may be because humic acid at pH 7.2 is ionized, hence 

attracted towards the positively charged surface of alumina. Additionally, it is important to 

consider that the pore size of ZSM-5 zeolites is very small and due to the bigger size of 

humic acid, it cannot penetrate into the pores of ZSM-5 zeolites and adsorption occurs 

mainly on external surface of ZSM-5 zeolites. The decrease of UV254 absorbance to some 

extent is the highest in the presence of alumina when compared with ZSM-5 zeolites as 

indicated in the Figure 5.12a. Within the family of ZSM-5 zeolites, the zeolites with high 

alumina content have high adsorption of humic acids. This suggests that adsorption is one of 

the important steps in the catalytic ozonation process and the significant reduction in 

ibuprofen removal in the case of alumina may be due to the adsorption of humic acid on the 

surface of alumina.  
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Figure 5.11: The effect of humic acid on the removal of ibuprofen by ozonation and 

ozonation in the presence of ZSM-5 zeolites and alumina (Co (ibu) = 15 mg/L; T = 20
o
C; O3 = 

0.5 mg/L; pH = 7.2; CoHA = 7.0 mg/L; catalyst = 5.0 g; V= 490 mL). 
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Figure 5.12: (a) Decrease of UV254 absorbance during ibuprofen ozoation experiments, (b) 

adsorption of humic acid on alumina and ZSM-5 zeolites (Co (HA) = 7.0 mg/L; T = 20
o
C; O3 

= 0.5 mg/L; pH = 7.2; catalyst = 5g; V = 490 mL). 

5.2.1.8 Drinking water experiments 

The aim of this study was to find whether the naturally present substances like phosphates, 

sulphates, carbonates and bicarbonates in drinking water can cause a decrease in the 

efficiency of ozonation in the presence of ZSM-5 zeolites and Al2O3. The results shown in 

Figure 5.13b indicate that the efficiency of ozonation of ibuprofen was decreased in the 

presence of alumina in tap water as opposed to deionised water. For example 83% ibuprofen 

was removed in 30 minutes in deionised water and it was reduced to about 60% in the tap 

water in 30 minutes (Fig. 5.13b). This is because tap water contains inorganic ions such as 

sulfates, carbonates and bicarbonates (Table 5.2) that may adsorb on the surface of alumina 

and replaced the surface hydroxyl groups of alumina. It has been discussed in chapter 4 that 

the presence of phosphates reduces the formation of ROS in ozonation in the presence of 

alumina. Therefore, due to the lack of catalytic activity of alumina in the presence of 

  

   

   

0 

20 

40 

60 

80 

100 

0 5 10 15 20 25 30  U
V

-a
b

so
rb

a
n

ce
 d

ec
r
ea

se
 [

%
] 

Time [min] 

(a) HA ozonation  

O3 Al2O3/O3 
Z25H/O3 Z25Na/O3 
Z900Na/O3 Z1000H/O3 

0 

20 

40 

60 

80 

100 

0 5 10 15 20 25 30 

H
u

m
ic

 a
ci

d
 a

d
so

rp
ti

o
n

 [
%

] 

Time [min] 

(b) HA adsorption 

Al2O3/O3 Z25H/O3 
Z25Na/O3 Z900Na/O3 
Z1000H/O3 



185 

 

inorganic ions, the removal of ibuprofen has been decreased. The comparison between the 

analysis in the presence of deionised water and tap water show no significant difference in 

the case of Z25H (Fig. 5.13a). This suggests that ZSM-5 zeolites have different mechanism 

for the removal of pollutants than that of alumina and since inorganic ions do not adsorb on 

the ZSM-5 zeolites as described in phosphate effect data, therefore the activity of ZSM-5 

zeolites for the removal of ibuprofen is not affected in tap water. 

  

 

 

 

 

 

Figure 5.13: Removal of ibuprofen by ozonation in the presence of ZSM-5 zeolites and 

alumina in tap and deionised water (Co (ibu) = 15 mg/L; T = 20
o
C; O3 = 0.5 mg/L; pH = 7.3 ± 

0.2; catalyst = 5.0 g; V = 490 mL). 

Table 5.2: Tap water composition of Huddersfield area obtained from Yorkshire waters 

[222] 

Parameters Units Mean value 

 
pH - 7.3 

Nitrate mg NO3/L 2.7 

Nitrite mg/L 0.4 < 

Sodium mg/L 9.7 

Total organic carbon mg/L 1.7 

Turbidity NTU 0.1 

Calcium mg/L 13.6 

Magnesium mg/L 2.7 

Total hardness mg/L 18.0 

Sulphates mg/L 32.1 
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5.2.1.9 Reuse performance  

For the reuse performance experiments, among the zeolites Z25H has been selected. The 

results of long-time efficiency of zeolites (Z25H) and alumina in deionised and tap water 

(taken from University of Huddersfield) are presented in Figure 5.14. The results show that 

the catalytic activity of Z25H was constant in both tap and deionised water. However, 

ibuprofen removal decreases with the passage of time in the case of ozonation in the 

presence of alumina when experiments were performed in tap water. This is because of the 

blockage of active sites of alumina due to adsorption of natural water constituents on 

alumina (e.g. phosphates, sulphates, humic substances, etc.).  

Figure 5.15, shows the SEM micrographs obtained from fresh alumina and alumina used in 

reuse performance experiments in tap water. The catalytic ozonation in drinking water and 

the presence of inorganic ions significantly affect the topography of the alumina surface. 

Based on the previous reports [3, 132], this may be attributed to the presence of inorganic 

ions (Table 5.2) as well as organic matter on the surface of alumina. 
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Figure 5.14: Reuse performance experiments for removal of ibuprofen by Z25H/O3 and 

Al2O3/O3 systems (Co (ibu) = 15 mg/L; T = 20
o
C; O3 = 30 mg/L; pH = 7.2; catalyst = 5.0 g; V 

= 490 mL. 

 

 

 

 

 

 

Figure 5.15: Reuse performance experiments for removal of ibuprofen by Z25H/O3 and 

Al2O3/O3 systems (Co (ibu) = 15 mg/L; T = 20
o
C; O3 = 30 mg/L; pH = 7.2; catalyst = 5.0 g; V 

= 490 mL. 
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5.2.2 Part 2 catalytic ozonation of VOCs in water 

This part of the thesis contains the results of an investigation of the efficiency of VOCs 

removal in water on ZSM-5 zeolites and alumina. Furthermore, the parameters such as 

effect of pH, adsorption, inorganic ions, natural organic matter and hydroxyl radical 

scavengers have been investigated. Cumene and chlorobenzenes (1,2-dichlorobenzene and 

1,2,4-trichlorobenzene) were used as target pollutants. Both the H-ZSM-5 and Na-ZSM-5 

forms with different SiO2/Al2O3 ratios and counter ions (Z1000H:SiO2/Al2O3 = 1000, 

Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and Z25Na:SiO2/Al2O3 = 25), and γ-

alumina have been used. It is important to mention here that all the experiments have been 

performed by using a saturated solution of VOCs (contains a mixture of VOCs).  

5.2.2.1 Adsorption of VOCs on Al2O3 and ZSM-5 zeolites 

In order to understand the role of adsorption in the ozonation of VOCs  in the presence of  

ZSM-5 zeolites and alumina, the adsorption capacities of VOCs on alumina and ZSM-5 

zeolites were determined from Langmuir adsorption isotherms and are presented in Table 

5.3. The results show that high silica zeolites (Z1000H and Z900Na) have significantly 

higher adsorption capacities towards VOCs than alumina, Z25H and Z25Na. Adsorption 

capacity for Z1000H and Z900Na was 3.6 mg/g, 1 mg/g and 0.2 mg/g for cumene, 1,2-

dichlorobenzene and 1,2,4-trichlorobenzene respectively. However, Z25H and Z25Na have 

adsorption capacities of 0.7 mg/g, 0.2 mg/g and 0.1 mg/g for cumene, dichlorobenzene and 

trichlorobenzene respectively and the alumina has the least adsorption capacity (0.5 mg/g, 

0.1 mg/g and 0.02 mg/g for cumene, dichlorobenzene and trichlorobenzene respectively). 

This might be due to the higher hydrophobicity of high silica zeolites. The comparison 

between adsorption capacities obtained in the case of ibuprofen and VOCs indicate that 

within the family of zeolites, the zeolites with high alumina content adsorb more ibuprofen 

(ionized form) as opposed to this the zeolites with high silica content adsorb more VOCs. 
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This further supports the hypothesis that hydrophicity and hydrophobicity are important in 

the adsorption process. Zhao et al [223] studied the adsorption of cumene on mesoporous 

ZSM-5 zeolites with different pore sizes (22 Å to 40 Å) and surface areas (380 m
2
/g to 427 

m
2
/g). It has been reported that adsorption of cumene follows Langmuir isotherm model, 

which is in agreement of the results presented in current work. The adsorption capacity of 

cumene was found to be 84 mg/g, which is very high as compared to the results presented in 

Table 5.3. This may be due to the high surface area and large pore size of ZSM-5 zeolites 

used by Zhao et al [223].  

