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Abstract  

KEY WORDS: Pressurised Metered Dose Inhalers, Dry Powder Inhalers, Inhalation 

Characteristics, Inhalation Profiles, Asthma, COPD  

Inhaled administration is the mainstay of asthma and chronic obstructive pulmonary 

disease (COPD) management using either a pressurised metered dose inhaler (pMDI) or 

a dry powder inhaler (DPI). Poor disease control and increased hospitalisations is linked 

to poor inhaler technique. Previous studies to assess inhaler technique have used 

subjective measures and there is very limited data about the inhalation characteristics 

used by patients when they use their inhalers. 

Inhalation flow profiles when patients use their pMDI and inhalation pressure profiles 

when they use DPIs have been measured using 659 subjects (106 children with asthma 

[CHILD], 361 adults with asthma [ADULT], 142 COPD [COPD] and 50 healthy 

volunteers [HEALTHY]) in 5 separate studies. All patient studies used their real life 

inhaler technique. One of the studies also evaluated the value of using a pMDI co-

ordination aid and training these patients to prolong their inhalation whilst a different 

one investigated the impact of using enhanced training when using a DPI. 

The first study, 20 CHILD, 57 ADULT and 32 COPD subjects, revealed that the mean 

(SD) inhalation flows through a pMDI were 108.9 (40.4), 146.0 (58.8) and 107 (50.6) 

L/min, respectively and only 7, 10 and 10 used a slow flow. In the second pMDI study 

involving, 20 CHILD, 130 ADULTS, 31 COPD patients, their flows were 70.5 (36.4), 

131.4 (60.8) and 70.9 (28.1) L/min and 5, 53 and 10 used their pMDI with good co-

ordination. However only 3, 6 and 9 patients had good co-ordination and slow flow. In 

the third study, 71 ADULT patients, the mean (SD) pMDI inhalation flow was 155.6 

(61.5) L/min which decreased (p<0.001) to 112.3 (48.4) when the pMDI was fitted with 

a co-ordination aid. This was due to the increased resistance to airflow from the aid. 

Inhalation flow further reduced (p<0.001) to 73.9 (34.9) L/min when patients were 

trained to prolong their inhalations. Their inhaled volumes did not change whereas 

mean (SD) inhalation times were 1.60 (0.21), 1.92 (0.80) and 2.66 (1.03) seconds (p< 

0.001) respectively. There was a good correlation between their inhaled volume and 

forced vital capacity with a ratio of 0.7 suggesting that the patient used a full inhalation. 

A DPI study, involving 16 CHILD, 53 ADULT and 29 COPD patients, measured 

inhalation characteristics through different DPIs (low to high resistance) when patients 

used their real life DPI inhalation manoeuvres. The inhalation characteristics were 

lower in CHILD and highest in ADULT. Overall flows were higher when using low 

resistance DPIs but the pressure changes and the acceleration of the inhalation flow 

were significantly higher with high resistance DPIs which suggest more efficient de-

aggregation of the formulation. There was a tendency for more problems with low 

resistance DPIs than high resistance DPIs. The last study involved CHILD, ADULT, 

COPD and HEALTHY subjects (50 of each) when they inhaled through a Spiromax and 

a Turbuhaler (similar resistance) after standard verbal inhalation technique training and 

when using enhanced training with an IN-Check Dial. The order of inhalation 

characteristics was HEALTHY > ADULT > COPD > CHILD. Significant (p<0.001) 

improvements in the inhalation flows, pressure changes and acceleration of the flow 

were achieved in all groups after the enhanced training.  

The studies provide an insight into the inhalation characteristics of patients when they 

use different inhalers. The main problem with pMDI use was short inhalation times and 

when patients were trained to prolong their inhalation then flows reduced. Enhanced 

training when using a DPI significantly improved the technique of all patients. 
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1.0 Introduction 

Respiratory disorders are steadily increasing in prevalence, and impose a significant 

economic burden all over the world. Asthma and chronic obstructive pulmonary 

disease (COPD) are obstructive lung diseases and are two of the most common 

healthcare burdens worldwide. According to mortality statistics COPD is the fifth 

leading cause of death and the latest WHO estimates have predicted it to become the 

third leading cause of death by the year 2020 (Stockley et al., 2006). On the 

international scale, the prevalence of asthma is between one percent and 18 percent 

of the population in different countries according to the Global Initiative for the 

Asthma Management (GINA, 2008) report. There are approximately 3 deaths per day 

in the UK that are attributed to asthma and these are mostly in children and young 

adults and most of these are preventable. 

The inhaled route of administration is the optimal method of drug delivery for the 

treatment of patients with obstructive airway diseases (Pauwels et al., 1997). The 

most important advantage of inhaled therapy is that drugs are delivered directly onto 

the sites of action producing higher local concentrations for better efficacy and with 

significantly less systemic exposure hence a reduced of risk of side effects (Toogood, 

1989; Lipworth, 1999; Broeders et al., 2009). The therapeutic drugs used in the 

treatment of asthma and COPD, mostly bronchodilators and corticosteroid anti-

inflammatory agents, therefore have been formulated as inhaled aerosols. 

Consequently, a wide array of inhalation devices have been introduced to the market 

and have become the prime methods for drug administration in the treatment of 

patients with obstructive pulmonary diseases (van Beerendonk et al., 1998). 

The pressurised metered dose inhaler (pMDI) is presently the most commonly used 

inhaler. Alternatively, drugs can be administrated by a dry powder inhaler (DPI) or a 
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nebuliser. Nebulisation is not routinely used and usually reserved for administering 

large doses especially during acute exacerbations, antibiotics or drugs that are 

difficult to formulate in a pMDI or DPI. Each class of inhaler device has its pros as 

well as cons. Despite the pressurised metered dose inhaler (pMDI) being widely 

prescribed, many patients do not obtain the full therapeutic benefit because their 

inhalation technique is poor (Paterson and Crompton, 1976; Crompton, 1982b; 

Pedersen et al., 1986; Larsen et al., 1994; Lenney et al., 2000). Thus the benefits of 

inhaled therapy are accompanied by the drawbacks, particularly the challenges 

patients face when using their inhaler devices. Although inhaled therapy has 

revolutionised the management of patients with obstructive lung disease, it is well 

known that the inhalation technique used with pMDIs can substantially influence the 

clinical response to inhaled medications.  

Several studies have highlighted inhaler technique problems; 14% to 89% of the 

patients using their pMDI have either made at least one technique error or completely 

misused their inhaler (Paterson and Crompton, 1976; Epstein et al., 1979; Larsen et 

al., 1994). Frequent misuse of inhaler devices has been documented for patients 

prescribed pMDIs as well as those using dry powder inhalers (Liard et al., 1995; 

Cochrane et al., 2000; Molimard et al., 2003; Molimard and Le Gros, 2008; Giraud et 

al., 2011). Despite the availability of efficacious therapies, asthma control is often 

poor (Chapman et al., 2008; Giraud et al., 2011) and the improper use of inhaler 

devices is one major cause of poor disease control (Crompton, 2006; Molimard and 

Le Gros, 2008; Virchow et al., 2008). It has been suggested that approximately 50% 

of patients do not obtain sufficient benefit from their inhalers because of poor inhaler 

technique (Crompton and Duncan, 1989). A correct inhaler technique by the patient 

is crucial for the success of the therapy (Horsley and Bailie, 1988; Larsen et al., 
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1994; Virchow et al., 2008). It has been acknowledged that the most commonly 

encountered pMDI technique problems by patients are; poor coordination of 

inhalation with inhaler actuation, stopping to inhale shortly after activating the pMDI 

and inspiration through the nose (Crompton, 1982b). It has also been demonstrated 

that many patients fail to inhale slowly and deeply through their MDI to achieve the 

desirable flow rate of < 90 l/min for sufficient lung deposition (Al-Showair et al., 

2007a). Only 8% of patients use a slow inhalation with good co-ordination (Al-

Showair et al., 2007a). Studies have shown that poor inhaler technique is linked to 

poor disease control (Giraud & Roche, 2002) and increased hospitalisation (Melani 

et al., 2011). 

Frequent inhaler training technique and proper inhaler handling are recommended 

particularly by asthma management guidelines, and that inhaler technique should be 

checked regularly during follow-up (Newman et al., 1980; Broeders et al., 2003a). 

However, the provision of inhaler technique training remains irregular. The majority 

of studies suggested that a large proportion of patients do have problems using their 

inhalers but they are subjective assessments. The studies of this thesis have been 

designed to provide objective assessments of inhaler technique by measuring 

inhalation profiles when the patients use their inhalers and at the same time to 

quantify how patients use their inhalers. The studies have been designed to measure 

the inhalation flow rate, the time between the start of an inhalation and the pressing 

of the canister (co-ordination) and inhaled volume when patients inhale through an 

empty pMDI. In addition the inhalation profiles of patients have been used to solve 

inhalation technique problems through pMDIs. 

Dry powder inhalers (DPIs) were introduced to the market to overcome the problems 

associated with the use of pMDI and to solve the problems caused by the damage to 
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the ozone layer by the propellants in pMDIs (Keating and Faulds, 2002; Lavorini et 

al., 2008b). All DPIs are classified as passive devices because the patient‟s inhalation 

reacts with the resistance inside the inhalation channel of a DPI to provide a 

turbulent force that de-aggregates the formulation. The drug particles that are 

emitted, after the de-aggregation, have the greatest likelihood for deposition in the 

airways. It is now recognized that inhalers differ in their efficiency of drug delivery 

to the lungs, depending on the form of the device, its internal resistance, formulation 

of the medication, particle size, velocity of the aerosol cloud and ease with which 

patients can use the device (Bisgaard et al., 2002). 

Due to the de-aggregation process all DPIs currently available have a flow dependent 

dose emission property. Different studies have demonstrated that there is a 

relationship between the DPI‟s resistance and the inspiratory flows achieved by the 

patient through each DPI and also the amount of the drug emitted and hence 

deposited in the lung (Clark and Hollingworth, 1993; Pauwels, 1997; Al-Showair et 

al., 2007a; Chrystyn, 2009). Generally, patients using DPIs are required to inhale as 

hard and deep as they can for as long as they can and that this fast inhalation should 

begin to create a sufficient acceleration rate in order to maximise de-aggregation of 

the emitted dose and drug delivery to lung (Chege and Chrystyn, 1994; Borgstrom, 

2001; Van der Palen, 2003). It is normally accepted that a minimum peak inhalation 

flow (PIF) of 30 l/min is required through the inhaler to provide sufficient de-

aggregation to create a total emitted dose with fine drug particles able to deposit in 

the lung (Chrystyn, 2009). However, not all patients are able to achieve a sufficient 

inhalation flow through their device (Al-Showair et al., 2007). Therefore, instructing 

and training the patients on the correct inhalation technique to improve their inhaler 
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use is required (Newman et al., 1980; Horsley and Bailie, 1988; Broeders et al., 

2003a).  

Methods of assessing a patient‟s DPI inhalation technique are mostly subjective 

whereas it is possible to measure their inhalation flow with respect to time (Bisgaard 

et al., 1998; Broeders et al., 2003a; Chrystyn and Price, 2009a). These inhalation 

profiles through a DPI would provide objective data such as the peak inhalation flow, 

the time to the peak inhalation flow, the duration of the inhalation, the inhalation 

volume and the acceleration of the inhalation flow. These can be designed as simple 

methods that can be used in the clinic with the inhaler that the patient uses. Using 

this simple method patient inhalation profiles can be electronically captured using 

their untrained technique when they visit the clinic. Hence information about their 

real life inhalation technique can be obtained. These methods would objectively 

highlight the scale of the problem with respect to inhalation technique. Linked to this 

methodology, simple and novel solutions to improve inhaler technique can be 

indentified and validated. Since these electronic methods are simple and non-

invasive and patients inhale through empty inhalers then it is convenient to measure 

inhalation profiles of children with asthma, adults with asthma and patients with 

COPD. 

The inhalation profile of patients using their real life inhaler technique can be 

captured using simple electronic methods. The captured inhalation characteristics can 

be used to highlight the problems made by patients and also to identify simple 

methods to implement during the inhaler technique training of patient. 

The work in this thesis has identified and designed electronic methodology to capture 

inhalation profiles during inhalation use and demonstrate the problems faced by 

patients (including children with asthma, adults with asthma and COPD) when they 
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use their inhalers (pMDIs and DPIs). Using these objective methods (scale 

measurements) the errors made by patients can be identified. From those 

measurements simple training methods have been implemented to solve the critical 

errors that the profiles have identified. The values of these have been evaluated by 

measuring further inhalation profiles. 

The results drawn from these research studies may have future implications on the 

improvement on pMDI and DPI development as well as on clinical and 

pharmaceutical practice. 

Following this introduction (Chapter 1) there is a literature review in Chapter 2. The 

review briefly explains the management of asthma and COPD to highlight that 

inhaled therapy is the major route of administration. The chapter describes particle 

deposition in the lungs and the importance of using the correct inhalation technique 

with each device. It also includes a review of the problem patients have using the 

different type of inhalers. Chapter 3 is a pilot study including children with asthma, 

adults with asthma and COPD patients, when they use their pMDI, a pMDI attached 

to Volumatic and when attached to an AeroChamber spacer and also through an 

EasiBreathe. This pilot study was carried out to pilot the requirement and value of 

using sophisticated electronic methodology to measure inhalation profiles. Chapter 4 

extends Chapter 3 by measuring electronic inhalation profiles using sophisticated 

methodology. This study looks at pMDI use in children with asthma, adults with 

asthma and COPD patients. Measurements include the inhalation time of co-

ordination, peak inhalation flow, inhaled volume and duration of inhalation. 

Chapter 5 also uses the measurement of inhalation profiles in adult patients with 

asthma. The focus of study in this chapter is to investigate the value of using a simple 

co-ordination aid and a simple instruction to increase inhalation time. It is intended 
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that these will cause the peak inhalation flow to decrease and that the co-ordination 

problems are solved. 

Chapter 6 is similar to Chapter 3 except that DPIs are used. This study includes 

children with asthma, adults with asthma and COPD patients when they inhale 

through different DPIs. Peak inhalation flow (PIF), the maximum pressure change 

inside the DPI, time to peak flow, the acceleration rate, inhalation volume and 

duration of the inhalation are measured. 

Chapter 7 concludes the studies. This Chapter measure inhalation profiles and hence 

the inhalation parameters when children with asthma, adults with asthma, COPD 

patients and healthy volunteers inhale through a Spiromax and a Turbuhaler DPI.   

This study includes an assessment of training subjects to inhale faster using the In-

Check Dial. 

The thesis concludes with a summary of the work in chapter 8 and some 

recommendations for future work.  
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2.1 Respiratory System 

The respiratory system is a complex structure responsible for the delivery of oxygen 

(O2) to the body and the elimination of carbon dioxide (CO2). The respiratory 

system, in Figure 2.1 is a series of branching tubes called bronchi and bronchioles 

and this branching in the human lung represents an inverted tree without the leaves. 

The airways branch 23 times from the trachea down to the terminal alveoli. Figure 

2.1 shows that the respiratory system is divided into three-compartments (Hinds, 

1999). The head region that is referred to as the “upper respiratory tract” includes the 

nose, nasal cavity, mouth, pharynx and larynx.  

 

Figure 2.1. The major features of the lungs include the bronchi, the bronchioles, and 

the alveoli. http://www.mcgill.ca/mmimediasampler2002/images/eidelman-

12no3.gif. 

The second compartment, down to branch 16, is known as the conducting airways 

and includes the trachea, bronchi, and bronchioles. The trachea (windpipe) extends 

the larynx directly into the lower respiratory tract. The trachea or windpipe is about 

10-12 cm long and 2 cm in diameter with C-shaped cartilages. The entry point to the 

http://www.mcgill.ca/mmimediasampler2002/images/eidelman-12no3.gif
http://www.mcgill.ca/mmimediasampler2002/images/eidelman-12no3.gif
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lung, where the trachea branches into the 2 main bronchi, is called the “hilum” or the 

root. Each bronchus divides again forming the bronchial tubes. Branching becomes 

more numerous with tiny sub-segmental bronchi and bronchioles (Marieb and & 

Hoehn, 2010). Smooth muscle surrounds the bronchi and bronchioles and is inverted 

by the autonomic nerve system (autonomic receptor), receiving both cholinergic and 

adrenergic stimuli. Sympathetic stimulation leads to a relaxation of smooth muscle in 

the wall of the bronchioles, and this leads to the bronchodilation of the respiratory 

passageways. In contrast parasympathetic activation leads to constriction of the 

smooth muscle which leads to a narrowing of the passage airways. Thus using an 

anti-cholinergic agent blocks the constriction thereby facilitating a dilation of the 

airways. 

The third compartment, shown in Figure 2.1 from branch 16-23, represents the 

respiratory zone of the lungs where the terminal bronchioles connect to tiny sacs 

called alveoli (alveolar sac). Table 2.1 describes how the airways get narrower with 

each branch and the surface area increases exponentially. 

The alveolar region contains approximately 300 to 600 million sacs providing a very 

large surface area for the process of gaseous exchange. All the alveoli have very thin 

membranes, and are close to each other and are surrounded by numerous pulmonary 

capillaries. Venous blood delivered to the lungs by the pulmonary vein is pumped 

through these capillaries. This blood takes up oxygen and expels carbon dioxide and 

leaves the pulmonary artery to the heart and is then pumped round the body. In 

adults, the total surface area of the respiratory membrane is about 70 m
2
 which is 

about the size of half a tennis court (Colbert et al., 2009). 
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 Table 2.1. A schematic representation of airway branching in the human lungs 

(Weibel, 1963). 
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The receptors for inhaled bronchodilators are distributed throughout the lungs  

(Carstairs et al., 1985; Mak and Barnes, 1990), but they have the greatest effect on 

the receptors of the airways where smooth muscle is located, hence in the conducting 

airways. Therefore, by targeting these receptors dilates the airways. Corticosteroids 

receptors are also present throughout the airways (Adcock et al., 1996) and 

inflammation has been shown to exist in all regions of the lungs (Hogg et al., 2004). 

Hence for inhaled anti-inflammatory agents it is beneficial for the inhaled dose to be 

spread throughout the airways. 
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2.1.1 The Lungs 

The lungs are the principle organ of respiration and considered as the largest organ in 

the body with respect to volume. Each lung is soft, spongy, elastic and is conical in 

shape and surrounded by the pleural cavity. The right lung, which weighs 

approximately 620 gm, is larger and situated a little higher than the left lung. It is 

divided into three lobes. The left one weighs about 520 gm and is divided into two 

lobes. It is smaller because the heart is accommodated in the medial aspect of the 

lung. Table 2.1 shows that the structure of the lungs provides a large surface area for 

gas exchange and presents minimal resistance to airflow and gas diffusion. The lungs  

can be damaged by dust, gases, the response to allergens and by infective agents 

(Kumar and Clark, 2002). The lungs, heart and vessels are protected by the chest 

frame. This frame is a bony and cartilaginous structure to provide protection and also 

facilities the movement of the thoracic cage to accommodate breathing. The 

breathing or ventilation of the air into and out of the lungs takes place when air is 

inhaled and exhaled. 

During inhalation the diaphragm contracts and flattens. The intercostals muscles 

between the ribs contract thereby pulling the ribcage upward and outward. During 

exhalation, the intercostals muscles and the diaphragm relax, pulling the ribcage 

down and contracting the lungs. Inspiration occurs when the intrapulmonary pressure 

is negative which facilitates the contraction of intercostals muscles and the 

diaphragm. This results in an increase in the volume of the thoracic cavity and 

promotes the flow of air into the lungs. 

An abnormality of breathing (inspiration or expiration) such as shortness of breaths 

breathlessness or wheezing may indicate a lung function disorder and significantly 

affects a subject‟s breathing pattern. The two main types of disorders that impair 
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ventilation or breathing are either restrictive (e.g. pulmonary fibrosis and sarcoidosis) 

or obstructive (asthma, chronic obstructive disease) disorders. In restrictive 

disorders, the normal lung expansion is restricted and there is a decrease of the 

inhaled volume. In obstructive lung disease the airway becomes narrow with an 

increase in resistance to airflow, such as asthma and COPD. 

2.1.2 Lung Function Test and Spirometry 

Spirometry is a pulmonary function test (PFTs) that is a useful screening test, which 

measures various aspects of the capacity of the lungs. Figure 2.2 describes the 

normal breathing process of an individual with respect to different lung volumes. 

This figure shows that the tidal volume (TV) is the amount of air moved in and out of 

the lung during a normal breath. The amount of air remaining in the lungs after a 

maximal exhalation is called the residual volume (RV). The vital capacity (VC) is 

the maximum volume of air that can be exhaled after the lungs are filled by a 

maximum inhalation and then exhaled as much as possible. This vital capacity 

manoeuvre can be done with an exhalation that is as fast as the subject can achieve 

and continued until the subject exhales no more air. So, when the vital capacity is 

forcibly exhaled, the measurement is called the Forced Vital Capacity (FVC). From 

this manoeuvre the indices of spirometry are: Peak Expiratory Flow Rate (PEF), the 

Forced Expiratory Volume in one second (FEV1) and Forced Vital Capacity (FVC) 

(Ward, 2006). Sophisticated measurements that make very frequent measurements 

during the time of this forced manoeuvre provide a variety of other indices with 

respect to flow and volume. 
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Figure 2.2. Lung Volumes. 

Spirometry is considered as the preferred method to measure airflow limitation and 

used to confirm diagnosis of asthma and COPD (GINA, 2009). 

 The Forced Expiratory Volume in one second (FEV1) is reported in litres. It 

is the volume of air that is exhaled during the first second of a forced 

expiratory manoeuvre. The FEV1 is the most frequently used parameter as an 

index for assessing airway obstruction, bronchoconstriction or 

bronchodilatation and it is considered as the standard index for assessing and 

quantifying airflow limitation. It can be further expressed as a percentage of 

the Forced Vital Capacity (FVC). When the lungs are normal this ratio is 

normally 80%. 

 Peak Expiratory Flow (PEF) is generally reported in litres/minute. It is the 

maximal flow rate (or speed) achieved during a maximal forced expiration.  

 Forced Expiratory Vital Capacity (FVC) is reported in litres. This is the 

volume of air that can be forcibly blown out (exhalation) after a full 

inspiration and continued with as much force as possible until the subject can 

expel no more air. 

Spirometry measurements are frequent expressed as predicted values based on the 

subject‟s height, age and gender (Quanjer et al., 1993). 
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2.2 Obstructive Lung Disease 

2.2.1 Asthma 

Asthma originating from the Greek word for “panting” is defined as “a chronic 

inflammatory disorder of the airways in susceptible individuals, inflammatory 

symptoms are usually associated with a widespread but variable airflow obstruction 

and increase in airway response to a variety of stimuli. Obstruction is often 

reversible, either spontaneously or with treatment" (GINA, 2009). This inflammation 

is associated with airway hyper responsiveness (AHR) with recurrent episodes of 

symptoms such as wheezing, breathlessness, chest tightness and coughing, 

particularly at night or in the early morning.  Sometimes these symptoms become so 

severe that breathing is severely impaired – in this situation the term acute 

exacerbation is used. 

Worldwide the prevalence of asthma is increasing in the last decades despite 

considerable improvements in asthma pathogenesis, knowledge and in medical 

treatment. This poses a serious global health problem in adults and children (Chung 

et al., 2002). It is estimated to affect about 5-10% of the world‟s population (300 

million people) (Lavorini and Corbetta, 2008), and is expected to increase each 

decade (Braman, 2006). Asthma is one of the chronic diseases that has a huge 

economic burden on healthcare resources in terms of cost of treatment and 

hospitalization. Thus, one of the main aims of the GINA guidelines is to reduce 

morbidity and mortality by improving asthma control (Lavorini and Corbetta, 2008). 

The current GINA challenge for each country is to reduce hospitalisation rates by 

50% over the next 5 years (Fitzgerald et al., 2011). 
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2.2.1.1 Pathogenesis of Asthma 

Asthma is an inflammatory lung condition in which the airways respond when 

exposed to inducers or triggers factors. Asthma can be categorised into two types‟ 

“extrinsic” (atopic asthma) and “intrinsic” (non- atopic asthma) (Holgate, 2008). 

Extrinsic or allergic asthma occurs when the subject is exposed to a specific allergen 

(environmental factors) such as dust, pollen or a non-specific stimulus such as a 

chemical irritant, cold air or exercise. This type of asthma develops in childhood and 

is considered to be the most common type. Intrinsic or non-atopic asthma occurs 

when there are no external factors associated with the disease such as mucosal 

inflammation, emotional stress or following a respiratory infection. 

In atopic asthma, the environmental stimuli or triggers (allergens) cause 

hypersensitivity of the airway that initiate a multi-cellular inflammatory process 

(Schieken, 2002) as shown in Figure 2.3. This process of inflammation leads to the 

activation of many different inflammatory cells in the asthmatic airways. 

Inflammatory cells produce a variety of chemical mediators, in particular mast cells, 

eosinophils and T lymphocytes, which act on the cell walls of the airways  (airway 

epithelium) (Holgate, 2010) to produce the typical features of asthma (Barnes et al., 

1996). These mediators enhance airway constriction and cause oedema of the 

airways and this leads to bronchial narrowing (or obstruction) and a  spasm of the 

airways with increases of the classical symptoms of asthma (Currie et al., 2005). 

Figure 2.4 shows the difference between the bronchioles of a normal and an 

asthmatic subject. 
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Figure 2.3. The inflammatory pathways of atopic asthma  (Holgate, 2010). 

 

Figure 2.4. Normal and Asthmatic bronchioles (www.mywembd.com).  

Symptoms of asthma  

Asthma is characterized by episodes of breathlessness, chest tightness, coughing and 

wheezing. The characteristics of these symptoms, which are variable, are often 

paroxysmal and provoked by allergic or non allergic stimuli and irritants. These 

symptoms are useful in the diagnosis of asthma. These symptoms vary in severity 

http://www.mywembd.com/
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and frequency from person to person, and may occur several times in a day or a week 

in affected individuals. Some asthmatics become worse during physical activity or 

many have more symptoms at night. One of the recognised symptoms is wheezing. 

Wheezing symptoms heard on auscultation of the chest increases the probability of 

asthma (BTS/SIGN., 2009) and is more specific to asthma than other symptoms 

(Masoli et al., 2004). 

During exacerbations of asthma, the inflammatory response increases the micro 

vascular permeability and thus cellular infiltration, fibro genesis and smooth muscle 

airway wall changes (Bradding et al., 2006; Holgate et al., 2009). This leads to a 

spasm and more obstruction with extra mucus secretion creating a constriction or 

complete blockage of the airways associated with a decline in the peak expiratory 

flow (PEF) and forced expiratory volume in one second (FEV1). 

2.2.1.2 Diagnosis and Classification of Asthma  

The history of a patient is considered as the key factor to make a diagnosis of asthma. 

The GINA (2011) guidelines and the British Thoracic Society (BTS/SIGN) 

Guidelines (2009) have stressed that diagnosis should be based on a clinical history 

of subjects and consideration of the classical symptoms of asthma (wheezing, 

coughing, shortness of breathing and nocturnal awakening). Widespread wheezing 

heard on auscultation of the chest increases the probability of asthma (BTS/SIGN 

2009). Moreover, objective measurements are needed to confirm the diagnosis of 

asthma and to assess its severity. Spirometry provides useful information about the 

degree of obstruction (BTS/SIGN 2009). The GINA guidelines (2008,2011) suggest 

that the confirmation of asthma diagnosis can be clarified by the response to inhaled 

β2- agonists (bronchodilator in an acute dose situation or over time with chronic 

inhaled corticosteroid therapy). This is characterized by an increase of >15% in the 
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FEV1 or an increase in the PEF by ≥ 20% from the baseline approximately 30 

minutes after an inhaled bronchodilator. This provides evidence of reversibility 

(Everard, 2003). However, some patients do not show this degree of reversibility 

particularly those with normal or near to normal lung function which can occur either 

on its own or with appropriate anti-asthma therapy. The ratio of FEV1/FVC is used to 

express the airflow limitation and it is useful for differentiating between asthma and 

chronic obstructive pulmonary disease (COPD).  

The classification of asthma severity is based on three equally weighted domains; 

daytime symptoms, nocturnal symptoms and pulmonary function. According to 

GINA (2009) guidelines, the severity of asthma can be classified according to the 

degree of obstruction and its severity as described in Table 2.2. A more simple 

classification is to categorise asthma into mild, moderate and severe according to 

their predicted FEV1 ( > 80%, 60-80% and < 60%, respectively). 

During an acute attack, or uncontrolled asthma, the peak expiratory flow (PEF) and 

forced expiratory volume in one second (FEV1) can decrease to less than 30% of the 

subject‟s predicted values. This is characterised by exhaustion, cyanosis, 

bradycardia, hypotension and difficulty in breathing and this can lead to coma and to 

death. Normally people with no smoking history or never had asthma should be able 

to blow-out 75-80 % or more of their total lung capacity within the first second of a 

forced exhalation. The reduction in this ratio below 70% indicates an obstructive 

lung disease (Hughes and Pride, 2000). 
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Table 2.2. Severity Classification of asthma (GINA 2008). 

Intermittent 

 Symptoms < once a week 

 Brief exacerbation, Nocturnal symptoms not more 

than twice a month 

 FEV1 or PEF ≥80% Predicted 

 PEF or FEV1 variability < 20% 

Mild Persistent 

 Symptoms more than once a week but less than 

once a day 

 Exacerbations may affect activity and sleep, 

Nocturnal symptoms not more than twice a month 

 FEV1 or PEF ≥80% Predicted 

 PEF or FEV1 variability < 20%-30 

Moderate Persistent 

 Symptoms daily 

 Exacerbations may affect activity and sleep, 

Nocturnal symptoms more than once a week and 

daily use of inhaled SABA 

 FEV1 or PEF 60-80 % Predicted 

 PEF or FEV1 variability > 30% 

Persistent Severe 

 Symptoms daily 

 Frequently exacerbations, frequently nocturnal 

symptoms, Limitation of  physical activity 

 FEV1 or PEF < 60 Predicted 

 PEF or FEV1 variability > 30% 

 

2.2.1.3 Pharmacotherapy of Asthma  

The principles of asthma management are to improve the patient‟s quality of life and 

to provide optimal long term control of the disease. The GINA guidelines are 

designed to increase the awareness of asthma, reduce asthma morbidity and 

mortality, and improve asthma therapy. A recent initiative is to decrease 

hospitalisation by 50% over the next 5 years (Fitzgerald et al., 2011). 

The goal of asthma management has been defined as no day or nocturnal symptoms, 

no limitations of daily activities, no need for reliever treatment, normal or near-

normal lung function results and no exacerbations (GINA, 2011). A stepwise 
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approach to the pharmacological treatment is recommended by GINA guidelines 

(GINA, 2011) and BTS/SIGN (2009) in attempt to achieve optimal asthma control. 

These guidelines contain a step-up process until no disease control is achieved or as 

asthma worsens. Once control of asthma has been achieved and maintained for a 

sufficient period of time (usually at least 3 months) a gradual reduction of the 

maintenance therapy is recommended to identify the minimum therapy required to 

maintain control (BTS/SIGN., 2009). 

The pharmacotherapy for the treatment of asthma is generally divided into two main 

categories: reliever (bronchodilators) and controllers (corticosteroids). Inhaled drug 

administration is used because this method delivers medication to the site of action, 

has a faster onset of action and minimizes systemic effects. The latter is due to the 

lower doses and improves the ratio of the therapeutic benefit to the potential side-

effects (Pauwels et al., 1997; Lavorini and Corbetta, 2008). Figure 2.5 and 2.6 

provide a summary of the BTS/SIGN guidelines for the management of chronic 

asthma in adults and asthmatic children.  

A short course of oral prednisolone (e.g. 40 to 60 mg per day for 5 days in adults, 20 

mg daily in toddlers) is effective for acute exacerbations. Tailing off the dose should 

be considered when a patient receives more than 2 courses in one year. 
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Figure 2.5. The asthma stepwise approach in adults. 

 

Figure 2.6. The asthma stepwise approach in children (5-12 years old). 
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2.2.1.4 Measuring Asthma Control 

The level of a patient‟s asthma control can be obtained by the use of validated 

questionnaires. Asthma management guidelines have defined asthma control as 

having no or minimal daytime nocturnal symptoms, no or minimal use of rescue 

bronchodilators, no acute exacerbation and normal or near normal lung function 

(GINA, 2009). The guidelines  also, stress that the objective of any asthma treatment 

plan is to achieve optimal asthma control and to maintain this control in the future 

(GINA, 2009). However, despite the availability of effective medications it is well 

documented that a delay in diagnosis, an under estimation of disease severity and 

consequently under treatment, the choice of inhaler device and insufficient patient 

education on correct inhaler technique and compliance may lead to poor asthma 

control (Horne, 2006; Laforest et al., 2006; Virchow et al., 2008). In clinical practice, 

patients are usually monitored by registration of their symptoms, physical 

examination, spirometry, and medication. The questionnaires are designed to identify 

which impairments are the most troublesome for patients with asthma. In many 

asthmatic patients, physical activity such as sports, shopping or scaling stairs induces 

symptoms. Other factors that may trigger symptoms are environmental stimuli, such 

as cigarette smoke, seasonal allergens, strong smells or weather conditions 

interfering with social activities. 

In clinical practice, symptoms have always been evaluated through simple questions. 

These questions have been developed into validated and reliable questionnaires that 

provide insights into the patients' well-being. Such questionnaires reveal functional 

impairments that influence daily life. Currently, several validated, questionnaires, 

with strong measurement properties, are available. Some of the questionnaires are 

short, easily understood and in self-administrable formats (Juniper et al., 1997). 
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These questionnaires, referred to as instruments (questionnaires), are used to either 

follow up patients in clinical practice or to investigate the outcome of an intervention 

in clinical research. (Nantel and Newhouse, 1999; Horne et al., 2007). The ones used 

in asthma are 

 Asthma Control Questionnaires (ACQ; Juniper et al., 1999a) 

 Asthma Control Test ™ (ACT; Nathan et al., 2004) 

 Childhood Asthma Control Test (C-ACT; Liu et al., 2007a) 

 The RCP's "Three Key Questions" (Pearson and Bucknall, 1999; Thomas et 

al., 2009) 

 The Asthma Quality of Life Questionnaire (AQLQ; Juniper et al., 1992) 

 Mini Asthma Quality of Life Questionnaire (Mini-AQLQ; Juniper et al., 

1999b) 

 Paediatric Asthma Quality of Life Questionnaire (PAQLQ; Juniper et al., 

1996a) 

 Paediatric Asthma Caregiver‟s Quality of Life Questionnaire (PACQLQ; 

(Juniper et al., 1996). 

2.2.1.4. The Asthma Control Questionnaires (ACQ)  

The Asthma Control Questionnaire (ACQ) was designed and validated to measure 

asthma control in adult asthmatics (Juniper et al., 1999a). It is simple and can be 

completed by patients in the clinic. The ACQ has strong measurement properties and 

has been fully validated for use in both clinical practice and clinical trials. For 

clinical practice, clinical trials and epidemiological studies, the ACQ has strong 

discriminative and evaluative properties which mean that it can detect small 

differences between patients with different levels of asthma control and it is very 

sensitive to within patient change in asthma control over time. 

 The ACQ has 7 questions (the top scoring 5 symptoms, FEV1% pred. and daily 

rescue bronchodilator use). Patients are asked to recall how their asthma has been 

during the previous week and to respond to the symptom and bronchodilator use 



 

 

50 

 

questions on a 7-point scale (0=no impairment, 6= maximum impairment). Their 

FEV1% predicted is also scored using a 7-point scale. The questions are equally 

weighted and the ACQ score is the mean of the 7 questions and therefore between 0 

(totally controlled) and 6 (severely uncontrolled). 

Development and validation studies have shown that the ACQ was very responsive 

to change in asthma control (Juniper et al., 1999a). Cross-sectional and longitudinal 

validity was supported by correlations between the ACQ and other measures of 

asthma health status. The ACQ, therefore, has strong evaluation and discriminative 

properties and can be used with confidence to measure asthma control in both 

longitudinal research and cross-sectional surveys, respectively, as well as in clinical 

practice (Juniper et al., 1999a). 

The ACQ is presented in Table 2.3. Many leave out the last question about the 

response to a bronchodilator.  Several studies have shown that the measurement of 

validity, responsiveness and reliability of the shortened versions, 6 questions, of the 

ACQ are similar to those of the original 7-item ACQ. Therefore the shortened ACQ 

versions can be used without compromising asthma control assessment (Juniper et 

al., 2001; Juniper et al., 2005). In general, patients with a score below 1.0 will have 

adequately controlled asthma and above 1.0 their asthma will not be well controlled 

(Juniper et al., 2006). However, there is a very grey area between 0.75 and 1.25 

where patients are on the borderline of adequate control. In general a score of < 0.75 

indicates a “well-controlled” asthma, whilst a cut-point of ≥ 1.50 pinpoints an 

“inadequately-controlled” condition (Juniper et al., 2006). A change or difference in 

the ACQ score of 0.5 is the smallest that can be considered clinically important 

(Juniper et al., 2006). 
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Table 2.3. The Asthma Control Questionnaire. 