Kasprzyk-Hordern et al [15] studied the removal of cumene and chlorobenzenes on γ-Al2O3. 

The results indicated that alumina does not adsorb the pollutants, and it has been reported 

that this may be due to the hydrophobicity of pollutants. The results presented in Table 5.3 

are in agreement as no significant adsorption of VOCs was observed in the case of alumina. 

       Table 5.3: Adsorption capacities of VOCs on Al2O3 and ZSM-5 zeolites 

 

Adsorbent Adsorption capacity (mg/g) ± S.D 

     Cumene  Dichlorobenzene   Trichlorobenzene 

Z1000H 3.74 ± 0.10 1.07 ± 0.05 0.23 ± 0.04 

Z900Na 3.46 ± 0.10 1.02 ± 0.05 0.20 ± 0.03 

Z25H 0.70 ± 0.05 0.20 ± 0.01 0.10 ± 0.03 

Z25Na 0.60 ± 0.06 0.15 ± 0.02 0.11 ± 0.03 

Al2O3 0.50 ± 0.03 0.10 ± 0.01 0.02 ± 0.01 

 

Further experiments have been performed at pH 3.0, 6.2 and 13.0 in the semi-continuous 

reactor. The data presented in Figure 5.16 was plotted between the ratios of VOCs 

concentrations (concentration at time t/initial concentration) versus adsorption time. The 

results revealed that much higher quantities of cumene, dichlorobenzene and 
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trichlorobenzene were adsorbed on 5.0 g of Z1000H and Z900Na when compared with 

Z25H, Z25Na and alumina (Fig. 5.16). As discussed earlier this may be due to the high 

hydrophobicity of Z1000H and Z900Na when compared with other catalysts. The results at 

different pH values revealed that VOCs have lower percentage adsorption at pH 13.0. This 

is because the surface of catalysts may be populated at this pH with hydroxide ions. Similar 

results have been obtained in the case of coumarin adsorption studies as discussed in chapter 

4 (part 1). The results further revealed that the pH value of solution significantly affects 

absorption of chlorobenzenes (Fig. 5.16 g, h, i). An increase in adsorption was observed 

with decrease of pH of the solution. This effect was more pronounced in the case of 

trichlorobenzene. For example, the C/Co ratio (the results have been presented by C/Co 

ratios instead of percentage removal in the case of VOCs investigation due to the slightly 

variable initial concentrations of VOCs)  was 0.5 of trichlorobenzene at pH 6.2, when 5.0 g 

of Z1000H was used and only 0.4 at 3 pH units higher. On the other hand adsorption of 

cumene on studied catalysts was not significantly pH dependant. This indicates that at acidic 

pH values there are more H
+
 ions and their interactions with chloro groups would be higher 

at this pH value. 
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Figure 5.16: Adsorption of VOCs on ZSM-5 zeolites and alumina (Co (cum) = 19.2 ± 0.5 

mg/L; Co (DCB) = 3.5 ± 0.2 mg/L, and Co (TCB) = 0.5± 0.1 mg/L; T = 20
o
C; pH = 3.0, 6.2 and 

13.0; pH30min = pHo ± 0.3; adsorbent dose = 5.0 g; V= 490 mL). 
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5.2.2.2 The catalytic ozonation and the effect of pH 

The catalytic ozonation of VOCs on zeolites and alumina has been investigated at selected 

pH values of solutions. In this study pH 3.0, 6.2 and 13.0 has been selected. In the work 

presented in chapter 4, the experiments have been performed at the above mentioned pHs as 

well as at pH 8.8. However, zeolites have not been effective at pH 8.8, therefore in this 

work experiments have been performed at pH 6.2 which is also closer to drinking water pH. 

The results shown in Fig 5.17 indicate that as the pH of the solution increases, the difference 

of VOCs removal in ozonation alone and ozonation in the presence of ZSM-5 zeolites 

decreases. For example, the difference in the ratio of the concentration in 30 minutes and the 

concentration at zero time (Ct 30min/Co) between Z1000H/O3 and O3 at pH 3.0 is 0.43 and it 

becomes 0.14 at pH 6.2. This clearly suggested that the activity of ZSM-5 zeolites increases 

with the decrease of pH. These results were supported by the work of Amin et al [23] which 

suggested that zeolites are more active at acidic pH. This may be because aqueous ozone is 

more stabilized at acid pH values. The results for chlorobenzenes also show the similar 

correlation (Fig. 5.17). Furthermore, the results indicated that zeolites with high silica 

content shows better removal, that may be due to the high adsorption of VOCs on more 

hydrophobic ZSM-5 zeolites as indicated by the adsorption results. Fujita et al [11] studied 

the removal of trichloroethene (TCE) on ZSM-5 zeolites with different silica to alumina 

ratios and it was reported that ZSM-5 zeolites with high silica content adsorb TCE with 

higher efficiency and hence have the highest removal of TCE in the catalytic ozonation. 

These results further support the hypothesis presented in this work. The results at pH 13.0 

(Fig. 5.17c, f, i) clearly revealed that zeolites are not effective at this pH value. This may be 

because aqueous ozone is not stabilized at this pH and free radical mechanism dominates at 

this pH value [36]. Similar results have been obtained when the experiments have been 

performed at pH 13.0 in the case of ROS investigation as well as ibuprofen study. 
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The results further show that alumina is not a good catalyst for VOCs this may be due to the 

low adsorption of VOCs on alumina. It has already been investigated in previous work 

(chapter 4) that alumina operates via radical mechanism and its activity is the highest near 

its point of zero charge. These results also support our hypothesis that adsorption of 

pollutants on the surface of catalyst is an important step in contrast to Ernst et al [17]. It has 

been reported by some researchers that surface reactions are vital for effective removal of 

pollutants [3, 16]. In the case of ibuprofen removal (part 1), the alumina can effectively 

remove ibuprofen in water as it has high adsorption on its surface, this further support this 

hypothesis. An alternate explanation may be that molecular ozone reactions may be 

favourable for the removal of VOCs, as alumina decomposes aqueous ozone leading to the 

generation of active oxygen species. 

The results presented in Fig. 5.17 clearly indicate that high silica zeolites are good catalyst 

and they have a higher removal rate than that of O3 alone. Furthermore, the rapid decrease 

in VOCs concentrations in the first 5 minutes in the presence of ZSM-5/O3 may be due to 

the quick adsorption of VOCs on the catalyst surface. Additionally, while comparing the 

adsorption, ozonation and catalytic ozonation, it has been noticed that the removal of 

cumene at pH 3.0 in the first 5 minutes was 10 % higher in the case of catalytic ozonation 

than ozonation plus adsorption. This clearly suggests that ZSM-5 zeolites catalyse VOCs 

removal. 

Among the VOCs the cumene has the highest removal as compared with chlorobenzenes. 

This may be due to the structure of compounds. The cumene contain aromatic ring 

activating group however chlorobenzenes contain electron donating groups therefore they 

are highly resistant to ozone attack. Therefore, ozone selectively reacts with a lesser 

resistant compound (cumene). This further supports our hypothesis that zeolites operate 
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through the direct reaction of ozone and pollutants on their surface. Since hydroxyl radicals 

reacts with pollutants in a non selective way. 
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Figure 5.17: Effect of pH on VOCs removal by ozonation alone and ozonation in the 

presence of ZSM-5 zeolites and alumina (Co (cum) = 19.2 ± 0.5 mg/L, Co (DCB) = 3.5 ± 0.2 

mg/L, and Co (TCB) = 0.5 ± 0.1 mg/L; T = 20
o
C; pH = 3.0, 6.2 and 13.0; pH30min = pHo ± 0.3; 

catalyst amount = 5 g; V = 490 mL; O3 = 0.1 mg/min). 

 

 

 

  

  

    

      

    

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 

C
u

m
en

e 
[C

/C
o
] 

Time [min] 

(a)  pH 3.0 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 

C
u

m
en

e 
[C

/C
o
] 

Time [min] 

(b)  pH 6.2 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 

C
u

m
en

e 
[C

/C
o
] 

Time [min] 

(c) pH 13.0 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 

D
ic

h
lo

ro
b

en
ze

n
e 

[C
/C

o
] 

Time [min] 

(d) pH 3.0  

 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 

D
ic

h
lo

ro
b

en
ze

n
e 

[C
/C

o
] 

Time [min] 

(e) pH 6.2 

 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 

D
ic

h
lo

ro
b

en
ze

n
e 

[C
/C

o
] 

Time [min] 

(f) pH 13.0 

 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 T
ri

ch
lo

ro
b

en
ze

n
e 

[C
/C

o
] 

Time [min] 

 (g) pH 3.0 

 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 T
ri

ch
lo

ro
b

en
ze

n
e 

[C
/C

o
] 

Time [min] 

(h)  pH 6.2 

 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 T
ri

ch
lo

ro
b

en
ze

n
e 

[C
/C

o
] 

Time [min] 

(i) pH 13.0 

 

O3 Al2O3/O3 

Z25H/O3 Z25Na/O3 

Z1000H/O3 Z900Na/O3 



196 

 

5.2.2.3 Formation of organic acids as by-products of reaction 

The acetic and formic acids have been identified only at pH 3.0 (Fig. 5.18) and only in the 

case of ozonation on zeolites. This indicates that the above catalysts lead to higher 

degradation of VOCs when compared with other studied catalytic systems and ozonation 

alone. Similarly, in the case of ibuprofen removal studies the organic acids have been 

identified in the case of zeolites at pH 3.0. This may be because zeolites adsorbed ozone and 

pollutants on their surface and their direct reaction results in the formation of acidic by-

products and molecular ozone does not react with these organic acids. However, in the case 

of alumina the hydroxyl radicals are produced that can even degrade organic acids. 

 

 

 

 

 

 

 

 

 

Figure 5.18: Formation of organic acids during the ozonation of VOCs in the presence of 

ZSM-5 zeolites (Co (cum) = 19.2 ± 0.5 mg/L, Co (DCB) = 3.5 ± 0.2 mg/L and Co (TCB) = 0.5 ± 0.1 

mg/L; T = 20
o
C; pH0 = 3; pH30min = pH0 ± 0.2; catalyst amount = 5 g; V= 490 mL; O3 = 0.1 

mg/min).  
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5.2.2.4 Aqueous ozone decay 

The results presented in the Figure 5.19 show the aqueous ozone decay during the ozonation 

alone and ozonation of VOCs in the presence of ZSM-5 zeolites and alumina. The results 

indicate that ozonation in the presence of alumina and ZSM-5 zeolites show more aqueous 

ozone decay when compared with ozonation alone at pH 3.0 and 6.2 (Fig. 5.19a, b). 

However, at pH 13.0 (Fig 5.19c), the catalysts have ozone decay patterns similar to 

ozonation alone and this pattern is consistent with the other studies as presented in chapter 4 

and part 1 of the chapter 5. It has already been suggested that this may be due to the high 

concentrations of hydroxide ions present at this pH that can decompose aqueous ozone 

leading to the production of hydroxyl radicals. The surface of catalysts may be essentially 

covered with hydroxide ions therefore ozone adsorption or decay by surface sites may not 

be possible.  

The comparison of ozone decay with the VOCs removal show that ozonation in the 

presence of alumina has more aqueous ozone decay when compared with ZSM-5 zeolites. 

Despite this fact, the removal of VOCs has been found to be the lowest in the case of 

alumina. Similarly, the ZSM-5 zeolites with different silica to alumina ratios have almost 

similar ozone decay however, the high silica zeolites (Z1000H, Z900Na) show higher 

removal of VOCs. This can be rationalized by adsorption studies. Since the high silica 

zeolites have high adsorption therefore, they show more removal of VOCs. This indicates 

the importance of surface reactions in the catalytic ozonation process. Furthermore, the 

results support the hypothesis that within the family of zeolites the nature of counter ion 

does not play any significant role in the ozone decomposition. 

 



198 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: The effect of pH on aqueous ozone decomposition (amount of catalyst = 5.0 

mg/L; O3 = 0.1 mg/min; T = 30 minutes; pH = 3.0, 6.2 and 13.0; T = 20
o
C; V = 490 mL). 
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5.2.2.5 Effect of hydroxyl radical scavengers  

The results (Fig. 5.20a, b, c) show that in the case of ozonation alone TBA inhibition effect 

is more pronounced with the increase in pH and it is the highest at pH 13.0 (Fig. 5.20c). 

This is because at a basic pH high concentration of hydroxide ions are present and these 

hydroxide ions promote aqueous ozone decomposition leading to the formation of hydroxyl 

radicals. In the case of alumina TBA clearly inhibited the removal of cumene (Fig. 5.20d, e, 

f) and this effect is more significant with the increase of pH. The high inhibition effect at pH 

13.0 (Fig. 5.20f) may be due to the higher radical scavenger effect of TBA in solution at pH 

13.0. It is to be noted that this effect was also very high for ozonation alone (Fig. 5.20c). It 

has already been concluded from previous work (chapter 4) that alumina is not effective at 

pH 13.0 (pH > PZC). The lack of significant effect of TBA on the efficiency of catalytic 

ozonation on ZSM-5 (Fig. 5.21) suggests that hydroxyl radicals may not be the dominating 

active species. It has been already discussed in this thesis that zeolites may mainly act as 

adsorbent that can attract both pollutants and ozone towards their surface and oxidation of 

pollutants can take place on the surface of zeolites. In the case of ozonation on alumina a 

different mechanism is dominant and alumina can interact with ozone, which leads to the 

generation of hydroxyl radicals. Similarly in the case of chlorobenzenes the presence of 

TBA does not have any significant effect in the case of ZSM-5 zeolites. 

 

 

 

 

 

 

 



200 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Effect of TBA on cumene removal by ozonation in the presence of alumina 

(Co (cum) = 19.2 ± 0.5 mg/L; T = 20
o
C; pH = 3, 6 and 13; pH30min = pH0 ± 0.3; TBA = 50 

mg/L; catalyst amount = 5 g; V = 490 mL; O3 = 0.1 mg/min). 
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Figure 5.21: Effect of TBA on cumene removal by ZSM-5/O3 (Co (cum) = 19.2 mg/L; T = 

20
o
C; pH = 3.0, 6.2 and 13.0; pH30min = pHo ± 0.3; TBA = 50 mg/L; catalyst amount = 5.0 g; 

V = 490 mL; O3 = 0.1 mg/min). 

5.2.2.6 Effect of phosphates 

The adsorption experiments showed that phosphate adsorption on alumina decreases with 

the increase in pH this may be due to the presences of hydroxide ions that can suppress the 

absorption of phosphates, as hydroxide ions are stronger base [132]. For example the 
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phosphates adsorption was 37% in 30 minutes on alumina at pH 3.0 (Fig. 89d) and it 

becomes 10.3 and 4.4 at pH 6.0 and 13.0 respectively (Fig. 5.23d). The high adsorption of 

phosphates at pH 3.0 may also be due to the high concentration of protonated forms of 

phosphates at acidic pH. Hence the surface hydroxyl groups of alumina may be rapidly 

replaced at this pH through ligand exchange mechanism as discussed in chapter 1. 

The results indicate the activity of alumina was reduced to some extent at pH 3.0 (Fig. 

5.22d, e, f).  This is because alumina has a high adsorption capacity towards phosphates, 

which increases with a decrease of pH. It has been studied that the catalytic activity of 

alumina was greatly reduced in the presence of phosphates (chapter 4). The decrease in 

catalytic activity for Al2O3/O3 at pH 13.0 (Fig. 5.22d, e, f) may be due to the radical 

scavenger effect of phosphate [36] as similar reduction was observed in ozonation alone 

(Fig. 5.22a, b, c). In the case of ozonation alone the removal of cumene decreases with the 

increase in pH in the presence of phosphates. This is because of the radical scavenger effect 

of hydroxide ions at high pH values.  
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Figure 5.22: Effect of phosphates on VOCs removal by O3 and Al2O3/O3 (Co (cum) = 19.2 ± 

0.5 mg/L, Co (DCB) = 3.5 ± 0.2 mg/L and Co (TCB) = 0.5 ± 0.1 mg/L; T = 20
o
C; pH = 3, 6 and 

13; pH30min = pH0 ± 0.3; phosphates = 50 mg/L; catalyst amount = 5 g; V = 490 mL; O3 = 

0.1 mg/min). 
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The presence of phosphates in the water did not have a significant effect on the catalytic 

activity of ZSM-5 zeolites at all pH values (Fig. 5.24 and Fig. 5.25). This may be due to the 

lack of adsorption of phosphates on zeolites. The adsorption studies of phosphates during 

the catalytic ozonation process show that zeolites have very low adsorption towards 

phosphates at studied pH values, as shown in the Figure 5.23a, b, c.  