1. On average, during the past week, how often were you 

woken by your asthma during the night? 

 
0  Never 

1  Hardy ever 

2  A few minutes 

3  Several times 

4  Many times 

5  A great many times 

6  Unable to sleep because of  asthma 

2. On average, during the past week, how bad were your 

asthma symptoms when you woke up in the morning? 

 
0  No symptoms 

1  Very mild symptoms 

2  Mild symptoms 

3  Moderate symptoms 

4  Quite severe symptoms 

5  severe symptoms 

6  Very severe symptoms 

3. In general, during the past week, how limited were you in 

your activities because of your asthma? 

 
0  Not limited at all 

1  Very slightly limited 

2  slightly limited 

3  Moderately limited 

4  Very limited 

5  Extremely limited 

6  Totally limited 

4. In general, during the past week, how much shortness of 

breath did you experience because of your asthma? 

 
0  None 

1  A very little 

2  A little 

3  A moderate amount 

4  Quite a lot 

5  A great deal 

6  A very great deal 

5. In general, during the past week, how much of the time did 

you wheeze?  

 
0  Not at all 

1  Hardly any of the time 

2  A little of the time 

3  A moderate amount of the time 

4  A lot of the time 

5  Most of the time 

6  All the time 

6. On average, during the past week, how many puffs of 

short-acting bronchodilator (e.g. Ventolin) have you used 

each day? 

 
0  None 

1  1-2 puffs most days 

2  3-4 puffs most days 

3  5-8 puffs most days 

4  9-12 puffs most days 

5  13-16 puffs most days 

6  More than 16 puffs most days 

7. To be completed by a member of clinic staff 

Pre bronchodilator FEV1 (litres)......... 

Predicted FEV1 (litres)........................ 

FEV1 (% predicted)............................. 

0  >95% 

1  90-95% 

2  89-80% 

3  79-70 

4  69-60 

5  59-50 

6  <50% 
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2.2.2 Chronic Obstructive Pulmonary Disease (COPD) 

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease and 

worldwide is responsible for more than 3 million deaths each year. It currently ranks 

as the fifth leading cause of death in the UK (NICE, 2010), and is projected to 

become the third most common cause of mortality and the third leading burden of 

disease worldwide by the year 2020 (Murray and Lopez, 2000; Murray et al., 2002; 

NICE, 2010). COPD represents a massive and growing burden with respect to direct 

and indirect costs. Hence it poses economic as well as social burdens on the patients‟ 

themselves, their families and healthcare systems (GOLD-Guidelines, 2006). 

COPD is a slow progressive respiratory disorder that is characterized by airflow 

obstruction and destruction that is not fully reversible. It varies very little from day to 

day and month to month until obstruction is severe and so it is relatively unnoticed 

until diagnosed during an acute exacerbation. The damage is due to local respiratory 

irritants commonly smoking. COPD is a general term for a spectrum of diseases that 

includes chronic bronchitis and emphysema as well as others such as small airway 

disease and chronic asthma that is unresponsive to therapy (Bellamy and Booker, 

2004). Chronic bronchitis or emphysema can occur on their own but frequently they 

occur together. Several lung societies have provided statements in an attempt to 

define COPD and distinguish it from asthma as well as to deal with the important 

aspects of COPD management. The American Thoracic Society (ATS), and the 

European Respiratory Society (ERS) definition of COPD defines chronic bronchitis 

and emphysema. The Global Initiative for Chronic Obstruction Lung Disease 

(GOLD) proposes a definition that focuses on the progressive nature of airflow 

limitation and its association with abnormal inflammatory response of the lungs to 

various noxious particles or gases.  
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The National Institute for Clinical Excellence (NICE) guideline (2010) has defined 

COPD as “a disease characterized by airflow obstruction. The airflow obstruction is 

usually progressive, not fully reversible and does not change markedly over several 

months. The disease is predominantly caused by smoking". (NICE, 2010). Hence, 

tobacco smoking is the major risk factor leading to the progress of COPD and that 

correlates with the prevalence and severity of chronic bronchitis and emphysema 

(Gold-Guidelines, 2009 ). These diseases are currently more common in males over 

55 years although the incidence in females is increasing, paralleling the increase in 

cigarette smoking by women. Smoking cessation is therefore, the first line 

management for those with COPD. Other risk factors, which include air pollution or 

infection, can produce a chronic inflammation of the bronchi (Jensen et al., 2000). 

Furthermore, occupational exposures (e.g. coal dust) may also contribute to the 

development of COPD (Fujita and Nakanishi, 2007). In the absence of an identified 

inhaled irritant there is a genetic link that is associated with someone presenting with 

emphysema at a young age (< 40 years old). These unfortunate patients have a 

marked deficiency of alpha α-1 antitrypsin (dAlmaine Semple et al., 1980; Tobin et 

al., 1983), and occurs in about 1-2% of COPD causes (Bellamy and Booker, 2004). 

2.2.2.1 Pathophysiology of COPD 

The pathological entity of COPD involves bronchitis and emphysema (either alone or 

together). Inflammation associated with irritant factors which can produce a chronic 

inflammation of the airways which causes physiological changes (Hunninghake and 

Crystal, 1983; Jensen et al., 2000). These changes are associated with an increase in 

mucus and predominance of inflammatory cells in various parts of the lungs and 

airway walls. Figure 2.7 describes how neutrophils, macrophages and CD8+ T 

lymphocytes
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Figure 2.7. Disease processes in chronic 

obstructive pulmonary disease (Reproduced from 

Branes (2000). 

 

(Barnes, 2000b) as well as 

other mediators, (including 

leukotriene B4, interleukin 8, 

and tumours necrosis factor) 

contribute to the 

inflammatory process. 

Further amplification of the 

inflammatory status in the 

airway can be triggered by 

factors such as viral or 

bacterial infection. These 

inflammatory cells particularly the neutrophils are responsible for the release of 

elastase-proteolytic enzymes (anti-elastase) that destroy elastin in the lung. This 

results in damage to the airways and lung tissue (elastically breakdown) with a loss 

of alveolar wall integrity. The loss of lung elastin, especially in emphysema, 

contributes to airway collapse, particularly during exercise. Alpha-1-antitrypsin is a 

natural defence mechanism to these changes and it is those with low levels of this 

agent that are more susceptible to these effects caused by inhaled irritant, and these 

are more prone to COPD.  

As time progresses and the subject continues to smoke physiological abnormalities 

gradual continue. This leads to mucus hyper secretion, airways wall thickening with 

bronchial fibrosis, airflow limitation and hyperinflation. Hyperinflation is a natural 

process by the body to try to keep the airways open. This is achieved by a flattening 

of the diaphragm, which results in less effective contraction and reduced alveolar 

efficiency, which in turn leads an increase in the residual volume (RV). Over time 
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this leads to severe airflow obstruction, resulting in insufficient expiration to allow 

the lung to deflate fully prior to the next inspiration and leading to air trapping. This 

can be translated or indicated by a decline in the FEV1 and a decreased FEV1/FVC 

ratio to < 70% (Nathell et al., 2007). There is also a raised total lung capacity (TLC), 

residual volume (RV) and functional residual capacity (RFC). 

Furthermore, destruction in the alveolar walls leads to a decrease in the effective 

respiratory membrane surface area that causes decreased gas exchange. There is an 

increase in blood carbon dioxide concentrations, which causes an increase of 

respiratory rate of COPD patients, hence a pink appearance of these patients is 

observed. Moreover, there is increasing evidence that COPD involves systemic 

features, particularly in severe stages. Cachexia (loss of fat mass), weakness and loss 

of skeletal muscle mass, osteoporosis and chronic anaemia may develop in COPD 

patients (GOLD-Guidelines, 2006; Cazzolaet al., 2007). 

A main response of some individuals to the irritant effects, mainly from cigarette 

smoking, is to increase mucus production which leads to classical chronic bronchitis. 

Mucus cells proliferate and the excessive production leads to a cough, breathlessness 

and impaired oxygen saturation. An acute exacerbations often occur, where there is a 

rapid and sustained worsening of symptoms beyond normal day-to- day variations 

(GINA, 2011). 

2.2.2.2 Diagnosis and classification of COPD 

The diagnosis and classification of COPD depends upon individual findings based on 

age, severity, medical history and physical examination, and is confirmed by 

spirometry, the degree of breathlessness and exercise tolerance. Spirometry is a 

standardized and reproducible test that objectively confirms the presence of airflow 

obstruction. Characteristically, spirometry shows a decreased forced expiratory 



 

 

56 

 

volume in one second (FEV1) and a decreased FEV1/FVC ratio (Pauwels et al., 

2001). Figure 2.8 describes the link between the reduction in the FEV1 with age and 

smoking and explains why smoking cessation is the first line management for those 

with COPD (Fletcher and Peto, 1977). 

 

Figure 2.8. The relationship between FEV1, age and smoking history  (Fletcher and 

Peto, 1977).  

NICE (2011) states that "diagnosis of COPD should be considered in patients over 

the age of 35 [over 40 according to the GOLD Guideline, 2009] who are exposed to 

one risk factors (predominately smoking) and who have COPD symptoms and signs 

including; breathlessness, chronic cough, regular sputum production, frequent winter 

„bronchitis‟ or wheeze (Pauwels et al., 2001). According to NICE, COPD Guidelines 

(2011) the criteria to consider a COPD person is a FEV1/FVC ratio < 0.70 and an 

FEV1 < 80 % of predicted values. Clinical symptoms and exercise tolerance together 

with smoking history and spirometry are used to confirm COPD. Spirometry pre and 

post a bronchodilator usually shows irreversible airflow limitation (NICE, 2010). 
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Assessment of the COPD severity level is crucially important to initiate the proper 

pharmacotherapy treatment and subsequently evaluate the disorder prognosis. The 

severity stage determination, thus, should include the degree of airflow obstruction, 

exacerbations frequency and other prognostic factors 

Table  2.4. Classification of severity of airflow obstruction GOLD (2008), and the 

NICE (2010) classification of COPD 

  
NICE 

 (2004) 

ATS/ERS4 

2004 

GOLD 

(2008) 
NICE (2010) 

Post- 

bronchodilator 

FEV1/FVC 

FEV1 % 

predicted 
Severity of airflow obstruction 

   

Post-

bronchodilator 

 

Post -

bronchodilator 

 

Post-

bronchodilator 

< 0.7 

 
≥ 80%  Mild Stage 1 –Mild Stage 1 –Mild* 

< 0.7 50–79% Mild Moderate 
Stage 2 – 

Moderate 

Stage 2 – 

Moderate 

< 0.7 30–49% Moderate Severe 
Stage 3 – 

Severe 

Stage 3 – 

Severe 

< 0.7 < 30% Severe Very severe 
Very severe** 

Stage 4 – 

Stage 4 – 

Very severe** 

*Symptoms should be present to diagnose COPD in people with mild airflow obstruction 

**Or FEV1 %< 50with respiratory failure. 

The Medical Research Council (MRC) dyspnoea scale (Fletcher et al., 1959) is a 

valid method for assessing severity which correlates with formal exercise tests, 

quality of life and activities of daily living, but it does not include a lung function 

test. This dyspnoea scale Table 2.5, has been recommended to be used to assess the 

grade of breathlessness according to the level of exertion required. 
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Table 2.5. Medical Research Council (MRC) dyspnoea scale, NICE (2010), adapted 

from Fletcher et al (1959). 

Grade Degree of breathlessness related to activities 

1 
Not troubled by breathlessness except on strenuous 

exercise 

2 Short of breath when hurrying or walking up a slight hill 

3 

Walks slower than contemporaries on level ground 

because of breathlessness, or has to stop for breath when 

walking at own pace 

4 
Stops for breath after walking about 100 m or after a few 

minutes on level ground 

5 
Too breathless to leave the house, or breathless when 

dressing or undressing 

 

Recently, several studies have recommended using a multidimensional grading 

scheme to classify the severity and impact of COPD because it is more useful than 

the predicted percentage of FEV1 measurement alone (Celli et al., 2005; Cazzola et 

al., 2007). This index, called “BODE” (for body mass index (BMI), obstruction, 

dyspnoea, and exercise capacity) has been shown to a better predictor of survival in 

COPD than FEV1 alone (Celli et al., 2004). 

The Bode index is the body-mass index (B), the degree of airflow obstruction (O) 

and functional dyspnea (D), and exercise capacity (E) according to the criteria 

described in Table 2.6. Values between 0 and 10 are obtained and the higher the 

score then the higher is the risk of death in patients with COPD. 

Table 2.6. The Bode Index. 

Variable *Points on BODE Index 

   0 1 2 3 

FEV1 (% predicted)  ≥65 50-64 36-49 ≤35 

6-Minute Walk Test (meters)  ≥350 250-349 150-249 ≤149 

MMRC Dyspnea Scale 0-1 2 3 4 

Body Mass Index >21 ≤21 

*Body Mass Index (BMI) weight (kg)/height (m2). If the BMI is < 20, this reflects a 

Poor prognosis 
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2.2.2.3 Management of Stable COPD 

The main goals for the management of COPD are to achieve better standards for 

diagnosis, treatment, improvement of health status and quality of life, and a reduction 

of mortality (GINA, 2011). These should be achieved by relieving symptoms and by 

preventing disease progression (deterioration) and exacerbations. COPD 

management programs include pharmacological and non-pharmacological options, 

patient education and the modification of risk factors (NICE Guideline, 2004, Gold 

Guidelines, 2009). Smoking cessation is the cornerstone of management and confers 

many benefits, including a slowing of the accelerated rate of FEV1 decline as shown 

in Figure 2.8, and an improvement in COPD symptoms (Celli et al., 2004), thereby 

reducing mortality (Calverley et al., 2008). Several studies have addressed and 

confirmed that the risk factors particularly cigarette smoking are associated with the 

progression of COPD (Watson et al., 2006; Cazzola et al., 2007). Fletcher and Peto 

(1977) in their study, described in Figure 2.8, first highlighted that smoking is the 

most significant cause of airflow obstruction with an accelerated loss of lung 

function that some smokers develop.  

Beyond education and smoking cessation, the goals of pharmacologic treatments are 

to enhance survival, quality of life, and the functional status as well as lessen 

mortality. 

2.2.2.3.(a) Pharmacotherapy of COPD  

Pharmacological management for COPD includes bronchodilators, corticosteroids, 

antibiotics, and mucolytics (Cazzola et al., 2007). A summary of the National 

Institute for Clinical Excellence (NICE) recommendation (2010) for the management 

of stable COPD is presented in Table 2.7 with the Pharmacotherapy described in 

more detail in Table 2.8. 
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 Bronchodilators (Relievers) 

Inhaled Bronchodilators; including short and long acting (β2-adrenergic agonists and 

anti-cholinergic agents) are considered the mainstay of COPD treatment. These are  

effective in alleviating symptoms of bronchoconstriction that relax smooth muscle 

around the airways, increase the caliber of the airways and improve air flow and 

improve exercise capacity, with increases in the FEV1, although in some patients 

these changes are small (ATS, 2009). 

Table 2.7 shows that inhaled bronchodilators are progressively introduced and 

increased to the combination of an inhaled long acting β2 agonist and an inhaled long 

acting anti-cholinergic. The combination of these two drugs in one inhaler is not yet 

available. A short and long acting β2 – adrenergic agonist can be used together but if 

a long acting anti-cholinergic is used then a short acting anti-cholinergic should not 

be prescribed. 

 

http://en.wikipedia.org/wiki/Smooth_muscle
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Table 2.7. The NICE guideline recommended management of stable COPD reproduced from (NICE, 2004). 
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Table 2.8. Pharmacotherapy for breathlessness and exercise limitation. 

 

 Corticosteroids 

 Inhaled corticosteroid (ICSs), have a limited role in the management of COPD 

patients, and their effectiveness is still controversial (Calverley et al., 2003; Man and 

Sin, 2005). However ICS is considered as the cornerstone of asthma therapy. The 

reason is that different mediators cause inflammation (eosinophil, mast cell) in 

asthma and (neutrophils, macrophage) in COPD (Barnes, 2000b). The mediators that 

cause inflammation in COPD have only a limited responsiveness to corticosteroids, 

while those mediators responsible for inflammation in asthma are dramatically 

affected by inhaled corticosteroids (Barnes, 2000b). Several studies using ICS agents 

in patients with mild COPD have shown no effect on the rate of FEV1 decline 

(Pauwels et al., 1999; Smith et al., 2004; Sutherland and Cherniack, 2004). However, 

they have been shown to decrease acute exacerbations in those with either moderate 

or severe COPD (Calverley and Koulouris, 2005). It is recommended that ICS can be 

prescribed to patients with FEV1 ≤ 50% predicted and who have 2 or more 

exacerbations per year (NICE, 2010; Gold-Guidelines, 2009 ). Adding an inhaled 
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corticosteroid to an established long-acting β2- agonist regime does reduce acute 

exacerbations and slow the rate of decline in health status (Macie et al., 2006).  

A study showed that a combination a of a ICS (fluticasone) with salmeterol (a 

LABA) resulted in improved lung function, prolonged frequency time of an 

exacerbation and improved the quality of life compared with mono therapy or 

placebo treatment (Calverley et al., 2003). However the decreased mortality rate just 

failed to reach significance level and there was an increase in the number of 

pneumonias. The study was not dose finding and used the highest recommended 

dose. Another study conducted by Soriano et al (2002) showed that regular use of 

“fluticasone propionate” either alone or in combination with salmeterol is associated 

with an improved survival of COPD, with an initial improvement in the first three to 

six months (Bellamy and Booker, 2004) but no effect on the subsequent rate of 

decline in the FEV1 (Soriano et al., 2002). 

A combination therapy of long- acting β2-agonist and ICS (budesonide/ formoterol) 

combined in a single DPI, called Symbicort®, provided improved lung function, a 

prolonged time to the first exacerbation (Calverley et al., 2003) and improved quality 

of life compared with either mono-therapy or placebo therapy (Welte et al., 2009). 

Also, other studies have confirmed the benefit of budesonide in combination with 

formoterol when compared to the individual components or placebo (Szafranski et 

al., 2003) and reduced the risk of exacerbations by approximately 20%-25% (Welte 

et al., 2009). Moreover, this combination has been shown to decrease lung 

hyperinflation and to increase exercise tolerance (O'Donnell et al., 2006). 

After all options, described in Table 2.8 above have been exhausted then patients are 

usually prescribed oral prednisolone despite the high risk to benefit ratio. However, 

the NICE-2004 and GOLD 2006 Guidelines for the management of COPD do not 
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recommend the use of oral corticosteroids as long term maintenance therapy in 

patients with stable of COPD. For acute exacerbations, systemic corticosteroids have 

been shown to improve airflow limitations, and symptoms (Teresa  and Martin, 

2010). Other therapeutic options include mucolytics as well as annual influenza 

vaccination. 

2.2.2.3.(b) Non-Pharmacological Management of COPD 

Non- pharmacological management of COPD is useful in parallel with therapeutic 

management to achieve the overall goals of the disease management plan. Non- 

pharmacological management includes pulmonary rehabilitation and long term 

oxygen therapy (LTOT). The rehabilitation programs include physical exercise 

training and disease education. It has been shown that the pulmonary rehabilitation 

results in an improvement in multiple outcome of considerable importance to the 

COPD patient (Folgering and van Herwaarden, 1993; Singh et al., 1998; Cazzola et 

al., 2007) and health- related quality of life (HRQoL) (Reardon et al., 2005). 

2.2.2.4 Differences between Asthma and COPD. 

Although there are some overlaps between asthma and COPD, they are separate 

disorders with different aetiologies, pathologies, natural history and responses to 

treatment (Barnes, 2008). Table 2.9 summarises the main differences between 

asthma and COPD. 
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Table 2.9. The main difference between asthma and COPD. 

 COPD Asthma 

Smoker or ex-smoker Nearly all Possibly 

Symptom under age 35 Rarely Often 

Chronic productive 

cough 
Common 

Uncommon- 

may occur during 

exacerbations 

Breathlessness 
Persistent / 

progressive 
Variable 

Night time waking with 

breathlessness and/or 

wheeze 

Uncommon Common 

Significant diurnal or 

day-to-day variable of 

symptoms 

Uncommon Common 

 

2.3 Drug delivery and Inhalation Route  

Smoking the leaves of the Atropa belladonna plant to reduce cough in India, 

approximately 2000 BC, is frequently mentioned as the first reference to pulmonary 

drug delivery (Grossman, 1994; Bisgaard et al., 2002). The treatment by inhalation 

of various chest infections and tuberculosis was used in Europe (UK) in the 17
th

 and 

19
th

 century (O‟Callaghan and Wright, 2002). 

The asthma cigarette was considered as the first portable inhaler (Everard, 2003). 

This was followed by the jet nebulizer in the 1930s and then by the glass and rubber 

bulb nebulisers for delivering adrenaline. Later on in 1950s, more convenient 

portable devices called “pMDIs” were introduced despite their disadvantages. 

The pressurised metered dose inhaler (pMDI) was first introduced in 1956 for 

delivering doses of either adrenaline or isoprenaline for the treatment of asthma. Its 

popularity with isoprenaline was demonstrated by a 600% increase in prescriptions 

and sales between 1959 (Crompton, 2006). However, pMDI sales dramatically 

decreased following an increase in deaths attributed to the isoprenaline pMDI and a 
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Figure 2.9. Onset of action using inhaled and oral 

routs of administration (Webb et  al., 1982; Everard., 

2003). 
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warning issued by the Committee of Safety Medicines in 1966. In 1969 the 

salbutamol pMDI subsequently replaced the isoprenaline pMDI, to become the most 

frequently prescribed short-acting β-agonist inhaler. In 1972, the inhaled 

corticosteroid beclometasone dipropionate was also introduced via a pMDI. Dry 

powder inhalers were first introduced as single dose capsules that had to be broken 

inside a device prior to inhalation. The Spinhaler containing sodium cromoglycate 

was introduced in 1967 and was followed by the Rotahaler. The first multidose dry 

powder inhaler was the 

Turbuhaler in 1987 and 

was then followed by 

single doses inside an 

inhaler (Diskhaler and 

then Accuhaler). Many 

others types of DPI have 

followed.  

The pulmonary route 

allows inhaled medication 

to be delivered directly to 

the therapeutic sites in the airways of the lungs (Virchow et al., 2008). Due to this 

direct delivery a low dose is required compared to a therapeutically equivalent oral 

dose hence there is a large reduction in systemic adverse effects. There is a fast onset 

of action as shown in Figure 2.9 (Webb et al., 1982), and a lower rate of side-effects 

(Pauwels et al., 1997). A high therapeutic ratio is achieved compared with systemic 

delivery (Newman et al., 1981a; Virchow et al., 2008). Therefore, this route is 

considered as the optimum route for administering the majority of the drugs for the 
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treatment of obstructive lung disease (Toogood, 1989; Pauwels, 1997). In addition, to 

asthma and COPD, inhaled therapy can be used to treat other respiratory diseases 

such as: bronchopulmonary dysplasia and cystic fibrosis (De Boeck and Breysem, 

1998) where large doses of antibiotics are inhaled (mostly by nebulisation). 

Furthermore, other drugs are under development for systemic therapy using aerosol 

delivery. These include insulin to treat diabetes, gene therapy vectors to treat cystic 

fibrosis (CF), vaccines for measles, chemotherapy agents for lung cancer, morphine 

to relieve pain and for acute pain management and ergotamine for migraine.  

Different inhaler devices are available to deliver these drugs; pressurised metered 

dose inhalers (pMDIs), which are used either alone or attached to a spacer or valved 

holding chambers (VHCs), dry powder inhalers (DPIs) and nebulisers. These 

inhalation devices produce an aerosol cloud of medication that provides an emitted 

dose that is capable to deposit medicine into the lungs during an inhalation 

manoeuvre. The fraction of the emitted dose with this capability is termed the fine 

particle dose. The fine particle dose is the amount of particles in the emitted dose that 

have an aerodynamic diameter of less than 5 µm. Particles below this size range have 

the greatest likelihood to be deposited on the airways in the lungs during an 

inhalation (Rees et al., 1982; Newman, 1985; Chrystyn, 1999). 

A summary of the aerodynamic characteristics of the dose emitted from an inhaler is 

presented in Table 2.10. (Laube et al., 2011). These terms are derived from in-vitro 

measurements. 
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Table 2.10. Definitions of commonly used in-vitro terms that describe an aerosol 

(Laube et al., 2011). 

Term Abbreviation Definition 

Labelled dose or 

nominal dose* 

 The mass of drug that is available within the aerosol 

generator per actuation. This is the dose that is 

metered. 

Total emitted dose 

or delivered dose 

TED The mass of drug emitted per actuation that is 

actually available for inhalation at the mouth. 

 

Fine-particle dose 
FPD The mass of particles, 5 mm in size within the total 

emitted dose. 

Fine-particle 

fraction 

FPF The fine particle dose divided by the total emitted 

dose. 

Aerodynamic 

equivalent diameter 

dae 
The diameter of a fictitious sphere of unit density (1 

g
.cm-3

) that has the same gravitational (settling) 

velocity in the same gas as the actual particle. 

Mass median 

aerodynamic 

diameter 

 

dae,µm or 

MMAD 
The MMAD divides the aerosol size distribution in 

half. It is the diameter at which 50% of the particles 

of an aerosol by mass are larger and 50% are smaller. 

Geometric standard 

deviation 

 

σg or GSD 

The GSD measures the dispersion of particle 

diameter and is defined as the ratio of the median 

diameter to the diameter at ¡1 SD (s) from the median 

diameter. In a cumulative distribution plot of the 

aerodynamic diameter and mass of particles, the GSD 

is calculated as the ratio of the median diameter to the 

diameter at 15.9% of the probability scale, or the ratio 

of the diameter at 84.1% on the probability scale to 

the median diameter. Aerosols with a GSD ≥1.22 are 

considered polydisperse. Most therapeutic aerosols 

are polydisperse and have GSDs in the range of 2–3. 

* Lung deposition can be presented as a percentage of the nominal or emitted dose. Note that 

these two parameters are not the same. 

Drug delivery via the pulmonary airways is more complex than oral therapy. To 

achieve successful therapy requires a delivery system that during an inhalation 

generates drug particles of an appropriate size, that have the capability to penetrate 

beyond the oropharynx and larynx and deposit onto the target area in the lungs 

(Labiris and Dolovich, 2003) to have a pharmacological effect (Byron and Patton, 

1994). 
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To achieve effective targeting within the airways there are a number of factors that 

can govern the penetration and deposition of inhaled aerosols. Aerodynamic diameter 

is generally thought to be the most important particle related factor that affects 

aerosol deposition. Figure 2.10 shows that there is a relationship between 

aerodynamic diameters and lung deposition (Köbrich et al., 1994). There are three 

main mechanisms of particle deposition that have been suggested to be responsible 

for the deposition of inhaled aerosol particles depending upon on their size. The three 

main mechanisms are impaction, sedimentation and Brownian diffusion as shown in  

Figure 2.11. 

 

 

 

Figure 2.10. The relationship between aerodynamic diameter and lung deposition 

(Köbrich et al., 1994; Laube et al., 2011).  
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Figure 2.11. Respiratory drug particles deposition mechanisms in human lung (Yu 

and Chien., 1997). 

This figure also shows that other effects such as interception impaction and 

electrostatic forces are responsible for some deposition in smaller airways (Heyder et 

al., 1986). Inertial impaction (inertial particle transport) is a physical phenomenon, 

which mainly influences the deposition of larger particles. When the dose is emitted 

from an inhaler the airflow (at the mouth) is fast especially from a pMDI. The 

particles in the emitted dose join the airflow down into the airways. In the mouth and 

down to the larynx and further down the trachea the airflow is fast and so large 

particle (those larger than 5 μm) will deposit in the oro-pharyngeal region. These 

particles will be swallowed and the drug absorbed into the systemic circulation after 

gastro-intestinal absorption. Particles < 5 µm will enter the lungs via the right and 

left bronchus and down into the large airways. Here the airflow is still relatively fast 

and thus particles just below 5 μm will deposit by impaction at the bifurcation of 

these larger airways (Labiris and Dolovich, 2003). 
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The second important mechanism is Sedimentation, i.e. “gravitational attraction" 

which is responsible for deposition of smaller particle sized < 5µm and towards 1μm. 

As the inhaled airstream flows down the narrowing airways the flow becomes slower 

and slower. In the smaller airways of the conducting zone of the lungs the particles 

are suspended in a very slow moving airflow. These particles will deposit due to 

gravity. This process of sedimentation is proportional to the aerodynamic particle 

size and to the period during which the drug particles stay in the lungs (Newman et 

al., 1981a; Everard, 2003). Consequently the chance of sedimentation increases with 

residence time in these more peripheral airways (Newman et al., 1982). For this 

reason, a breath holding manoeuvre after an inhalation is important (Everard et al., 

1997; Hillery et al., 2001). 

The third mechanism is Brownian diffusion which is the primary transport 

mechanism for very small particles especially those from 1μm to 0.1-1µm in 

diameter. The particles are suspended in a very slow moving airstream and move by 

colliding into each other and if they collide with the airway wall then the particles 

deposit otherwise they are exhaled (Labiris and Dolovich, 2003). This mechanism is 

inversely proportional to the particle size and directly proportional with length of 

stay in the lungs (Hillery et al., 2001). Again a breath hold is important. 

A high and slow airflow has a profound effect on the overall deposition of inhaled 

drug particles in the lung (Everard, 2003). An increase in the inspiratory flow will 

enhance deposition by inertial impaction in the upper airways as well as the 

oropharynx (Usmani et al., 2005). Also, an increased inhalation volume will lead to 

an increase in the penetration of particles deeper into lung and thus enhance 

deposition into the alveolar region (Pavia et al., 1977). Also, the period of breath 

holding increases particle deposition by gravitational sedimentation and diffusion 
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(because it increases the time that particles stay in the lung (Dhand and Fink, 1999). 

Training the patient the correct inhalation technique improves drug delivery to the 

lungs (Newman et al., 1991b), particularly in terms of the rate at which the patients 

inhale, and the period of breath holding (Newman et al., 1980; Newman et al., 

1991b). The most significant factor for pulmonary deposition is the patient‟s 

inhalation technique. This is covered extensively later. 

In addition, important patient related factors play a role in pulmonary drug delivery. 

These include the morphology of the oropharynx and larynx and the patient‟s 

inspiratory volume and flow rate. The airway calibre also influences the amount of 

drug deposited into the airways (Lipworth and Clark, 1997). 

2.3.1 Inhalation Devices and Drug delivery 

A number of inhaler devices have been introduced to provide medications to the 

lungs. The most frequently used inhalers are the pressurized metered dose inhalers 

(pMDI or MDIs) and dry powder inhalers (DPIs), while nebulizers are sometimes 

used in specific circumstances. 

2.3.1.1 Pressurized Metered Dose Inhaler (pMDI or MDI) 

The pMDI was introduced in the 1950s, and the first portable multi-dose inhaler 

designed to deliver a fine aerosol drug to the lungs (Vaswani and Creticos, 1998; 

Fink, 2000). It is frequently prescribed to deliver inhaled bronchodilators (β2 agonists 

and anti-cholinergic agents) and anti-inflammatory agents (corticosteroids) for the 

management of lung disease. The pMDI is the most widely prescribed inhaler device 

worldwide (Pauwels et al., 1997; Lavorini and Corbetta, 2008) and, it is still the most 

popular inhalation method in the UK (Vaswani and Creticos, 1998; Crompton, 

2004). pMDIs have a number of advantages in that they are compact, cheap, 

portable, relatively inexpensive, provide consistent dose emission, and are multidose 
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with up to 200 metered dose (Newman, 1991). They are available to deliver different 

inhaled formulations (Lavorini and Corbetta, 2008). A pMDI, shown in Figure 2.12 

consists of a pressurised aluminium canister containing the formulation that fits into 

a holder which is the mouthpiece. The nozzle of the canister fits into a holder which 

has an aperture through which the dose is discharged from the canister when it is 

pressed. Inside the canister a metering valve with a spring allows a dose to be 

dispersed and emitted. The formulation in the canister is traditionally either a 

suspension of micronized active drug suspended or dissolved in a propellant. The 

formulation also contains surfactants and lubricants (Newman et al., 1981a), as 

appropriate, to maintain the action of the spring valve. 

 

Figure 2.12. A schematic of the pMDI (source: 

www.solvaychemicals.com/docroot/fluor/static_files/images/solkane_227_134a_pha

rma_application) 

Pressing the top of the canister in the actuator‟s (mouthpiece) seating opens the 

metering valve resulting in its contents being expelled. The liquefied propellants 

vaporise and provide the required potential energy to expel a hetero-disperse aerosol 

of droplets that consist of tiny drug particles. When the depression of the canister is 

released the canister nozzle closes and the metering cup encases the next dose from 

the formulation inside the canister therefore, it is important to shake the pMDI 

http://www.solvaychemicals.com/docroot/fluor/static_files/images/solkane_227_134a_pharma_application
http://www.solvaychemicals.com/docroot/fluor/static_files/images/solkane_227_134a_pharma_application
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immediately before dose actuation. The dose release pressure is 3-5 times 

atmospheric pressure, thus the initial velocity of dose leaving the mouthpiece is high, 

approximately 100 k/hr or 70 miles/hr. After dose actuation, the aerosol particles 

rapidly decelerate and the propellant evaporates. During inhalation the propellant gas 

may cause cough, throat irritation and paradoxical bronchoconstriction whilst the 

cool temperature hitting the back of the throat can involuntarily stop the patient‟s 

inhalation. This latter phenomena is called the Cold Freon Effect (Crompton, 1982a; 

Newman and Clarke, 1983). There is a high degree of oro-pharyngeal deposition 

which is enhanced if there is inadequate co-ordination of the start of an inhalation 

and dose actuation and when the inhalation is too fast (Crompton, 1982a; Newman 

and Clarke, 1983). Poor co-ordination and inhaling too fast are common problems 

(Al-Showair et al., 2007a). These common problems associated with pMDI use are 

the reason why most patients cannot use pMDIs correctly, even after repeat tuitions 

(Crompton, 2004: Crompton et al., 2006: Virchow et al 2008). To overcome these 

problems associated with pMDIs, breath actuated pMDIs (BA-pMDIs), spacers 

(Bisgaard et al., 2002), and dry powder inhalers (DPIs) have been introduced. 

Until recently, the propellants used in the pMDI formulations were 

chlorofluorocarbons (CFCs). These were very useful dispersion mediums for the 

drug substance and other excipients (Young et al., 2003). Traditionally all 

formulations were a suspension of micronized drug particles suspended in the CFC 

propellant. Due to the damage to the ozone layer by CFCs (Molina and Rowland, 

1974) and in accordance with the Montreal Protocol (1994) on substances that 

deplete the ozone layer, the CFCs have been now been replaced with the more 

environmental friendly hydrofluoroalkanes (HFAs). This change is now almost 

complete and at present time there are only a few pMDIs that still contain CFCs 
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(Laube et al., 2011). The hydrofluoroalkanes (HFAs) have different physical and 

chemical properties which meant that all pMDIs had to be reformulated. The primary 

aim was to formulate pMDIs with the same dose emission characteristics as their 

CFC counterparts (Cripps et al., 2000). 

The HFAs have a higher boiling point than CFCs. Hence, the HFA formulations emit 

an aerosol with  a slower velocity at initial release and it is warmer (Gabrio et al., 

1999). Thus the potential of the Cold Freon Effect and oro-pharyngeal deposition is 

reduced with a greater potential for better lung deposition (Leach et al., 1998). 

The reformulation of pMDIs with HFAs did present a challenge to the 

pharmaceutical industry because different excipients were required. Most products 

were formulated with dose emission characteristics similar to the CFC-pMDI 

counterpart but this was not possible for some drugs. Hence some corticosteroids, 

notable beclometasone dipropionate, were difficult to reformulate. This problem was 

solved by formulating a solution rather than a suspension of drug particles. This 

meant that the aerosolised dose emitted contained much smaller particles, referred to 

as extrafine or ultrafine particles. This produced a significant improvement in lung 

deposition, increased systemic delivery and clinical efficacy compared to its CFC 

counterpart (Leach et al., 1998; Leach et al., 2002). Figure 2.13 shows the lung 

deposition (53%) from a HFA-BDP compared (4%) to a CFC BDP (Leach et al., 

2005). 

The greater lung deposition is due to the fact that these HFA pMDIs emit extrafine 

beclometasone dipropionate particles with a MMAD of 1.1µm (Fergusson et al., 

1991). It also leads to more efficient peripheral lung deposition and lower 

oropharyngeal deposition compared to the CFC formulation (Leach et al., 1998; 

Leach et al., 2002). 
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Figure 2.13. Scintigraphic images of enhanced lung deposition from  HFA-BDP 

versus the same patient inhaling CFC-BDP (Leach et al., 2005). 