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Adsorption of phosphates on ZSM-5 zeolites and alumina (T = 20
o
C; pH = 

3.0, 6.2 and 13.0; pH30min = pH0 ± 0.2; phosphates = 50 mg/L; catalyst amount = 5.0 g; V = 

490 mL; O3 = 0.1 mg/min). 
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Figure 5.24: Effect of phosphates on VOCs removal by ZSM-5/O3 (Co (cum) = 19.2 ± 0.5 mg/L, Co (DCB) = 3.5 ± 0.2 mg/L and Co (TCB) = 0.5 ± 0.1 

mg/L; T = 20
o
C; pH = 3, 6.2 and 13; pH30min = pH0 ± 0.2; phosphates = 50 mg/L; catalyst amount = 5.0 g; V = 490 mL; O3 = 0.1 mg/min). 
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Figure 5.25: Effect of phosphates on VOCs removal by ZSM-5/O3 (Co (cum) = 19.2 ± 0.5 mg/L, Co (DCB) = 3.5 ± 0.2 mg/L and Co (TCB) = 0.5 ± 0.1 

mg/L; T = 20
o
C; pH = 3, 6.2 and 13; pH30min = pH0 ± 0.2; phosphates = 50 mg/L; catalyst amount = 5.0 g; V = 490 mL; O3 = 0.1 mg/min). 
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5.2.2.7 Effect of humic acid  

 The Fig 5.26b indicates that ozonation of VOCs in the presence of alumina is reduced, for 

example the C/Co ratio in the presence of HA on Al2O3/O3 is 0.58 and it was 0.41 without 

the presence of HA. In contrast the presence of humic acid in the case of zeolites did not 

have any significant effect on VOCs removal (Fig. 5.26c, d, e, f). Especially, this effect is 

lower in the case of high silica zeolites. The adsorption results further reveal that alumina 

reveals high adsorption for humic acid, this may be due to the hydrophilicity of humic acid 

at pH 6.2, while the adsorption of HA on ZSM-5 zeolites was very low and it increases with 

the increase in alumina content as this increased the hydrophilicity of ZSM-5 zeolites (Fig. 

5.26g). For example the adsorption was 35%, 25% and 10% on alumina, Z25 and Z1000H-

Z900Na respectively.  

The decrease of UV254 absorbance is the highest in the case of alumina as indicated in the 

Fig 5.26h, by the percentage decrease in UV254 absorbance. This suggests that adsorption is 

one of the important steps in the catalytic ozonation process and the slight reduction in 

cumene removal rate in the case of alumina is due to the adsorption of humic acid on the 

surface of the catalyst. However, ZSM-5/O3 zeolites have less % UV254 absorbance decrease 

than alumina this may be due to less adsorption of HA on zeolites surface. Additionally, this 

effect is more pronounce in the case of Z25H and Z25Na as they have high adsorption of 

HA when compared with Z1000H and Z900Na. Similar results have been obtained in the 

case of chlorobenzenes as presented in Table 5.4. 
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Figure 5.26: Effect of humic acid on cumene removal by O3, Al2O3/O3 and ZSM-5/O3 (Co 

(cum) = 19.2 ± 0.5 mg/L; T = 20
o
C; pH = 6; pH30min = pH0 ± 0.2; humic acid = 7 mg/L; 

catalyst amount, 5.0 g; V = 490 mL, O3 = 0.1 mg/min; λmax = 224 nm). 
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Table 5.4:  Effect of humic acid on the removal of VOCs by ozonation alone and ozonation in the presence of ZSM-5 zeolites and alumina at pH 

6.2 in 30 minutes (n = 3) 

Sr no Process Amount remove (mg/L) 

with humic acid 

Amount removed (mg/L) 

without humic acid 

  DCB TCB  DCB TCB 

1 Ozone 1.16 ± 0.2 0.11 ± 0.09  1.57 ± 0.04 0.298 ± 0.01 

2 O3/Z900Na 2.48 ± 0.1 0.377 ± 0.05  2.84 ± 0.06 0.415 ±  0.04 

3 O3/Z25Na 1.2 ± 0.2 0.278 ± 0.06  1.70 ± 0.06 0.305 ± 0.02 

4 O3/Z1000H 2.88 ± 0.07 0.459 ± 0.03  3.20 ± 0.1 0.433 ± 0.01 

5 O3/Z25H 1.6 ± 0.2 0.328 ± 0.03  2.58 ±  0.3 0.390 ± 0.04 

6 O3/Alumina 0.38 ± 0.2 0.084 ± 0.04  1.23 ± 0.15 0.353 ±  0.03 
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5.2.2.8 Reuse performance of ZSM-5 zeolites  

In this experiment Z900Na and Z1000H were selected and 5.0 g of catalyst was used in 

490 mL VOCs solution that contains 19 ± 0.5 mg/L, 3.5 ± 0.2 mg/L and 0.5 ± 0.1 mg/L of 

cumene, dichlorobenzene and trichlorobenzene respectively. The experiments have been 

performed for 6 hours, it is important to note that adsorption results indicate that optimum 

adsorption time in the case of zeolites was 30 minutes. The experiments have been 

performed as described in chapter 2.  

 

 

 

 

 

 

 

 

 

 

Figure 5.27: The reuse performance of Z1000H/O3 and Z900Na/O3 for the removal of 

VOCs (Co (cum) = 19.2 ± 0.5 mg/L, C0DCB = 3.5 ± 0.2 mg/L and C0TCB = 0.5 ± 0.1; T = 20
o
C; 

pH = 6; pH30min = pHo + 0.2; catalyst amount = 5 g; V = 490 mL; O3 = 0.1 mg/min). 

The degradation of VOCs in reuse experiments is shown in Fig. 5.27. It can be seen that 

the catalytic activity of Z900Na and Z1000H was constant. Thus the results not only 

indicate the considerable potential for practical application in water treatment. 

Furthermore, it can be considered that the reactions of VOCs and ozone on the catalyst 

surface took place, as if only the adsorption of VOCs on zeolites occurs along with the 
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ozonation inside the solution (adsorption + ozonation), then after some time there should 

be decrease in overall removal since at certain stage ZSM-5 zeolites would reached to 

their maximum adsorption capacity. 

5.2.2.9 Drinking water experiments 

The Z1000H has been selected as it has the highest removal. As expected the comparison 

between the removal of cumene in the presence of deionised water and tap water shows 

similar results for ZSM-5/O3 (Fig. 5.28) and similar results were obtained for 

chlorobenzenes. Since the ZSM-5 zeolites do not form hydroxyl radicals (chapter 4) and 

the adsorption of inorganic ions is very low as shown in section 4.5, hence the removal of 

VOCs is similar to deionised water.  Furthermore, higher decomposition of cumene in the 

presence of tap water when compared with deionised water for the ozonation alone system 

may be due to the higher pH of tap water. 
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Figure 5.28: Removal of VOCs by Z1000H/O3 in tap and deionized water (Co (cum) = 19.2 

± 0.5   mg/L, Co (DCB) = 3.5 ± 0.2 mg/L and Co (TCB) = 0.5 ± 0.1; T = 20
o
C; pHtap = 7.3, 

pH6.2; pH30min = pHo ± 0.2; catalyst amount = 5 g; V = 490 mL; O3 = 0.1 mg/min). 
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5.2.3 Part 3 ozonation of acetic acid in water 

This part of chapter 5 aims to show the potential of ozonation in the presence of ZSM-5 

zeolites and γ-alumina for the removal of organic acids in water. The acetic acid has been 

selected. The result of ozonation of VOCs and ibuprofen on ZSM-5 zeolites indicates the 

formation of organic acids at pH 3.0. However, ozonation of pollutants in the presence of 

alumina does not indicate the formation of acids. Therefore, it is necessary to study the 

removal and adsorption of organic acids on studied catalysts. Among the ZSM-5 zeolites, 

Z25H has been selected for further investigations. 

5.2.3.1 Adsorption of acetic acid on Al2O3 and ZSM-5 zeolites 

The results presented in the Figure 5.29 indicate that alumina has high percentage 

adsorption of acetic acid when compared with Z25H. This may be due to the high 

hydrophilicity of alumina. The process has been found to be pH dependent and the 

adsorption of acetic increases with the decrease of pH. For example the % adsorption of 

acetic acid was 6% and 4% at pH 3.0 in 30 minutes on Al2O3 and Z25H respectively (Fig. 