Consequently, this formulation has been shown to provide an equivalent clinical 

response at half the dose of the innovator CFC-BDP (Becotide
®
, Galxo-SmithKline) 

formulation (Busse et al., 1999). The brand name of this product is Qvar
®
 (Teva 

Pharmaceuticals). An alternative approach for BDP was to re-formulate pMDIs with 

HFA propellants using Modulite
®
 Technology to control the size of the particles 

emitted from the pMDI (Ganderton et al., 2002; Lewis et al., 2005). The 

aerodynamic characteristic of the emitted dose are the same as the CFC-BDP pMDI.  

The dose for this product, Clenil
®
 (Chiesi Pharmaceuticals), is the same as that of the 

innovator product.  Due to the difference between the recommended doses for Qvar
®
 

and Clenil
®
 the MHRA have recommended that these products should be prescribed 

by brand name. Becotide has been discontinued. 

2.3.1.1.(a) Spacers 

In the 1980s spacers were introduced to overcome the co-ordination problems 

associated with the use of the conventional pMDI. Spacers act as a simple extension 

tube attached to the pMDI mouthpiece that is designed with a chamber to enable the 

dose emitted from a pMDI to slow down. The patient inhales from a static cloud and 

this helps with better lung deposition (Barry and O'Callaghan, 1996; Richards et al., 
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2001; Roller et al., 2007; Lavorini and Fontana, 2009). The large particles emitted 

from a pMDI are left in the spacer during an inhalation. Oropharyngeal deposition is 

reduced (Toogood et al., 1984) and there is also a reduction in the systemic delivery 

because less is swallowed (Barry and O'Callaghan, 1996; Richards et al., 2001; 

Roller et al., 2007; Lavorini and Fontana, 2009). 

Spacer may improve the effect of inhaled medications, particularly for patients who 

they are not able to use their inhaler (pMDI) properly (Godden and Crompton, 1981; 

Newman and Newhouse, 1996). Holding chambers have shown to improve 

pulmonary deposition from approximately 10% (with pMDI alone) to ≥ 20% 

(Newman et al., 1995b). A range of studies have investigated the value of spacers 

with regards to coordination, but the literature contains mixed results and many use 

bronchodilator doses at the plateau of the dose response relationship. 

Godden and Crompton (1981) first demonstrated an improved bronchodilatation 

response in asthmatic patients by improved FEV1 after using the spacer compared to 

the conventional pMDI (Godden and Crompton, 1981). In accordance to these 

outcomes, a similar study confirmed that the addition of a tube extension 

significantly increased PEFR values compared with the original pMDI (Langaker 

and Hidinger, 1982). Others have shown that a pMDI used with a spacer provided 

increased responses to short acting β-adrenergic bronchodilators, even for patients 

with adequate technique compared to the pMDI used alone (Fontana et al., 1999; 

Lavorini et al., 2004; Lavorini et al., 2006; Lavorini et al., 2008a). In contrast, a 

number of studies have demonstrated that spacers did not add any clinical 

advancement compared to a standard pMDI, since there was no significant difference 

in the bronchodilator effect (Gomm et al., 1980; Epstein et al., 1983). However this 

could be due to using doses at the top of dose response course (Newman, 1985). 
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Spacers differ by volume, length, shape, construction material and are valved or non 

valved systems. Versions referred to as  holding chambers contain a one way valve in 

the mouthpiece which direct air that is exhaled out away from the chamber while 

during an inhalation the air is pulled through the chamber. This type of spacer is 

known as a valved holding chamber (VHC) and can be used with an inhalation that 

uses a normal tidal breathing pattern. Spacers attached to pMDIs are recommended 

for patients who have  difficulties with pMDIs particularly co-ordination 

(BTS/SIGN, 2009; GINA, 2009). A spacer attached to pMDI is the recommended 

inhalation method for children < 6 years old. 

Figure 2.14. Shows that spacers have different sizes and designs. The Volumatic™ 

spacer (GlaxoSmithKline, UK) is the most widely used worldwide (Chuffart et al., 

2001). It is a diamond shaped large, valved spacer with a volume of 750 ml.  In-vitro 

studies have shown an increased fine particle dose delivery (Barry and O'Callaghan, 

1994), and in-vivo studies have shown an increase in lung deposition compared to 

the pMDI alone (Newman, 2004). Another spacer with a large volume is the 

Nebuhaler® spacer (AstraZeneca, Sweden) but this has now been discontinued. The 

AeroChamber Plus® spacer (Truddell International, Canada) is a 149 ml tube design 

that is available as infant, child and adult versions depending on the size of the mask. 

These are colour coded; the version with an adult a mask is blue and this is also 

available with a mouthpiece instead of the mask, children with a mask is yellow, and 

for infants with a mask it is orange. (Kraemer, 1995). Another spacer the Babyhaler® 

(GlaxoSmithKline, UK) has a volume of 350ml (Newman, 2004). The 

Nebuchamber® (AstraZenaca, Sweden) was made of metal and had anti-static 

properties but has now been withdraw. 
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Figure 2.14. Different Types of Spacers A) Neubhaler (Metal spacer  B) The 

Volumatic™ spacer C) Babyhaler® D) Nebuhaler® spacer (E)The Aero-Chamber 

Plus® spacers (Trudell Medical International (TMI), Canada 

It has been found that during an acute attack, the use of multiple single doses of a 

short-acting β2-agonist through a pMDI plus spacer is an effective alternative to a 

nebuliser (Duarte et al., 2000; Cates et al., 2003). GINA (2008) also states that the 

use of a spacer attached to a pMDI is preferred during the treatment of an acute 

asthma exacerbation instead of using a nebulizer. A study demonstrated that 5 

separate doses from a pMDI and a spacer provided the same relative lung deposition 

as 5mg nebulised from a jet nebulizer during acute exacerbations in patients with 

asthma and COPD (Mazhar and Chrystyn, 2008). 

Despite, the efficiency of spacers and their advantages, they suffer from the obvious 

disadvantage of making the spacer more bulky and less portable than a pMDI 

(Onyirimba et al., 2003; Nair et al., 2008). This can affect patient compliance and 

http://www.google.co.uk/imgres?imgurl=http://www.epmonthly.com/whitecoat/wp-content/uploads/2009/07/aeroch6.jpg&imgrefurl=http://www.epmonthly.com/whitecoat/2009/07/treating-asthma-on-the-cheap/&usg=__9PXWtFmQ8j848mkDQheJu4twl_A=&h=225&w=300&sz=7&hl=en&start=0&zoom=1&tbnid=eKeapBsaKB7QBM:&tbnh=164&tbnw=213&prev=/images?q=metered+dose+inhaler+with+spacer&um=1&hl=en&biw=1004&bih=581&tbs=isch:1&um=1&itbs=1&iact=hc&vpx=154&vpy=290&dur=1219&hovh=180&hovw=240&tx=126&ty=132&ei=mVzyTOXXCYTJhAfoko2rCg&oei=mVzyTOXXCYTJhAfoko2rCg&esq=1&page=1&ndsp=8&ved=1t:429,r:4,s:0
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acceptance (Brown et al., 1990; Newman, 2004). Recent studies have highlighted the 

patient‟s lack of acceptance regarding the use of spacers over other devices (Lenney 

et al., 2000). 

Other problems associated with spacers are that there are made of polycarbonate 

plastic material and so are prone to develop a static electrical charge on the inner 

walls which may result in  inconsistent medication delivery (Lavorini and Fontana, 

2009). Thus, the proportion of the inhaled dose may vary greatly with different 

spacers. Changing from one spacer to another may be unimportant with some drugs 

but be critical for others (Lavorini and Fontana, 2009). Static can be reduced or  

solved by washing a spacer with household detergent without rinsing it with water 

and then allowing it to air dry (Kenyon et al., 1998). Also, coating the inner walls 

with antistatic lining can reduce static (O'Callaghan et al., 1993). The AeroChamber 

Plus will soon be introduced with an anti-static lining. A non- static spacer that is 

made of metal also limits the effect of the static charge e.g. Nebuchamber
®
, but this 

has been withdrawn. The Vortex
®
, is a non-static spacer due to its extremely thin 

metal layer on the inner surface of a plastic spacer. Generic and comprehensive 

instructions on the how to use a pMDI attached to a spacer have been published by 

Laube et al (2011). Table 2.11 shows generic and comprehensive instructions on the 

how to use a pMDI attached with a spacer (Laube et al., 2011). 
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Table 2.11. Detailed instructions on how to use pressurised metered-dose inhalers 

(pMDIs) with spacers: for patients ≥ 6 yrs old.  

 (Caregiver should determine if child can perform this technique correctly) 

1) Shake four or five times if suspension formulation. 

2) Take the cap off. 

3) Prime the inhaler (refer to the PIL for specific instructions). 

4) Insert the mouthpiece of the pMDI into the open end of the spacer and ensure a 

tight fit. If a reverse flow spacer is used, insert the valve stem of the pMDI into the 

port on the mouthpiece of the spacer. 

5) Place the mouthpiece of the spacer in the patient‟s mouth with the teeth over the 

mouthpiece and the lips sealed around it. 

6) Instruct the child to exhale slowly, as far as comfortable (to empty their lungs). 

7) Actuate one dose into the chamber of the spacer and start to inhale slowly through 

the mouthpiece. Some spacers will make a whistling noise if inspiration is too fast. 

8) Maintain a slow and deep inhalation through the mouth, until the lungs are full of 

air. This should take a child 2–3 s and an adult 5 s. 

9) At the end of the inhalation, take the inhaler out of the mouth and close the lips. 

10) Continue to hold the breath for as long as possible for up to 10 s before breathing 

out. 

11) Breathe normally. 

12) If another dose is required, repeat steps 1–11. 

13) If ICSs are used, rinse mouth afterwards. 

 

2.3.1.1.(b) Breath Actuated Pressurised Aerosol (BA-pMDI) 

Breath-actuated metered-dose inhalers (BA-pMDI) were introduced to achieve good 

synchronisation between dose actuation and start of an inhalation, These devices 

contain a conventional pressurised canister with a flow-triggered system driven by a 

spring to release a dose automatically during the start of an inhalation (Newman et 

al., 1991b), so that firing and inhaling are automatically coordinated. Figure 2.15 

shows that lung deposition from BA-pMDI is the same as good coordination. The 
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Autohaler® was the first to be introduced to the market in the early 1990‟s (Newman 

et al., 1991b) followed by the EasiBreathe®. The actuation occurs at a flow of 

approximately 20 L/min for the EasiBreathe and ≈30 l/min for the Autohaler (Hardy 

et al., 1996; Laube et al., 2011). In one study, only  < 5 % of patients were unable to 

achieve the threshold inspiratory flow rate required for actuation of the Autohaler 

and there were fewer errors (Fergusson et al., 1991), compared with using a standard 

pMDI (Molimard et al., 2003). These inhalers are considering as an alternative to the 

standard pMDI for patients who are not able to use a conventional pMDI correctly 

(Bisgaard et al., 2002). Figure 2.15 shows how lung deposition increased in patients 

when they used a BA-pMDI. 

 

Figure 2.15. Mean (SD) lung deposition in good and poor coordinator and when the 

poor coordinators used a breath actuated device  (Newman et al., 1991b). 

The effectiveness of BAI-pMDIs was reported in a large (n=5556) patient study of 

new asthmatics using GP visits and the number of SABA and ICS prescriptions as 

outcome measures. The study showed that the asthmatics using a BA–pMDI had 

fewer prescriptions and used less healthcare resources (Price et al., 2003). The 

EasiBreathe BA-pMDI has many features over conventional pMDIs that include ease 

of use with less frequent errors (Lenney et al., 2000; Newman, 2004). Moreover, 
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healthcare professionals found it easier to teach and patients easier to learn and to 

use than a conventional pMDI (Price et al., 1999). It has been found that the errors 

when using BA-pMDIs are less frequent than when using a standard pMDI (Lenney 

et al., 2000; Crompton, 2004). The Autohaler BA-pMDI can be used easily by 

children over 7 years old (Pedersen and Mortensen, 1990). 

A major disadvantage of BA-MDIs is that they are only available with salbutamol 

and BDP (Qvar®). Furthermore the licence for the beclometasone dipropionate does 

not include children < 12 years of age. Another disadvantage is their item cost but 

they may prove to be cost effective in terms of resource saving in the long run 

(Langley, 1999). 

2.3.1.1.(c) The pMDI Inhalation Technique  

Soon after the pMDI was introduced the problems patients have using a pMDI were 

first reported (Saunders, 1965). After the introduction of salbutamol (1969) and 

beclometasone dipropionate (1972) pMDIs use increased. The issues about pMDI 

inhalation technique surfaced with reports from Paterson & Crompton (1976) and 

Crompton (1982). These showed that inhaling through the nose instead of the mouth, 

involuntary stopping the inhalation phase (the Cold-Freon Effect) and co-ordination 

between the start of an inhalation and the release of a dose as well as not breath 

holding after the inhalation manoeuvre were common mistakes made by patients.  

Many reports have followed but only a few have highlighted that not using a slow 

inhalation is the most common error made by patients (Nimmo et al., 1993; 

Hesselink et al., 2001; Al-Showair et al., 2007a). Incorrect or unsatisfactory use of 

the pMDI technique may lead to a sub-optimal therapeutic effect, especially for 

inhaled corticosteroids. This has been given as a reason why > 50% of adult patients 

do not get the maximum effectiveness from their inhalers (Crompton, 1990).  
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(i) Co-ordination between the start of an inhalation and actuation of the dose 

Poor co-ordination between the start of an inhalation and the actuation of a pMDI 

canister is one of the most common mistakes that patients made when using pMDIs  

(Newman et al., 1981a; Crompton, 1982b; Ganderton, 1997). Figure 2.15 shows that 

in asthmatics with poor co-ordination lung deposition was only 7% compared to 

22.8% in those with good co-ordination (Newman et al., 1991b). Hindle et al 

(1993a), using urinary salbutamol pharmacokinetic methodology, showed that no co-

ordination resulted in poor lung deposition as shown in Figure 2.16. 

 

Figure 2.16. Mean and individual values of the relative lung bioavailability of 

urinary salbutamol after inhalation by two different manoeuvres (Hindle et al., 

1993). 

The optimum actuation time (good co-ordination) has been defined by Goodman et 

al (1994) as 0 to 0.2 seconds between the start of an inhalation and pressing the 

canister to release a dose. This is based on the gamma scintigraphy studies of 

Newman et al (1980; 1981a; 1981b). More objective confirmation of this time for 

co-ordination was provided by Farr et al (1995). This study measured lung 

deposition using gamma scintigraphy following 5 different computer controlled 

inhalation manoeuvres. 
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 Slow/early: inhalation flow of 30 L/min and actuation after 300 ml hence the 

time of co-ordination is 0.6 second 

 Slow / late: inhalation flow of 30 L/min and actuation after 3000 ml hence 

the time of co-ordination is 6 second 

 Medium / early: inhalation flow of 90 L/min and actuation after 300 ml hence 

the time of co-ordination is 0.2 second 

 Fast / early: inhalation flow of 270 L/min and actuation after 300 ml hence 

the time of co-ordination is 0.1 second 

 Fast /late: : inhalation flow of 270 L/min and actuation after 3000 ml hence 

the time of co-ordination is 1 second 

Figure 2.17 shows that the medium/early provided the highest total lung deposition 

and more was deposited in the peripheral regions.  

 

Figure 2.17. The effect of co-ordination and flow rates on the mean (SD) lung 

deposition from a Smart Mist pMDI (Farr et al., 1995). 
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Broeders et al (2003) measured electronic profiles of adult asthmatic and COPD 

patients when they used a pMDI and used the 0-0.2 second criteria, recommended by 

Goodman et al (1994) for good co-ordination. She and her co-workers found that co-

ordination was inadequate in 40% of patients.  

The recent transition to HFA propellants has resulted in two different formulations of 

BDP (see section 2.3.1.1). One formulation (Qvar®) emits extrafine particles with a 

MMAD around 1µm. A similar formulation of ciclesonide is also available in a 

pMDI (Leach et al., 2006). A gamma scintigraphy study has shown that for pMDI 

formulations that emit extrafine particles then co-ordination is not critical as shown 

in Figure 2.18 (Leach et al., 2005). The study involved 7 mild asthmatics (mean 

FEV1 91% predicted) (Leach et al., 2005).  

 

Figure 2.18. Mean (SD) lung deposition of ultrafine beclometasone particles emitted 

from a HFA pMDI following different inhalation manoeuvres. 

The early was timed at 0.5 seconds before the start of an inhalation while the late 

was 1.5 seconds after the start. Subjects inhaled for 3 seconds with an inhalation 

volume of about 3 L which suggest that there flows would be approximately 60 

L/min. Furthermore Newman et al (1980; 1981) reported that co-ordination was not 
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important as long as the patient had started inhaling with a slow flow rate. The pMDI 

formulations used in these late studies would have been those that emit particles 

sizes similar to those of the common and traditional pMDI with MMADS around 

3µm. Although this was supported by Tomlinson et al (2005) using urinary 

salbutamol pharmacokinetic methodology the results are not consistent with those of 

Farr et al (1995) with respect to co-ordination timing and Newman et al (1981a, 

1981b) did show that when inhalation flow was faster a late inhalation did result in 

decreased lung deposition.  

In general most pMDI do not emit ultrafine particles (and of these there is only Qvar 

that is commonly prescribed) and most patients inhale too fast (Al-Showair et al, 

2007a). When there is no co-ordination or it is early than lung deposition will be 

low. Although a late actuation with a slow flow does result in some lung deposition 

and would not be a critical error the amount deposited in the lungs with good co-

ordination is better. In general, the criterion for good co-ordination used by 

Goodman et al (1994) and Broeders et al (2003), which was confirmed by gamma 

scintigraphy (Farr et al., 1995), would be 0 to 0.2 seconds.  

(ii) Slow Flow Rate  

Studies have shown that a slow flow rate provides better lung deposition than a fast 

flow. In the first study that reported about flow, seven patients inhaled using a flow 

of 30 L/min and 5 others used a flow of 90 L/min. Both groups used a breath-hold of 

10 seconds after each inhalation. Co-ordination for both was good and defined as 

dose actuation soon after the patient had started their inhalation. Mean (SD) lung 

deposition was 14.3(2.0) and 9.2(1.6) % respectively (Newman et al., 1982). 

Previously this lung deposition data had been reported by a simultaneous 

bronchodilator response in these patients; the percentage change in the FEV1 (15 
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minutes post dosing) was 29.5(14.3) and 16.6(11.6)% following the slow and fast 

inhalations (Newman et al., 1980). 

From the data in the above papers of Newman et al (1980; 1982), Goodman et al 

(1994) defined an acceptable inspiratory flow rate between 25-90 L/min whilst a 

more extensive review by Pauwels et al (1997) stated that flows should be 

<90L/min. This is confirmed by the data presented above by Farr et al (1994) in 

Figure 2.17. 

Further evidence of better lung deposition with a slow inhalation was reported in a 

study comparing gamma scintigraphy and urine pharmacokinetic methodology to 

identity lung deposition of terbutaline inhaled from a pMDI (Newman, 1995). The 

study involved 8 healthy volunteers using inhalations of 30 and 180 L/min. Figure 

2.19 shows the difference in total lung deposition using the urine method. This 

involved blocking the orally absorbed fraction with oral charcoal and collecting 

urine over a prolonged period post inhalation. 

 

Figure 2.19. Mean (SD) relative lung deposition  (Newman et al., 1995b). 

In contrast gamma scintigraphy suggested that there was no difference. This was due 

to a problem with gamma scintigraphy when using a fast inhalation that is highlight 

in Figure 2.20. This figure shows that as expected there is more deposition in the 
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central zone of the lungs with a fast inhalation. A part of this would be cleared by 

mucociliary clearance. In contrast urinary pharmacokinetic methodologies measure 

drug cleared from the lungs following systemic delivery. Since gamma scintigraphy 

measures amounts cleared from the lungs by systemic absorption and by mucociliary 

clearance then care should be exercised when interpreting gamma scintigraphy data 

when fast flows are used. 

 

Figure 2.20. Mean (SD) deposition into different zones of them lungs (from 

Newman et al, 1995).  

The above figure demonstrates that when the inhalation flow is fast then there is a 

tendency for more central lung deposition at the expense of peripheral deposition and 

that there is more peripheral deposition when the flow is slow. Faster inhalation 

flows give rise to greater deposition in the oropharyngeal area (Dolovich et al., 1981; 

Newman et al., 1981b) 

Using a urine salbutamol method Hindle et al (1992) demonstrated that the slower 

the inhalation flow then the better was the relative lung deposition as shown in 

Figure 2.21. Their slow flow was around 10 L/min whereas the faster flow was 50 

L/min. Using this method Tomlinson et al (2005) confirmed better lung deposition 
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from slow flow in asthmatic patients and this was complimented by better protection 

by salbutamol following broncho-provocation challenge with inhaled methacholine. 

 

Figure 2.21. Individual and mean relative lung deposition following slow and fast 

inhalations (Hindle et al, 1992). 

The study by Usmani et al (2005) quantified lung deposition using gamma 

scintigraphy following inhalation of different particle sizes and the effect of flow (30 

and 60 L/min). Figure 2.23 shows that there was increased peripheral and decreased 

central deposition with slower flows and that the influence of flow is dependent on 

the particle size (hence MMAD) of the aerosol. They showed that flow has little 

effect if extrafine particles are used. In practice this would only apply to Qvar and 

ciclesonide pMDIs whereas the majority of pMDIs have MMADS in the 3-6 µm 

range. Clinical evidence for the recommendation of a slow flow < 90L/min was 

provided in the study by AlShowair et al (2007). When 36 mild asthmatics (FEV1 

71.4% predicted) were trained to use a slow inhalation flow with their pMDI ( < 

90L/min) their Asthma Quality of Life changed by 0.74 (above the 0.5 clinical 

significance value). 
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Figure 2.22. Effect of fast and slow inhalation rates on aerosol deposition in central 

(C) and intermediate (I) and the peripheral (P) regions of the lung. Reproduced from 

(Usmani et al., 2005). 

There was no change in their FEV1. The authors concluded that the increase in the 

Asthma Quality of Life is due to their better asthma control and since there was no 

change in their FEV1 then the results reflect better delivery of their inhaled 

corticosteroids into the peripheral regions of the lungs. 

In summary an inhalation flow of < 90L/min is the most acceptable when using a 

pMDI and can be classified as a slow flow. 

(iii) Inhaled Volume. 

 

An inhalation that continues for as long as possible has been recommended (Laube et 

al, 2011). Since it has also been recommended that patients exhale gently as far as 

comfortable then an inhalation from residual volume (RV) to total lung capacity 

would be ideal. It has been found that the alveolar deposition increases ≈ 40% for 

each 1L increase in the inhaled volume when a slow deep inhalation technique is 

used (Pavia et al., 1977). Hindle et al (1993b) reported that relative lung deposition 

was greater when subjects exhaled before their inhalation as shown in Figure 2.23. 
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Figure 2.23. Mean and individual values of the relative lung deposition when 

inhaling from residual volume (RV) compared with inhaling from functional residual 

capacity (FRC) (Hindle et al., 1993) 

Farr et al (1994) reported that the inhaled volumes of nine healthy volunteers when 

they inhaled from a Smart Mist pMDI were a mean (SD) of 3.72(0.24) litres and 

Broeders et al (2003) found 2.7 (1.1) litres in 10 mild asthmatics (FEV1 96% 

predicted), and 2.9(0.7), 2.6 (0.2) and 2.3(0.2) litres in 16 mild, 16 moderate and 16 

severe COPD patients. All these were highly trained techniques so they would have 

used an exhalation before their inhalation. Farr et al (1995) reported an inhalation 

volume/forced expiratory volume ratios of 70.5(3.6)% for the inhalation manoeuvres 

with the highest inhalation volumes. This ratio for the best lung deposition (medium 

/early – see above) was 61.0 (5.4) %.  Goodman et al (1994) defined a deep 

inhalation as a ratio of >60% (based on the reports of Newman et al, 1980; 1981; 

1982 as well as Lawford et al, 1982; 1983). 

(iv) Breath hold  

Breath-holding is one of the essential steps during the inhalation manoeuvre (Laube 

et al., 2011). The principle of breath holding for as long as is comfortable after an 

inhalation is widely accepted as being essential for improved pulmonary deposition 

(Newman et al., 1981a; Hindle et al., 1993). This allows inhaled particles to settle in 
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the airways by gravitational sedimentation (Hillery et al., 2001). The likelihood of 

sedimentation increases with the residence time in the airway (Everard et al., 1997; 

Suarez and Hickey, 2000). Consequently, breath-holding is used to optimize 

pulmonary drug delivery (Dhand and Fink, 1999). 

Newman et al (1982) showed that lung deposition in asthmatics was greater for a 10 

second breath hold as shown in Figure 2.24. They also reported that there was a 

respective increase for deposition in the conducting airways and in the respiratory 

portion of the lungs.  

 

 

Figure 2.24. Percentages of dose deposited in the whole lung (Newman et al., 1982). 

Similar results were reported for the relative lung bioavailability of salbutamol post 

inhalation (Hindle et al., 1993) as shown in Figure 2.25. In this figure a slow 

inhalation was used and thus like in Figure 2.25 lung deposition does occur when 

there is no breath hold because of the residence time from the slow inhalation. 
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Figure 2.25. Mean and individual values of the relative lung bioavailability of 

salbutamol  with respect to breath hold after inhalation (Hindle et al., 1993). 

2.3.1.1.(d) The pMDI inhalation technique and clinical effectiveness 

The quantities of drug from a pMDI in the lung are small (Newman et al., 1981b; 

Borgström and Newman, 1993), in that only about 10-20% of the emitted dose 

reaches the lungs even when the correct inhalation technique is used (Pauwels et al., 

1997). A high proportion of the emitted drug particles are deposited in the mouth and 

oropharynx. Nevertheless, incorrect or unsatisfactory use of the pMDI may lead to 

less than the optimal therapeutic response (Newman et al., 1981a; Duerden and 

Price, 2002; Everard, 2003; Virchow et al., 2008). This issue of pMDI technique is 

more vital with the ICS than inhaled bronchodilators because the feedback of inhaled 

bronchodilator (as reliever drug) is an immediate response and these patients can 

compensate from a poor technique by inhaling another dose (Chrystyn & Price, 

2009). This practice is a good indicator that the patient‟s inhalation technique needs 

to be checked.  

The correct inhalation technique when using pMDIs involves firing the pMDI while 

breathing in deeply and slowly (Haughney et al., 2008), continuing to inhale after 

firing, and this should be followed by a breath-holding for around 5-10s (Ernst, 
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1998; Crompton and Barnes, 2006), to allow particle sedimentation (Newman et al., 

1981b). Table 2.12 describes the ideal inhalation technique with a pMD that was 

recently recommended by the ERS / ISAM Task Force (Laube et al, 2011). 

Table 2.12. The ERS /ISAM task force recommendation for the inhalation technique 

when using pMDI (Laube et al, 2011).  

1) Shake four or five times if suspension formulation. 

2) Take the cap off. 

3) Prime the inhaler (refer to the PIL for specific instructions). 

4) Exhale slowly, as far as comfortable (to empty the lungs). 

5) Hold the inhaler in an upright position. 

6) Immediately place the inhaler in the mouth between the teeth, with the tongue flat under 

the mouthpiece. 

7) Ensure that the lips have formed a good seal with the mouthpiece. 

8) Start to inhale slowly, through the mouth and at the same time press the canister to actuate 

a dose. 

9) Maintain a slow and deep inhalation, through the mouth, until the lungs are full of air. 

This should take an adult 4–5 seconds, a child 2-3 seconds. 

10) At the end of the inhalation, take the inhaler out of the mouth and close the lips. 

11) Continue to hold the breath for as long as possible, or up to 10 s before breathing out. 

12) Breathe normally. 

13) If another dose is required, repeat steps 4–12. 

A large study investigating the inhalation technique of 1173 asthmatic outpatients 

using their pMDI, found that fifty-one percent had co-ordination problem, 24 % of 

these patients stopped inhaling after actuation (cold freon effect) and 12% inhaled 

through their nose (Crompton, 1982b). Other studies have shown that between 8-

59% have poor or inadequate inhalation techniques when using their pMDI 

(Cochrane et al., 2000; Broeders et al., 2009). Only 7.6% of asthmatics could use 

their pMDI with a slow and deep inhalation with good co-ordination and the most 

common error was inhaling too fast. A series of studies performed by Crompton and 

colleagues between 1982 and 2000 assessed the inhalation technique after the 
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patients read the PIL. Between 21%-54% were unable to use their pMDI efficiently 

even after reading the PIL (Crompton, 1982b; Crompton and Duncan, 1989; Lenney 

et al., 2000). 

When an Aerosol Inhalation Monitor was used to evaluate pMDI technique in clinic 

settings a high incidence of errors with respect to co-ordination and flow were found 

and training did not improve the patient‟s pMDI technique (Harwell et al, 2010). An 

observation study using a checklist assessment of pMDI technique in asthma 

subjects and COPD, showed that at least 30 % of the  patients made at least one or 

more errors, and coordination technique was the essential mistake by all patients 

(Hesselink et al., 2001). In a real life study by Molimard et al (2003) the frequency 

of errors through the pMDI increased with age particularly patients over > 65 years. 

In addition to the traditional errors 31% of patients did not press the canister only 

once during their inhalation. A recent investigational study has found a strong 

association (p=0.008) between the misuse of inhalers and older age in a large sample 

of experiences outpatients. This later study also confirmed that inhaler misuse 

correlated (p<0.001) with an increase of hospital visits and good technique was 

associated with previous training (Melani et al., 2011). A summary of some of the 

inhaler technique reports is presented in Table 2.13. 
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Table 2.13. The percentage of patients making errors with each inhalation step as recommended by Laube et al (2011). [Key to references: A - 

Epstein et al, 1979; B - Pedersen et al, 1986; C - Pedersen et al. 1986; D - Scott -Smith, 1986; E - Horsley and Bailie, 1988; F - Manzella et a., 

1989; G - Goodman et al, 1994; H - van Beerendonk et al, 1998; I - Molimard et al, 2003; J - Melani et al, 2011]. 

Percentage (%) of errors user of inhalation techniques steps of pMDI based on the  steps in table 1 

Ref (n) A (68) B (132) C (85) D (2)7 E (84) F (234) G (59) H (56) I (552) J (843) 

Step 1 29 49 34 - 32 18 - 57 33.5 37 

Step 2 4 - - - 5 - - 5 - 0.15 

Step 3 - - - - - - - - -  

Step4 - 45 51 0 58 23 - 66 30.4 50 

Step 5 - - - - - 19 - - - 9 

Step 6 - - - - 15 30 - - - - 

Step 7 13 - - -  25 - - - .7 

Step 8 34 55 17  40  47 68 25.5 33 

Step 9 43 67 28 45  26 39-42 70 37.2 52 

Step 10 - - - - - - - - -  

Step11 43 42 39 59 66 31 24 53 31 53 

Step 12 - - - - 48 - - - - - 

Step 13 23 - - - 46 54 - - - - 
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2.3.1.1.(e) pMDI technique and asthma control 

In the first study by Saunders (1965) the bronchodilator response with respect to 

inhaler technique was first reported and this was followed by others (Newman et al, 

1980; Lawford et al, 1982; Rivlin et al, 1983; Lawford et al, 1983) and extended to 

methacholine challenge (Tomlinson et al, 2005). 

A large observational study of 3811 patients showed that about 76% of patients made 

at least an error when using their pMDI (Giraud and Roche, 2002) and that their 

asthma control deteriorated as the number of inhalation technique errors increased as 

shown in Figure2.26.  

 

 

Figure 2.26. Misuse of MDIs is directly linked to decreased asthma stability. (Giraud 

& Roche, 2002). 

In childhood asthma Kemps et al (2003) reported that the inhaled corticosteroid dose 

was decreased during detailed clinic management of children with asthma and the 

only other change was that their inhaler technique had improved. Another study 

involving asthmatic children reported that there was a significant improvement in 

their inhalation technique and their overall asthma severity scores when a good 

technique was used (Minai et al, 2004). In adult asthmatics that were trained to use a 

slow inhalation flow with good co-ordination a clinically significant improvement in 
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their asthma quality of life, of 0.74, was reported (Al-Showair et al., 2007a). In a real 

life study associations between inhaler misuse and an increased risk of 

hospitalisation (p=0.001), emergency room visits (p<0.001), courses of oral steroids 

(p<0.001) and antimicrobials (p<0.001) as well as poor disease control (p<0.00001) 

have been reported (Melani et al, 2011). 

Therefore, many recommendations have been published stressing the fact that 

patients should be trained how to use their inhalers efficiently and that there dose or 

inhaler should not be altered unless their inhaler technique as well as their level of 

compliance has been assessed (GINA, 2011; BTS/SIGN 2011). 

2.3.1.1.(f) Improving Inhalation Technique for pMDI and Training Tools 

The correct inhalation technique by patients is vital for efficient drug delivery, and 

so, it is important to improve inhalation technique to achieve the optimum 

therapeutically outcome with minimal side effects. Improving inhaler technique by 

patients is crucial, resulting in an increase in the effectiveness of response (Orehek et 

al., 1976). Paterson and Crompton as early as 1976 have emphasised that patients 

should be trained how to use a pMDI correctly in order to get maximum benefit. 

Training patients can significantly improve the pMDI technique. Gayrard and Orehek 

(1980) illustrated that only 28% of untrained patients demonstrated adequate 

technique with a pMDI compared to 52% that had been trained. Also, Horsley and 

Bailie (1988) found that the correct pMDI technique increased from 31% before 

counselling, to 72% immediately after counselling (Horsley and Bailie, 1988). A 

number of studies have suggested that pMDI techniques training significantly 

improve a patient‟s technique through the pMDI compared to leaving the patient to 

study the PIL (Patient Information leaflet) only (Crompton and Duncan, 1989; 

Nimmo et al., 1993). Demonstrations with verbal instruction have shown a 
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significant improvement of pMDI technique with asthmatic children (Kamps et al., 

2000) leading to reduced inhaled corticosteroid doses (Kamps et al., 2004). However, 

in a study of 100 adults tested for their ability to use six different inhalers only 21% 

were found to use their inhaler efficiently following instructions associated with the 

inhaler (Lenney et al., 2000). It has been found that even after pMDI technique 

counselling and subsequent demonstration by patients, only 50% used their pMDI 

correctly soon afterword (Shim and Williams, 1980). Another study has shown that 

using a multimedia programme for training inhaler technique was as good as using 

the PIL (Savage and Goodyer, 2003). A pMDI should only be prescribed to patients 

who have demonstrated that they can use it correctly. This problem is compounded 

by the fact that with time many patients lose the ability to use their pMDI correctly 

(Shim and Williams, 1980) and thus many patients revert back to an incorrect 

inhalation technique within a short period (Duerden and Price, 2002; Crompton, 

2006; Lavorini et al., 2010). The patient‟s inhalation technique should be checked 

regularly and they should receive repeated counselling and monitoring during follow 

up (Kamps et al., 2000; Crompton and Barnes, 2006; Broeders et al., 2009) so that 

there is improved disease control (Haughney et al., 2008). 

A number of inhalation training aids have been introduced to help patients use their 

inhalers correctly, these include; the Aerosol Inhalation Monitor (AIM, Vitalograph, 

Ltd, Buckingham, UK), the 2Tone Trainer™ (Canday Medical Ltd, UK) and the In-

Check Dial (Clement Clarke Ltd, UK). 

2.3.1.1.(i).1 Aerosol Inhalation Monitor 

The Aerosol Inhalation Monitor (Vitalgraph Ltd, UK) is an electronic device that is 

attached to a placebo pMDI. It measures the patient‟s inspiratory flow rate and 

monitors co-ordination. The required inhalation flow is 10-50 L/min and good co-
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ordination is related to this flow when the canister is depressed. The operator 

provides a subjective assessment of breath hold by pressing a button when the patient 

comes to the end of this. The AIM is programmed to accept a minimum 5 second 

hold between the end of the inhalation and the end of the breath hold. Feedback is by 

a green or red light system for coordination, flow and breath-hold. 

The device has been used in many studies to assess patients‟ inhalation technique 

with a pMDI (Wilson et al., 1997; Wilson and Lipworth, 1999). A significant 

increase in the percentage of correct pMDI technique was found after patient‟s were 

trained with the aerosol monitor (Skaer et al., 1996). In acute asthma the device has 

been used to verify correct inhalation technique of patients and as a trainer aid with 

variable success (Lavorini et al., 2010). A practice based study by Hardwell et al 

(2010) reported that a majority of asthmatic patients were unable to use pMDIs 

correctly (inadequate co-ordination and inhale too fast) and the training did not 

improve their techniques (Hardwell et al., 2010). In contrast a community pharmacy 

study reported that only 2 out of 33 patients used their inhaler correctly according to 

the AIM and after training sessions this increased by a further 15 patients (Sarvis et 

al., 2004). 

2.3.1.1.(ii).2 2Tone Trainer™ 

The 2Tone Trainer™ (Canday Medical Ltd) is a training tool to help slow the 

inhalation flow rate when using a pMDI. This training device is a simple plastic tool 

of similar shape and size to that of a pMDI but without a canister as shown in Figure 

2.27. Instead of a canister there are two “reeds” inside the device. These reeds are 

designed to make a one tone sound when the inhalation flow rate exceeds 30 l/min. 

Below 30 l/min, there is no noise and the inhalation flow is classified as too slow. 
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Above 60 l/min, the second reed is 

triggered producing a two- tone noise 

(high pitch) and this is classified as too 

fast. Between 30-60 l/min (the ideal 

inhalation flow rate through the pMDI) 

there is only the one tone sound that 

defines correct inhalation flow. 

Figure 2.27. The 2Tone Trainer (adapted from Al-showair et al 2007a) 

In a clinical study by Al-Showair et al (2007a) the potential of the 2Tone Trainer for 

improving the pMDI technique of asthmatic patients was demonstrated. In this study 

there were 3 groups: those with good pMDI technique without training (these 

demonstrated good co-ordination and inhalation flow < 90L/min) – GT Group, one 

group with inhalation flows of > 90L/min that received verbal pMDI technique 

training before they left the clinic – VT group and a final group (2T) that inhaled 

with flows > 90L/min and received pMDI training plus the 2Tone trainer to practice 

with before they left the clinic.  

Figure 2.28 shows that inhalation flow in the 2T group decreased significantly more 

than those in the VT group whilst those in the GT group remained unchanged. The 

reduction in flows in the 2T group were accompanied by a decrease in the Asthma 

Quality of Life score by > 0.5, as shown in Figure 2.29 indicating a significantly 

clinical improvement in asthma control. 
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Figure 2.28. The PIF of each individual using an MDI in the (left, a) GT group, 

(middle, b) VT group, and (right, c) 2T group (Al-Showair et al., 2007a). 

 

Figure 2.29. The AQLQ score of each individual using an MDI in the (left, a) GT 

group, (middle, b) VT group, and (right, c) 2T group (Al-Showair et al., 2007a). 

2.3.1.2 Dry Powder Inhalers (DPIs) 

Dry powder inhalers (DPIs) were originally introduced in order to avoid the known 

environmental problems of the CFC propellants and the poor inhalation technique 

associated with pMDIs (Vidgren et al., 1988; Prime et al., 1999; Tarsin et al., 2006; 

Virchow et al., 2008). All DPIs are breath-actuated, so patients do not have to 

coordinate between inhalation and actuation, therefore many patients find DPIs much 

easier to use than pMDIs (Bisgaard, 1997; Cegla, 2004; Virchow et al., 2008) and a 

convenient alternative for some patients.(Svedmyr et al., 1982). 
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The first portable DPI introduced to the market was the Spinhaler® (Fisons) in 1970 

for the delivery of disodium cromoglycate (Bell et al., 1971; Sanders, 2007). 

The first salbutamol DPI was the Rotahaler (GlaxoSmithKline, UK) which was 

introduced in 1977 (Hetzel and Clark, 1977). Both these devices were a single-dose 

system with a hard gelatine capsule containing a formulation of the dose. This was 

followed by the Diskhaler (GlaxoSmithKline, UK), in 1980 that contained 

formulations of salbutamol, beclometasone dipropionate and later salmeterol 

xinofoate formulations sealed inside a blister. A disk containing 4 or 8 blisters was 

inserted into the inhaler by the patient and replaced when all the blisters were empty. 

Other DPIs were also introduced to the market using different dosing principles. The 

Turbuhaler (AstraZeneca, UK) which was launched containing budesonide, in 1988, 

was the first multi reservoir-type device (Wetterlin, 1988). The Diskhaler was 

followed by the Accuhaler (GlaxoSmithKline, UK), known as the Diskus outside the 

UK, in 1994 as a multi-unit dose system (Pover et al., 1988) that contains the sealed 

blisters, containing the formulation, on a strip inside the device. Other multiple 

dosing reservoir DPIs followed (Clickhaler, Easyhaler Pulvinal, Novolizer and 

Twisthaler) all with different dose emission characteristics (Chrystyn, 2006). On the 

basis of these historical developments, DPIs are often classified depending on the 

device design, whether a single-dose, multi-dose or multi unit dose (Srichana et al., 

1998). 

DPIs are breath activated, so coordination of inhalation and actuation is not required 

and this makes them easier to use compared to a pMDI. Switching patients that have 

difficulty with coordinating pMDIs to DPIs has resulted in an improvement in 

outcomes (Borgstrom et al., 1994). However, breath actuation can be also be a 

disadvantage for DPIs because an initial highly inspiratory flow rate is required to 
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de-aggregate the formulation of a dry powder inside the DPI into respirable particles. 

Hence a forceful inhalation is required (Borgstrom et al., 1994). During an inhalation 

each DPI requires a certain minimum inspiratory flow to produce respirable particles 

and this could be an important potential limitation of DPIs as mentioned in the Table 

2.14 (below). Studies have shown that patients with asthma especially (pre-school) 

children (Pedersen et al., 1990) and those with COPD (Al-Showair et al., 2007b) 

have problems achieving these minimum flows through some DPIs and that 

inhalation flow is reduced during acute exacerbations (Bentur et al., 2004). The 

recommended technique for DPIs is a forceful, deep inhalation (Fink, 2000; 

Anderson, 2001; Laube et al., 2011) from the start that is maintained for as long as 

possible (Laube et al., 2011). The main advantages and disadvantages of DPI are 

presented in Table 2.14. 

Table 2.14. Advantages and disadvantages of dry powder inhalers (adapted from 

Chrystyn & Price 2009a). 

Advantages of DPIs Disadvantages of DPIs 

Breath-actuated and so no 

need for patient coordination 

required 

No propellant 

Most have dose counters 

Short treatment time 

Small and portable 

 

Some are single dose 

Some need to be shaken before use 

Dose preparation errors can be critical mistakes 

Attention required to orientation of inhaler during 

and after (before inhalation) dose preparation 

Flow dependent dose emission 

Needs a fast acceleration rate at the start of the 

inhalation 

Poor quality (or no) dose emitted if inhalation flow 

is too slow 

Uncertainty of dose emission during acute 

exacerbations 

Can result in high oro-pharyngeal deposition 

More expensive than MDIs 

Need to be stored in a cool and dry place 
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2.3.1.2.(a) De- aggregation of the formulation in a DPI 

In DPIs, the drug is formulated as finely micronized particles in a reservoir, blister or 

gelatine capsules. To ensure the likelihood of drug deposition in the airways during 

an inhalation then particles < 5µm need to be emitted from an inhaler. In general 

these particles do not have good flow properties because of their size, their surface is 

not smooth and the surface has a static charge. All these lead to poor powder flow 

properties whereas good powder flow is required for the formulation in a DPI. Good 

powder flow is essential during manufacture to ensure consistent and reproducible 

filling of inhalers or dose measuring for capsules and blisters. DPIs that are designed 

with a reservoir to contain the formulation and dose metering occurs prior to patient 

use also require good flow properties to ensure that dosing is accurate and consistent. 

The formulation for a DPI is therefore modified to improve its flow properties. Often 

the micronized active drug is mixed with large inert carrier particles, normally 

lactose, which prevents aggregation and improves the flow of the formulation. Some 

reservoir DPIs, notably the Turbuhaler, do not contain a coarse carrier and their drug 

particles are formulated as spheres which have good flow properties. When the dose 

is low (e.g. formoterol) then lactose is used as bulking agent when the spheres are 

formulated for the Turbuhaler. 

Currently, all DPIs are breath activated devices and rely on the inspiratory effort of 

the patient to release the powder dose from the metered cup, the dosing disk, the 

blister or the capsule. The same inspiratory effort also provides a turbulent energy 

(measured as a pressure change) source inside the inhalation channel of the DPI 

between the exposed dose (after dose preparation) and the exit of the mouthpiece. 

This energy is created inside the inhaler by the interaction between the internal 
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resistance of the DPI and the inhalation flow (Clark and Hollingworth, 1993) 

according to the relationship.  

√P=QxR 

Where P is the turbulent energy, Q is the inhalation flow and R is the resistance. The 

turbulent energy is represented by a pressure change inside each DPI during the 

inhalation manoeuvre. Pressure is measured by various units (all are related) with 

kilopascals (kPa) used for DPIs although cmH2O are sometimes used (1kPa=10.1972 

cmH2O). Hence DPIs are classified as passive inhalers. This energy breaks up (de-

aggregates) and transforms the metered powder formulation (drug-carrier) into an 

emitted dose that contains a FPD and MMAD that have the potential for lung 

deposition (Chrystyn, 2003; Chrystyn, 2009). Figure 2.30 described the process of 

de-aggregation in the inhalation channel of a DPI. 

 

 

Figure 2.30. Schematic design of the de-aggregation of the metered DPI dose during 

an inhalation (Chrystyn, 2003). 

The large carrier particles, such as lactose, emitted after the de-aggregation will 

impact in the mouth and the oro-pharynx and be swallowed. A sufficient inhalation 

flow rate (IFR) should be generated during an inhalation to create an internal 

turbulent energy that is capable of de-aggregating the formulation and generating a 
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respirable dose from each DPI device (Pitcairn et al., 1994; Srichana et al., 1998; 

Barnes, 2000a; Broeders et al., 2003a; Broeders et al., 2003b; Virchow et al., 2008) 

The faster the inhalation flow through a DPI then the greater energy will provide 

more efficient break-up of the formulation (Chrystyn, 2003) 

2.3.1.2.(b) DPI internal resistance 

The internal resistance of a DPI is a consequence of its design, and contains elements 

of flow restriction to increase the kinetic energy of the air flow through the device 

during an inhalation. Local pressure drops or high air velocities are necessary for 

adequate de-aggregation as well as dose entrainment in the inhaled airstream from 

the metering cup inside the DPI. The resistance of a DPI can be classified with 

respect to the inhalation flow required to produce a pressure drop of 4kPa with an 

inhalation of 4 litters and can be measured using the above equation by altering the 

flow (from 10 to 100 L/min) and measuring the corresponding pressure drop. Each 

type of DPI has its own unique resistance which ranges from those with high to low 

(Clark and Hollingworth, 1993; Laube et al., 2011) as shown in Figure 2.31. 
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Figure 2.31. The resistance of different dry powder inhalers (Chrystyn, 2009) 
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The figure confirms why Laube et al (2011) classified the resistance of DPIs from 

low (Aerolizer) to medium (Accuhaler) into medium/high (Turbuhaler) then to high 

(Easyhaler). Figure 2.32 also reveals that for a set turbulent energy the flow required 

through a DPI with low resistance will be faster than that required through a DPI 

with high resistance. This is a concept that is misunderstood by many because they 

focus on flow in isolation whereas it is turbulent energy that is important. The higher 

the resistance and the greater the patient‟s airflow obstruction then the lower will be 

their inhalation flow as shown in Table a 2.15 and Figure 2.32 (Chrystyn, 2009). 

Thus low flow does not necessarily translate to inadequate turbulent energy and de-

aggregation during patient use. 

Table 2.15. Mean (SD) inhalation flows achieved by patients (classified according to 

the severity of their disease – mild, moderate and severe) using different inhalers. N 

is the number of patients, age is reported in years and inhalation flows in L min
-1

. 

 ASTHMATIC CHILD ADULT ASTHMATIC COPD 

Severity MILD MOD SEV MILD MOD SEV MILD MOD SEV 

N 101 20 8 7 10 13 34 36 25 

Age 
10.5 

(4.2) 

9.5  

(3.6) 

10.3  

(3.2) 

48.3 

(14.7) 

53.3 

(19.7) 

66.0 

(10.0) 

78.5 

(10.2) 

75.6 

(9.4) 

72.6 

(9.9) 

MDI 112(16) 98(24) 109(18) >120 111(15) 106(16) 102(21) 100(23) 95 (28) 

Aerolizer 102(22) 82 (26) 91 (16) 108(16) 84 (22) 81 (23) 69 (21) 72 (24) 64 (22) 

Diskus 87 (23) 71 (23) 80 (17) 92 (19) 71 (22) 70 (21) 60 (17) 63 (21) 56 (16) 

Turbuhaler 72 (17) 58 (18) 66 (12) 76 (21) 56 (19) 54 (18) 47 (13) 48 (16) 43 (14) 

Clickhaler 73 (16) 57 (16) 65 (11) 72 (21) 54 (18) 53 (18) 47(13) 48 (17) 42 (14) 

Twisthaler 58 (12) 47 (14) 53 (10) 60 (18) 45 (16) 44 (15) 39 (11) 40 (14) 35 (11) 

Easyhaler 54 (11) 43 (14) 49 (7) 55 (13) 40 (12) 40 (12) 33 (10) 35 (13) 31 (10) 

 

 

 



 

 

110 

 

 

 

Figure 2.32. Mean (SD) peak inhalation flows of asthmatic patients through different 

DPIs (AERO – Aerolizer, ACC – Accuhaler, TBH – Turbuhaler, PTWH – 

Twisthaler, HANDI – Handihaler). 

Several, studies have shown that DPIs with a higher resistance provide more lung 

deposition than those with a lower resistance (Clark and Hollingworth, 1993; 

Chrystyn, 2009). This is due to the effects of inhaling against a resistance 

(Borgstrom, 2001). It could be also be due to the momentum of particles inhaled in 

that during a slow inhalation less will be deposited in the oro-pharyngeal zone and 

more will penetrate into the peripheral areas of the lungs. 

2.3.1.2.(c) Flow dependent dose emission 

The above equation of Clark and Hollingworth (1993) describes that for the same 

DPI then the faster the inhalation flow then the greater will be the generated 

turbulent energy. This will lead to more efficient de-aggregation of the dose. Ross 

and Schultz (1996) reported that dose emission from a salbutamol pMDI was not 

affected by flow but there was a difference between the dose emission from a 

salbutamol Diskhaler when using a slow and a fast flow as shown in Figure 2.33. 
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They reported similar results for a salbutamol Rotahaler and a terbutaline 

Turbuhaler. 

 

Figure 2.33. Mean (SD) dose emission from a salbutamol pMDI and Diskhaler at 

different inhalation flows (Ross & Schultz, 1996). 

Hill and Slater (1998) highlighted that de-aggregation was inhalation flow dependent 

by reporting a higher fine particle dose with flow from an Accuhaler and a 

Turbuhaler. De Koning (2001) investigated the effect of both PIF and IFR on more 

than one DPI device and concluded that the Turbuhaler is highly sensitive to IFR, 

producing a maximal fine particle fraction of 50% of label (budesonide) at 60L/min, 

while 23-33% for the fluticasone Diskus. Also he observed that the Accuhaler and 

Cyclohaler are only slightly IFR dependent (de Koning, 2001). A further study 

conformed  the greater flow dependent dose emission from the Turbuhaler compared 

to the Accuhaler and the Easyhaler (Palander et al., 2000) and from a single capsule 

DPI, the Aerolizer (Weuthen et al., 2002). 

An ex-vivo study by Tarsin et al (2006) also confirmed these results by reporting that 

the respirable dose emitted from the Seretide
®

 Diskus was more consistent and 

independent of IFR, while that from the Symbicort
®
 Turbuhaler DPI ( 

AstraZeneca,UK) was more  dependent on the patient‟s inhalation flow (Tarsin et al., 
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2006). In this study the authors collected electronic profiles of severe asthmatics 

when they inhaled through a Seretide Accuhaler and a Symbicort Turbuhaler and 

then replayed these in the electronic lung.  They showed the de-aggregation changes 

with flow by reporting the FPDs and MMADS as shown in Figure 2.34 and 2.35. 

 

Figure 2.34. The fine particle dose emitted from (a) Symbicort Turbuhaler and (b) 

Seretide Accuhaler when each electronic profile was replayed in the electronic lung 

(Tarsin et al, 2006). 

 

Figure 2.35. The mass median aerodynamic diameter of the dose emitted from (a) 

Symbicort Turbuhaler and (b) Seretide Accuhaler when each electronic profile was 

replayed in the electronic lung (Tarsin et al, 2006). 

The flow dependent dose emission phenomena have led to a debate on the optimal 

inhalation flow for each device and many studies have been carried out on how 

patients can/cannot achieve this flow. It has been shown that the in-vitro dose 
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emission characteristics translate to flow dependent lung deposition as shown in 

Figure 2.36 (Newman et al, 1991; Borgstrom et al, 1994). 

 

Figure 2.36. Mean (SD) flow dependent lung deposition from a Turbuhaler (a) 

terbutaline (Newman et al, 1991) and (b) Budesonide (Borgstrom et al, 1994). 

The studies in figure 2.36 revealed no charge in the peripheral: central lung zone 

ratios. The small MMADs with high flow will counteract the increased tendency for 

more central the lung deposition  

Differences in the in-vitro and in-vivo lung deposition results were show to translate 

to different clinical response (Nielsen et al., 1997). However some response was 

obtained at low flows. Therefore the argument about flow dependent dose emission 

is not clinically relevant. More importantly there is a flow below which de-

aggregation of the dose is inefficient as shown by the in-vitro study reported by 

Nadarassan et al (2010) that is  shown in Figure 2.37. This study used a formoterol 

Turbuhaler. 
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Figure 2.37. The effect of flow on the MMAD (dashed line) and the FDP (continuous 

line) of formoterol from a Turbuhaler (Nadarassan et al., 2010) 

The above figure shows that for the Turbuhaler there is a flow below which the de-

aggregation of the dose is inefficient. This is highlighted by marked change in the 

MMAD and the FPD below 30L/min. A patient study, involving asthmatic children, 

measuring FEV1 response to inhaled terbutaline confirmed the in-vitro results in that 

there is a critical flow below which de-aggregation occurs. The results of this clinic 

study are described in Figure 2.38 (Pedersen et al, 1990). 

 

Figure 2.38. Mean response post inhalation of terbutaline from a Turbuhaler at 

different inhalation flows.
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The above figure also demonstrates that caution should be exercised when 

interpreting bronchodilator results in studies using inhalers. Figure 2.38 clearly 

shows the lack of a difference between the 30 and 60 L/min results suggesting 

measurements at the top of the dose response curve. The main issue with respect to 

flow from a DPI is the rate below which therapeutic response is reduced (Laube et al, 

2010). The Easyhaler (Koskela et al., 2000) and Clickhaler (Newhouse et al., 1999) 

have both been shown to be effective at inhalation flows below 30 L/min.  Both these 

DPIs have a higher resistance than the Turbuhaler and so the turbulent energy 

equivalent to that in a Turbuhaler will be achieved at lower flows. This observation 

consolidates why inhalation flows should not be considered in isolation and that it is 

irrelevant to compare a low flow through a high resistance DPI directly to a faster 

flow through a DPI with low resistance (Azouz and Chrystyn, 2012). Neilsen et al 

(1998) reported that the Accuhaler was clinically effective at flows of 30L/min while 

for the Handihaler (Chodosh et al., 2001) this is probably below 30 L/min whereas 

>90 L/min needs to be achieved through the low resistance Aerolizer (Nielsen et al., 

1997). 

2.3.1.2.(d) Patient inhalation flows through DPIs 

 Studies have shown that patients with asthma especially children (Pedersen et al, 

1990) and those with COPD (Al-Showair et al., 2007b) have problems achieving 

these minimum flows through some DPIs and that the inhalation flow is reduced 

during acute exacerbations (Bentur et al., 2004). The Easyhaler has been shown to be 

effective at low flows even when the peak inhalation flow rate was 16 L/min because 

it has high resistance (Malmstrom et al, 1999). Figures 2.39 and 2.40 show the 

inhalation flow rates of children when they use a Turbuhaler (Pedersen et al, 1990) 

and an Easyhaler (Malmstrom et al., 1999). 
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Figure 2.39. Inhalation flows of children when they inhale through a Turbuhaler 

(Pedersen et al, 1990). 

 

Figure 2.40. Inhalation flows of children when they inhale through an Easyhaler 

(Malmstrom et al., 1999). 

A summary of the inhalation flows of patients through different DPIs is presented in 

Table 2.16. 
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Table 2.16. Patient inhalation flows when they use inhalers. 

Patients Comment reference 

Turbuhaler 

74 COPD 
Mean FEV1 41.9 (12.8) % predicted. Pre counselling <30, 30-40, 40-60 and >60 L/min 

numbers were 14, 31, 23 and 6. Post counselling these changed to 7, 16, 41 and 10. 

Nsour et al, 2001.   

24 Asthmatic 

Mean FEV1 57.0 (18.9) % predicted. Pre-counselling mean (SD) PIF 48.0 (16.8) and 

post counselling 54.7 (17.6) L/min. Inhaled volume pre and post counselling was 

1.75(0.68) and 1.94(0.62) L. Time to peak 0.54(0.46) and 0.43(0.23) seconds. 5 patients 

<30 pre counselling and 3 post counselling 

Hawksworth et al, 2000 

163 COPD 

Mean FEV1 47.8 (9.9) % predicted. Mean (SD) PIF was 45.9 (14.1) l/min. Pre 

counselling numbers <20, 20-29, 30-59, >60 were 4, 19, 114 and 26. 84 patients 

verbally trained and the 15 that inhaled <30 changed to 10 

Al-Showair et al, 2007 

20 Severe 

asthmatics 

Mean (SD) PEFR 52.7(6.0) % predicted. Mean (SD) PIF 76.8(26.2) L/min and inhaled 

volume of 2.4(0.8) Litres.  Patients highly trained.  

Tarsin et al, 2006 

110 COPD 
Mean (SD) FEV1 of 0.70(0.21) litres and PIFR of 53(12). Maximal inhalation. zero <28 

L/min. 83 generated 40-59 L/min and 32 >60L/min 

Dewar et al, 1999 

18 COPD 
Median (range) FEV1 54 (33-70) % predicted. Mean (range) PIF 59 (45-73) L/min and 

inhaled volume of 2.2 (1.39-3.42) Litres. Highly trained 

(Derom et al., 2007) 

48 COPD and 16 

asthmatic 

16 mild, moderate and severe. Mean (SD) PIF 76.0(4.6), 64.9(4.9) and 68.6 (4.1) L/min 

before training and 85.4(2.2), 84.4(2.7) and 73.3(4.1) post training. No one <30L/min. 

Slope significantly increased post training. Inhaled volumes were 2.6(0.2), 2.6(0.3) and 

2.3(0.2) litres pre and 2.8(0.2), 2.9(0.3) and 2.6(0.3) post training. 

10 asthmatics mean FEV1 96(7.8) % predicted. Mean (SD) PIFR 76.9(4.6) pre and 

82.1(3.4) post. Inhaled volumes of 2.9(0.3) and 3.1(0.3) litres 

Broeders et al, 2003 

Asthmatic children 

 

38 aged 3-6 years.- Mean PIF was 59L/min 

39 aged 7-10 years mean PIF was 70L/min 

(Stahl et al., 1996) 

Asthmatic children 
34 aged 4 to 13 years – see figure j 

15 with an acute attack (4 and 5 years old PIF range of 14-36 L/min 9 <28L/min 

Pedersen et al, 1990 

Asthmatic children 

72 , 36 in group A – training (n=12 aged 3 , 4 and 5 years each), group B no training 

(n=12 aged 3 , 4 and 5 years each). Baseline PIF values – 25 inhaled <30L/min 

especially in 3 and 4 year old. Mean PIF after training in the 4 and 5 year olds in Group 

A was 46.4L/min compared to group B which was 33.2 L/min (n=24 in each age group).  

The latter increased to 40.4 L/min after they had been trained.  In the 3 year olds group 

Agertoft and Pedersen, 1998  
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A 28L/min and group B 33.2 L/min.  

30 Adult 

asthmatics 

FEV1 88% predicted.  PIF average of 68 L/min and range of 55-95 L/min (Meijer et al., 1996) 

101 Asthmatic 

adults 

Four had a PIF <30L/min. Mean PIF was 59L/min range of 25-93 l/min (Engel et al., 1989) 

Acute asthma 

99 with acute exacerbations. FEV1 1.1(0.7) litres. Mean age 42 years. PIF with 

Turbuhaler was 152(77) L/min reduced to 60(20) with Turbuhaler. 2 patients less than 

30 L/min (both recorded 26 L/min) 

Brown et al, 1995 

Accuhaler 

163 COPD 

Mean FEV1 47.8 (9.9)% predicted. Mean (SD) PIF was 57.5 (17.9) l/min Pre 

counselling numbers <30, 30-59, 60-90, >90 were 0, 8, 79, 69, 7. 84 patients were 

verbally trained and none inhaled <30 L/min 

Al-Showair et al, 2007 

20 Severe 

asthmatics 

Mean (SD) PEFR 52.7(6.0)% predicted. Mean (SD) PIF 94.7 (32.9) L/min and inhaled 

volume of 2.8(1.1) Litres.  Patients highly trained 

Tarsin et al, 2006 

48 COPD and 16 

Asthmatic 

16 mild, moderate and severe. Mean (SD) PIF 107.8.(7.2), 91.8(6.8) and 95.9(6.3)) 

L/min before training and 124(2.8), 121.3(3.0) and 103(6.4) post training. No one 

<30L/min. Slope significantly increased post training. Inhaled volumes were 3.0(0.2), 

2.9(0.2) and 2.6(0.2) litres pre and 3.2(0.2), 3.1(0.2) and 2.8(0.2) post training. 

10 asthmatics mean FEV1 96(7.8)% predicted. mean (SD)  PIFR 111.6(6.8) pre and 

115.3(4.9) post. Inhaled volumes of 3.1(0.3) and 3.3(0.3) litres 

Broeders et al, 2003 

Asthmatic children N=129 aged 3-10 only 2 <30L/min – a 5 year old and a 10 year old..  Nielsen et al, 1998 

Easyhaler 

21 Asthmatics 
Mean PIFR 28.7(5.1) L/min. age range 7-65 years. Lowest PIF was 22 and similar 

bronchodilation to MDI+spacer. 

(Koskela et al., 2000) 

120 + 15 

Asthmatics 

PEF 86(21)% predicted. 4 -16 years old. Mean (SD) PIF was 56(15) L/min range 22-82. 

In the 15 PIF ranged from 16-80 L/min – similar bronchodilation to 200mcg salbutamol 

MDI+spacer. 

(Malmstrom et al., 1999) 

93 COPD 
Mean (range) FEV1 51 (18-96)% predicted. The mean PIF was 54 L/min (range 26–95 

L/min) 

(Malmberg et al., 2010) 
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Handihaler 

26 COPD 
Mean FEV1 % predicted 37.6 range of 16-65. Median PIF of 30.0 with a range of 20.4 to 

45.6 L/min 

(Chodosh et al., 2001) 

163 COPD 

Mean FEV1 47.8 (9.9)% predicted. Mean (SD) PIF was 28.6(10.0) l/min Pre counselling 

numbers <20, 20-29, 30-59 were 3251 and 70. 84 patients were verbally trained 20 out of 26 

increased their flow >30L/min. 

Al-Showair et al, 2007 

pMDI 

163 COPD 
Mean FEV1 47.8 (9.9)% predicted. Median (SD) PIF was 110 (75-120) l/min.  Pre training in 

55 out of 84 inhaled >90 and only 7 post training.  

Al-Showair et al, 2007 

48 COPD and 

16 Asthmatic 

16 mild, moderate and severe. Mean (SD) PIF 127.9(5.5), 134.0(8.1) and 142.1(14.7) L/min 

before training and 118.8(3.9), 117.0(5.3) and 115.4(6.2) post training. 22% inhaled 

<90L/min pre and 21% after training. No one <30L/min. Slope significantly increased post 

training. Inhaled volumes were 2.9(0.7(, 2.6(0.2) and 2.3(0.2) litres pre and 2.9(0.7)2.6(0.2) 

and 2.3(0.2) post training. inhalation times of 1.7(0.1),1.6(0.2) and 1.3(0.2) seconds pre and 

1.7(0.1), 1.7(0.2) and 1.5(0.1) post training. 

10 asthmatics mean FEV1 96(7.8) % predicted. mean (SD)  PIFR 149.6(19.2) pre and 

123.3(9.0) post. Inhaling <90L/min decreased from 17 to 13%. Inhaled volumes of 2.7(1.2) 

and 2.7(1.3) litres pre and post with inhalation times of 1.3(0.1) and 1.4 (0.1) seconds 

Broeders et al, 2003 
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2.3.1.2.(e) Acceleration of flow 

Since the de-agglomeration takes place inside the device before the metered dose 

leaves the DPI then acceleration rate at the start of the inhalation through a DPI is 

vital (de Boer et al., 1996; Everard et al., 1997) Hence, a fast initial rate at the start of 

an inhalation is crucial. This can determine the quality of the emitted dose and the 

FPF (Everard et al., 1997), and it has been shown that this correlates to the peak 

inhalation flow achieved by patients (Broeders et al., 2001). 

Figure 2.41 shows two possible inhalations through a DPI that achieve the same PIF.  

One starts immediately and has a fast acceleration while the other starts slowly and 

gradually builds up to the same PIF (Chrystyn and Price, 2009b). Superimposed on 

this is when the dose leaves the inhaler. 

 

Figure 2.41. The inhalation flow against time profiles of two different inhalation 

manoeuvres through a DPI. The two profiles have the same peak inhalation flow. 

The one with the steep acceleration is a forceful inhalation from the start of an 

inhalation (solid line) whereas the profile with a gentler acceleration is an inhalation 

manoeuvre that starts slowly and gradually builds up into a flow that is as fast as 

possible (dashed line). Superimposed onto the profiles is the time period during 

which the dose is de-aggregated and emitted from the DPI. (Chrystyn & Price, 2009). 

Patients should, therefore be instructed to inhale through the DPI forcefully and that 

this should be from the beginning of their inhalation (Laube et al., 2011). 
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The inhalation profile of a patient may have an effect on the drug delivery and 

distribution of drug particle size (Miller et al., 2000). It is important therefore to 

identify the acceleration rate, inhalation flow rate (IFR) and inhalation volume (IV) 

when patients use DPIs because these variables may affect both the FPD and the site 

of lung deposition (Bell et al., 1971) and may consequently influence the desired 

clinical outcome (Ross and Schultz, 1996; Virchow et al., 2008). It has been shown 

that dose delivery and the lung deposition are determined by the patient‟s variable 

inspiratory air flow (Newman et al., 1994; Cegla, 2004). 

A more forceful inhalation will result in a greater fine particle fraction (Borgstrom et 

al., 1994) with a smaller MMAD (Chrystyn, 2003). Each inhalation manoeuvre with 

a DPI should be as fast as the patient can achieve and this maximum forceful 

inhalation should commence from the beginning of the inhalation and continue for as 

long as possible (Laube et al., 2011). 

2.3.1.2.(f) Dose preparation 

Some DPIs are a single unit dose inhaler and therefore, the patient has to prepare a 

dose (capsule), prior to each inhalation as described in the PIL of the device. 

Incorrect performance by patients may result in them inhaling no dose irrespective of 

the inhalation manoeuvre they use. It has been shown that dose preparation errors 

frequently occur with capsule DPIs (Schulte et al., 2008). In general patients have 

more problems using single dose than multi-dose DPIs (Moore and Stone, 2004; 

Wilson et al., 2007). Also the dose from these devices is reliant on the inhalation 

volume to empty the dose out from the capsule thus it is important that the patient 

inhales twice (Laube et al., 2011). In multiple reservoir inhalers, such as the 

Turbuhaler, Easyhaler and the Clickhaler, the device must be kept in the upright 

position when the dose is metered to ensure accurate filling of the dosing cup. 
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A study assessed the inhaler technique of the Turbuhaler, Rotahaler, and Diskhaler 

and found that 40% of patients were unable to perform all steps correctly (van der 

Palen et al., 1995). Other studies have shown the rate of misuse of Turbuhaler ranged 

from 26% to 94% (van der Palen et al., 1999; Hesselink et al., 2001; Molimard et al., 

2003) and confirmed that the most common mistakes when using the Turbuhaler 

included a failure to turn the base (not rotating the basal grip in the upright position) 

before inhalation. Figure 2.42 describes that there is a similar incidence of error 

irrespective of device although these are more common with the pMDI (Molimard et 

al, 2003). This study also reported that the patients‟ GPs were falsely confident that 

their patients were using the correct inhalation procedure when they used their 

inhalers. It is important, therefore, that prescribers are aware of the inhalation 

procedures for each device (Melani, 2007). 

 

 

Figure 2.42. Percentage of patients making one error and the perception of their GPs 

adapted from (Molimard et al 2003). 

Table 2.17 shows some of the common errors that patients make using DPIs 

(Molimard et al., 2003; Melani et al., 2011). Exhaling into the mouthpiece or/ not 

exhaling before an inhalation, not making a forceful inhalation and no breath hold 
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were the most common errors made by patients. Also patients had problems with 

holding the Turbuhaler upright and twisting its base when loading a dose. 

Table 2.17. Errors made by patients using DPIs in real life situations (Molimard et al, 

2003; Melani et al 2011). 

Inhalation 

procedure 
Melani et al, 2011 (n=1664) Molimard et a, 2003 (n=3811) 

 Handihaler Accuhaler Turbuhaler Aerolizer Accuhaler Turbuhaler 

Did not insert 

capsule 
9 n/a n/a 0.7 n/a n/a 

Did not pierce 

capsule 
3 n/a n/a 3.8 n/a n/a 

Did not hold 

upright - 
n/a n/a 23 n/a n/a 18.1 

Did not load a 

dose 
- 7.3 14  7+2.5  

Did not rotate 

grip backwards 

and forwards 

n/a n/a Not reported n/a n/a 14.9 

Exhaled into the 

device 

mouthpiece 

19 22 14 6.9 6.6 5.3 

No exhalation Not reported 
Not  

reported 
Not reported 32.8 26.4 25.4 

Did not inhale by 

mouth 
2 1 0 1.4 1.9 0.9 

Not a forceful 

and deep 

inhalation 

24 28 22 
Not  

reported 

Not  

reported 

Not 

reported 

Breathe out into 

the device 
19 21 11 

Not  

reported 

Not 

 reported 

Not 

reported 

No breath hold 25 32 28 28.4 26.4 31 

No check if any 

dose left in 

capsule after an 

inhalation 

30 n/a n/a n/a n/a n/a 

 

Table 2.17 above shows that many patients exhaled into the DPI before an inhalation. 

Exhaling into a DPI following dose preparation will introduce moisture into the 

device and blow out the metered dose. This will  increase humidity within the device 

which decreases dispersion of the particles, and will result in an impairment of drug 

delivery (Meakin et al., 1993). High humidity will affect the formulation and large 

agglomerates will form. These are not easy to de-agglomerate sufficiently into fine 

particles during an inhalation (Price et al., 2002; Young et al., 2003; Pedersen et al., 
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2010) and so dose emission is reduced (Meakin et al., 1995). Moisture in the 

formulation will also deteriorate powder flow leading to inconsistent dose metering. 

DPIs should be stored in a cool dry place. 

 In the real life study by Melani et al (2011) they found that independent of the 

inhaler older age (p=0.008), lower schooling (p=0.001) and the lack of inhaler 

technique training (p<0.001) was linked to inhaler misuse. This was also associated 

with an increased risk of hospitalisations (p=0.001), and poor asthma control 

(p<0.001) as well as more courses of oral steroids (p<0.001) and antimicrobials 

(p<0.001). It has been suggested that many healthcare professionals, including 

physicians, pharmacists, nurses, and respiratory therapists, lack sufficient knowledge 

on the correct use of pMDIs and DPIs (Self et al., 2007; Kim et al., 2009). 

Consequently, healthcare professionals should be instructed and trained in the use of 

each individual device (Broeders et al., 2009) Patient education as well as training in 

inhaler use is crucial for the effective treatment and long-term control of asthma and 

COPD (Melani, 2007; Kim et al., 2009). Table 2.18 describes the accepted generic 

inhalation technique instructions when using a DPI (Laube et al., 2011). Of these the 

dose preparation instructions are specific for each type of inhaler. Hence, the 

recommendation for the dose preparation is to refer to the Patient Information leaflet. 
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Table 2.18. The most ideal inhaler technique for DPIs (Laube et al., 2011).  

No Most desirable inhaler technique 

1 Take the cap off (some do not have a cap). 

2 Follow the dose preparation instructions in the PIL. 

3 Do not point the mouthpiece downwards once a dose has been prepared for 

inhalation because the dose could fall out. 

4 Exhale slowly, as far as comfortable (to empty the lungs). Do not exhale 

into the DPI. 

5 Start to inhale forcefully through the mouth from the very beginning. Do 

not gradually build up the speed of inhalation. 

6 Continue inhaling until the lungs are full. 

7 At the end of the inhalation take the inhaler out of the mouth and close the 

lips. Continue to hold the breath for as long as possible, or up to 10 s. 

8 

9 

Breathe normally. 