5.29) and it was reduced to 2% and 1% at pH 13.0 in 30 minutes on Al2O3 and Z25H 

respectively. It is interesting to notice here that although acetic acid is ionized at basic pH 

(pka, 4.7) and it should have high adsorption on alumina at basic pH due to the high 

hydrophilicity of alumina. Additionally, the surface of alumina is positively charged at 

this pH and acetic acid will be negatively charged therefore the interactions between the 

opposite charges lead to the higher adsorption of acetic acid on alumina. However, the 

adsorption was found to decrease with the increase in pH. This may be because with the 

increase in pH the amount of hydroxide ions increases and since hydroxide ions are harder 

base than acetate ions therefore they suppressed the adsorption of acetate ions on alumina. 

Additionally, the adsorption of organic acids on alumina occurs through the ligand 

exchange reaction and high exchange is more favourable in the protonated form of acetic 
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acid. The more adsorption of acetic acid on Z25H at pH 3.0 (Fig. 5.29b) may be due to the 

hydrophobicity of Z25H, as at this pH acetic acid will be unionized. Alternatively, the less 

adsorption of acetic acid on alumina at pH 13.0 may be explained on the bases of the 

charges on the catalyst and acetic acid. The acetic acid will be negatively charged at pH 

13.0 (see part 1 of chapter 5) and due to the forces of repulsion between the catalyst and 

acetic acid its adsorption decreased. 

 

 

 

 

 

  

 

 

 

 

Figure 5.29: Removal of acetic acid by adsorption (Co (Ace) = 15 mg/L; T = 20
o
C; pH, 3.0, 

7.2 and 13.0; adsorbent dose = 5.0 g; V = 490 mL). 

5.2.3.2 The catalytic ozonation and the effect of pH 

The results show that percentage removal of acetic acid increases with an increase in pH 

in the case of ozonation alone and ozonation in the presence of alumina (Fig. 5.30). The 

highest removal has been observed at pH 7.2 (Fig. 5.30b). For example, 19% of acetic 

acid was removed in 30 minutes at pH 7.2 when ozonation is performed in the presence of 

alumina (Fig. 5.30b). It has been reported that the activity of alumina was the highest near 

its point of zero charge [18-20]. Additionally, it has been reported in the current research 
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that ozonation in the presence of alumina promotes aqueous ozone decay leading to the 

production of active oxygen species (chapter. 4) and its activity increases with the increase 

in pH. It was observed that alumina did not show any catalytic activity at pH 13.0 (Fig. 

5.30c). This is due to the change in surface properties of alumina at this pH [132].  

The comparison of adsorption results of acetic acid on Al2O3 and catalytic ozonation 

revealed that the catalytic activity increases with the decrease in the adsorption of acetic 

acid. This may be because the acetic acid adsorbed through ligand exchange reaction [148] 

and poisons the active sites of alumina. Therefore, high adsorption leads to the decrease in 

catalytic activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: Removal of acetic acid by ozonation alone and catalytic ozonation (Co (ace) = 

15 mg/L; O3 = 0.5 mg/min; T = 20
o
C; pH = 3.0, 7.2 and 13.0; Catalyst dose = 5.0 g; V = 

490 mL). 
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The results further reveal that Z25H does not show any catalytic activity for the removal 

of acetic acid when compared with ozonation alone. The higher percentage removal at pH 

3.0 (Fig. 5.30a) when compared with ozonation alone may be due to the high adsorption 

of acetic acid on Z25H at pH 3.0. For example, the removal of acetic acid in the case of 

Z25H/O3 was 5 % at pH 3.0 in 30 minutes and adsorption results indicate the similar 

percentage removal (Fig. 5.30). These results further support our hypothesis that ZSM-5 

zeolites do not decompose aqueous ozone leading to the formation of active oxygen 

species (Chapter. 4) and they mainly operate through the adsorption mechanism, in which 

both the pollutant and ozone adsorb on the surface of catalysts and their reactions on the 

surface. Since acetic acid is highly resistant to direct ozone attack therefore the reactions 

of direct ozone with adsorbed acetic acid are potentially being very slow. 

5.2.3.3 Aqueous ozone decay 

The results of aqueous ozone decay during the ozonation alone and ozonation of acetic 

acid in the presence of Z25H and alumina show that alumina has high ozone decay when 

compared with ozonation alone and Z25H at pH 3.0 and 7.2 (Fig. 5.31a, b). The pH effect 

indicates that ozone decay increases with the increase of pH and it shows some correlation 

with the acetic acid removal studies in ozonation alone and ozonation in the presence of 

alumina. The low aqueous ozone decay at pH 3.0 (Fig. 5.31a) may be due to the less 

catalytic activity of alumina at acidic pH as the concentration of reactive oxygen species 

has been found to be low at this pH (chapter 4). Furthermore, similar trends have been 

obtained in the case of ibuprofen and VOCs studies. An alternative explanation could be 

that the high adsorption of acetic acid at pH 3.0 may poison the active sites of catalysts 

(surface hydroxyl groups). Therefore, less aqueous ozone decay was observed at pH 3.0 in 

the case of ozonation of acetic acid in the presence of alumina. The Z25H also show some 

ozone decay when compared with ozonation alone this may be due to the adsorption of 
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ozone on ZSM-5 zeolites since the ZSM-5 zeolites can adsorb and stabilize the aqueous 

ozone [22]. 

The ozone decay patterns at pH 13.0 are found to be similar for ozonation alone and 

ozonation in the presence of Z25H and alumina (Fig. 5.31c). It is reasonable that this 

effect is not observed at pH 13.0, where the pH is much higher than the pHPZC of alumina, 

and where the surface would be negatively charged. At this pH the surfaces of catalysts 

are essentially covered with hydroxide ions and ozone decay patterns are found to be 

similar to the ozonation alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31: Aqueous ozone decay during the in the presence ozonation alone and 

catalytic ozonation of acetic acid (Co (ace) = 15 mg/L; O3 = 0.5 mg/min; T = 20
o
C; pH = 3.0, 

7.2 and 13.0; Catalyst dose = 5.0 g; V = 490 mL). 

  

     

  

   

0 

1 

2 

3 

4 

5 

6 

0 5 10 15 20 25 30 A
q

u
eo

u
s 

o
zo

n
e 

[m
g

/L
] 

Time [min] 

(a) pH 3.0 

O3 O3/Al2O3 O3/Z25H 

0 

1 

2 

3 

4 

5 

6 

0 5 10 15 20 25 30 A
q

u
eo

u
s 

o
zo

n
e 

[m
g

/L
] 

Time [min] 

(b) pH 7.2 

O3 O3/Al2O3 O3/Z25H 

0 

1 

2 

3 

4 

5 

6 

0 10 20 30 

A
q

u
eo

u
s 

o
zo

n
e 

[m
g

/L
] 

Time [min] 

 (c) 13.0 

O3 O3/Al2O3 O3/Z25H 



218 

 

5.4 Suggested mechanisms 

The mechanisms of ozonation in the presence of alumina and ZSM-5 zeolites have already 

been suggested in chapter 4. In this chapter the presented mechanisms may help to further 

understand the catalytic ozonation processes in the presence of some pollutants.  

5.4.1 Suggested mechanism of catalytic ozonation on alumina 

The mechanism of ozonation in the presence of alumina has been proposed in chapter 4; it 

suggested that alumina promotes aqueous ozone decomposition leading to the formation 

of active oxygen species such as hydroxyl radicals, hydrogen peroxide and superoxide 

radical. The TBA effect experiments presented in chapter 5 further support this 

hypothesis. Similar mechanism has been proposed by Ernst et al [17], however it was 

reported that surface reactions are not vital in catalytic ozonation process on alumina. The 

mechanism presented in chapter 4 was inconclusive in terms of highlighting the 

importance of surface reactions and adsorption in catalytic ozonation on alumina. The 

results presented in chapter 5 clearly indicate that adsorption of pollutants is vital in the 

catalytic ozonation process on alumina. For example, in contrast to ibuprofen the VOCs 

adsorb least and therefore alumina is not effective for their removal in water. It has also 

been reported by some researchers that adsorption of pollutants is vital in the catalytic 

ozonation process on alumina [3, 16]. 

The mechanisms of catalytic ozonation of pollutants on alumina can be rationalized to 

some extent on the basis of the results presented in chapter 5. The interaction of aqueous 

ozone with the surface hydroxyl groups of alumina results in the formation of hydroxyl 

radicals as confirmed in chapter 4. Furthermore, the result of phosphates and TBA effect 

presented in chapter 5 also supports this hypothesis. The formed hydroxyl radicals may 
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adsorb and desorbed quickly and reacts with the adsorbed pollutants (P) on the surface of 

alumina. Finally, the catalyst surface is regenerated by water molecules. 

H
2
O

O
3

OH

oO
2
H

oO
2

_

 oO
3
H  oO

3

-
+ H+

oOH

O
2

O
3

Al
2
O

3

Al
2
O

3
Al

2
O

3

Al
2
O

3

P

P

P
(oxi) +CO

2
+ H

2
O

+ H+

H
2
O

oOH+ OH- + O
2

oO
2

_

O
2

pk
a
= 4.8

pk
a
= 6.2

 

    Figure 5.32: Proposed mechanism of catalytic ozonation on alumina (P = Pollutants). 

5.4.2 Suggested mechanism of catalytic ozonation on ZSM-5 zeolites 

The results presented in the chapter 5 indicate that catalytic ozonation on ZSM-5 zeolites 

is a simple process in which both the pollutants and ozone adsorbed on the surface of 

zeolites and their reactions resulted in the degradation of pollutants leading to the 

formation of oxidation by-products such as organic acids (Fig. 5.33). The mechanism 

presented in chapter 4 clearly suggested that zeolites do not promote the formation of 

hydroxyl radicals; the TBA results presented in chapter 5 further support this hypothesis. 
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Within the family of zeolites the silica to alumina ratio plays a significant role as clearly 

suggested by the adsorption and catalytic ozonation of VOCs and ibuprofen. The results of 

long term activity of pollutants further suggest that zeolites do catalyse the decomposition 

of pollutants and surface reactions are important in the catalytic ozonation on zeolites. 

Corlone et al [212] studied the removal of ethanol on zeolites and was concluded that due 

to the speed of the reaction there was no time for reactants to sorb into the pores and 

catalysis was on the surface of zeolites. This further supports our hypothesis that surface 

reactions are important in the catalytic ozonation process and adsorption of pollutants pays 

a significant role in the rate of reactions. 
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Figure 5.33: Proposed mechanism of catalytic ozonation on ZSM-5 zeolites (P = 

Pollutants). 
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5.5 Summary of results 

The results presented in chapter 5 aims to show the potential of ozonation in the presence 

of ZSM-5 zeolites and alumina for the removal of organic pollutants in water. Both the H-

ZSM-5 and Na-ZSM-5 forms with different SiO2/Al2O3 ratios and counter ions 

(Z1000H:SiO2/Al2O3 = 1000, Z900Na:SiO2/Al2O3 = 900, Z25H:SiO2/Al2O3 = 25 and 

Z25Na:SiO2/Al2O3 = 25), and γ-alumina have been used. Ibuprofen and volatile organic 

chemicals (VOCs) such as cumene, 1,2-dichlorobenzene and 1,2,4-trichlorobenzene have 

been selected as target pollutants. Additionally, the ozonation experiments have been 

performed to study the removal of organic acids, since they have been found as ozonation 

by-products. For this purpose acetic acid was selected. Furthermore, the effect of 

parameters such as pH, adsorption, inorganic ions, hydroxyl radical scavengers and effect 

of natural organic matter on the degradation of pollutants have been investigated. The 

results show that catalytic ozonation with zeolites could substantially enhance the removal 

of VOCs and ibuprofen when compared with ozonation alone. The adsorption results 

revealed that zeolites with high SiO2/Al2O3 ratios had a high adsorption capacity towards 

VOCs and zeolites with low SiO2/Al2O3 ratios had a high adsorption capacity towards 

ibuprofen in its ionised form. Furthermore, the adsorption of acetic acid was found to be 

very low on zeolites. Within the family of zeolites the catalytic activity was found to be 

significantly higher with the increase in adsorption of contaminants. The activity depends 

on silica to alumina ratios and insensitive to the nature of counter ions. In contrast to 

zeolites, the alumina has been found to be more active in the removal of ibuprofen and 

acetic acid in their ionised forms. However, alumina was not effective for the removal of 

VOCs. The adsorption experiments revealed that alumina had the lowest adsorption 

capacity towards VOCs and the highest for ibuprofen and acetic acid when compared with 

zeolites. The catalytic processes have been found to be pH dependent. The catalytic 
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activity of alumina increases with the increase in pH. In contrast, the catalytic efficiency 

of zeolites is the highest at acidic pH.  The presence of hydroxyl radical scavengers, 

phosphates and humic acid did not have a significant effect on the removal of 

contaminants on ZSM-5 zeolites. However, in the case of ozonation in the presence of 

alumina a significant reduction in the ozonation efficiency was observed. It is suggested 

that adsorption of pollutants on the surface of the catalyst plays a critical role in the 

efficiency of the catalyst to effectively remove pollutants. The mechanism of catalytic 

ozonation in the presence of alumina follows a radical pathway. On the other hand, ZSM-

5 zeolites degrade pollutants by direct reaction of molecular ozone with pollutants on their 

surface. 
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5.6 Conclusions 

1. ZSM-5 zeolites are effective especially at acidic pH in the catalytic ozonation of VOCs 

and ibuprofen; however they are ineffective in the removal of acetic acid. Their activity 

depends on their ability to adsorb pollutants and this depends upon their silica to alumina 

ratios and hydrophobic–hydrophilic nature of pollutants. The catalytic effect in ZSM-5 

zeolites is due to their ability to promote surface reactions between the adsorbed ozone 

and pollutants. The presence of phosphates and humic acid has found to have no effect on 

the catalytic activity of zeolites, since they do not adsorb on the zeolites. 

2. The alumina does promote the decomposition of ozone leading to the formation of 

hydroxyl radicals. The adsorption of pollutants plays an important role in the catalytic 

ozonation on alumina and therefore alumina is a good catalyst for ibuprofen removal and 

has been found to be ineffective in the removal of non-polar compounds. The surface 

charge on alumina and pollutants play a significant role in the adsorption process. The 

catalytic activity of alumina is affected in the presence of phosphates and humic acids, as 

they adsorb on alumina and block the active sites of catalyst 
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General conclusions and recommendations for future work 

In this work mechanism of catalytic ozonation on ZSM-5 zeolites and alumina has been 

investigated. Furthermore, application of zeolites and alumina catalysts in the process of 

ozonation of ibuprofen, VOCs and acetic acid in pure water was examined using a 

laboratory-scale reaction system over a range of operating conditions. The effect of 

variables such as pH of the solution, the presence of radical scavenger, effect of 

phosphates, adsorption on catalyst, catalyst dose and presence of humic acid were 

investigated. The long-term efficiency of catalysts and their catalytic efficiency in 

drinking water have also been studied. 

In general, based on the results it is concluded that aqueous ozone decay in the presence of 

alumina occurs by a radical mechanism, involving reactive oxygen species such as 

hydroxyl radicals, hydrogen peroxide and superoxide anion radical. It was found that the 

catalytic activity of alumina was mainly related to its ability to decompose aqueous ozone 

into ROS, which was notably influenced by the pH. The reaction between the aqueous 

ozone and surface hydroxyl groups results in the ozone decomposition (which are most 

reactive at pH close to the pHPZC). 

The ZSM-5 zeolites catalyse the removal of pollutants, however they do not operate 

through radical mechanism as it is clear from the results presented in chapter 4. The 

activity of the zeolites arises through their ability to adsorb ozone and pollutants and 

promote surface reactions between the adsorbed molecules. It has been observed that the 

activity of the zeolites is independent of the nature of counter ions. The catalytic activity 

of zeolites was the highest at acidic pH values and it decreases with the increase of pH. 
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The adsorption of the pollutants plays a significant role in the catalytic ozonation process 

on zeolites and alumina, supporting this view the alumina was not found to be effective 

for VOCs removal, however it effectively catalyses the removal of ibuprofen. Therefore, it 

is concluded that surface reactions play a significant role in the catalytic ozonation 

process. 

The presence of phosphates, TBA and humic acid did not have a significant effect on the 

catalytic ozonation process in the presence of ZSM-5 zeolites. However, the activity of 

alumina was greatly reduced. The zeolites show excellent reuse performance in the 

presence of deionised and drinking water, however the activity of alumina was gradually 

reduced in the presence of drinking water. 

Despite the increasing research efforts in the field of catalytic ozonation that is mainly 

focused on the introduction of new catalysts the mechanisms are still largely known. It is 

very important to have an understanding of the mechanisms of catalytic ozonation in order 

to apply this technique in water treatment at an industrial scale. The encouraging results 

obtained from current research work will help to understand the catalytic ozonation 

process in two different types of catalysts (zeolites and alumina). It has been confirmed 

that alumina operates through an advanced oxidation process. Furthermore, the formation 

of reactive oxygen species such as superoxide ion radical and hydrogen peroxide has been 

confirmed for the first time in ozonation in the presence of alumina. Additionally, a direct 

proof of the formation of hydroxyl radicals has been obtained by using coumarin as probe 

molecule. In this research work a detailed investigation has been done in order to 

understand the processes occurring in the presence of ZSM-5 zeolites, it has been found 

that zeolites do not promote the formation of hydroxyl radicals.  
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The work on different kind of pollutants at varying conditions further helps to understand 

that why catalysts are effective for some pollutants and under certain conditions.  