If another dose is required, repeat steps 1–8. 

 

Health care professionals should ensure that the patient is able to use their inhaler 

effectively (Crompton et al., 2006). Also, physicians must ensure that a convenient 

device is prescribed for each individual patient with appropriate instructions and that 

it is an inhaler that they can and will use (Laube et al, 2011). Moreover, regular 

checking of the patient‟s inhalation technique is essential, because inhaler technique 

tends to deteriorate over a period of time (Lavorini et al., 2010). Hence a review of 

each patient‟s inhalation technique should be a regular component of follow-up care. 

Educational and motivation programs are also useful as a supplement to ensure 

correct inhaler technique. (Lavorini et al., 2010). 

To help train patients to use a fast inhalation then the IN-Check Dial (Clement 

Clarke International, UK) is a useful aid. It does show the patient‟s IFR through 

different DPIs and its helps the healthcare professional to prescribe the most 

appropriate inhaler for individual patients (Chrystyn, 2003). 
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2.3.1.2.(g) The IN-Check Dial™ 

The IN-Check Dial
®
 (Clement Clarke Ltd., UK) is a simple and portable instrument 

that is similar to a Peak Expiratory Flow Meter except that patients have to inhale 

forcefully through the device instead of using a forced exhalation. Figure 2.43 shows 

that the IN-Check-Dial has two parts; an inspiratory flow meter calibrated with a  

range of  inspiratory flow rates (15 to 120 L/min), and a rotating dial mouthpiece that 

selects a different resistance corresponding to the Autohaler (3M Health care), 

Accuhaler (GlaxoSmithKline, UK), the Easi-Breath (Teva Pharmaceuticals, UK), 

Clickhaler  (UCB Pharma, UK) and Turbuhaler (AstraZeneca, UK). The instrument 

has been designed to measures IFR by setting the meter‟s dial to mimic the internal 

resistance of a number of DPIs (Van der Palen, 2003; Crompton, 2004). 

 

Figure 2.43. The In-Check Dial® (Clement Clarke Ltd., UK) and The rotating dial to 

select inhaler resistance (Lavorini et al., 2010). 

Although it is claimed that this tool can identify the most appropriate inhaler device 

for patients based on their ability to learn and achieve an optimal flow rate (Broeders 

et al., 2003b; Chrystyn, 2003; Van der Palen, 2003; Amirav et al., 2005) it is not a 

device selection tool because there is no clinical evidence to support this (Azouz and 

Chrystyn, 2012). Although, the IN-Check-Dial does not measure the initial 

acceleration of the inhalation, studies have shown that this correlates with PIF when 
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patients use DPIs provided that they start with a maximal acceleration of their 

inhalation flow (Broeders et al., 2003a; Lavorini et al., 2010). There is a red disk 

indicator that moves along the tube to the fastest flow achieved and thus observation 

of this can identify an immediate forceful inhalation manoeuvre. 

The IN-Check Dial was found to correlate to electronic measurements of IFR 

(Broeders et al., 2003a; Tarsin et al., 2006). Several studies, therefore, have 

highlighted the potential use of the IN-Check-Dial in clinical practice to identify the 

optimal IFR through a DPI (Nsour et al., 2001; Van der Palen, 2003; Amirav et al., 

2005). Generally, patients should be encouraged and instructed to inhale „hard and 

deeply‟ via their DPIs (Nsour et al., 2001; Van der Palen, 2003). This is considered 

as a significant step towards obtaining optimum benefit from a patient‟s prescribed 

medication. 

2.3.1.2.(h) Types of Dry powder Inhalers (DPIs) 

Each DPI has its own unique dose preparation and resistance. In general they should 

not be tilted downwards once a dose has been prepared for inhalation (Laube teal, 

2011) because the dose will fill out. When the DPI is presented as a single dose 

capsule then each dose should be inhaled using two separate inhalations.  

Information about some common DPIs available in the UK is provided in Table 2.19. 
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 Table 2.19. Types of Dry powder Inhalers (DPIs). 

Inhaler Type Resistance Drugs (UK) Dose preparation Comments 

Accuhaler 

 

 
 

Single 

blisters, 

multidose 

Medium Salbutamol 

Salmeterol 

Fluticasone 

Salmeterol / 

fluticasone 

combination 

The mouthpiece is 

exposed by rotating the 

outer case and then 

sliding a lever to open 

the delivering channel 

in the mouthpiece and 

expose the dose in 

blister container. 

Dose emission is not entirely dependent on an 

individual patient‟s inspiratory manoeuvre (Virchow 

et al.,2008). Studies have suggested that the effect of 

flow dependent dose emission is relatively small  

(Palander et al., 2000: Tarsin et al., 2006) 

. 

Aerolizer 

 

Single dose 

capsules 

Low Formoterol A capsule is placed in 

the centre of the 

inhaler well and it is 

then is pierced by 

pressing and releasing 

the button on either 

side of the device 

Wieshammer et al (2008) and Khassawneh et al 

(2008) have evaluated the handling of inhaler devices 

and overall the Aerolizer had low error rates. In-vitro 

(Weuthen et al., 2002) and in-vivo (Nielsen et al., 

1997) studies have shown flow dependent dose 

emission 
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Clickhaler 

 

Reservoir, 

multidose 

High Salbutamol 

Beclometasone 

 

The dose is loaded 

from the hopper by 

clicking or pressing 

the button on the top 

of the device whilst 

holding the inhaler 

upright. The 

Clickhaler has a dose 

counter and lock-out 

mechanism after 200 

doses 

Effective flow rate is within the range of 15 – 60 L/min
 

such that the minimum flow can be achieved by children 

> 6 years and adults (Nantel and Newhouse, 1999; 

Newhouse et al., 1999). No difference bronchodilator 

response to salbutamol at various inspiratory flow rate 

(15, 30, and 60 L/min) by patients with stable asthma 

(Newhouse et al., 1999). Similar results were obtained 

in patients with COPD (Morice et al., 2000). 

Furthermore, another study has indicated that the 

majority of children ≥ 3 years were able to inhale 

reliable through the Clickhaler (Iqbal et al., 2003). 

Easyhaler 

 

Reservoir, 

multidose 

High Salbutamol 

Formoterol 

Beclometasone 

Budesonide 

 

The powder flows 

from the drug 

reservoir into the 

metering cup, by 

pressing the top which 

fills the volumetric 

holes in the rotating 

drum. 

Palander et al (2000) shown that the emitted dose and 

the fine particle fraction were less flow dependent from 

the Easyhaler and the Accuhaler than the Turbuhaler 

Palander et al.,(2000), and the total dose emission from 

the Easyhaler was fairly consistent irrespective of the 

inhalation flow (Chrystyn, 2006). Effective at low flows 

(Malmstrom et al, 1999). 
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Handihaler 

 

Single dose 

capsules 

High Tiotropium 

bromide 

The inhaler is loaded 

with a capsule which is 

placed into the capsule 

chamber at the centre 

of the device and then 

pierced by depressing 

the side button, which 

makes the dose ready 

for inhalation. 

Due to its high resistance it  has been suggested that 

patients with COPD may not able to generate a high 

inspiratory sufficient flow to de-aggregate the 

formulation and obtain bronchodilation (Chodosh et al., 

2001). Using an inhalation flow lower than 28.3L /min 

through the Handihaler shows a decline of about 20% in 

the fine particle dose (Chodosh et al., 2001).  Inhalation 

volume has been shown to be important for the dose 

emission of tiotropium from the Handihaler (A. Al-

Fadhl, 2005). COPD patients have problems exceeding 

20L/min during inhalation (Al-Showair et al, 2007). 

Novolizer 

 

Reservoir, 

multidose, 

Disposable 

cartridges 

Medium Salbutamol 

Budesonide 

Pressing the button 

loads a dose. Dose is 

released at 35L/min. 

Audio and visual 

feedback that a dose 

has been inhaled 

The dose has to be inhaled at a flow rate ≥ 35 L/min to 

release the dose (Kohler, 2004; Virchow et al., 2008) 

otherwise the patient will receive no dose and cannot 

prepare another dose for inhalation. Young children with 

stable asthma can generate relatively higher PIFs through 

the Novolizer (Vogelberg et al., 2004). In addition, using 

this device, was found to improve compliance and 

asthma control (Moller et al., 2003). In-vivo flow 

dependent lung deposition (Newman et al. 2001). 
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Spiromax 

 

Reservoir, 

multidose. 

 

Medium/ 

high 

Not yet 

available 

The device has an 

internal pump that 

dispenses an accurate 

dose using a controlled 

air pressure that is 

activated by the 

mouthpiece cap. The 

opening of the 

mouthpiece cover by 

patient also advances 

the dose counter  

(Zeng et al., 2002). 

The Spiromax also contains cyclone separator channels 

that are designed to create turbulent flow during an 

inhalation and provide efficient de-aggregation of the 

lactose- drug particles. The in-vitro dose emission from 

Spiromax has been shown to be less dependent on 

airflow than the Turbuhaler, and has a greater dose 

consistency (Hirst et al., 2002). A dose handling study 

has found that the Spiromax was easier to use and to 

learn how to use compared to the Turbuhaler. (Keating 

and Faulds, 2002). 

Turbuhaler 

 

 

Reservoir, 

Multidose 

Medium / 

high 

Terbutaline 

Formoterol 

Budesonide 

Formoterol / 

budesonide 

combination 

The formulation 

contains spheres of 

drug particles so that it 

has good flow 

properties. Lactose as 

a bulking agent in 

formoterol. Holding 

the Turbuhaler in an 

upright position and 

twisting the base 

forwards, until a click 

is heard, and then 

backwards 

The particle size of the drug that is emitted depends on 

the patient‟s inspiratory flow (Everard et al., 1997). 

Significant flow dependent dose emission (Palander et 

al, 2000). In-vivo flow dependent lung deposition 

(Newman et al, 1991; Borgstrom et al, 1994). In-vivo 

bronchodilator response reduced below 30L/min 

(Pedersen at al, 1990). Young children with asthma 

(Pedersen et al, 1990 and COPD (Al-Showair et al, 

2007) have problems inhaling >30L/min especially when 

obstruction is severe (Chrystyn, 2009)  
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2.4 Patient Compliance with prescribed inhaler medication  

Poor inhalation technique leads to inefficient lung deposition resulting in a reduced 

therapeutic effect. Of these doses preparation errors are very important because these 

are more likely to provide no dose whereas a poor inhalation technique would 

provide some response. Another critical issue is patient compliance because this 

result in no dose delivered to the lungs. An unused inhaler would be the most 

expensive inhaler. Poor compliance by a patient contributes to disease instability and 

may lead to a worsening with an increase in morbidity and mortality rates as well as 

increasing healthcare costs (Chrystyn, 2005; Rau, 2005). A review, in asthmatic 

patients by Cochrane (1992), indicated poor compliance among asthmatic patients 

ranging between 20 - 80%, whilst Hoskins et al (2000) reported 16 to 50%. During 

regular reviews, almost a third of asthmatic patients were not taking their 

prophylactic medication as prescribed (McCowan et al., 2005). The increase of time 

without ICS is associated with poor asthma control, and  increased hospitalisation 

rates (Melani et al., 2011) and appears to contribute up to 61% of deaths from asthma 

(Rau, 2005). To improve compliance several approaches have been suggested with a 

recommendation of a focus to using clear instructions by healthcare personnel as 

well as responding to the patients and their treatment particularly their ICS (Horne, 

2006). It has been shown that patient education improves compliance with ICS 

(Onyirimba et al., 2003). Choosing therapy and inhalers preferred by patient helps 

compliance especially if they find them easy to use. Patient preference is a key issue 

but all studies except one have been sponsored by a pharmaceutical company and 

hence the results are biased. The preference of patients, in the one unsponsored 

study, is described in Figure 2.44. This figure shows that of the seven devices which 
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the patients graded the BA- pMDI was the most favourable while the  pMDI attached 

to a spacer was the least preferred inhaler (Lenney et al., 2000). 

 

Figure 2.44. The preference of patients for seven devices by (Lenney et al., 2000) 

2.5 Summary 

The inhalation technique required to use a pMDI is generally described as a 

manoeuvre that is „slow and deep‟ whilst a more clearer instruction is to inhale 

slowly until the lungs are full of air and to try to ensure that this complete inhalation 

takes 5 seconds. For a dry powder inhaler the instruction is „deep and fast as you can‟ 

whilst a clearer explanation is as fast as possible, from the start, and maintain the 

inhalation as long as possible. In the past studies have focused on the general 

instructions and applied subjective assessment to identify if patient have problems 

using their inhalers. These studies suggest that a large proportion of patient do have 

problems using their inhalers but there is no objective assessment. The studies of this 

Thesis have been designed to provide objective assessments of inhaler technique and 

at the same time to quantify how patients use inhalers with respect to their inhalation 

flows (including the peak inhalation flow), inhalation volumes and inhalation times 

(including the time to the peak inhalation flow). Simple solutions to the main issue 
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with respect to pMDI co-ordination and slow flow and with respect to DPIs using a 

fast inhalation from start will be identified and studied using objective methods.  

 Studies involving children and adults with asthma, those with chronic obstructive 

pulmonary disease and healthy volunteers have been designed when they inhale 

through a pMDI and a DPI. For the pMDI studies the time between the start of an 

inhalation and the pressing of the canister has been included to identify co-ordination 

and for DPI the acceleration of the inhalation flow through different devices has also 

been included.  

2.5 1 Aims and Objectives 

2.5.1 (a) Aims 

 To capture the electronic inhalation profiles of children with asthma, adults 

with asthma and COPD patients together with healthy individuals as well as 

their disease control and spirometry. 

 Identify the inhalation parameters from each profile. 

 Show how simple methods can be used during the inhalation technique 

training session to improve patient inhaler administration when using a pMDi 

and DPI. 

2.5.1. (b) Objectives 

 Measure inhalation parameters (peak inhalation flow, inhalation duration, and 

inhaled volume) in children with asthma, adults with asthma and COPD when 

they inhale through pMDIs and spacers. 

 Identify the impact of using a co-ordination cap and simple counselling to 

increase the duration of an inhalation on the pMDI technique of asthmatics. 
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 Measure inhalation parameters (peak inhalation flow, time to peak inhalation, 

the acceleration rate of each inhalation, inhalation duration and inhaled 

volume) in children with asthma, adults with asthma and COPD when they 

inhale through different DPIs. 

 To identify the impact of focussing on a fast inhalation from the start during 

counselling by measuring inhalation profiles (peak inhalation flow, time to 

peak inhalation, the acceleration rate of each inhalation, inhalation duration 

and inhaled volume) when children with asthma, adults with asthma and 

COPD inhale using two different DPIs. 

 Measure the change in the inhalation parameters when patients with asthma 

and COPD inhale through different DPIs after their recovery following 

hospital admission due to an acute exacerbation. 
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Chapter 3:  

Preliminary investigations on the inhalation 

characteristic of children with Asthma (CHILD), 

adult asthmatics (ADULT) and patients with 

chronic obstructive pulmonary disease (COPD) 

when they use a pressurised metered dose inhaler 

(pMDI) with and without spacers and a Soft Mist 

Inhaler. 
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3.1 Introduction 

In 1976 Crompton started a series of reports (Paterson and Crompton, 1976; 

Crompton, 1982b), describing pMDI inhalation technique problems. Today 

(Crompton, 2006; Melani et al., 2011) these problems are no different to those in 

1976. It is estimated that about 75% of patients make errors when using their pMDIs 

(Molimard et al., 2003), as they need to co-ordinate the device actuation with 

inhalation to receive the intended therapeutic dose. Moreover, 60-92% of patients 

inhale too fast and do not use a slow inhalation when they used their pMDI (Larsen 

et al., 1994; Al-Showair et al., 2007a). Failure to use a slow inhalation was more 

common than good co-ordination between dose actuation and co-ordination (Nimmo 

et al., 1993; Hesselink et al., 2001). It is estimated that approximately 50% of 

patients do not obtain sufficient therapy from their inhalers due to poor inhalation 

technique (Crompton and Duncan, 1989). 

An extensive review has concluded that flows through a pMDI should be < 90L/min 

(Pauwels et al., 1997) whilst a gamma scintigraphy study has shown that a flow of 

90L/min with a co-ordination time of 0.2 seconds resulted in the greatest total and 

peripheral lung deposition (Farr et al., 1995). Previously these criteria had been 

described as the ideal combination (Goodman et al., 1994) and were used by 

Broeders et al (2003). This latter study measured electronic profiles and reported that 

not using a slow flow was a more common mistake than good co-ordination. This 

latter study revealed that the inhalation volume of asthmatics was around 2.7L which 

is less than those reported by Farr et al (1995) in healthy volunteers. Broeders et al 

(2003) reported that inhalation volumes in COPD ranged from means for 2.3 to 2.7L 

with those who had more severe obstruction having the smaller inhalation volumes. 
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Spacers were introduced to help solve pMDI technique problems and to reduce 

oropharyngeal deposition. However, it has been reported that up to 40% of the 

children used their pMDI inadequately even with a spacer (Kamps et al., 2000). 

Training and regular inhaler technique follow up is therefore required (van 

Beerendonk et al., 1998; Kamps et al., 2000; Crompton, 2006). Although spacers 

should be used with a slow inhalation reports do not focus on this. 

Most studies assessing inhalation technique are subjective. Goodman et al (1994) and 

later Broeders et al (2003) used electronic measurements to characterise the 

inhalation profile of patients when they used a pMDI (but not a spacer). Broeders et 

al (2003a) demonstrated the effect of training but inhalation flows remained too fast. 

This study was designed to adapt available methodology to provide a preliminary 

assessment of measuring inhalation parameters of patients when they use a variety of 

inhalers. In this study patients have been asked to use their real life inhalation 

technique and so received no training about inhalation technique. Patients with 

asthma (both children and adults) and COPD when they used a pMDI alone and 

when it was attached to different spacers have been studied. Also inhalation 

parameters for a Respimat
®
 (Boehringer Ingelheim, GmbH) have been obtained. 

3.2 Research Aim and Objectives  

3.2.(a) Aim 

The main aim  was to identify the inhalation parameters of children with asthma, 

(CHILD), adults with asthma (ADULT) and COPD patients when they inhaled 

through a pMDI and when the pMDI was attached to a Volumatic spacer and also 

when attached to an AeroChamber spacer, also to identify the inhalation parameters 

when patients with COPD used a Respimat. 
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3.2.(b) Objectives 

Primary Objectives 

To measure the inhalation profile when the patients inhale through a pMDI alone and 

when attached to a Volumatic and when attached to an AeroChamber as follows. 

 Asthmatic children: peak inhalation flow (PIF in l/min), inhalation volume 

(IV in L) and inhalation time (Ti in sec) through a pMDI alone, a pMDI with 

a Volumatic spacer and attached to an AeroChamber as well as an 

EasiBreathe. 

 Asthmatic adults: peak inhalation flow (PIF), inhalation volume (IV) and 

inhalation time (Ti sec) a pMDI alone, a pMDI with a Volumatic spacer and 

attached to an AeroChamber. 

 COPD patient: peak inhalation flow (PIF), inhalation volume (IV) and 

inhalation time (Ti sec) through a pMDI alone, a pMDI with a Volumatic 

spacer and attached to an AeroChamber and when they inhaled through an 

EasiBreathe and Respimat. 

Secondary Objectives 

 To obtain patient‟s demographic features and measure their peak expiratory 

flow (PEF), forced expiratory volume in one second (FEV1) and Forced Vital 

capacity (FVC). 

 Identify the level of their disease.  
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3.3 Method 

3.3.1 Study Population 

3.3.2 Patient recruitment and sample size 

NRES ethical approval was obtained as well as local R&D (Research and 

Development) approval from each centre [APPENDIX A-1]. Asthmatic adults / 

children and COPD patients attending an outpatient appointment and receiving 

regular care at the respiratory clinics of NHS hospitals (see below for the list of 

hospitals involved) who used a pMDI and a pMDI attached to a spacer were invited 

to take part in this research study. The study procedures were explained to all 

patients using the ethical committee approved Patient Information Leaflet 

[APPENDIX A1, A2, A3 and A4] which they kept. All subjects willing to take part 

gave their signed informed consent and for children their parent / care also gave 

consent (APPENDIX A5). Patients were free to withdraw or terminate, at any time 

from the study, without giving a reason. The data collected and records were kept 

strictly confidential and anonymous. 

The NHS Hospitals which were involved as research sites: 

 Leeds General Infirmary (LGI), Leeds, UK. 

 St. James‟s University Hospital, Leeds, UK. 

 Bradford Royal Infirmary, Bradford, UK. 

 St. Luke‟s Hospital Bradford, UK. 

 Airedale Hospital, UK 
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 (a) Inclusion criteria 

Patients who met all the following criteria were potential candidates for recruitment: 

 Male or female, with stable asthma or COPD. 

 Prescribed inhaled medication through a pMDI and had used a pMDI 

attached to a spacer. 

 Age groups: asthmatic child (4-18 years)[CHILD], adult asthmatic asthma 

(18-55 years) [ADULT] and COPD ( > 55 years)[COPD]. 

 Signed informed consent form. 

(b) Exclusion Criteria 

Patients who met the following criteria were excluded from participation: 

 Prescribed inhaled medication for less than 4 weeks prior to enrolment. 

 Other pulmonary diseases (e.g. Cystic Fibrosis, TB, pneumonia). 

 An acute exacerbation of asthma or COPD or a short course of high dose oral 

prednisone during the last 2 weeks. 

 Participation in another clinical research study in the 3 months prior to 

enrolment. 

3.3.3 Study Design 

A Micro-Loop Spirometer (Cardinal Health, UK) was adapted with an airtight holder 

on the air entry in-let of the spirometer‟s mouthpiece. Specially designed inhaler 

adapters were obtained to fit tightly onto the holders. Adapters unique for the 

mouthpiece of each inhalation method were obtained. These allowed an inhalation 

through the spirometer. The inhalation section of the option to measure a flow 

volume loop with the spirometer was chosen. The data from each profile was 

downloaded into a Microsoft Access spreadsheet to compute the inhalation 

parameters. 
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Each patient‟s demographic data was obtained and their spirometry (PIF, FEV1 and 

FVC) was measured. Disease severity classification for asthma was made according 

to GINA (2008) and for COPD according GOLD (2006)  

The patients were asked to inhale through the Micro-Loop when it was fitted with: 

I. An empty pMDI [pMDI] 

II. An empty pMDI attached to a Volumatic spacer (GlaxoSmithKline, UK) 

[VOLUMATIC]. 

III. An empty pMDI attached to an AeroChamber spacer (Truddell International, 

Canada) [AEROCHAMBER]. 

IV. An Empty EasiBreathe [EASIBREATHE]. 

V. COPD only –an empty Respimat® (Boehringer Ingelheim). [RESPIMAT] 

The order was randomised and each patient made two separate inhalations. Prior to 

inhalation through the Respimate patients were given the patient information leaflets 

to study. 

 

Each patient was instructed to use the same technique as they would use at home – 

their real life inhaler technique. All inhalations were made during one visit. From 

each inhalation profile the following inhalation parameters were obtained: 

 Peak inhalation flow, in litres per minute (PIF). 

 Inhalation volume, in litres (IV). 

 Duration of the inhalation, in seconds (Ti). 

 

 

 



 

 

143 

 

The profile with the slowest PIF was chosen for data analysis. Patients were also 

asked to complete a questionnaire as follows: 

 Adult asthmatic: the Asthma Control Questionnaire (ACQ – Juniper et al 1999b) 

see [APPENDIX A-6] and Juniper‟s Asthma Quality of Life - mini version (AQLQ) 

– see [APPENDIX A-7] (Juniper et al., 1999a)  

 Children: Paediatric Asthma Caregivers Quality of Life – PACQLQ (Juniper et 

al.,1996b). [APPENDIX A-8] and Asthmatic children: Paediatric Quality of Life – 

PAQL (Juniper et al., 1996a)[A -9] 

 COPD: St George‟s Respiratory questionnaire (SGRQ)- See [APPENDIX A-10] 

(Jones et al, 1992). 

3.3.4 Data Collection 

Quantitative and qualitative data were collected from the 3 groups (children with 

asthma, asthmatic adults and COPD patients) 

Main outcomes were: 

 Peak inhalation flow (PIF). 

 Inhalation volume (IV). 

 Duration of inhalation (Ti). 

The Secondary measures were; 

 Demographic data 

 Level of asthma / COPD control using  quality of life questionnaires (see above)  

 Spirometry (PEF, FEV1, FEV1% predicted and FVC) 

3.3.5 Data Analysis 

The statistical analysis of the study was carried out using the Statistical Package for 

Social Sciences (SPSS) software version 17. The study data was first classified into 

scale, categorical (nominal) or ordinal categories, as appropriate, and an SPSS 
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dataset was then set up for the analysis. The statistical analysis was performed and 

presented as follows 

 Descriptive statistics: mean and standard deviation. 

 For scale data; normal distribution of the data was examined using histograms 

and statistical  tests for normality; the Kolmogorov-Smirnov and Shapiro-Wilk tests 

 Comparisons (differences) of measurements through different inhalers within the 

same group  were performed using the related (paired)-samples t-test (for parametric 

data) and the Wilcoxon test (for non-parametric data) 

 Comparisons (differences) of measurements between different the groups were 

performed using the independent-samples t-test (for parametric data) and the Mann-

Whitney U test (for non-parametric data). 
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3.4 Results  

3.4.1 Study Population 

A total of 109 patients were recruited and completed this study as shown in Table 

3.1. Individual details are presented in APPENDIX B-1, B-2 and B-3, together with 

their % predicted values (refer to the enclosed DVD). 

Table 3.1. Details of all subjects studied. All data is mean (SD) unless indicated.  

Characteristics CHILD ADULTS COPD  

Number  20 57 32 

Age in years  8.6 (2.8) 48.3(15.4) 64.8(12.1) 

Sex (M/F) 15/5 11/46 17/15 

Height (cm) 132.8(20) 165.5(9.01) 168.1(10.3) 

Weight (Kg) 34.8(16.2) 76.5(17.7) 77.8(12.2) 

FEV1 (L) 1.5(0.72) 2.03(0.62) 1.3(0.6) 

FEV1 % predicted 77.4 (18.4) 71.1(17.0) 42.2(17.8) 

PEF ( L/min) 191.2(76.9) 304.1(114.4) 178.9(92.2) 

PEF % predicted 63.1(15.7) 72.6(24.1) 46.1(18.3) 

FVC (L) 1.6(0.7) 2.5(0.7) 2.0(0.8) 

Disease 

severity* 

Mild 9 15 4 

Moderate 8 23 20 

Severe 3 19 8 

Very severe N/A N/A - 

*asthma severity classified was based on GNA (2008) Guidelines 

3.4.2 Inhalation Characteristics  

A summary of the inhalation parameters of the asthmatic children is shown in the 

Table 3.2, adults with asthma in Table 3.3 and COPD patients in Table 3.4. The 

number of patients with slow, fast and very fast PIF values are shown in Table 3.5 

and Figure 3.1. Individual vales are presented in Figures 3.2 to 3.10. 
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Table 3.2. Inhalation characteristics of the asthmatic children when they inhaled through the pMDI, pMDI with Volumatic, pMDI with 

AeroChamber and EasiBreathe. 

D* 
pMDI VOLUMATIC AEROCHAMBER EASIBREATHE 

PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) PIF(l/min IV(L) Ti(sec) PIF(l/min IV(L) Ti(sec) 

Mean 108.9 1.14 1.44 93.0 1.08 1.38 89.90 1.17 1.52 77.60 1.06 1.43 

SD 40.4 0.59 0.27 49.7 0.61 0.25 40.7 0.59 0.30 41.2 0.66 0.22 

min 62.0 0.5 1.0 37.0 0.3 1.0 38.0 0.3 1.0 36.0 0.3 1.0 

max 224 3.0 1.9 206 2.9 1.9 206 2.6 2.2 211.0 2.9 1.8 

*Devices  

Table 3.3. Inhalation characteristics of the asthmatic adults when they inhaled through the pMDI, pMDI with Volumatic, pMDI with 

AeroChamber and EasiBreathe. 

D* 
pMDI VOLUMATIC AEROCHAMBER EASIBREATHE 

PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) 

Mean 146.0 2.1 1.5 145.8 2.1 1.6 136.9 2.0 1.5 100.0 1.6 1.64 

SD 58.8 0.9 0.3 67.5 0.8 0.4 68.9 0.9 0.3 39.0 0.82 0.31 

min 40.0 0.6 1.1 44.0 0.4 1.1 30.0 0.5 0.3 52.0 0.73 1.10 

max 284.0 4.5 2.2 286.0 3.9 2.6 301.0 4.2 2.2 205.0 3.7 2.80 
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Table 3.4. Inhalation characteristics of COPD patients when they inhaled through the pMDI, pMDI with Volumatic, pMDI with Aero-

chamber and the EasiBreathe. 

D* 
pMDI VOLUMATIC AEROCHAMBER EASIBREATHE 

PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) PIF(l/min) IV(L) Ti(sec) 

Mean 107.3 1.8 1.6 115.7 1.8 1.5 117.9 1.8 1.7 83.8 1.8 1.7 

SD 50.6 1.0 0.2 50.4 0.9 0.4 49.1 0.8 0.4 29.1 1.1 0.5 

min 33.0 0.4 1.1 34.0 0.6 1.1 37.0 0.5 1.1 38.0 0.9 1.1 

max 242.0 5.3 1.9 277.0 4.7 2.8 287.0 4.4 2.6 155.0 4.9 3.5 

 

Table 3.5. Summary of patients categorised with respect to their PIF. 

PIFR 

(L/min) 

PATIENTS NUMBER (PERCENTAGE) 

ADULT n (%) CHILD n (%) COPD n (%) 

 pMDI VoL AERO EASI pMDI VOL AERO EASI pMDI VOL Aero- EASIn=14 

>200 
11 

(19.2%) 

12 

(21%) 

14 

(24%) 

12 

(21%) 

1 

(5%) 

1 

(5%) 

1 

(5%) 

1 

(5%) 

3 

(9.3%) 

2 

(6.25) 

1 

(3.1%) 
0 

90-200 
36 

(63%) 

30 

(52.63) 

31 

(54.3) 

31 

(54.3%) 

12 

(60%) 

7 

(35%) 

10 

(50%) 

3 

(15%) 

19 

(59.3%) 

22 

(68.75) 

24 

(75%) 

7 

(5%) 

25-90 
10 

(17.5%) 

15 

(26.3) 

12 

(21.1) 

14 

(24.6%) 

7 

(35%) 

12 

(60%) 

9 

(45%) 

16 

(80%) 

10 

(31.2%) 

6 

(18.8%) 

7 

(21.9%) 

7 

(5%) 
VOL- Volumatic, AERO-AeroChamber, EASI-EasiBreathe 
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Figure 3.1. Summary of patients categorised with respect of their PIF. 

 

 

Figure 3.2. Individual Peak inhalation flow (L/min) for the children with asthma 

when they inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached 

to an AeroChamber and an EasiBreathe. 
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Figure 3.3. Individual Inhaled volume (L) for the children with asthma when they 

inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 

 

Figure 3.4. Individual durations of the inhalation (Ti) of the children with asthma 

when they inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached 

to an AeroChamber and an EasiBreathe. 
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Figure 3.5. The peak inhalation flow (L/min) of each adult with asthma when they 

inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 

 

Figure 3.6. Individual inhalation volumes (IV) of the adults with asthma when they 

inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 
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Figure 3.7. The duration of the inhalations (Ti) of each adult with asthma when they 

inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 

 

 

Figure 3.8. Peak inhalation flow (L/min) of each COPD patients when they inhaled 

through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 
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Figure 3.9. Individual inhalation volumes (IV) of the COPD patients when they 

inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 

 

Figure 3.10. The duration of each inhalation (Ti) by the COPD patients when they 

inhaled through the pMDI, pMDI attached to a Volumatic, pMDI attached to an 

AeroChamber and an EasiBreathe. 
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The range of peak inhalation flows and inhaled volumes of the three patient groups 

with respect to the severity of their disease is presented in Table 3.6 whilst Table 3.7 

presents these ranges for the adults with asthma according to their ACQ. Table 3.8 

shows the range of the PIF and IV for the children with asthma with respect to their 

age. 

Table 3.6. Range of inhalation parameters through the pMDI in all patients according 

to the severity of obstruction 

 CHILD ADULT COPD 

PIF (L/min) 

Mild 65 - 224 55 - 217 33-209 

Moderate 75 - 150 40 - 281 38-242 

Severe 110 - 106 75 - 284 44-146 

Very Severe n/a n/a n/a 

IV (L) 

Mild 0.5 - 3 1 - 3.5 0.7-5.3 

Moderate 1.1- 1.8 0.8 - 4.5 0.8-3.7 

Severe 0.5 - 1.2 0.6 - 3.6 0.81-1.80 

Very Severe n/a n/a n/a 

 

Table 3.7. Range of inhalation parameters through the pMDI in the adult asthmatic 

patients according to their asthma control measured by their ACQ 

 ADULT 

PIF (L/min) 

< 0.7 76 - 284 

0.7-1.5 108 - 238 

> 1.5 40-280 

IV (L) 

< 0.7 1-3.4 

0.7-1.5 1.1-2.5 

> 1.5 0.6 - 4.5 
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Table 3.8. Range of inhalation parameters in the children with asthma according to 

their age 

 pMDI Volumatic AeroChamber 

PIF (L/min) 

5-7 years 62- 190 37-92 38-99 

8-10 years 75-150 49-153 57-147 

> 10 years 85-224 88-260 89-206 

IV (L) 

5-7 years 0.5-1.4 0.3-1.2 0.3-1.4 

8-10 years 0.7-1.8 0.8-2.2 0.8-2.3 

>10 years 1.2-3 0.8-2.9 1.1-2.6 
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3.4.3 The Inhalation Characteristics between the patients groups 

Figure 3.11 shows a comparison of PIF for each group using each different 

inhalation method and a summary of the statistical analysis between each inhalation 

method within each group for the pMDI and spacers are presented in Table 3.9. 

(Using, the non-parametric test (Wilcoxon test)), and between each group for the 

different inhalation methods used non-parametric test (using the independent-

samples, Mann-Whitney U test) is presented in Table 3.10. 

 

Figure 3.11. Mean (SD) peak inhalation flows for the different group of patients 

when they inhaled through pMDI, Volumatic, AeroChamber and an EasiBeathe 

Table 3.9. Statistical comparison of PIF within each group between each inhalation 

method. 

 pMDI v‟s 
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pMDI v‟ 

AeroChamber 
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AeroChamber 

CHILD 0.286 0.185 0.445 

ADULT 0.429 0.359 0.238 

COPD 0.054 0.02 0.422 
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Table 3.10. Statistical comparison of PIF values between the different groups 

 CHILD v‟s 

ADULT 

CHILD v‟s 

COPD 
ADULT v‟s COPD 

pMDI 0.000 0.191 0.002 

Volumatic 0.0007 0.023 0.067 

AeroChamber 0.003 0.016 0.481 

EasiBreathe 0.003 0.033 0.226 

 

Figure 3.12 shows a comparison of the inhaled volumes (IV) for each group using 

each different inhalation method and a summary of the statistical analysis between 

each inhalation method within each group for the pMDI and spacers is presented in 

Table 3.11. 

 

Figure 3.12. Mean (SD) inhalation volumes for the different group of patients when 

they inhaled through pMDI, Volumatic, AeroChamber and EasiBeathe 

Table 3.11. Statistical comparison of inhaled volumes within each group between 

each inhalation method  
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Table 3.12. Statistical comparison of inhalation volumes between the different 

groups 

 CHILD v‟s 

ADULT 

CHILD v‟s COPD ADULT v‟s COPD 

pMDI 0.000 0.003 0.079 

Volumatic 0.000 0.001 0.077 

AeroChamber 0.000 0.004 0.201 

EasiBreathe 0.001 0.007 0.507 

 

Figure 3.13 shows a comparison of the inhalation times (Ti) for each group using 

each different inhalation method and a summary of the statistical analysis between 

each inhalation method within each group for the pMDI and spacers is presented in 

Table 3.13 and between each group for the different inhalation methods is presented 

in Table 3.14 

 

Figure 3.13. Mean (SD) inhalation times for the different group of patients when they 

inhaled through pMDI, Volumatic, AeroChamber and EasiBeathe 
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Table 3.13. Statistical comparison of the inhalation times within each group between 

each inhalation method, values are the p values. 

 pMDI v‟s 

Volumatic 

pMDI v‟ 

AeroChamber 

Volumatic v‟s 

AeroChamber 

CHILD 0.432 0.329 0.239 

ADULT 0.226 0.738 0.975 

COPD 0.127 0.456 0.042 

 

Table 3.14. Statistical comparison of inhalation times between the different groups 

 
CHILD v‟s 

ADULT 
CHILD v‟s COPD ADULT v‟s COPD 

pMDI 0.995 0.214 0.140 

Volumatic 0.027 0.472 0.154 

AeroChamber 0.842 0.335 0.144 

EasiBreathe 0.000 0.005 0.473 

 

3.4.5. Inhalation Characteristics of COPD patients through Respimat®. 

The inhalation parameters of the COPD patients when they inhaled using an empty 

Respimat® are summarised in Table 3.15 and the numbers using different PIF are 

shown in Table 3.16 

Table 3.15. Inhalation characteristics of the COPD when they inhaled through a 

Respimat
®

. 