The advanced oxidation catalysts may not be very effective in the water containing high 

concentrations of inorganic ions and natural organic matter; therefore ZSM-5 zeolites can 

be good catalysts in such environmental conditions as indicated by the results presented in 

the current study. However, zeolites do not promote the hydroxyl radicals therefore they 

are not effective for the removal of highly ozone resistant pollutants (organic acids). It is 

recommended that by using a combination of ZSM-5 zeolites and alumina better results 

can be obtained. In future more work is required for feasible implementation to industrial 

scale. In this regard following recommendations for further work are suggested. 

 Since adsorption of pollutants plays important role in the catalytic ozonation 

process, therefore, a combination of both zeolites and alumina can be tested to 

remove pollutants from drinking water. 

 Since the mechanisms of other catalysts are largely unknow as indicated in 

literature review, therefore the mechanisms of other catalysts can be assessed by 

using spectroscopic probes (coumarin, amplex red and NBD-Cl). 

 Since the reaction by-products may decompose aqueous ozone, leading to the 

formation of ROS, therefore identification and evaluation of reaction intermediates 

are important to further understanding of the process. 

 For realistic applications of catalytic ozonation, in addition to a single target 

pollutant, mixtures of micropollutants can be tested. 

 The catalyst effectiveness must be assessed by using TOC analyser in order to 

investigate the total mineralization of pollutants. 
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 To investigate the mass transfer limitations it is proposed to run a continuous 

catalytic ozonation system. 
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Appendix A (Loss of VOCs due to volatization) 

Before the ozonation and catalytic ozonation of VOCs (chapter 5) in the reaction column, 

the of VOCs loss due to volatization has been calculated and the results are presented in 

the following tables 

Table A.1: Loss of cumene inside the column without ozonation 

Concentrations Concentrations  

(mg/L) 

Average concentration 

(mg/L) 

% Loss 

Initial Conc. 20.16 16.03 17.0 17.7 ± 2.3 

4.7 ± 4 Final Conc. 18.4 15.4 16.89 16.9 ± 1.5 

 

Table A.2: Loss of 1,2-dichlorobenzene inside the column without ozonation 

Concentrations Concentrations 

(mg/L) 

Average  concentration   

(mg/L) 

% Loss 

Initial Conc. 2 2.3 1.8 2.03 ± 0.3 

4.2 ± 3 Final Conc. 1.95 2.1 1.7 1.92 ± 0.2 

 

Table A.3: Loss of trilorobenzene inside the column without ozonation 

Concentrations Concentrations  

(mg/L) 

Average  concentration   

(mg/L) 

% Loss 

Initial Conc. 0.32 0.267 0.251 0.281 ± 0.04 

2.5 ± 2 Final Conc. 0.31 0.267 0.239 0.274 ± 0.04 

 

From the above tables it has been seen that average % loss in the case of cumene is 4.7 ± 

4% while it is 4.2 ± 3%, 2.5 ± 2% for dichlorobenzene and trichlorobenzene. This may be 

due to the vapour pressure of VOCs. Since vapour pressure is in order of cumene > 

dichlorobenzene > trichlorobenzene. As the % loss is not significant hence the analytes 

can be used for further experiments inside the column. 
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Appendix B (pH changes during the ozonation and catalytic ozonation) 

The appendix B show the results of change in pH during the ozonation and catalytic 

ozonation process 

Table A.4:  Change in pH during the ozonation and catalytic ozonation of coumarin 

(initial pH= 3) 

Time(min) Change in pH ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

0 3.01 ± 0.01 3.02 ± 0.01 3.01 ± 0.01   3.02 ± 0.01 3.01 ± 0.01 3.01 ± 0.01 

5 3.01 ± 0.01 3.01 ± 0.01 3.02 ± 0.01 3.01 ± 0.03 3.03 ± 0.01 3.03 ± 0.02 

10 3.02 ± 0.02 3.02 ± 0.01 3.02 ± 0.01 3.01 ± 0.01 3.05 ± 0.02 3.05 ± 0.02 

15 3.01 ± 0.02 3.01 ± 0.03 3.02 ± 0.02 3.02 ± 0.02 3.06 ± 0.01 3.04 ± 0.01 

20 3.02 ± 0.02 3.02 ± 0.02 3.01 ± 0.02 3.02 ± 0.02 3.06 ± 0.01 3.06 ± 0.01 

25 3.03 ± 0.02 3.01 ± 0.01 3.02 ± 0.02 3.01 ± 0.01 3.07 ± 0.02 3.06 ± 0.02 

30 3.01 ± 0.02 3.01 ± 0.02 3.01 ± 0.02 3.02 ± 0.01 3.06 ± 0.02 3.09 ± 0.02 

 

Table A.5: Change in pH during the ozonation and catalytic ozonation of coumarin 

(initial pH= 6.2) 

Time(min) Change in pH ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

0 6.21± 0.01 6.21 ± 0.01 6.23 ± 0.01   6.21 ± 0.01 6.22 ± 0.01 6.21 ± 0.01 

5 6.22 ± 0.02 6.22 ± 0.02 6.24 ± 0.01 6.20 ± 0.01 6.23 ± 0.02 6.24 ± 0.01 

10 6.21 ± 0.02 6.23 ± 0.02 6.28 ± 0.02 6.18 ± 0.02 6.28 ± 0.02 6.25 ± 0.01 

15 6.18 ± 0.02 6.25 ± 0.01 6.26 ± 0.02 6.19 ± 0.02 6.26 ± 0.02 6.29 ± 0.02 

20 6.19 ± 0.01 6.21 ± 0.02 6.27 ± 0.02 6.18 ± 0.01 6.27 ± 0.03 6.32 ± 0.02 

25 6.18 ± 0.01 6.23 ± 0.03 6.28 ± 0.03 6.18 ± 0.01 6.28 ± 0.02 6.34 ± 0.02 

30 6.18 ± 0.01 6.24 ± 0.01 6.28 ± 0.02 6.18 ± 0.01 6.28 ± 0.01 6.31 ± 0.02 
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Table A.6: Change in pH during the ozonation and catalytic ozonation of coumarin 

(initial pH= 8.8) 

Time(min) Change in pH ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

0 8.82± 0.01 8.82 ± 0.01 8.81 ± 0.01   8.83 ± 0.01 8.82 ± 0.01 8.82 ± 0.01 

5 8.80 ± 0.01 8.81 ± 0.02 8.86 ± 0.01 8.81 ± 0.03 8.86 ± 0.02 8.86 ± 0.02 

10 8.81 ± 0.01 8.80 ± 0.01 8.89 ± 0.02 8.80 ± 0.02 8.85 ± 0.02 8.89 ± 0.02 

15 8.78 ± 0.01 8.81 ± 0.02 8.85 ± 0.01 8.79 ± 0.01 8.89 ± 0.01 8.89 ± 0.01 

20 8.79 ± 0.01 8.79 ± 0.01 8.88 ± 0.02 8.78 ± 0.02 8.92 ± 0.02 8.91 ± 0.01 

25 8.80 ± 0.02 8.79 ± 0.01 8.87 ± 0.01 8.78 ± 0.01 8.93± 0.03 8.92 ± 0.01 

30 8.79 ± 0.02 8.79 ± 0.02 8.88 ± 0.01 8.77 ± 0.01 8.94 ± 0.02 8.93 ± 0.03 

 

Table A.7: Change in pH during the ozonation and catalytic ozonation of coumarin 

(initial pH= 13) 

Time(min) Change in pH ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

0 13.03 ± 0.01 13.03 ± 0.02 13.03 ± 0.02 13.02 ± 0.01 13.01 ± 0.01 13.02 ± 0.01 

5 13.01 ± 0.03 13.03 ± 0.01 13.03 ± 0.02 13.02 ± 0.01 13.02 ± 0.01 13.03 ± 0.02 

10 13.02 ± 0.03 13.01 ± 0.01 13.04 ± 0.02 13.01 ± 0.01 13.04 ± 0.01 13.01 ± 0.02 

15 12.99 ± 0.03 13.04 ± 0.01 13.01 ± 0.02 13.01 ± 0.01 13.02 ± 0.01 13.02 ± 0.03 

20 13.01± 0.02 13.01 ± 0.01 13.02 ± 0.01 13.02 ± 0.02 13.02 ± 0.02 13.01 ± 0.03 

25 12.99 ± 0.01 13.04 ± 0.01 13.03 ± 0.01 13.02 ± 0.02 13.01 ± 0.02 13.03 ± 0.03 

30 13.01 ± 0.02 13.04 ± 0.01 13.03 ± 0.02 13.01 ± 0.02 13.03 ± 0.01 13.01 ± 0.03 
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The above tables show the results of pH changes during the ozonation and catalytic ozonation 

of coumarin (chapter 4). It is clear from the results that there is no significant change in pH 

during the process has been observed. Similar results have been obtained for all other 

experiments conducted in this research work. 