 PIF (L/min) IV (L) 
Duration of 

Inhalation(Sec) 

Mean(SD) 49.9(21.1) 1.4(0.9) 1.6(0.5) 

Min 22.0 0.4 1.1 

Max 124.0 4.5 3.5 

 

Table 3.16. Summary of COPD patients categorised with respect to their PIF. 

PIF (L/min) COPD Patients n=32(%) 

> 200 None 

200-90 1(3.12%) 

90-25 28(87.5%) 

< 25 3(9.37%) 
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3.4.6 Quality of Life Questionnaires 

(a) CHILD 

 The Paediatric Asthma Quality of Life (PAQLQ) and Questionnaire the 

Paediatric Asthma Caregivers Quality of Life (PACQLQ) 

The mean (SD) Paediatric Asthma Quality of Life (PAQLQ) and the Paediatric 

Asthma Caregivers Quality of Life (PACQLQ) were 4.35 (1.05) and 4.7 (1.19). The 

symptoms, Activity and Emotional domains of the PAQLQ were: 3.7(1.1), 4.5(1.5), 

4.9 (1.1). Individual values are presented in APPENDIX B-4 (refer to enclosed 

DVD) 

(b) ADULTS 

 Asthma Control Questionnaire–(ACQ) and Asthma Quality Of Life 

Questionnaire – (AQLQ) 

The mean (SD) ACQ scores were 2.1(1.0), Table 3.17 presents the frequencies and 

percentages of the asthmatic adults in different ACQ score. Previously Table 3.7 

presents the ranges for PIF and IV with respect to the ACQ scores of these adult 

asthmatics. A summary of the mean (SD) of AQLQ scores (overall and its three 

domains: symptoms, Activity Limitation, Emotional and Environment) are presented 

in Table 3.18. (Individual values can be found in APPENDIX B-5, B-6 refer to the 

enclosed DVD). 

Table 3.17. ACQ categorises of the adult asthmatics. 

ACQ Categories Frequencies 

≤ 0.75 (well controlled) 5 (8.8%) 

0.75-1.50 (not well controlled 14 (19.2%) 

≥ 1.50 ( uncontrolled) 38 (66.6%) 
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Table 3.18. Mean (SD) (AQLQ) of the asthmatic adults. 

ASTHMA QUALITY OF LIFE QUESTIONNAIRE – (AQLQ). DOMAINS 

Domains Mean (SD) Score-AQLQ Domains for one visit 

Overall AQLQ 4.40 (1.12) 

Symptoms 3.8(1.2) 

Activity Limitation 3.9 (1.1) 

Emotional Function 3.2 (1.3) 

Environment 3.5(1.5) 

 

 (C) COPD 

 The SGRQ Scores 

The SGRQ scores (overall and its three domains: Symptoms, Activity and Impacts) 

are presented in Table 3.19. The detailed SGRQ scores of all COPD patients are 

presented in APPENDIX B-8 (refer to the enclosed DVD). 

Table 3.19. Descriptive Statistics of the SGRQ scores FOR COPD Patients.  

SGRQ (n=32) 
Symptoms 

score 

Activity 

score 

Impacts 

score 

Total 

score 

Mean (SD) 70.2 (24.2) 73.6 (19.5) 50.2 (21.6) 60.6 (18.5)* 

Percentiles 

25 58.3 60.7 34.7 43.5 

50 75.5 76.1 52.4 62.1 

75 90.1 91.2 69.47 78.3 

*SGRQ scores ranges from 0 to 100, zero scores indicate no impairment, with higher scores indicating 

worse health status.  
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3.5 Discussion  

Subjective assessment of each patient‟s inhalation technique was not performed 

because this was a pilot study to identify inhalation parameters and the methodology 

did not allow an electronic measurement of the point of co-ordination.  

The results provide substantial information about the inhalation parameters of asthma 

patients (both adults and children) and COPD patients when they use pMDIs and 

when they are attached to spacers. Poor co-ordination and slow flow are common 

errors made by patients when they use a pMDI (Al-Showair et al., 2007a; Hardwell 

et al., 2010). Not using a slow flow is a more common mistake made by different 

group of patients when they inhaled through a pMDI (Al-Showair et al, 2007a). 

This study shows that the majority of patients inhaled too fast (>90L/min) when 

using their pMDI. The results revealed that 65% of children with asthma inhaled > 

90L/min as well as 82% of the adult 68% of the COPD patients. The COPD findings 

are in accordance with Al-Showair et al (2007). In this 2007 reported study (using 

the IN-Check to measure flow) 59.5% of COPD patients with mild severity 

demonstrated an incorrect flow and their PIFR was > 90L/min with a mean PIF 

>120l/min before training. Another study reported that the majority of adults with 

asthma, children with asthma and COPD patients used a high flow rate >100 l/min 

when they used their pMDI (Chrystyn, 2009).  

The study in this Chapter confirms that not using a slow flow is not only problem 

with pMDIs but also when they are attached to spacers and to some extent when the 

EasiBreathe is used. However the children did decrease their flows when using 

spacers whilst the adults with asthma and COPD patients did not. This could be due 

to the constant training they receive when using their spacers. The lack of a statistical 

difference is due to the small number of children together with the large variability of 
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the results. There was no change in their inhaled volumes when all patients used their 

pMDI or spacers suggesting that they all used a similar complete inhalation during 

each manoeuvre. The prolonged inhalation times of the children when they used 

spacers are probably due to their training and since their volume did not change then 

their flows were slower. Again the lack of a statistically significant change is due to 

the small number of subjects and the variability of the results. 

Inhalation parameters of children with asthma when using pMDIs have not been 

reported before as well as when all asthmatics and COPDs use a pMDI attached to a 

spacer and when they use an EasiBreathe. Also similar data about adults with asthma 

and COPD patients is very limited. Previously Broeders et al (2003) have reported 

that the mean (SD) inhalation flows in adults asthmatics, mild COPD, moderate 

COPD and severe COPD patients when they use a pMDI are 149.6 (19.2), 127.9 

(5.5), 134.0 (8.1) and 142.1 (14.7) L/min. The results reported for the adult 

asthmatics in this Chapter are similar whilst those of the COPD patients were lower. 

Age and disease severity should not affect inhalation flow because this is heavily 

reliant on technique rather than the capability of the individual and could be 

influenced by the amount of training (especially children) and attention to details (in 

COPD patients). This would account for the significantly reduced flows in the 

children and COPD compared to the adults with asthma.  It is this latter group that 

should be targeted for extensive technique training. 

The peak inhalation flows when the pMDI was attached to either a Volumatic or an 

AeroChamber were similar to those of the pMDI. The mean (SD) inhaled volume of 

asthmatic children asthmatic adults and COPD patients through the pMDI were 

1.14(0.5), 2.1(0.9), 1.8(1.0) L. These values compare to 2.7 (1.2) L in adult 

asthmatics and 2.9 (0.7), 2.6 (0.2) and 2.3 (0.2) L in mild, moderate and severe 
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COPD patients when they inhaled through a pMDI (Broeders et al., 2003a). Also 

Farr et al (1995) reported mean (SD) inhalation volumes inhalation volumes ranging 

from 2.3 (0.3) to 3.2 (0.17) L, in healthy volunteers, depending on the inhalation 

manoeuvre used. The results in this chapter suggests that the inhalation volumes are 

related to age for the children. When the children with asthma used the pMDI 

attached to the Volumatic 5 of those 5-7 years used a volume of < 750ml. Hence with 

one inhalation these would not be able to inhale the complete volume of the 

Volumatic. This would be the volume that enters the mouth rather than into the 

lungs. It is advisable therefore that these patients should use the traditional tidal 

breathing method when they use a Volumatic. It has been recommended that as soon 

as a child can use a single deep inhalation though the AeroChamber (Roller et al., 

2007) then they should be encouraged to switch from tidal breathing to one complete 

inhalation. Although all children with asthma used a minimum volume of 280 ml 

with the AeroChamber and this is almost twice its volume then each child should be 

individually assessed. The child with the low volume was 5 years old and the 

smallest subject in the study. 

The duration of an inhalation Ti (Sec) is an inhalation parameter that has largely 

been ignored. Overall these were less than 2 seconds. It has been recommended that 

adult patients should be trained to inhale over 5 seconds and children 2 to 3 seconds 

(Laube et al, 2010). If patients use the same inhalation manoeuvre with respect to a 

gentle exhalation followed by a full inhalation then if the volume does not change 

and the duration of the inhalation increases then flow will be reduced. This theory is 

investigated during the studies in Chapter 5. 
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When using the EasiBreathe the inhalation parameters were similar to those of the 

pMDI. Flows were slightly slower which could be due to the higher resistance in the 

Easibreathe. The resistance was not measured but the air channels of this device are 

smaller than those of the pMDI.  No patient used a flow of < 20 L/min which is the 

threshold for this device to breath actuate. 

The Respimat is designed to emit a soft mist aerosol over 1.6 seconds (Newman et 

al., 1998; Hochrainer et al., 2005). Overall the COPD patients used a slower flow 

rate through the Respimat and only one patient inhaled > 90 L/min. However these 

flows are much faster than those of highly trained volunteers (Newman and 

Newhouse, 1996; Newman et al., 1998) whereas the volumes are similar. This 

suggests that the healthy volunteers may not have made a full inhalation. In this 

study 23 of the 32 (71.9%) patients inhaled over < 1.6 seconds and so these would 

have stopped their inhalation while the dose was still being emitted. The duration of 

the inhalation is critical parameter when using the Respimat®. 

In summary, most patients performed an inadequate inhalation technique because of 

high inhalation flows when using their “real life” pMDI technique. Inhaled volumes 

and inhalation duration were low. This was a pilot study and the methodology did not 

lend itself to make subjective assessments of their technique. This preliminary pilot 

study highlights the value of using electronic methodologies to measure these 

parameters and incorporate an objective measure of co-ordination. The volumes 

indicate that most patients can empty a spacer using a single full inhalation but 

caution should be exercised when switching small and young children from tidal 

breathing to one single full inhalation.  
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Conclusion: 

The study indicates that characterisation of the inhalation flow profile to identify 

aspects of the inhalation could be useful to identify the areas to focus on when 

training a patient to use their pMDI. Overall flows were too fast and inhalation times 

were short. 
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4.1 Introduction 

The pressurized metered dose inhaler (pMDI) is the most widely used delivery 

system and commonly used in the management of asthma and COPD compared to 

other devices (Lenney et al., 2000; Broeders et al., 2003a). In 1965 the problems 

patients have using the correct pMDI technique were first report (Saunders, 1965). 

Subsequent subjective observations of patients using their pMDI have reported that  

these problems have yet to be solved (Orehek et al., 1976; Paterson and Crompton, 

1976; Epstein et al., 1979; Shim and Williams, 1980; Crompton, 1982b; Allen and 

Prior, 1986; Pedersen et al., 1986; Horsley and Bailie, 1988; Crompton and Duncan, 

1989; Manzella et al., 1989; Hilton, 1990; Larsen et al., 1994; van Beerendonk et al., 

1998; Lenney et al., 2000; Hesselink et al., 2001; Molimard et al., 2003; Melani et 

al., 2004; Sestini et al., 2006; Melani, 2007; Melani et al., 2011). These have been 

confirmed by limited objective measurements of inhalation parameters (Goodman et 

al., 1994; Broeders et al., 2003a) and an Aerosol Inhalation Monitor (Sarvis et al., 

2004; Hardwell et al., 2010). 

Not using a slow inhalation followed by good co-ordination between the start of an 

inhalation and dose actuation are the most common errors. Other problems are not 

shaking the pMDI, failure to exhale, the cold-freon effect, not inhaling as much as 

possible and breath holding (Crompton, 1982b). Only 8% of adult asthmatics used 

their pMDI with a slow flow and good co-ordination (Al-Showair et al., 2007a). 

When used correctly, only about 10%-20% of the nominal dose reaches the targeted 

airways (Newman, 1985). However, only a small amount is needed to produce a 

useful clinical effect and despite the consistent problems with pMDI inhaler 

technique these products have and continue to provide significant healthcare benefit. 
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Although the guidelines (BTS/SIGN., 2009; GINA, 2011) do recognise this they do 

appreciate that disease control could be improved without escalating the dose by 

better inhalation technique and compliance. It has been shown that good inhaler 

technique is associated with better asthma control (Giraud & Roche, 2002; Al-

Showair et al, 2007a), reduced inhaled corticosteroids (Kamps et al., 2003) and 

significantly less hospital admissions as well as acute exacerbations (Melani et al., 

2011). Thus patients with poor technique get sub-optimal benefit from their inhalers 

and this could translate into escalating doses and hence prescription item and other 

healthcare costs. It has been estimated that half the patients do not get the full 

therapeutic benefit from their inhalers due to poor inhaler technique (Crompton & 

Duncan, 1989). Improving inhalation technique could be one method of achieving 

the GINA challenge which is to reduce hospital admissions due to asthma by 50% 

over the next 5 years (Fitzgerald et al., 2011). A complete healthcare package that 

includes inhaler technique training in Finland has shown significant healthcare 

benefits and reduction in healthcare costs (Haahtela et al., 2006). 

To compliment traditional subjective assessment of inhaler technique objective 

measurements could be used to target the steps of the inhalation manoeuvre that the 

patient does not perform as recommended. Figure 4.1 describes an inhalation profile 

when a subject uses a pMDI. 

This profile identifies when the patient depressed the pMDI canister (co-ordination) 

where TsIn is the time between the start of the inhalation and actuating a dose. Also 

the peak inhalation flow (PIF), the duration of the inhalation (Ti) and the inhalation 

volume (IV) can be identified. Linking these to spirometry the ratio of the inhaled 

volume to the forced vital capacity could be used to identify if the patient exhaled 

and that during the inhalation they inhaled as much as possible 
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Figure 4.1. The inhalation flow with respect to time when using a pMDI. 

The aim of this study was to measure electronic profiles of patients when they 

inhaled through their pMDIs using their normal, untrained, real life inhalation 

technique. Using these objective methods the errors made with respect to co-

ordination and peak inhalation flow have been identified and an assessment of their 

inhalation volume has been made. Correlations of these parameters to spirometry 

have also been made. 

4.2 Aim and Objectives 

4.2.1 Aim 

 Identify the inhalation parameters of patients (children with asthma, adults 

with asthma and COPD patients) when they inhale through a pMDI. 

 Use the inhalation parameters to identify inhalation technique errors with 

respect to flow, co-ordination and inhaled volume. 

 Evaluate if there are correlations between the inhalation parameters and the 

indices of spirometry. 
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4.2.2 Objective (s): 

 Measure the inhalation profiles of children with asthma (CHILD), asthmatic 

adults (ADULT) and COPD patients (COPD) when they inhale through a pMDI 

using their „real life‟ technique. 

 Identify peak inhalation flow rate (PIF), inhalation volume (IV), length of 

inhalation (Ti) and the time of dose actuation with respect to the start of an 

inhalation. (TsIn). 

 Use the inhalation parameters to identify inhalation technique problems 

 Correlate the inhalation parameters to spirometry. 

 Identify the levels of control (ACQ and AQLQ in asthmatics; SGRQ in COPD). 

4.3 Methods 

4.3.1 Study design 

NRES research ethics approval from the Yorkshire and Humber Research Ethics 

Committee – Bradford was obtained (ref number 09/H1302/64). Stable asthmatic 

(adult and children) and COPD patients who were attending an out-patient NHS 

clinic and were prescribed a pMDI were invited to take part. The study objectives 

and procedure were described to the patients (including the parents/guardians of 

asthmatic children) using relevant patient information sheets [APPENDIX A1-A-2 

and A-3]. All gave signed informed consent. [APPENDIX A 5]. 

The NHS Hospitals were: 

 Airedale General Hospital, Steeton, West Yorkshire, UK. 

 Leeds General Infirmary, Leeds, UK. 

 Bradford Royal Infirmary, Bradford, West Yorkshire, UK. 

 St Luke‟s Hospital, Bradford, West Yorkshire, UK. 
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(a) Inclusion Criteria:  

 Male or female  

 Stable asthma or COPD  

 Asthmatic: children aged 5-17 years and adults 18-70 years 

 COPD patients > 55 years  

 Prescribed a pMDI 

 Signed informed consent form (including the parent/guardian of asthmatic 

children). 

 (b) Exclusion Criteria: 

 Limited ability to understand / implement the study procedures and instructions 

 Other pulmonary diseases (e.g. TB, pneumonia) 

 Acute exacerbation or oral short course of high dose prednisolone during the last 

4 weeks. 

 Patient participating in another clinical research study at the time of or in the 

past 3 months. 

 pregnant 

(C) Design 

Each patient‟s gender, age, height and weight were obtained together with their 

current medication. Their spirometry (PEF, FEV1 and FVC) was measured using a 

MicroLoop Spirometer (Cardinal Health) and their % predicted values were 

calculated (Gore et al., 1995). 

The patients were asked to complete the following; 

 18-55 years: Asthma Control Questionnaire (ACQ) and Juniper Asthma Quality 

Of Life Questionnaire (AQLQ) (Juniper et al 1999d; Juniper et al., 2006) 

[Appendix A-6 and A-7 respectively]. 



 

 

172 

 

 4-17 years: Paediatric Asthma Quality Of Life Questionnaire (PAQLQ) (Juniper 

et al., 1996a) and Paediatric Asthma Caregiver‟s Quality Of Life 

Questionnaire(PACQLQ) [ APPENDIX A-8, A-9] (Juniper et al., 1996) 

 COPD patients completed the St George‟s Respiratory Questionnaire (SGRQ) 

[APPENDIX A-10].(Jones et al., 1991)  

Each patient, made two inhalations using their normal inhalation technique through 

an empty pMDI that was attached to an inhalation profile recorder. From these 

inhalation profiles the peak inhalation flow (PIF), inhalation volume (IV), the time 

between actuation and the start of an inhalation (TsIn) and the duration of the 

inhalation (Ti) were obtained. The inhalation profile with the slowest peak inhalation 

flow was chosen for the final data analysis. 

Co-ordination was defined as GOOD if TsIn was 0-0.2 seconds (Farr et al., 1995), 

EARLY if < 0 seconds and LATE if > 0.2 seconds. Some patients did not actuate a 

dose during their inhalation (DNA). Flow was classified as SLOW if < 90 L/min 

(Newman et al, 1980, Newman et al, 1982; Farr et al, 1995; Pauwels et al, 1997) and 

FAST if > 90L/min with those > 200 L/min further classified as VERY FAST. Those 

with good co-ordination and slow flow were defined as using a GOOD technique. 

Also a IV/FVC ratio > 60% (Farr et al, 1995) suggested that they used a complete 

inhalation. 

The measurements were made during a single visit and patients were free to 

withdraw from the study at any time. They could also be withdrawn from the study 

by their doctor or at the discretion of the investigator(s) if they violated the study 

plan, were unable to follow the protocol procedures and / or for any other safety or 

clinical reasons. 
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4.3.2 Statistical Analysis 

The statistical analysis of the study data was carried out using the Statistical Package 

for the Social Sciences (SPSS for window version 17) software. The study data was 

first classified into scale, categorical (nominal) or ordinal categories, as appropriate, 

and an SPSS dataset was then set up for the analysis. The statistical analysis was 

performed and presented as follows 

 Descriptive statistics: mean and standard deviation. 

 For scale data; normal distribution of the data was examined using histograms 

and statistical  tests for normality; the Kolmogorov-Smirnov and Shapiro-wilk 

tests 

 Comparisons (differences) of measurements through different inhalers within the 

same group  were performed using the related (paired)-samples t-test (for 

parametric data) and the Wilcoxon test (for non-parametric data) 

 Comparisons (differences) of measurements between different the groups were 

performed using the independent-samples t-test (for parametric data) and the 

Mann-Whitney U test (for non-parametric data). 

 Correlations between the ACQ and the inhalation parameters and between the 

spirometry indices and the inhalation parameters were carried out. The data was 

first tested for normality (as described above) to determine the use of either 

Pearson‟s (Normal data) or Spearman‟s rho (non parametric) tests  
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4.4 Results  

4.4.1 Patients  

Table 4.1 describes the 181 patients that completed this study.  

Table 4.1. Demographic data of the patients. Value are means (SD) unless stated 

otherwise.  

Characteristics CHILD ADULT 
ADULT + 

CHILD 

COPD 

Number (n) 20 130 150 31 

Age (years) 8.9(3.3) 39.7(9.2) 35.6(19.2) 67.2(11.6) 

Sex (M/F) 14/6 33/97 47/103 16/15 

Height (cm) 133.4(20.6) 167.1(9.2) 162.6(16.1) 167.3(10.9) 

Weight (Kg) 35.8(17.7) 75.5(14.8) 70.2(20.3) 77.7(12.3) 

FEV1 (L) 1.74(0.58) 2.58(0.77) 2.47(0.80) 1.27(0.61) 

FEV1 (% pred) 53.9(13.1) 77.9(21.1) 74.7(21.9) 55.2(34.0) 

FVC (L) 1.88(0.61) 3.13(0.95) 3.00(1.00) 2.06(0.81) 

FVC (% predicted) 47.0(21.4) 78.3(22.1) 74.2(24.4) 57.4(19.9) 

PEF (L/min) 201.3(70.7) 339.6(105.2) 321.1(111.6) 178.9(94.1) 

PEF (% pred) 52.0(15.1) 74.4(23.3) 71.4(23.6) 40.2(21.0) 

 

Classification of the severity of their obstruction according to their predicted FEV1 is 

presented in table 4.2. 

Table 4.2. Severity of patients. 

 CHILD ADULT CHILD+ADULT COPD 

Mild 10 63 73 5 

Moderate  7 45 52 7 

Severe 3 22 25 19 

Very Severe N/A N/A N/A 0 
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The mean (SD) ACQ of the adult asthmatics (n=130) was 1.66 (0.93) with 22 below 

0.7, 40 between 0.71 and 1.49, and 68 above >1.5. Their mean (SD) AQLQ was 4.35 

(1.23). The mean (SD) PAQLQ of the children was 4.73(1.19) and PACQLQ 

was 4.35 (1.05). The mean (SD) SGRQ of COPD patients was 60.6(18.5) 

4.4.2 Inhalation parameters and coordination 

A summary of the pMDI inhalation characteristics of the patients is presented in 

Table 4.3.  

Table 4.3. Mean (SD) inhalation parameters.  

 CHILD ADULT CHILD+ADULT COPD 

Profile with slowest PIFR 

PIF (L/min) 70.5(36.4) 131.4(60.8) 123.2(61.7) 70.9(28.1) 

IV (L) 0.88(0.60) 2.04(0.91) 1.99(0.96) 1.05(0.56) 

Duration (Ti) 1.25(0.46) 1.68(0.82) 1.62(0.79) 1.44(0.65) 

IV/FVC ratio (%) 50.0(29.7) 65.9(23.1) 67.4(24.7) 57.3(32.4) 

 

The PIFs of each individual from the slowest profile are presented in Figure 4.2 -4.4. 

Those for the inhalation volume are shown in Figure 4.5-4.7 and the inhalation times 

in Figure 4.8-4.10 with the time between actuation and the start of an inhalation 

(TsIn) in figure 4.11.  
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Figure 4.2. The distribution of the peak inhalation flow, from the fast and slow 

inhalation profiles, through the pMDI by children with asthma.  

 

Figure 4.3. The distribution of the peak inhalation flow, from the fast and slow 

inhalation profiles, through the pMDI by the COPD patients. 

 

Figure 4.4. The Peak inhalation flows, from the fast and slow inhalation flow 

profiles, through the pMDI for the adults with asthma.  
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Figure 4.5. The inhaled volume, from the high and low inhalation profiles, through 

the pMDI by the children with asthma.  

 

Figure 4.6. The inhaled volume, from the high and slow inhalation profiles, through 

the pMDI by the COPD patients. 

 

Figure 4.7. The inhaled volume, from high and slow inhalation flow profiles, through 

the pMDI by adults with asthma.
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Figure 4.8. The inhalation times, from the high and low inhalation flow profiles, for 

children with asthma.  

 

Figure 4.9. The inhalation times, from the high and low inhalation profiles, for 

COPD patients. 

 

Figure 4.10. The inhalation times, from high and low inhalation flow profiles, for the 

adults with asthma.
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Figure 4.11. Inhalation times between actuation of the dose and the start of an 

inhalation (TsIn) for the different group of patients from slow the inhalation profiles. 

Using the inhalation parameters from the profile with the slowest PIF to categorise 

aspects of the inhalation technique into flow, co-ordination, technique and a 

complete inhalation is presented in Table 4.5. 

A comparison between each group presented in figure 4.12, 4.13, and 4.14 and a 

Summary of the comparison between the groups is presented in Table 4.4. 
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Figure 4.12. Peak inhalation flow (PIF) for different group of patients. 

 

Figure 4.13. Inhaled volume (IV) for different group of patients 

 

Figure 4.14. Inhalation time for different group of patients 
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A Summary of the comparison between the groups is presented in Table 4.4. 

Table 4.4. Statistical summary between each group (Mann-Whitney U test for non-

parametric data). 

 CHILD vrs ADULTS CHILD vrs COPD ADULTS vrs COPD 

PIF (L/min) p<0.001 p=0.794(ns) p<0.001 

IV (L) p<0.001 p=0.151(ns) p<0.001 

Ti (Sec) p=0.016 p=0.375(ns) p=0.159 

 

Table 4.5. Classification of inhalation technique.  

 CHILD ADULT CHILD+ADULT COPD 

(a) Flow 

SLOW 15 37 52 24 

FAST 5 72 77 7 

VERY FAST 0 21 21 0 

(b) Co-ordination 

GOOD 5 53 58 10 

EARLY 4 27 31 13 

LATE 9 45 54 8 

*DNA 2 5 7 0 

(c) Good Technique 

GOOD 3 6 9 7 

POOR 17 124 141 24 

(d) IV/FVC ratio 

>60% 7 84 91 15 

<60% 13 46 59 16 

(e) Good technique and IV/FVC ratio >60% 

 0 2 2 3 

*DNA: did not actuate a dose during their inhalation  
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4.3.3 Correlation between ACQ and PMDI technique 

There was no link between asthma control and inhalation parameters. Of the adult 

asthmatics that used a slow inhalation (n=37) only 5 had an ACQ <0.7 whereas 6 had 

an ACQ of 0.7-1.5 and the remaining 26 had >1.5. Figure 4.15 and 4.16 shows the 

relationship between the ACQ for the adults with asthma with peak inhalation (low) 

and inhalation volume (low). Of those with good co-ordination (n=53) 12 had an 

ACQ of < 0.7, 21 between 0.7 and 1.5 and 20 >1.5. The six adult asthmatics with 

good technique (slow flow and good co-ordination) had ACQ scores of 1.57, 1.86, 

1.43, 2.7, 2.17 and 1.50. Two of these asthmatics with good technique had a IV/FVC 

ratio of > 60% and their ACQ scores were 2.7 and 2.17.  

 

 

Figure 4.15. Correlation between the peak inhalation flow (low) and the ACQ for 

adults with asthma (p<0.01). 
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Figure 4.16. Correlation between the IV and the ACQ for adults with asthma 

(p<0.01). 

4.3.4 Correlation between spirometry and inhalation parameters 

The inhalation parameters from the profile with the slowest PIF were chosen for the 

correlations. 

There was no correlation between PEF and PIF for any of the groups. Associations 

between FEV1 and the inhalation parameters as well as FVC and the inhalation 

parameters were significant with the latter being more strongly correlated.  

The only significant correlation between spirometry and the inhalation parameters 

was between FVC and PIF as well as FVC and IV for the adult with asthma group  as 

shown in figure 4.17-4.18 
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Figure 4.17. Relationship between the FVC and PIF for adults with asthma 

(p<0.001). 

 

Figure 4.18. Relationship between the FVC and IV for adults with asthma p<0.001. 
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4.5 Discussion 

The results in this chapter provide substantial data about the inhalation characteristics 

of all patients when they use their pMDI.  The metered dose inhaler (MDI) is the 

most widely used inhaler to deliver drug to the airways (Everard et al., 1995) and the 

efficiency of the pMDI, in terms of the extent and distribution of lung deposition, is 

influenced by many factors (Goldberg and Lourenco, 1973; Newman et al., 1981a; 

Ganderton, 1997). The inhalation technique by patients is one of the main factors that 

affect the fraction of the inhaled aerosol depositing in the lung and the subsequent 

distribution of the inhaled dose in the lungs (Canadian Asthma Consensus Group, 

1999). Inadequate pMDI use adversely affects airways distribution and results in 

poor drug delivery, decreased disease control and increased inhaler use. Many 

studies have found that using the correct inhalation technique through pMDIs results 

in a significant increase in bronchodilator response (Newman et al ,1980), and 

misuse of pMDIs is correlated to reduced asthma control (Giraud and Roche 2002; 

Al-Showair et al, 2007a), increased corticosteroid use (Kamps et al., 2003) and 

hospitalisations  (Melanie et al, 2003). Efficient inhalation technique by patients is 

crucial for the success of therapy. In realty, the majority of asthmatic and COPD 

patients misuse their pMDI and several studies have confirmed that patients fail to 

use the correct technique when using their pMDIs (Paterson and Crompton, 1976; 

Epstein et al., 1979; Larsen et al., 1993; Larsen et al., 1994; Kamps et al., 2000; 

Molimard et al., 2003; Melani et al., 2011). 

There is a growing appreciation of the fact that patients find it particularly difficult to 

use the correct inhalation technique, particularly where device actuation and 

inspiration are concerned (Price et al., 2003). Many previous studies have attempted 

to measure inhalation technique using direct observation. These methods will have 
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limitations and, so throughout this study an inhalation profile manager system has 

been used to obtain reliable quantitative inhalation measurements in order to assess 

technique. 

To signify a good inhalation technique coordination between inhalation and device 

actuation, should be between > 0 and < 0.2 seconds (Farr et al., 1995) and an 

inhalation flow of < 90 L/min was defined as slow flow (Farr et al, 1995; Pauwels et 

al, 1997; Al-Showair et al, 2007). Although many patients fail to exhale before an 

inhalation  (Melani et al., 2011) the definition of a complete inhalation with respect 

to the inhaled volume has yet to be fully defined although there is a suggestion that a 

IV/FVC ratio of > 0.6 could indicate this (Goodman et al., 1994; Farr et al., 1995). 

This study has confirmed that a high percentage of patients have poor co-ordination 

and not using a slow flow is the main problem. Fifty three of the 130 adults with 

asthma used good co-ordination hence 60% demonstrated poor co-ordination. In 

children with asthma, as expected, more had poor co-ordination (75%) but there were 

only 20 subjects which could have influenced this. COPD patients were not much 

better with 68% having poor co-ordination. Again the number (n=31) is much lower 

than the adults asthmatics. These values for poor co-ordination are similar to those 

previously reported (Crompton, 1982b; Nimmo et al., 1993; Cochrane et al., 2000) 

but higher than others (Broeders et al., 2003a; Molimard et al., 2003; Melani et al., 

2004; Sestini et al., 2006; Melani et al., 2011). Of most significance 5 adults with 

asthma and 2 children with asthma that did not depress the pMDI canister. These 

would receive no dose irrespective of how good the inhalation manoeuvre was.  

Furthermore 7 adults pressed the canister, to release a dose, at least one second 

before the start of their inhalation (one patient pressed 3.24 seconds before and 

another 2.4 seconds before). Also two children depressed >1 second before the start 
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of their inhalation (one was 3.24 seconds) and three COPD subjects (all >2 seconds). 

Hence those that did not actuate or inhaled too early are likely to receive no lung 

deposition. The total of asthmatics (adults and children) that did not actuate or 

actuated too early is 16 out of a total of 151, hence 10.6%. The three COPD subjects 

reflect 9.7% although the number of these subjects is small. The results suggest that 

approximately 10% would have received no drug which is the most significant 

clinical error that can be made by these patients. 

Using a high PIF decreases lung deposition, with increased deposition in the mouth 

and central zones of the lung (Dolovich et al., 1981; Newman et al., 1981a; Newman 

et al., 1982; Newman et al., 1994; Newman et al., 1995a). This may affect the 

fraction of the dose reaching the peripheral regions of the lungs, subsequently 

affecting the clinical efficacy of the inhaled therapy (Newman et al., 1981b; 

Newman, 1985). Using a slow inhalation flow has been shown to improve asthma 

quality of life (Al-Showair et al, 2007). Broeders et al (2003) has reported that the 

mean of 12 asthmatics and 36 COPD subjects was in the range of 117 – 149 L/min 

and Al- Showair reported that in 163 COPD subjects the mean was 110 L/min. The 

latter method did not use electronic methods and was constrained by a maximum 

flow of 120 L/min due to measuring instrument used (IN- Check Dial). The PIF 

values of the adult asthmatic are similar to those previously reported whilst the 

COPD PIF values are slower and there is no previous report with children. Overall 

the flows in the children with asthma and in the COPDs were the best with 15 out of 

20 (75%) children and 24 out of 31 (77%) using a flow < 90 L/min. It is amongst the 

adult asthmatics that flow is too fast. Overall 93/130 (72%) used a fast flow with 21 

(16% of the total) inhaling > 200 L/min. 
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The inhalation volumes of the children and COPD subjects were, as expected, lower 

than those of the adult asthmatics. The values in the COPD subjects are much lower 

than those previously reported (Broeders et al, 2003). This also applies to the 

asthmatic adults (Broederes et al., 2003) which is also much lower than that reported 

in healthy volunteers (Farr et al., 1995). In the children the overall mean IV/FVC 

ratio was less than 50% which could suggest that there was a tendency not to make a 

full inhalation. Such a ratio would be irrelevant in COPD because of the severity of 

any obstruction. However the mean value for this ratio was 51% which could suggest 

that they also did not make a complete inhalation.  In the adult asthmatics this ratio is 

around 66% which does indicate that overall these patients were making a full 

inhalation. 

The strong correlations between inhaled volume and the forced vital capacity of the 

adult asthmatics have not been previously reported.  However these strong 

correlations did not occur for the children with asthma or the COPD subjects.  This 

would be due to the size of the children and the reduced lung volumes of the COPD 

patients especially when measuring FVC where there is a tendency for airways to 

collapse during a forced exhalation maneuver. The correlation between inhaled 

volume and forced vital capacity warrants further investigation because if a ratio that 

indicates a full inhalation can be identified then this could be incorporated into future 

electronic inhaler technique aids to indicate how complete the inhalation was.  From 

the results there is a suggestion that a ratio of > 0.66 indicates a full inhalation. A 

similar correlation to the inhalation parameters were noted for the FEV1 (as would be 

expected due to the FVC correlations) but they were not as significant as the FVC. 

Studies have shown that only about 10% of patients use an ideal technique with their 

pMDI (Allen and Prior, 1986; Larsen et al., 1994; Al-Showair et al., 2007a; Hardwell 
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et al., 2011). However some other observational studies suggest that between a 

quarter (Goodman et al., 1994) and a third (Molimard et al., 2003) do not make any 

errors when they use their pMDI. Only 8% of patients used their pMDI with a flow 

 < 90 L/min and with good co-ordination. In this study 3 /20 (15%) children with 

asthma, 6/130 (4.6%) asthmatic adults and 7/31 (23%) COPD subjects met these 

criteria for a slow flow and good co-ordination. When the criteria for an ideal 

technique were extended to an IV/FVC ratio of > 60% then only 2 adult asthmatics 

meet these criteria. Hence when electronic measurements are used only 2 out of the 

total of 151 patients, hence 1.3% used an ideal technique. Although these are very 

precise electronic measurements they do highlight the potential for designing simple 

and portable electronic methodology to help identify the problems patients have 

using their pMDIs. The values obtained would provide valuable feedback on the 

specific inhalation steps to focus on during training sessions. 

These results were available when the ERS / ISAM Consensus statement was in the 

draft stage (Laube et al, 2011). These results informed the recommendation, in the 

Consensus Statement, that the inhalation time of an adult should be towards 5 

seconds and for a child to be 2-3 seconds (Laube et al, 2011).  

However the inhalation times that have been measured fall below these 

recommended. Theoretically if the inhaled volume does not change and the patient 

prolongs their inhalation (as demonstrated by the results in this study) then the 

resultant inhalation flow will decrease. By focusing on increasing the inhalation time 

will naturally slow the inhalation flow. This may be easier for the patients to 

understand than instructing them to use a slow inhalation. This could then be 

extended with information to depress the canister soon after the start of a slow 

inhalation. This instruction could reduce their tension and stress about the co-
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ordination step and enable them to make a relaxed inhalation with their pMDI. Some 

studies have shown that flow does slow down after training (Broeders et al, 2003; 

Sarvis etal, 2004; Al-Showair et al 2007b,) whereas others have demonstrated no 

effect (Hardwell et al, 2011). However patients do revert back to their old habit of a 

poor technique soon after training (Shim & Williams, 1980). A new approach to 

focus on prolonging the inhalation time may provide more long lasting effect with 

improved inhalation technique and hence needs to be investigated. 

The correlations between the ACQ and the inhalation parameters are interesting and 

link to the six asthmatics with slow flow and good co-ordination. The lowest ACQ of 

these 6 asthmatics was 1.43 indicating that they all had poor asthma control.  The 

correlation between ACQ and flow suggest that as asthma control is poorer then their 

flows are slower. This could be due to them concentrating more on their technique 

because their asthma control is not good. Alternatively the results may indicate that 

although their inhalation technique is good their compliance is poor 

Conclusion  

The methodology used in Chapter 3 was extended to include a measure of the co-

ordination between the start of an inhalation and the release of a dose. Only a few 

patients used a slow flow with good co-ordination and again the duration of the 

inhalations were short. The correlation between the inhaled volumes and the forced 

vital capacity could be a useful indicator for an objective assessment of a „full 

inhalation‟. The results suggest that an electronic aid to check a pMDI technique 

could provide the necessary information for the trainer to focus on when training 

patients how to use their pMDI 
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Chapter 5: Improved metered dose inhaler 

technique when a co-ordination Cap is used  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

192 

 

5.1 Introduction 

The pressurised metered dose inhaler (pMDI) has been the most widely used inhaler 

over the past 40 years (Crompton, 2006) and the problems patients had using the 

correct inhaler technique when it was introduced are the same as they are today 

(Saunders, 1965; Paterson and Crompton, 1976; Molimard et al., 2003; Melani et al., 

2004; Melani et al., 2011). It has been shown that poor pMDI technique is related to 

poor asthma control (Orehek et al., 1976; Giraud and Roche, 2002; Kamps et al., 

2003; Al-Showair et al., 2007a) and hospitalisation (Melani et al., 2011). The 

recommended inhalation procedure for a pMDI involves several steps (see Table 

2.11, section 2.3.1.1) (Laube et al., 2011), of these good co-ordination and a slow 

inhalation flow maintained for as long as possible are particularly important for good 

asthma control (Al-Showair et al., 2007a). Lung deposition is reduced when there is 

poor co-ordination between the actuation of the dose and the start of inhalation 

(Newman et al., 1991b) and when a fast inhalation flow is used (Newman et al., 

1982; Hindle et al., 1993). Only 8% of patients use a good inhaler technique with 

their pMDI (Al-Showair et al., 2007a) and although inhalation technique training can 

be useful, (Al-Showair et al., 2007a) in some cases it has little effect  (Broeders et 

al., 2003a) or improvements are temporary (Shim and Williams, 1980). Breath 

actuated inhalers solve the problem of poor co-ordination (Newman et al., 1991b) 

but the choice is limited to use with salbutamol and beclometasone.  

A flexible co-ordination cap, shown in Figure 5.1 (i-Breathe, Teva Pharmaceuticals), 

has been designed to fit onto a pMDI, with an airtight seal, such that an inhalation 

cannot start until the canister is pressed. Pressing the canister causes slits in the co-

ordination cap to open (as it becomes compressed), and this allows the inhalation to 

be made. The pMDI is converted into a breath actuated device. In this study, we have 
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measured the inhalation parameters of asthma patients using a pMDI to identify if 

these parameters change when the co-ordination cap is fitted. We have extended this 

to determine if a short training session to increase the patients‟ inhalation times helps 

to decrease their inhalation flow. 

 

Figure 5.1. The I-Breathe inhaler ( Teva Pharmaceuticals, Ire). 

5.2 Aims and Objectives  

5.2.1 Aims 

To identify if there is a change in the inhalation parameters when a patient uses a 

pMDI when a co-ordination cap is fitted and whether a simple instruction to prolong 

the inhalation time alters the inhalation parameters. 

5.2.2 Objectives 

 Obtain demographic and spirometry data from mild asthmatics 

 Measure the resistance of a pMDI and when the co-ordination cap is fitted on 

the pMDI 

 Measure inhalation profiles when asthmatic patients use a pMDI, the pMDI with 

the co-ordination cap and the pMDI with the co-ordination cap after an instruction 

to prolong their inhalation time to 5 seconds. 

 Correlate pMDI inhalation parameters to spirometry. 
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5.3 Methods 

5.3.1 Patient demographics and baseline characteristics 

Ethical committee approval was received from the Yorkshire and Humber Research 

Ethics Committee – Bradford (ref number 09/H1302/64) and from the University of 

Huddersfield (SASEC/ 10/01).   

5.3.1(a)Inclusion Criteria 

 Asthma 

 18-45 years old 

 Prescribed a pMDI 

5.3.1(b)Exclusion criteria 

 Acute exacerbation or short course of oral prednisolone in the previous 4 months 

 Not able to understand the inhalation procedure instructions 

 Other pulmonary diseases (e.g. TB, pneumonia) 

 Pregnant 

 All patients provided written, informed consent prior to participation.  

5.3.2 Study design and inhalation parameters  

Patients‟ demographic data and medication usage were recorded. Their spirometry 

was measured using a ONE FLOW (Clement Clarke International, UK) Spirometer 

and they each completed the Asthma Control Questionnaire (ACQ) (Juniper et al., 

1999b). 

An empty pMDI was adapted such that electronic data could capture a patient‟s 

inhalation flow profile as shown in figure 4.1 section - 4.1. 

 From this profile the peak inhalation flow (PIF in L/min), the inhalation volume 

(Vin in L) and the length of the inhalation (Ti in seconds) were determined. A ratio 
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of Vi/FVC was calculated to indicate a deep inhalation. The time between the start of 

an inhalation and pressing the canister was defined as TsIn (seconds). 

Slow flow was defined as PIF < 90L/min (Newman et al., 1980; Newman et al., 

1981a; Hindle et al., 1993; Pauwels et al., 1997; Broeders et al., 2003a) and good 

co-ordination as TsIn of 0–0.2
 
seconds (Newman et al., 1980; Newman et al., 1981a; 

Goodman et al., 1994; Farr et al., 1995; Gabrio et al., 1999; Broeders et al., 2003a).
 

A deep inhalation was defined as a Vi/FVC ratio of > 0.6 (Farr et al., 1995).
 
 

All procedures were carried out during a single visit. Inhalation profiles were 

measured for each of the following inhalation procedures. 

 pMDI: patients inhaled through an empty pMDI. The inhalation procedure they 

used was their normal real life manoeuvre. 

 pMDI+CAP: Patients used the empty pMDI fitted with the co-ordination cap. 

Again they used their normal untrained inhalation technique. They were 

informed that the cap would not allow them to inhale until it was depressed. 

During use, if the patient did not keep the canister depressed then the slits in the 

cap would close and not allow any further inhalation. If this occurred the patient 

was instructed that they should keep the canister depressed until the end of their 

inhalation. This instruction was only given once. 

 pMDI+CAP+TRAIN: Each patient was then trained to increase the length of 

their inhalation to 5 seconds. This was done by the trainer demonstrating a slow 

inhalation whilst they counted to 5 and this was then practised once by the 

patient. Patients then used the pMDI fitted with the co-ordination cap after this 

training, and inhalation profiles were measured. 

For each inhalation manoeuvre two separate inhalations were made.  The inhalation 

parameters for the profile with the slower PIF were chosen for data analysis. 
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5.3.3 Patient satisfaction 

Following the inhalations, a 5 point Likert scale was used to obtain patient 

satisfaction about using a pMDI with the co-ordination cap. Patients were also asked 

if they perceived any advantages or disadvantages when using the co-ordination cap 

with their pMDI. 

5.3.4 Resistance of devices 

The resistance of the pMDI with and without the co-ordination cap was determined 

by measuring the pressure change corresponding to flows from 10-100 L/min as 

described by Clark and Hollingworth (Clark and Hollingworth, 1993).  

5.3.5 Statistical analysis  

A series of repeated measures analyses of covariance (ANCOVA) models was 

derived to assess the effect of pMDI+CAP and pMDI+CAP+TRAIN (the inhalation 

procedures) on the use of a pMDI, with respect to the primary outcome measure of 

PIF; and the secondary outcome measures of Vin and Ti, and controlling for all 

measured factors and covariates. All covariates were centred to avoid altering the 

main effect of the condition in any cases where covariate variability was large 

compared to condition variability. An additional series of controlled (ANCOVA) 

models was derived using the outcome measure Vin standardised by FVC. In these 

models FVC was not included as a covariate. 

An uncontrolled multivariate general linear model was also performed on baseline 

data, considering the relationship between the single predictor FVC and a linear 

combination of the three outcome measures, with follow-up univariate models 

derived as appropriate 
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5.4 Results  

The measured resistance of the empty pMDI without the co-ordination cap was 

0.0135 (cm H2O)
½
(min L

-1
) and 0.0243 (cm H2O)

½
(min L

-1
) for the pMDI with the 

co-ordination cap while the canister was depressed. 

Patients‟ baseline characteristics and spirometry measurements (n=71 patients, 52 

females and 19 males) are listed in Table 5.1.  

Table 5.1. Mean (SD) Patient demographics and baseline characteristics. 

Characteristic n=71 

Age (years) 31.96 (13.5) 

Weight (Kg) 74.44 (12.8) 

Height (cm 167.45 (9.7) 

PEF 

Actual (L/min) 355.5 (108.1) 

% predicted 74.8 (23.3) 

FVC 

Actual (L) 3.46 (1.04) 

% predicted 82.4 (22.0) 

FEV1 

Actual (L) 2.81 (0.85) 

% predicted 78.31 (21.03) 

ACQ 1.32 (0.71) 

 

Sixteen patients had an ACQ below 0.75, 30 patients between 0.75 and 1.5, and 25 

above 1.5.  

There was no statistical difference between the parameters for the inhalation profile 

with the slowest and the faster PIF. Figure 5.2 shows a distribution of the PIF values 

of each individual from the profile with the slow inhalation whilst figures 5.3 and 5.4 

show inhaled volume and inhalation time distributions.  
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Figure 5.2. The distribution of the individual PIF values for each inhalation 

manoeuvre. 

 

Figure 5.3. The distribution of the individual inhaled volumes for each inhalation 

manoeuvre. 

 

Figure 5.4. The distribution of the individual inhalation times for each inhalation 

manoeuvre.
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Table 5.2 shows a summary of their inhalation parameters for the inhalation profile 

with the slowest PIF. Individual PIF, Statistical analysis revealed pair wise 

differences corrected for multiple comparisons (p< 0.001) between the PIF and Ti 

for each inhalation procedure but not for Vin. 

Table 5.2. Mean (SD) inhalation parameters for patients using a pMDI with or 

without the co-ordination cap. PIF, peak inhalation flow; IV, volume of inhalation; 

Ti, time of inhalation; FVC, forced vital capacity. 

 Profile with slowest PIF 

Parameter MDI alone With Cap 
With cap after 

training 
p value 

PIF, L/min 155.6 (61.5) 112.3 (48.4) 73.8 (34.9) <0.001 

IV, L 2.33 (0.84) 2.26 (0.86) 2.30 (0.79) 0.681 

Ti, sec 1.60 (0.60) 1.92 (0.80) 2.99 (1.03) <0.001 

Vi/FVC 0.70 (0.21) 0.67 (0.22) 0.68 (0.18) 0.847 

 

Table 5.3. Shows the number of patients using a slow flow and Table 5.4 those that 

used a full inhalation. 

Table 5.3. The number (and percentage) of patients who performed a slow (correct) 

inhalation ( < 90 L/min), fast inhalation ( 90–200 L/min) and a very fast inhalation 

(> 200 L/min).  

PIF (L/min) pMDI, pMDI+CAP pMDI+CAP+TRAI 

< 90 (slow) 12 (16.9) 25 (35.2). 50 (70.4) 

90–200 (fast) 41 (55.8) 42 (59.2) 21 (29.6) 

>200 (very fast) 18 (38.0) 4 (5.6) 0 

 

Table 5.4. Patient with a deep inhalation with respect to their Vi/FVC ratio. 

Ratio Vi/FVC pMDI, n (%) pMDI+CAP, n (%) 
pMDI+CAP+TRAIN, n 

(%) 

< 0.6 19 (26.8) 26 (36.6) 21 (29.6) 

> 0.6 52 (73.2) 45 (63.4) 50 (70.4) 
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When using the pMDI alone Figure 5.5 shows the TsIn values. Negative values are 

compared to an early inhalation (actuation before inhalation). 

 

 

Figure 5.5. The co-ordination time (TsIn) in seconds for each patient. 

Seven patients had a negative TsIn (ranging from -0.1 to -2.41 seconds) indicating 

early actuation and 22 a late actuation (TsIn 0.25-1.71 seconds) whilst 42/71 (59%) 

used the pMDI with good co-ordination (TsIn 0-0.2 sec). Of these 42 patients with 

good co-ordination only 2 had a PIF < 90 L/min: therefore 2/71 (2.8%) demonstrated 

good inhalation technique when using the pMDI without the co-ordination cap. 

Patients were asked on a scale of 1 to 5 how satisfied they would be to use the co-

ordination cap with their pMDI in daily life (1 unsatisfied, 5 very satisfied). 7 gave a 

score of 3, 21 a score of 4 and 33 were very satisfied (score of 5). 17 of the 71 

patients had to be instructed to keep the canister depressed throughout the duration 

of their inhalation the first time they used the pMDI fitted with the co-ordination cap.  

The inhalation profile was repeated when this occurred. They did not repeat this 

problem for all the remaining inhalations. 
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An uncontrolled general linear model (GLM) assessing the effect of FVC on baseline 

outcome measures indicated a significant association between FVC and the outcome 

measures assessed jointly (p< 0.001). Subsequent follow-up univariate GLMs 

identified significant associations between FVC and PIF (p=0.006); and between 

FVC and Vin (p=0.001). The association between FVC and Ti was not statistically 

significant. Figures 5.6 and 5.7 highlight that PIF (p=0.006) and IV (p<0.001) were 

significantly correlated with FVC. Ti was not significantly correlated with FVC 

(p=0.073). 

 

Figure 5.6. The correlation between peak inhalation and forced vital capacity. 

 

Figure 5.7. Correlation between inhaled volume and forced vital capacity. 
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5.5 Discussion 

Overall in this study 59% of the patients used their pMDI with good co-ordination 

and 73.2% had a IV/FVC ratio of > 0.6 indicating a full inhalation but only 16.9% 

used a slow inhalation. These and the consistent inhalation volume for each 

procedure indicate that overall the pMDI technique of these patients was good. The 

proportion of patients with poor co-ordination is consistent with previous reports 

which used subjective methods (Hesselink et al., 2001; Molimard et al., 2003; 

Melani et al., 2004; Melani et al., 2011). The results confirm previous studies that 

show that not using a slow inhalation is the commonest mistake made by patients 

(Hesselink et al., 2001; Al-Showair et al., 2007a). Despite the overall good pMDI 

inhalation technique of these patients and that they were mostly mild asthmatics only 

16 had good asthma control (ACQ < 0.70) (Juniper et al., 2006). The study results 

highlight the potential of solving co-ordination problems with the cap and that using 

a simple instruction to increase the inhalation period towards 5 seconds ensures that 

most patients would use a slow flow with good co-ordination. Since asthma control 

is related to inhaler technique (Giraud and Roche, 2002; Al-Showair et al., 2007a; 

Melani et al., 2011) and hospitalisations (Melani et al., 2011) then use of the cap and 

a simple instruction to extend the duration of the inhalation to 5 seconds would 

improve inhalation technique. These improvements could improve patients‟ asthma 

control and thus contribute to the GINA challenge to reduce hospitalisations by 50% 

over a 5 year period (Fitzgerald et al., 2011).
 
 

The very highly significant slower inhalation flow with the cap fitted compared to 

the pMDI (alone – without the cap) would be due to the increased resistance caused 

by the cap. This would also have been the reason for the slightly longer inhalation 

time.  
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(The small difference between the inhalation times explains the lack of any 

statistically significant difference). The lower flows and longer inhalation times with 

unchanged inhaled volumes suggest that new pMDI or new drugs formulated in 

pMDI should be designed with resistance to airflow to naturally reduce the speed of 

the inhalation flow. This phenomena occurs with dry powder inhalers.  

After the short inhalation technique training that focussed on increasing the 

inhalation times towards 5 seconds patient inhalation time did increase by 

approximately 1 second to almost 3 seconds, and since the inhalation volume was 

unchanged then there was a further very highly significant reduction in the inhalation 

flow. This training lasted less than one minute and resulted in a highly significant 

increase in the inhalation time. Although the training was targeted to increase their 

inhalations to 5 seconds the increase from 2 to 3 seconds and the no change in the 

inhaled volumes substantially reduced the inhalation flows.  

The first set of measurements using the pMDI alone showed that only 2 (3%) of the 

patients used a slow inhalation flow with good co-ordination that was consistent with 

previous values (Al-Showair et al., 2007a).
 
Without training this increased to 25 

(35%) patients with slow flow and good co-ordination because of the cap. This was 

further increased to 50 (70%) patients when the co-ordination cap was used together 

with the simple instruction to lengthen inhalation (as near to 5 seconds as possible). 

In clinical use this would represent a large increase in the number of patients with 

good inhaler technique. Previous studies have shown the clinical benefit of a breath 

actuated inhaler (Price et al., 2003) and that poor inhaler technique is due to a fast 

inhalation. (Hesselink et al., 2001; Al-Showair et al., 2007a). With the co-ordination 

cap the focus could be on the exhalation and inhalation steps, thereby keeping the 

training simple without worrying the patient about the co-ordination. 
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When patients used the co-ordination cap they were informed to use their normal 

inhalation technique. They were informed that if they did start their inhalation before 

depressing the canister they would notice an initial vacuum which was released when 

they pressed the canister. It was emphasised that this was not an error. 

On first use, 17 of the patients did not keep the canister depressed throughout the 

duration of their inhalation. This meant that the slits in the cap closed and patients 

were not able to maintain their inhalation. This could be regarded as a critical error. 

When patients had to be instructed to keep the canister pressed, they did not repeat 

this problem. In their open comments no patient mentioned this as a disadvantage. 

This could be due to the strong feedback mechanism of not keeping the canister 

depressed. Nevertheless if this co-ordination cap became available for use by 

patients then the information about keeping the cap depressed is an important step 

that should be highlighted in the Patient Information Leaflet and included in 

counselling. 

We used a ratio of the inhalation volume to the forced vital capacity of 0.6 to 

indicate a deep inhalation (Goodman et al., 1994; Farr et al., 1995) but this value was 

greater in most of the patients. Greater lung deposition occurs when exhaling to 

residual volume compared to functional residual volume (Hindle et al., 1993; Juniper 

et al., 2006). However it has been shown that when using a slow flow and inhalation 

at different stages of the vital capacity does not affect lung deposition (Newman et 

al., 1982; Newman, 1985). Receptors for inhaled bronchodilators are distributed 

throughout the lungs, but they have their greatest effect in the conducting airways 

due to the presence of smooth muscle surrounding the airways (Carstairs et al., 1985; 

Mak and Barnes, 1990). Corticosteroid receptors are also present throughout the 

airways and inflammation has been shown to exist in all regions of the lungs 
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especially in asthma (Hamid et al., 1997; Tulic and Hamid, 2006). For these reasons, 

good penetration of the aerosol dose is required. Patients should exhale before an 

inhalation and the inhalation should continue as long as possible (Laube et al., 2011) 

but many patients make errors with these two simple inhalation steps (Molimard et 

al., 2003; Melani et al., 2004; Melani et al., 2011).  

Previous correlations of inhalation parameters to spirometry have concentrated on 

peak inhalation flow, and peak expiratory flow and not been successful (Engel et al., 

1990; Brown et al., 1995; Broeders et al., 2003a; Derom et al., 2007). Our results  

(Like those in the previous chapter) showed that FVC is a likely predictor of 

inhalation parameters when patients use their pMDI. We did not include FEV1 

because it was correlated to FVC and our preliminary statistical analysis identified 

its use rather than the FEV1. The strong positive correlations enable the use a ratio of 

> 0.6 (inhaled volume: forced vital capacity) to indicate that when patients make a 

full inhalation. 

The methods we have used could easily be incorporated into a simple portable 

electronic aid that can be used in the clinic to identify the errors that are made by a 

patient when they use their pMDI so that a focus on these can be made during any 

inhaler technique training session. 

The study was a repeated measure design rather than the traditional parallel study 

design that could have been used to identify the effect of the cap and also the 5 

second inhalation period. The benefits of the repeated measures design include 

improved efficiency (because fewer subjects are required) and the elimination of 

variability due to individual differences in overall performance, thereby allowing 

treatments to stand out. Against this are possible training effects and other carry over 
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effects which would not occur in a parallel design of a traditional randomised control 

trial (RCT) 

Conclusion 

A co-ordination cap together with a simple instruction to lengthen the inhalation time 

when a patient uses a pMDI ensures that they use the recommended slow inhalation 

flow with good co-ordination. The cap transforms a traditional pMDI into a breath 

actuated inhaler whilst the increased resistance to airflow naturally helps to reduce 

the inhalation flow. Training the patient to extend the duration of their inhalation did 

not alter their inhaled volume so inhalation flows were reduced. Seventy percent of 

patients used the correct pMDI technique with the cap and the simple instruction for 

their inhalation phase to last 5 seconds.  
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Chapter 6: Inhalation profiles of asthmatic 

children, asthmatic adults and COPD patients 

when they use different dry powder inhalers 
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6.1 Introduction 

Dry powder inhalers (DPIs) are breath-controlled devices, and due to their many 

advantages they have over pMDIs, then these devices have increasingly replaced 

pMDIs as the most common devices (Lavorini and Corbetta, 2008). However in the 

UK the pMDI is still more widely used although there is a gradual shift towards DPI 

use. DPIs do not require the need to coordinate actuation and the start of an 

inhalation like the pMDI device which is a mistake that most patients make 

(Broeders et al., 2003a). 

Before a dose is inhaled from a DPI it has to be prepared for inhalation. Each type of 

device has its unique dose preparation requirements. When a dose has been prepared 

for inhalation the formulation does not have the potential for lung deposition. This is 

because the drug particles are either attached to a carrier with large particles (usually 

lactose) or are formulated into spherical aggregates. This is to improve powder flow 

which is essential for accurate inhaler filling during manufacture and for dosing 

metering accuracy prior to an inhalation. During an inhalation each patient‟s 

inhalation reacts with the resistance created by the internal design of the DPI to 

create a turbulent energy that breaks up (de-aggregates) the formulation. Hence the 

emitted drug particles have the potential for lung deposition (Clark and 

Hollingworth, 1993; Chrystyn and Price, 2009a). Each type of DPI has its unique 

resistance with some having low resistance, others medium and some high (Laube et 

al., 2011). Since the turbulent energy is determined by the inhalation flow and the 

internal resistance of the device then inhalation flow should not be considered in 

isolation unless flows with the same DPI are compared (Azouz and Chrystyn, 2012). 

To attain a set pressure change (the turbulent energy) then the inhalation flow 

through an inhaler with low resistance must be higher than that through a DPI with 
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higher resistance (Azouz and Chrystyn, 2012). When comparing different devices 

during patient use then the pressure change should be the focus and not the 

inhalation flow. When comparing patient use through the same DPI then it is feasible 

to compare inhalation flow. This is due to the greater turbulent energy caused by a 

faster inhalation through the same DPI. To ensure adequate de-aggregation then the 

patient should use a forceful and deep inhalation (Borgstrom, 2001; Newman and 

Busse, 2002; Laube et al., 2011). 

It has been shown that the inspiratory effort and thus the inspiratory flow achieved 

by patients through each DPI will significantly affect the emitted dose which is 

related to the clinical efficacy (Engel et al., 1989; Nielsen et al., 1997; Chrystyn, 

2003). Studies have highlighted that some patients have problems achieving a fast 

inhalation rate during routine use of their DPI (Pedersen et al., 1986; Broeders et al., 

2001; Chrystyn, 2009). Asthmatics children (Amirav et al., 2005) and elderly COPD 

patients (Chrystyn , 2009) with acute exacerbations (Engel et al., 1990; Broeders et 

al., 2004) are most likely to have problems achieving sufficient turbulent energy 

inside a DPI due to them only being able to use slow flows. Therefore, the choice of 

an appropriate dry powder inhaler for particular patients should be based on the 

objective measurements of their PIF against a certain resistance (Janssens et al., 

2008).  

For each DPI there will be a minimum turbulent energy threshold for sufficient de-

aggregation to occur during an inhalation (Laube et al, 2011). From this viewpoint, 

more attention needs to be directed to the minimum acceptable PIF achieved through 

each DPI rather than to the optimal PIF of each device. Also it has been suggested 

that the initial acceleration rate during an inhalation in a DPI is more important than 

PIF in the generation of the fine particle dose (Everard et al., 1997; Kamin et al., 
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2002). Similarly, inhaled volume is also considered as an important parameter of the 

inhalation profile and can govern the quality of the emitted dose (Kamin et al., 2002) 

particularly in a capsule formulation (Chrystyn, 2009; Alaboud et al., 2010) because 

of the needed to empty the capsule.  

There is very little data of the turbulent energy (measured as a pressure change), 

inhalation volume and the acceleration rate when patients routinely use DPIs. A 

method has been designed to measure inhalation parameter of patients when they use 

different DPIs.  

6.2 Aim and Objectives 

6.2.1 Aim 

The main aim of this study was to identify the inhalation characteristics of different 

groups of patients (children with asthma, asthmatic adults and COPD patients) when 

they inhaled through different DPIs (Aerolizer, Accuhaler, Novolizer, Spiromax, 

Turbuhaler, Clickhaler, Easyhaler and Handihaler  

6.2.2 Objectives 

The primary objectives were to measure inhalation flow profiles when patients 

inhale through different DPIs. From these profiles the inhalation parameters can be 

obtained. 

The secondary objectives were to obtain each patient‟s demographic features and 

measure their spirometry as well as the level of their disease control. Also to 

investigate if there are any correlations of these to the inhalation parameters 
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6.3 Method 

6.3.1 Study Population 

This was a randomised, open label study completed during one visit. 

6.3.1.1 Patient Recruitment 

Asthmatic adults /children and COPD patients attending an outpatient appointment 

and receiving regular care at the respiratory clinic (see below for the list of hospitals 

involved) and fulfilling the protocol‟s patient definition criteria were invited to take 

part in this research study. For children their parent / carer were included in the 

invitation. The study objectives and procedures were explained to the patients using 

the participant information sheets [APPENDIX A-1, A-2, and A-3 (refer to the 

enclosed DVD)]. After their agreement to take part in the study, a signed informed 

consent form [APPENDIX A- 5 (refer to the enclosed DVD)] was obtained prior to 

performing any protocol related procedures. This study was designed to be 

completed during one visit. 

The NHS Teaching Hospitals involved were: 

 Leeds General Infirmary (LGI), Leeds. 

 St. Luke‟s Bradford Hospital. 

 Bradford Royal Infirmary Hospital, Bradford. 

 Airedale General Hospital, Steeton. 

This study was approved by the NRES Committee Yorkshire and the Humber - 

Bradford and the Research and Development Department within each of the 

involved NHS Hospitals (refer to the enclosed DVD [APPENDIX]) 

6.3.1.2 Patients 

(a) Inclusion criteria 

 Male or female, with stable asthma or COPD 
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 Prescribed a DPI. 

 Groups: 

 Child with asthma (CHILD): 5-18 years 

  Adult asthmatic (ADULT): 18-55 years 

  COPD patients ( > 55years) 

 Signed informed consent form 

(b) Exclusion Criteria 

 Prescribed inhaled medication for less than 4 weeks prior to enrolment. 

 Other pulmonary diseases (e.g. CF, TB, pneumonia) 

 An acute exacerbation of asthma or COPD or a short course of high dose oral 

prednisone during the last 2 weeks. 

 Pregnant 

 Participation in another clinical research study in the 3 months prior to enrolment. 

6.3.2 Study design 

A Micro-Loop Spirometer (Cardinal Health, UK) was modified so that adapters 

could be fitted onto the air inlet end of the spirometer. For each DPI a specially 

designed adapter was used to ensure airtight seals between the adapter and the 

spirometer inlet as well as the adapter and the empty DPI. Inhalation flow profiles 

were measured by asking patients to make their normal (real life) DPI inhalation 

through the spirometer mouthpiece fitted with the adapter and the DPI. To obtain the 

inhalation parameters the spirometer was operated in the flow volume mode and only 

the inhalation phase was used. To obtain complete data from each inhalation flow 

profile the data of each inhalation was transported into Microsoft Access for data 

analysis. Flow rates were converted into pressure changes using the resistance of the 

DPI. 
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Each patient‟s age, gender, height and weight were recorded together with their 

medication. Their spirometry (PEF, FEV1 and FVC) was measured using a 

ONEFLOW Spirometer (Clement Clark International). The patients were asked to 

inhale through the mouthpiece of the Micro-Loop with the empty DPI fitted onto the 

air inlet of the spirometer. They were informed to make each inhalation as if they 

were using their DPI. 

The empty DPIs used were: 

 Accuhaler (GlaxoSmithKline, UK) – ACC 

 Aerolizer (Novartis, Switzerland) – AERO 

 Clickhaler (UCB Pharma, UK) – CLICK 

 Easyhaler (Orion Pharma, Finland)- EASY 

 Handihaler (Boehringer Ingelheim, GmbH) – HANDI 

 Novolizer (Meda, Sweden) – NOVO 

 Spiromax (Teva Pharmaceuticals, Israel) – SPIRO 

 Turbuhaler (AstraZeneca, Sweden) - TBH 

The order of inhalation through each different device was randomised. Each patient 

made three separate inhalations manoeuvres through each DPI. On every occasion 

they were reminded to mimic their normal inhalation manoeuvre when they used 

their DPI. The inhalation profile with the highest PIF through each device was 

chosen for data analysis. The Handihaler was only included for ADULT and COPD 

patients. 

Each patient was given a 5 minute break between each series of inhalations through 

each different device. 

Patients also completed a questionnaire: 
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 ADULT: Asthma Control questionnaire (ACQ – Juniper et al 1999b) see 

[APPENDIX 6] and Juniper Asthma Quality of Life - mini version (AQLQ) – see 

[APPENDIX 7] (Juniper et al., 1999a). 

 CHILD: Paediatric Quality of Life – PAQL (Juniper et al., 1996a) and the 

Paediatric Asthma Caregivers Quality of Life – PACQLQ (Juniper et al.,1996b). 

[APPENDIX 8and 9]. 

  St George‟s Respiratory questionnaire (SGRQ) -see [APPENDIX [10] (Jones et 

al., 1992). 

6.3.3 Inhalation parameters 

Table 6. 1.The resistance of the DPIs in (kPa)
0.5

(min l
-1

). 

The resistance of the DPIs in (kPa)
0.5

(min l
-1

) 

 Aerolizer (AERO) 0.0207 

 Accuhaler (ACC) 0.0249 

 Novolizer (NOVO) 0.0254 

 Spiromax (SPIRO) 0.0313 

 Turbuhaler (TBH) 0.0335 

 Clickhaler (CLICK) 0.0394 

 Easyhaler (EASY) 0.0485 

 Handihaler (HANDI) 0.0495 

 

These resistance values were used to convert inhalation flows into the respective 

pressure change. 

Primary parameters: 

 Peak inhalation flow (PIF) in L/min. 

 Maximum pressure change (∆P) in kPa. 

 Time to peak inhalation flow (Tp) in seconds. 

 Time to 90% of the peak inhalation flow (Tp90) in seconds. 

 Inhaled volume at Tp90 (IV90) in litres. 
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 The acceleration rate (Acc) in kPa/sec. 

 Inhalation volume (IV) in litres. 

 Duration of the inhalation (Ti) in seconds. 

Secondary parameters 

 Inhalation flow when 150 ml had been inhaled (IF150) in L/min. 

 Time when 150 ml had been inhaled (T150) in seconds 

6.3.4 Data Analysis 

The statistical analysis of the study was carried out using the Statistical Package for 

Social Sciences (SPSS 17) software. The study data was first classified into scale, 

categorical (nominal) or ordinal categories, as appropriate, and an SPSS dataset was 

then set up for the analysis. The statistical analysis was performed and presented as 

follows 

 Descriptive statistics: mean and standard deviation. 

 For scale data; normal distribution of the data was examined using histograms 

and statistical  tests for normality; the Kolmogorov-Smirnov and Shapiro-Wilk 

tests 

 Comparisons (differences) of measurements through different inhalers within 

the same group  were performed using the related (paired)-samples t-test (for 

parametric data) and the Wilcoxon test (for non-parametric data) 

 Comparisons (differences) of measurements between different the groups were 

performed using the independent-samples t-test (for parametric data) and the 

Mann-Whitney U test (for non-parametric data). 

 Scatter plots between the inhalation volume and the pressure change (∆P) were 

made for each device  
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 For the Turbuhaler correlations were determined between the PIF when 150ml 

had been inhaled and the PIF as well as the PIF90. These correlations were made 

for each group using the Spearman‟s rho test. 

6.4 Results  

6.4.1 Patients 

A summary of the patients‟ demographic data, lung function (presented as FEV1% 

predicted) and disease severity classification according to GINA 2008 and COPD 

according to NICE 2010 is presented in Table 6.1. Details of the demographic data 

for each individual are presented in APPENDIX B-15, B-16, B-17 (refer to the 

enclosed DVD). 

Table 6.2. Patient details. All values are mean (SD) unless indicated otherwise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CHILD ADULT COPD 

Number (n) 16 53 29 

Sex [M/F] (n) 13/3 11/42 15/14 

Ag in years 8.8 (3.08) 48.7(16.02) 64.6(11.2) 

Height in cm 132.8(20) 165.703 168.4(10.1) 

Weight in Kg 34.8(16.2) 75.4(16.8) 78.0(12.5) 

FEV1 in Litres 1.34(0.67) 2.01(0.6) 1.25(0.8) 

FEV1 % predicted 78.5 (19.5) 72.0(17) 41.5(16.1) 

PEF in L/min 182.8(84.7) 301(115.0) 173.3(89.7) 

PEF % predicted 65.1(21.57) 71.8(24) 44.9(18.5) 

FVC in Litres 1.58(0.73) 2.5(0.8) 2.02(0.6) 

Disease 

severity 

(n) 

Mild 8 17 12 

Moderate 5 22 10 

Severe 3 14 7 

Very severe N/A N/A 0 
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6.4.2 Inhalation characteristics 

The inhalation parameters of the patients are summarised in Table 6.2 

6.4.2.1 Comparison of the Inhalation Profiles through the different DPIs- Child 

with asthma  

The distributions of the inhalation parameters for the different devices are shown in 

Figure 6.1- 6.6. Relationships between the inhaled volume and the pressure drop 

(turbulent energy) at the time of the PIF are presented in Figure 6.7. 
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Table 6.3. Mean (SD) inhalation parameters of the patients when they inhaled through different DPIs. 