Appendix C (Colour changes in the catalytic process of amplex red and NBD-Cl) 

The Figure A.1 shows the change in the colour in an ozonation sample of NBD-Cl in the 

presence of alumina. As described in the chapter 4 that the reaction of superoxide with NBD-Cl 

results in the formation of a yellow fluorescent product. The Figure A.1 clearly indicates the 

formation of yellow colour product. 

   

 

Figure A.1: Change in the colour of solution in the ozonation of NBD-Cl in the presence of 

alumina at pH 8.8. 

The Figure A.2 shows the colour changes during the ozonation process in the presence of 

alumina during hydrogen peroxide studies. This indicates the formation of pink colour 

resorufin (the product of the reaction of amplex red and hydrogen peroxide) 
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Figure A.2: Change in the colour of solution in the ozonation of amplex red in the presence of 

alumina at pH 6.2. 

Appendix D (Adsorption optimum time of VOCs and ibuprofen) 

The results presented in Figure A.4 show that optimum time (1 hour) of adsorption of VOCs on 

zeolites and alumina. The Figure A.3 shows the results of ibuprofen adsorption on alumina and 

ZSM-5 zeolites is 4 hrs. After this time no significant change in the concentration of adsorbed 

ibuprofen has been observed. Therefore, this time was selected for the determination of 

adsorption capacities as described in chapter 2. 

    

Figure A.3: Adsorption optimum time of adsorption for the removal of ibuprofen by ZSM-5 

zeolites and alumina (Co (ibu) = 20.0 mg/L, T = 20
o
C; pH = 7.2; pH30min = pHo + 0.1; catalyst 

amount = 1.0 g; V = 25 mL). 
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Appendix D (Adsorption optimum times of VOCs and ibuprofen) 

Appendix d shows the results of adsorption optimum time study for VOCs and 5  

 

 

 

 

 

 

 

 

Figure A.4: Adsorption optimum time of adsorption for the removal of VOCs by ZSM-5 

zeolites and alumina (Co (cum) = 19.2 mg/L, C0DCB = 3.5 mg/L and C0TCB = 0.5; T = 20
o
C; pH = 

6; pH30min = pHo + 0.2; catalyst amount = 1.0 g; V = 25 mL). 

Appendix E (Off-gas ozone during the ozonation and catalytic ozonation) 

The results of ozone gas come out of the reactor during the ozonation and catalytic ozonation 

have been presented in appendix e. The results show that slightly higher amount of ozone come 

out during the ozonation alone when compared with ozonation in the presence of catalysts (30 

minutes). This may be due to the adsorption and decomposition of ozone on catalysts. 

Additionally, the results at different pH indicate that less gaseous ozone come out at higher pH 

values , this may be due to the low stability of ozone at higher pH values in the water therefore 
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more ozone may be consumed and less come out. The results at pH 13.0 show that ozonation 

and catalytic ozonation have similar ozone concentrations this may indicate that catalysts are 

not active at this pH as described in the chapter 4. It is important to note that in the case of 

VOCs study gaseous ozone has not been found. This may be due to low initial dose of ozone. 

Therefore, most of the ozone reacted with water and gaseous ozone come out may be less than 

that of the limit of detections of the method. 

Table A.8: Gaseous ozone concentrations during the ozonation and catalytic ozonation of 

coumarin  

pH Gaseous ozone concentrations (mg/L) ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

pH 3.0 2.3 ± 0.1 1.8 ± 0.1 1.7 ± 0.2   1.8 ± 0.1 1.7 ± 0.2 1.4 ± 0.2 

pH 6.2 1.3 ± 0.1 0.8 ± 0.1 0.6 ± 0.3 0.8 ± 0.1 0.8 ± 0.2 0.5 ± 0.1 

pH 8.8 0.8 ± 0.2 0.6 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 

pH 13.0 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 

 

Table A.9: Gaseous ozone concentrations during the ozonation and catalytic ozonation of 

NBD-Cl  

pH  Gaseous ozone concentrations (mg/L) ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

pH 3.0 2.1 ± 0.2 1.8 ± 0.1 1.8 ± 0.1   1.8 ± 0.1 1.7 ± 0.2 1.4 ± 0.2 

pH 6.2 1.1 ± 0.3 0.5 ± 0.3 0.8 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.3 ± 0.1 

pH 8.8 1.0 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.1 ± 0.1 

pH 13.0 0.1 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.1 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 
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Table A.10: Gaseous ozone concentrations during the ozonation and catalytic ozonation of 

amplex red  

pH  Gaseous ozone concentrations (mg/L) ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

pH 3.0 2.0 ± 0.2 1.6 ± 0.2 1.6 ± 0.1   1.7 ± 0.1 1.5 ± 0.3 1.3 ± 0.1 

pH 6.2 1.3 ± 0.2 0.6 ± 0.1 0.5 ± 0.3 0.6 ± 0.2 0.7 ± 0.1 0.5 ± 0.1 

pH 8.8 1.1 ± 0.2 0.3 ± 0.2 0.5 ± 0.1 0.5 ± 0.2 0.4 ± 0.2 0.2 ± 0.1 

pH 13.0 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

  

 Table A.11: Gaseous ozone concentrations during the ozonation and catalytic ozonation of 

ibuprofen  

pH  Gaseous ozone concentrations (mg/L) ± SD 

 O
3
 Z1000H/O

3
 Z900Na/O

3
 Z25H/O

3
 Z25Na/O

3
 Alumina/O

3
 

pH 3.0 1.5 ± 0.2 0.8 ± 0.2 0.9 ± 0.2   0.7 ± 0.2 0.7 ± 0.2 0.4 ± 0.1 

pH 7.2 0.8 ± 0.1 0.4 ± 0.1 0.5 ± 0.3 0.4 ± 0.1 0.4 ± 0.2 0.1 ± 0.1 

pH 13.0 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 

 

Appendix F (Absorbance spectrum of resrufin in ozonation in the presence of 

alumina) 

The figure A.5 clearly indicates that the formation of resrufin increases in ozonation in the 

presence of alumina. This clearly suggested that ozone decomposition in the presence of 

alumina leads to the formation of H2O2. 
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Figure A.5: Resorufin formation during the ozonation in the presence of alumina (CoAmp= 20 

mg/L; catalyst = 2.0 mg/L; T = 25
o
C; pH = 6.2; pHt30min = 6.2 ± 0.2; V = 190 mL). 

Appendix G (First order plots of ozone decay in ozonation alone and ozonation in 

the presence of catalysts at pH 3.0, 6.0 and 13.0) 

The figure A.6, A.7, A.8, A.9, A.10 ans A.11 clearly indicates that ozone decay at pH 3.0, 6.0 

and 13.0 in the case of ozonation alone and ozonation in the presence of catalysts follows first 

order kinetics.  
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Figure A.6: First order kinetic plots of ozonation alone, Al2O3/O3 and Z25H/O3 (O3 initial = 3.0 

mg/L; catalyst = 0.95 mg/L; T = 25
o
C; pH = 3.0; V = 190 mL). 
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Figure A.7: First order kinetic plots of Z900Na, Z1000H/O3 and Z25H/O3 (O3 initial = 3.0 mg/L; 

catalyst = 0.95 mg/L; T = 25
o
C; pH = 3.0; V = 190 mL). 
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Figure A.8: First order kinetic plots of ozonation alone, Z1000H/O3 and Al2O3/O3 (O3 initial = 

2.1 mg/L; catalyst = 0.95 mg/L; T = 25
o
C; pH = 6.0; V = 190 mL). 
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Figure A.9: First order kinetic plots of Z25H/O3, Z25Na/O3 and Z900Na/O3 (O3 initial = 2.1 

mg/L; catalyst = 0.95 mg/L; T = 25
o
C; pH = 6.0; V = 190 mL). 
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Figure A.10: First order kinetic plots of O3, Z25Na/O3 and Al2O3/O3 (O3 initial = 1.5 mg/L; 

catalyst = 0.95 mg/L; T = 25
o
C; pH = 13.0; V = 190 mL). 
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Figure A.11: First order kinetic plots of Z25H /O3, Z900Na/O3 and Z1000H/O3 (O3 initial = 1.5 

mg/L; catalyst = 0.95 mg/L; T = 25
o
C; pH = 13.0; V = 190 mL). 
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