 PIF (l/min) ∆P (kPa) Tp (sec) Tp90 (sec) IV(90) (L) Acc(kPa/sec) IV (L) Ti (sec) IF150(L/min) T150(sec) 

CHILD 

AERO 71.4(21.5) 2.36(1.32) 0.40(0.12) 0.36(0.11) 0.195(0.07) 7.19(6.27) 1.222(0.68) 1.69(0.38) 62.4(22.0) 0.33(0.10) 

ACC 53.3(24.2) 2.10(1.70) 0.49(0.19) 0.44(0.17) 0.214(0.11) 5.36(5.52) 1.191(0.76) 1.50(0.46) 50.5(20.3) 0.42(0.22) 

NOVO 59.1(22.3) 2.55(1.82) 0.53(0.22) 0.48(0.20) 0.212(0.12) 4.96(3.92) 1.116(0.77) 1.86(0.72) 48.5(15.1) 0.46(0.20) 

TBH 44.8(15.9) 2.55(1.78) 0.45(0.20) 0.41(0.18) 0.125(0.04) 6.71(5.91) 1.011(0.73) 1.52(0.17) 41.9(15.5) 0.48(0.19) 

CLICK 46.3(13.2) 3.57(1.85) 0.49(0.17) 0.44(0.59) 0.168(0.06) 14.83(17.49) 1.047(0.75) 1.59(0.33) 50.9(20.8) 0.47(0.20) 

EASY 45.5(13.2) 5.26(2.89) 0.52(0.18) 0.47(0.16) 0.161(0.06) 11.67(9.38) 1.00(0.46) 1.62(0.23) 42.4(12.7) 0.47(0.17) 

ADULT 

AERO 93.7(25.9) 4.04(2.2) 0.33(0.12) 0.29(0.12) 0.236(0.21) 12.60(9.80) 1.964(0.8) 1.53(0.3) 82.7(21.6) 0.24(0.09) 

ACC 76.4(23.8) 3.95(2.38) 0.41(0.25) 0.37(0.22) 0.243(0.17) 11.00(8.75) 1.910(0.73) 1.60(0.56) 73.9(24.2) 0.27(0.09) 

NOVO 80.2(22.3) 4.64(2.30) 0.37(0.14) 0.33(0.13) 0.196(0.01) 12.84(8.34) 1.861(0.74) 1.59(0.33) 68.2(20.3) 0.33(0.21) 

SPIRO 71.9(19.7) 5.44(2.92) 0.43(0.22) 0.39(0.20) 0.210(0.11) 14.10(10.16) 1.77(0.78) 1.58(0.31) 64.9(22.8) 0.35(0.17) 

TBH 60.3(16.9) 4.45(2.38) 0.40(0.13) 0.36(0.12) 0.158(0.06) 13.12(13.01) 1.627(0.74) 1.65(0.46) 53.5(16.2) 0.37(0.09) 

CLICK 63.2(15.7) 6.57(3.06) 0.40(0.19) 0.36(0.17) 0.175(0.08) 19.58(16.68) 1.677(0.76) 1.61(0.47) 60.0(18.3) 0.43(0.61) 

EASY 58.3(14.4) 8.48(4.12) 0.42(0.16) 0.38(0.14) 0.168(0.07) 20.84(15.03) 1.683(0.81) 1.55(0.46) 55.2(12.9) 0.39(0.11) 

HANDI 58.6(11.4) 8.72(3.33) 0.44(0.18) 0.40(0.17) 0.193(0.11) 20.91(12.60) 1.720(0.76) 1.56(0.31) 58.7(13.2) 0.34(0.08) 

COPD 

AERO 81.7(25.4) 3.13(1.88) 0.43(0.27) 0.39(0.25) 0.229(0.15) 8.68(6.78) 1.706(0.82) 1.71(0.45) 66.9(20.2) 0.31(0.12) 

ACC 62.1(22.3) 2.68(1.78) 0.45(0.23) 0.41(0.21) 0.195(0.15) 6.62(7.28) 1.789(0.87) 1.53(0.24) 60.3(20.6) 0.44(0.65) 

NOVO 61.0(14.9) 2.53(1.25) 0.42(0.24) 0.37(0.21) 0.169(0.77) 6.90(5.45) 1.616(0.77) 1.61(0.45) 58.5(16.0) 0.35(0.11) 

SPIRO 56.2(15.5) 3.32(1.77) 0.42(0.19) 0.37(0.17) 0.147(0.05) 9.18(6.64) 1.609(0.77) 1.60(0.77) 56.9(18.4) 0.38(0.15) 

TBH 50.9(15.3) 3.19(1.94) 0.44(0.20) 0.39(0.18) 0.143(0.15) 9.55(7.47) 1.502(0.79) 1.56(0.19) 47.2(14.1) 0.48(0.20) 

CLICK 51.1(15.5) 4.40(2.54) 0.48(0.18) 0.43(0.16) 0.159(0.07) 10.43(9.35) 1.483(0.73) 1.63(0.29) 48.9(15.4) 0.43(0.15) 

EASY 49.5(15.0) 6.28(3.54) 0.45(0.14) 0.41(0.13) 0.150(0.01) 14.00(9.10) 1.520(0.80) 1.67(0.59) 45.1(11.8) 0.45(0.14) 

HANDI 53.4(15.7) 7.59(4.40) 0.42(0.16) 0.38(0.14) 0.150(0.01) 20.90(12.6) 1.55(0.82) 1.64(0.63) 58.8(13.2) 0.41(0.09) 



 

 

219 

 

Comparison of the Inhalation Profiles through the different DPIs – Children with 

asthma 

 

Figure 6.1. The range of peak inhalation flows achieved by the asthmatic children 

when they inhaled through the different DPIs. 

 

Figure 6.2. The range of the pressure change (∆P) inside each DPI during the 

inhalations by the asthmatic children. 
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Figure 6.3. The range of the times to PIF for the children with asthma when they 

inhaled through the different DPIs. 

 

Figure 6.4. The range of the acceleration rates achieved by the children with asthma 

when they inhaled through the different DPIs. 
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Figure 6.5. The range of the inhaled volumes for the children with asthma when they 

inhaled through the different DPIs. 

 

Figure 6.6. The range of the inhalation times for the children with asthma when they 

inhaled through the different DPIs. 
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Figure 6.7. Scatter plots between inhaled volume and maximum pressure changes for 

each of the children with asthma when they inhaled through a) Aerolizer b) 

Accuhaler) Novolizer d) Turbuhaler, e) Clickhaler, f) Easyhaler. 
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6.4.2.2. Comparison of the Inhalation Profiles through the different DPIs – 

COPD 

The distribution of the individual inhalation parameters of the COPD patients is 

presented in Figure 6.8- 6.13. Individual relationship between each patient‟s inhaled 

volume and the maximum pressure change is shown in Figure 6.14. 

 

 

Figure 6.8. The distribution of the peak inhalation flows of the COPD patients when 

they inhaled through the different DPIs. 
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Figure 6.9. The range of the maximum pressure changes that occurred inside each 

DPI during the inhalations by the COPD patients 

 

Figure 6.10. The range for the times at PIF achieved by the COPD patients when 

they inhaled through the different DPIs 
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Figure 6.11. The distribution of the acceleration rate achieved by the COPD patients 

when they inhaled through the different DPIs 

 

 

Figure 6.12. The distribution of the inhaled volumes achieved by the COPD patients 

when they inhaled through the different DPIs 

 



 

 

226 

 

 

Figure 6.13. The range for the distribution of the duration of the inhalations by the  

COPD patients when they inhaled through the different DPIs 
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Figure 6.14. Scatter plots between the inhaled volume and maximum pressure change for each COPD patient when they inhaled through, a) 

Aerolizer, b) Accuhaler, c) Novolizer, d) Spiromax, e) Turbuhaler, f) Clickhaler, g) Easyhaler , h) Handihaler. 

 



 

 

228 

 

6.4.2.3. Comparison of the Inhalation Profiles through the different DPIs – 

Asthmatic Adults 

The distribution of the individual inhalation parameters of each adult with asthma are 

presented in Figure 6.15 - 6.20. The relationship between the inhaled volume and the 

maximum pressure change (∆P) is shown in Figure 6.21. 

 

Figure 6.15. The range of peak inhalation flows achieved by the adults with asthma 

when they inhaled through the different DPIs. 
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Figure 6.16. The distribution of the maximum pressure change (∆P) inside each DPI 

during the inhalation by each adult with asthma 

 

 

Figure 6.17. The distribution of the time at the occurrence of the PIF when adults 

with asthma inhaled through the different DPIs 
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Figure 6.18. The range of acceleration rates (kPa/sec) achieved by the adults with 

asthma when they inhaled through the different DPIs. 

 

 

 

Figure 6.19. The distribution of the inhaled volumes achieved by the adults with 

asthma when they inhaled through the different DPIs 
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Figure 6.20. The range of inhalation times for the adults with asthma when they 

inhaled through the different DPIs. 
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Figure 6.21. Scatter plots between the inhaled volume and maximum pressure change for each adult with asthma through a) Aerolizer, b) 

Accuhaler, c) Novolizer, d) Spiromax, e) Turbuhaler, f) Clickhaler, g) Easyhaler, h) Handihaler. 
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6.4.2.5. Subjects with low PIF and >90 l/min 

Table 6.3. Shows the number of the patients that achieved PIF values of < 30 L/min, 

> 60 L/min and > 90 L/min through each the DPI 

Table 6.4. The number of patients achieving different flows through each DPI. 

 
CHILD 

PIF(L/min) 

ADULTS 

PIF (L/min) 

COPD  

PIF(L/min) 

 <30 >60 >90 <30 >60 >90 <30 >60 >90 

AERO Nil 11 4 Nil 50 25 1 9 Nil 

ACC 3 7 1 Nil 33 19 3 12 6 

NOVO 1 8 1 Nil 39 22 Nil 13 1 

SPIRO N/A N/A N/A Nil 34 12 1 9 1 

TBH 2 3 Nil Nil 23 1 2 6 Nil 

CLICK 2 3 Nil Nil 32 1 2 8 Nil 

EASY 1 3 Nil Nil 22 Nil 2 5 Nil 

HANDI N/A N/A N/A Nil 21 Nil 1 7 Nil 

 

6.4.2.6 Comparison of inhalation flow parameters for the Turbuhaler 

Figure 6.22-6.24 show the relationship between inhalation flows (at 90% of the PIF 

and the PIF) to the inhalation flow when 150 ml had been inhaled through the 

Turbuhaler by the children with asthma, COPD patients and Adults with asthma 

respectively. Statistical comparison of PIF90% to the inhalation flow when 150 ml had 

been inhaled revealed no significant difference. 
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Figure 6.22. The relationship between the inhalation flows and the flow when 

IV=150 ml through a Turbuhaler by the children with asthma. 

 

Figure 6.23. The relationship between the inhalation flows and the flow when 

IV=150 ml through a Turbuhaler by the COPD patients. 

 

Figure 6.24. The relationship between the inhalation flows and the flow when 

IV=150 ml through a Turbuhaler by the adults with asthma.
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6.4.2.5 Statistical analysis  

A summary of the statistical comparisons between the Aerolizer, Accuhaler, 

Turbuhaler, and Easyhaler within each group is presented in Table 6.4. The non- 

parametric test (Wilcoxon signed rank test) was used for the comparison  

Table 6.5. Statistical summary (values are p value).  

 AERO 

v‟s ACC 

TBH v‟s 

ACC 

EASY‟vs 

ACC 

TBH v‟s 

AERO 

TURB v‟s 

EASY 

AER v‟s 

EASY 

PIF 

CHILD 0.004 0.011 0.00 0.00 0.00 0.469 

ADULTs 0.000 0.000 0.000 0.001 0.11 0.000 

COPD 0.002 0.000 0.000 0.034 0.117 0.010 

∆P (kPa) 

CHILD 0.196 0.026 0.001 0.535 0.000 0.000 

ADULTs 0.158 0.012 0.00 0.784 0.000 0.000 

COPD 0.002 0.000 0.005 0.000 0.000 0.000 

IV 

CHILD 0.408 0.004 0.070 0.011 0.148 0.015 

ADULTs 0.487 0.000 0.000 0.000 0.95 0.000 

COPD 0.15 0.117 0.10 0.171 0.804 0.459 

ACC  

CHILD 0.379 0.26 0.001 0.011 0.000 0.00 

ADULTs 0.112 0.378 0.000 0.383 0.00 0.00 

COPD 0.033 0.014 0.000 0.787 0.000 0.00 

Inhalation Time 

CHILD 0.202 0.325 0.248 0.100 0.231 0.569 

ADULTs 0.921 0.511 0.719 0.177 0.225 0.980 

COPD 0.202 0.325 0.248 0.569 0.231 0.569 

Time at PIF 

CHILD 0.001 0.469 0.115 0.001 0.187 0.001 

ADULTs 0.05 0.713 0.136 0.006 0.840 0.000 

COPD 0.888 0.161 0.191 0.473 0.770 0.232 
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Quality of Life Questionnaires 

(a) Children with asthma 

The mean (SD) PAQLQ scores (overall and its three domains: symptoms, Activity 

Limitation and Emotional Function) and the PACQLQ scores are presented in Table 

6.5.  

Table 6.6. Mean (SD) PACQLQ and PAQLQ scores. 

PACQLQ  

PCAQLQ  4.33(1.1) 

PAQLQ Domains 

Overall PAQLQ 4.7(1.19) 

Symptoms 3.7(1.1) 

Activity Limitation 4.5(1.4) 

Emotional Function 5.1(1.1) 

 

(b) Adults with asthma 

A summary of the ACQ and AQLQ scores (overall and its three domains: symptoms, 

activity limitation, emotional and environment) are presented in Table 6.6. Table 6.7 

presents the level of asthma control with respect to the ACQ.  

Table 6.7. Mean (SD) scores of (ACQ) and AQLQ for asthmatic Adults.  

 Mean(SD)Scores Minimum Maximum 

ACQ 1.95(1.02) 0.29 4.5 

AQLQ  4.6(1.2) 2.0 6.5 

Symptom 3.6(1.6) 1.4 5.7 

Activity 3.8 (1.3) 0.81 5.7 

Emotional 3.2(1.2) 0.9 5.5 

Environment 3.4(1.16) 1.1 5.4 

 

Table 6.8. Level of asthma control. 

Asthmatic Adults 

(n= 53) 

ACQ Categories Frequencies 

≤ 0.75 (well controlled) 4(7.5%) 

0.75-1.50 (not well controlled) 19(35.8%) 

≥ 1.50( uncontrolled) 30(56.6%) 
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(c) COPD patients 

Summaries of the SGRQ scores (overall and its three domains: Symptoms, Activity 

and Impacts) are presented in Table 6.8. 

Table 6.9. The SGRQ scores of the COPD Patients.  

SGRQ 

Domains(n=29) 

Symptoms 

score 

Activity 

score 

Impacts 

score 

Total  

score 

Mean (SD) 70.27(24.2) 73.68(19.53) 50.20(21.6) 60.66(18.5) 

Median 75.55 76.10 52.40 62.10 

Minimum 19.90 26.50 8.60 25.30 

Maximum 104.50 100.00 85.90 84.20 

Percentiles 25 58.350 60.75 34.72 43.55 

50 75.55 76.10 52.40 62.10 

75 90.070 91.20 69.475 78.35 

*SGRQ scores ranges from 0 to 100, zero scores indicate no impairment, with higher scores 

indicating worse health status 
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6.5 Discussion 

The inhalation characteristics of children with asthma, asthmatic adults and COPD 

patients when they inhaled through different dry powder inhalers, that differ by their 

resistance, that ranging from low to high, have been measured. For these 

measurements patients were informed that they should use the same inhalation 

manoeuvre as they would if they were using a DPI.  

The data is a substantial addition to the limited information that is available 

describing the inhalation parameters of patients when they use DPIs. The only data, 

of this type, that is available is for the Accuhaler and the Turbuhaler and there is no 

emphasis on the pressure changes that occur in the inhalation channel, of the DPI, 

during an inhalation and the acceleration rate with respect to a pressure change per 

time. 

The inhalation parameters that have been measured are the peak inhalation flow and 

when this occurs, the inhalation volume, the pressure change (otherwise referred to 

as the turbulent energy) that occurs at the point of the PIF and the acceleration of the 

flow (in kPa/sec). These latter three parameters allow a true comparison to be made 

between different DPIs rather than PIF. Due to differences in resistance between 

DPIs when using the PIF the only comparison that can be made between devices is 

that if the resistance is low then flows will be faster than when the resistance is high 

(Clark & Hollingworth, 1993).  

The PIF, pressure changes and the acceleration rate results obtained for all three 

groups confirm this. The results also confirm that as expected children with asthma 

generate significantly lower PIF values than COPD subjects and both these are lower 

than the rates achieved by adults with asthma. This is due to their reduced inspiratory 

effort. It has been suggested that a failure to achieve an inhalation flow of 30 L/min 



 

 

239 

 

within the first 150 ml of the inhalation affects de-aggregation(Everard et al., 1997) 

and thus inhalation characteristics about the first 150ml of the inhaled volume were 

obtained. 

Traditionally PIF has been the focus of attention when patients use DPIs. However 

this is only useful when considering the flows through each DPI (Azouz and 

Chrystyn, 2012).  

This review (Azouz & Chrystyn, 2012) was written after examining the results 

presented in this Chapter.  The statistical analysis (in table 6.4) reveals that the peak 

inhalation flows, as expected, were very significantly faster when using a low 

resistance DPI (eg. Aerolizer and Accuhaler) than a high resistance device 

(Easyhaler and Handihaler). During routine practice this is the parameter that is 

usually used as the indicator if a patient can use their DPI with a fast inhalation. In 

contrast the pressure changes (which represent the turbulent energy) are (very highly) 

significantly greater for the high resistance devices. The acceleration rates mirror the 

pressure change results.  De-aggregation occurs due to the turbulent energy created 

in the inhalation channel, of a DPI, during an inhalation.  It is wrong therefore to 

recommend a low resistance DPI if the measured inhalation flows are slow when 

using a high resistance inhaler. This is a common misconception amongst 

practitioners. 

All DPIs have flow dependent dose emission and some more than others (Palander et 

al, 2000) but even with relatively low flows they do emitted some dose. A more 

important issue is that for each DPI there will be a minimum threshold turbulent 

energy (corresponding to a measured pressure change) for efficient de-aggregation of 

the dose. It has been shown that below 30L/min the turbulent energy generated inside 

a Turbuhaler is not sufficient to efficiently de-aggregate the dose (Nadarassan et al., 
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2010) and that the clinical effect sharply decreases (Pedersen et al, 1980). This flow 

corresponds to a maximum pressure change of 1.02 kPa in a Turbuhaler. This flow is 

also considered to be the minimum for the Accuhaler (Nielsen et al., 1998) whilst 

that for the Clickhaler (Newhouse et al., 1999) and Easyhaler (Koskela et al., 2000) 

are slightly lower. Nevertheless taking 30L/min as the gold standard for the 

minimum flow the results show that when patients use their normal real life 

inhalation technique then no adult asthmatic inhaled below this flow. Three COPD 

inhaled below this flow with an Accuhaler and of these only two of them achieved 

low flows with the Turbuhaler, Clickhaler and an Easyhaler. Three of the 16 children 

with asthma did not achieve 30L/min through the Accuhaler. These were all boys 

aged 5, 7 and 12 years old. The 5 and 12 year old did not achieve this flow through 

the Turbuhaler but there were 4 others with flows of either 31 or 32 L/min. The same 

2 children failed to achieve 30L/min with the Clickhaler but only one of them (the 12 

year old) with the Easyhaler. 

Overall the percentage of numbers exceeding the recognised minimum flow of 

30L/min flow with the Turbuhaler is higher than values previously reported. Nsour et 

al (2001) reported 14 out of 74 COPD patients had problems achieving this flow and 

their predicted FEV1 was similar to the patients in this study. Also another COPD 

study has shown that 23/163 patients inhaled < 30L/min (Al-Showair et al, 2007). In 

contrast others have shown no patients inhaled below this rate (Dewar et al., 1999; 

Broeders et al., 2003a). In children with asthma 25 out of 72 did not achieve this 

recognised minimum flow with the Turbuhaler and were mostly 3 or 4 years old 

(Agertoft & Pedersen, 1998) which confirmed previous results about pre-school 

children using a Turbuhaler (Pedersen et al, 1990). No child in this study was aged < 

5 years. Previously it was reported that 5 out of 24 adults asthmatics did not achieve 



 

 

241 

 

30L/min with a Turbuhaler (Hawksworth et al., 2000). These patients did have more 

severe asthma (57% predicted FEV1 compared to 71.9% in this study). However in 

20 severe asthmatics that were highly trained no patient inhaled used low flows 

(Tarsin et al, 2006). Previously, when using an Accuhaler no COPD patient 

(Broeders et al, 2003; Al-Showair et al, 2007) achieved < 30L/min with only 2 out of 

129 children (a 5 and a 10 year old) not obtaining this flow (Nielsen et al, 1998). 

When using the Easyhaler 4 children (aged 4, 6, 10 and 16 years) failed to achieve 

30L/min (Malmstrom et al, 1999) but their response to the bronchodilator was 

similar to when they inhaled using a pMDI attached to a Volumatic spacer 

(Malmstrom et al, 1999). Furthermore only 2 out of 93 COPD subjects achieved 

these low flows through an Easyhaler (Malmberg et al, 2010). 

Although only one of the 29 COPD subjects in this study did not exceed 30 L/min 

with the Handihaler others have shown a third of the patients did not produce flows 

above this rate (Al-Showair et al, 2007). The Aerolizer has low resistance and so the 

minimum flow for efficient de-aggregation will be faster. It has been reported that 

this flow could be > 90L/min (Nielsen et al., 1997). Only 4 children with asthma, 25 

adults with asthma and no COPD patients inhaled > 90L/min through the Aerolizer. 

In contrast 73% of adults asthmatics (n=33) inhaled >100L/min and 75% (n=32) 

children with asthma inhaled >80L/min (Bronsky et al., 2004). This together with the 

Accuhaler data suggests that it could be low resistance inhalers that patients have 

problems with respect to efficient de-aggregation. Also when the flow is fast there 

will be a tendency for more oropharynegeal deposition and deposition more towards 

the central zones of the lungs (Newman et al, 1995; Usmani et al, 2005). When using 

a DPI this is counter balanced by the DPI‟s flow dependent dose emission especially 

when it is pronounced. However dose emission form an Aerolizer (Weuthen et al., 
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2002) and an Accuhaler (Palander et al.,2000) is less flow dependent. Hence the low 

resistance of these devices together with the resultant fast inhalation flows will tend 

to provide low lung deposition and high oropharyngeal impaction. Reduced 

peripheral lung deposition has been reported when adult asthmatics and healthy 

volunteers inhaled salbutamol from unit dose blisters in a DPI compared to a pMDI. 

(Melchor et al., 1993). It has been shown that when using a Turbuhaler, that has 

pronounced flow dependent dose emission (Palander et al., 2000) that there is no 

change in the peripheral: central lung deposition ratio when using faster flows 

(Newman et al., 1991b; Borgstrom et al., 1994). It has been reported that high 

resistance DPIs do provide greater lung deposition than those with a lower resistance 

(Borgstrom, 2001). 

The maximum pressure change (∆P) and the acceleration rate of an inhalation (when 

in kPa/sec) allow a comparison between different DPIs whereas the PIF does not.  

PIF values are only valid when considering each DPI in isolation. The maximum 

inhalation flows through the Accuhaler in this study were lower than those 

previously reported in adults with asthma (Broeders et al, 2003; Tarsin et al, 2006).  

In the COPD patients these flows were also lower to previous reports (Broeders et al, 

2003) but one study reported similar flows through an Accuhaler (Al-Showair et al, 

2007).  When using the Turbuhaler the PIF values were similar to other studies 

involving children (Pedersen et al, 1990; Agertoft & Pedersen, 1998) but lower than 

another (Stahl et al, 1996). The flows of adult asthmatics using a Turbuhaler, in this 

study, were faster than those attending a community pharmacy (Hawksworth et al, 

2000) but lower than highly trained severe asthmatics (Tarsin et al, 2006) and 

untrained mild asthmatics (Broeders et al, 2003) but similar to those with an acute 

exacerbation of asthma (Brown et al, 1995). In COPD patients although the PIF 
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through the Turbuhaler in this study were lower than mild, moderate and severe 

COPD patients in one study (Broeders et al, 2003) overall they were similar to others 

(Dewar et al, 1999; Al-Showair et al, 2007; Derom et al., 2007). 

In contrast to PIF values the pressure changes (hence the turbulent energy) that 

occurs inside each DPI during an inhalation allows a comparison to be made between 

different devices. The results show that the pressure changes were greater for the 

DPIs with a higher resistance than those with a lower flow. Figures 6.2, 6.9, 6.16 for 

the children with asthma, adults with asthma and the COPD data, respectively, show 

that when the resistance is low to medium high there is little difference between the 

inhalers and that for high resistance inhalers the pressure changes are much greater. 

This is due to the non linear relationship between this pressure change with flow and 

the resistance as reported by Clark and Hollingworth (1993) and later by Clark 

(1994). Previously these maximum pressure changes (∆P) have not been reported. 

The acceleration of the flow has been shown to be critical for de-aggregation of the 

formulation in a DPI (de Boer et al, 1997; Everard et al, 1997; Kamin et al, 2002). It 

has been shown that achieving a flow of >30L/min before the first 150ml has been 

inhaled through a Turbuhaler is important for the de-aggregation of the formulation 

in a Turbuhaler. The very strong relationships in Figures 6.22, 6.23, 6.24 show that 

the inhalation flow at 90% of the PIF (PIF90) correlates to that of the inhalation flow 

when 150 ml had been inhaled. The time that this flow occurs also correlates to the 

time for 150 ml to be inhaled. The inhalation flow at 90% of PIF and when this 

occurred was therefore used to calculate the acceleration of the inhalation flow. 

Although there is also a strong correlation between the PIF and the inhalation flow 

when 150 ml occurred this was not used for calculating the acceleration flow because 

the individual results showed that for some the time to PIF90 was 0.3 seconds 
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whereas PIF occurred at 0.5 seconds. Use of these would result in a big difference in 

the acceleration rates. Nevertheless when the PIF was fast then the acceleration rates 

were steeper than when the PIF was slow. This agrees with information published by 

Broeders et al (2001). Previously only Broeders et al (2003) has reported acceleration 

rates when asthmatics and COPD patients inhaled through an Accuhaler and a 

Turbuhaler. Overall the acceleration rates of the adults with asthma were similar to 

those reported by Broeders et al (2003) while the COPD rates were lower. The 

results also show that consistent with the inhalation flow and pressure changes that 

occur during the inhalations the acceleration rates were lower in children with 

asthma than COPD patients which were both lower than the adults with asthma. 

The inhaled volume has two functions. First the dose has to be emptied from the 

device and then the airstream delivers the particles into the airways. The inhaled 

volume has to be sufficient for both to occur. Some DPIs require a higher volume to 

empty the dose than others. It has been reported that capsule based DPI inhalers 

require 4L to completely empty their dose (Chrystyn, 2009; Alaboud et al., 2010), 

the Turbuhaler at least 1L (Kamin et al, 2002) and the Accuhaler 150ml (Kamin et al, 

2002). These differences are due to the design of the device. Capsules have to be 

emptied. The inhalation channel in the Turbuhaler is relatively long and includes a 

cyclone whereas the inhalation channel of the Accuhaler is very short (Azouz and 

Chrystyn, 2012). Overall within the groups the inhaled volumes were similar for the 

different devices with a tendency for a slightly larger volume for DPIs with lower 

resistance. Also as expected inhaled volumes were lower in the children with asthma 

than the COPD patients and both these were lower than the adults with asthma. 

When using the Aerolizer only one child inhaled >2L and more than half <1L, 7 

COPD patients inhaled >2L (one > 4L) and 5 < 1L whilst 17 adults with asthma 
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inhaled >2L but no one inhaled > 4L and 7 inhaled < 1L. These values highlight the 

ERS / ISAM Consensus statement recommendation that when using capsule DPIs the 

patients should make two separate inhalation for each dose (Laube et al, 2010). 

However the results show, in this chapter that some patients should use more than 2 

separate inhalations or be prescribed a different dry powder inhaler. Nine of the 

children with asthma inhaled < 1L through the Turbuhaler as well as 7 of the COPD 

patients and 12 of the adult asthmatics which suggests that some importance should 

be placed on the inhaled volume. Overall in COPD (Broeders et al, 2003; Derom et 

al, 2007), asthma (Newman et al, 1991; Broeders et al, 2003; Tarsin et al 2006) and 

healthy volunteer (Farr et al, 1995) studies the volumes they reported were higher 

than those in this study but one study involving adult asthmatics using a Turbuhaler 

in a community pharmacy reported similar volumes (Hawksworth et al, 2000). 

Previously, the patient‟s peak inhalation flow (PIF) through a DPI has been the focus 

of attention but the results of this study suggest that the achieved turbulent flow (∆P), 

the acceleration of the flow (in kPa/sec) and the inhaled volume may be more 

important. The inhalation manoeuvre of these patients was not trained so these values 

should improve with training. The turbulent energy and the acceleration should 

increase when patients are trained to use a fast inhalation and that this forceful 

inhalation should commence immediately whilst the inhaled volume would change 

with the instructions of maintaining the inhalation for as long as possible and also to 

exhale gently before each inhalation. Whether acceleration rates, peak inhalation 

flows and pressure changes improve following technique training is investigated in 

the next Chapter. 

Compendial methods recommend that dose emission and the aerodynamic 

characteristics of the emitted dose should be measured using a pressure change (∆P) 
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of 4 kPa and an inhaled volume of 4L. The scatter plots in figures 6.7, 6.14 and 6.21 

show that most patients do not achieve a pressure drop of 4kPa and an inhalation 

volume of 4L when they use any DPI. Furthermore no individual replicated an 

inhalation profile that was the same as a square wave produced by a vacuum pump. 

These results highlight the need to modify the compendial methodology.  This could 

be achieved by using a computerised vacuum pump to replay an inhalation profile 

instead of using the traditional square inhalation profile currently provided by a 

vacuum pump.  Further adaptations would have to be made to the method to ensure 

sonic flow during the dose emissions and capture of the emitted dose. Preliminary 

work, in this University‟s laboratories, has shown that this is feasible 

Conclusion  

The methodology has provided an insight into the inhalation manoeuvre when 

patients use their DPI. The results indicate that the internal turbulent energy 

(measured by a pressure change) and the acceleration of the patient‟s inhalation 

(measured as a pressure change over time) are greater for high resistance DPIs 

whereas inhalation flows are lower. These results highlight that inhalation flow 

should not be used to compare different DPIs but should only be used as an indicator 

that a patient can achieve the minimum flow required for a DPI. As expected the 

inhalation characteristics of children with asthma were lower than those with adults 

and similar to those of COPD patients. The significance of the inhalation volumes 

needs to be investigated. 
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Chapter 7: Training DPI users to improve their 

inhalation manoeuvre when using a Spiromax 

and a Turbuhaler Dry Powder Inhaler. 
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7.1 Introduction 

All DPIs are passive devices in that a turbulent energy (measured as a pressure 

change) is required to de-aggregate the formulation of the dose that has been 

prepared for inhalation. This energy is generated by an interaction between the 

patient‟s inhalation flow and the resistance of the device (Clark and Hollingworth, 

1993; Steckel and Muller, 1997b; Chrystyn, 2009). In-vitro studies have highlighted 

the flow dependent dose emission characteristics of DPIs (Ross and Schultz, 1996; 

Hill and Slater, 1998; Prime et al., 1999; Palander et al., 2000; Tarsin et al., 2004; 

Tarsin et al., 2006) and that this translates to higher lung deposition with faster flows 

(Newman et al., 1991a; Borgstrom et al., 1994; Newman et al., 2001) and altered 

response (Pedersen and Mortensen, 1990; Engel et al., 1992; Nielsen et al., 1997). 

Training the inhalation manoeuvre of children with asthma (Agertoft & Pedersen, 

1998), adults with asthma (Hawksworth et al, 2000; Broeders et al, 2003) and COPD 

patients (Nsour et al, 2001; Broeders et al, 2003; Al-Showair et al, 2007b) has been 

reported to be useful although the changes in COPD patients were small (AL-

Showair et al, 2007b). The training should include information that the fast 

inhalation should commence immediately from the beginning of an inhalation 

(Laube et al, 2011) because de-aggregation and dose emission occurs in the initial 

phase of the inhalation manoeuvre (de Boer et al., 1997; Everard et al., 1997; Kamin 

et al., 2002). Everard et al (1997) showed that this occurs during the first 150 ml of 

the inhalation. Hence the acceleration of the flow is an important parameter. This is 

explained in Figure 7.1 
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Figure 7.1. Inhalation Flow profiles of two different patients through DPIs (Chrystyn 

and Price, 2009). 

This figure shows two different profiles with the same PIF and superimposed onto 

these is when the dose leaves either a multidose reservoir DPI or a multidose device 

which contains each dose in a separate blister. This figure shows that the acceleration 

of the flow while the dose leaves the DPI is much greater when the fast inhalation 

commences immediately compared to a gradual increase to the PIF. The acceleration 

of the flow can be measured with respect to volume or the turbulent energy. The 

latter, in kPa/sec units, is preferred because it relates to the increase in the pressure 

changes during the initial part of an inhalation and can be used to compare different 

devices.   

In this current research work inhalation pressure profiles before and after training the 

inhalation manoeuvre when using a DPI have been measured. It was decided to use 

two different devices which had a similar resistance to rule out any affect caused by 

the appearance of the DPI.  

Ti

me 

Dose emission from the 

metering cup of DPI 

(reservoir or a blister type) 

In
h
al

at
io

n
 f

lo
w

 

Time post start of inhalation 

PIF 



 

 

250 

 

7.2. Aim and objectives  

(a) Aim 

To identify if training the inhalation manoeuvre when subjects inhale through DPIs 

alters the inhalation parameters. 

(b) Objectives 

 Measure inhalation pressure profiles of children with asthma, adults with asthma 

and COPD patients as well as healthy volunteers when they inhale using a 

Spiromax DPI and a Turbuhaler DPI. 

 Train patients to inhale faster through each DPI using the IN-Check Dial 

[ENHANCED TRAINING]. 

 Re -measure the inhalation profiles after the training 

 Compare each inhalation parameter before and after training. 

7.3 Methodology 

This was a randomised, open label, cross-over study using a Spiromax DPI and a 

Turbuhaler DPI. Ethical approval was obtained from the NRES Committee 

Yorkshire and The Humber – Bradford and all subjects gave signed informed 

consent. Ethical committee approval for the healthy volunteers was obtained from 

the School of Applied Sciences Ethical Committee. 

 7.3.1. Study population  

Stable asthmatic (adults and children) and COPD patients attending respiratory out-

patient clinics and receiving regular inhaled therapy were studied. The study 

procedures and measurements were carried out during one visit. In addition healthy 

volunteers were included. These were recruited locally from the University. As far as 

possible these healthy volunteers were matched to those of the adult asthmatics and 

so these were recruited after the entire adult asthmatics had completed the study. 
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The study objectives and procedure were described to the patients and healthy 

subjects using relevant patient information sheets [APPENDIX A1, A2 , A3and A4]. 

Each participant kept a copy of the information sheet and was given as much time as 

they required to consider participating. For the patients attending the clinic they were 

informed that if they wanted to reflect about their decision then they were given a 

contact should they wish to take part. All consultations and recruitment of those < 18 

years was made with them and their parent / carer. After their agreement to 

participate in this study, a signed informed consent form was obtained [APPENDIX 

A-5] (refer to the enclosed DVD). 

On the basis of other studies (Bisgaard et al., 1998; Broeders et al., 2001; Burnell et 

al., 2001; Broeders et al.,2003; Broeders et al., 2004; Vogelberg et al., 2004; Tarsin 

et al., 2006) this study was designed to include 50 asthmatic children, 50 adult 

asthmatics, 50 COPD and 50 healthy volunteers. Hence, 50 x 4 groups of patients 

(total 200 subjects) were recruited into this study.  

The NHS Teaching Hospitals which were involved as research sites were: 

 Airedale General Hospital, Steeton, West Yorkshire, UK. 

 Leeds General Infirmary, Leeds, UK 

  St. James‟s University Hospital, Leeds, UK 

 Bradford Royal Infirmary, Bradford, West Yorkshire, UK 

 St. Luke‟s Hospital, Bradford, West Yorkshire, UK. 

 (a) Inclusion criteria:  

 Male or female, with stable asthma or COPD or healthy volunteer 

 Groups:  

 Children with asthma (CHILD): 4-17 years 

 Adults with asthma (ADULT): 18-45 years 
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 COPD patients (COPD): >55 years 

 Healthy adults (HEALTHY): 18-45 years. 

 Prescribed inhaled medication including a DPI. Healthy adults were inhaler 

naive. 

 Signed informed consent (including the parent/guardian in case of an asthmatic 

child). 

(b) Exclusion criteria:   

 Prescribed inhaled medication for less than 4 weeks prior to enrolment. 

 Limited ability to understand/implement the study procedures and instructions. 

 Other pulmonary diseases (e.g. pneumonia, TB) at study enrolment or any 

other severe conditions that may adversely affect the respiratory system or 

quality of life. 

 An acute asthma or COPD exacerbation or oral prednisolone use during the 4 

weeks prior to enrolment. 

 Patient participating in another clinical research study at the time of or in the 

past 3 months prior to enrolment. 

 Females who were pregnant. 

7.3.2. Study Design 

(a) Baseline assessments  

Subjects attended a single study visit. Age, height and weight were measured and 

baseline lung function recorded by spirometry. For subjects with asthma their asthma 

status was assessed using the Asthma Control Questionnaire (ACQ) (Juniper et al. 

1999; Juniper et al. 2006). The status of the subject‟s COPD was assessed using the 

total dyspnoea scale score [see section (2.2.2.2, Table 2.5)] (Fletcher 1960; Garrod et 
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al. 2006). Details values can be found in Appendix B 46-48 refer to the enclosed 

DVD) 

(b) Initial training 

All subjects in each group (n=50) were randomly assigned to standard training using 

placebo Spiromax or Turbuhaler DPI devices. This consisted of verbal instruction on 

correct usage according to the instructions for use contained in the patient 

information leaflet (PIL) supplied by the manufacturer for both the devices. 

Each subject was required to perform two consecutive inhalation manoeuvres with 

the first DPI device. Subjects then repeated the process with the other DPI device. 

The DPIs were attached to an inhalation pressure profile recorder so that the 

maximum pressure change (∆p), peak inhalation flow (PIF), inhalation volume (IV), 

time to reach the PIF (Tp), the acceleration rate (ACC) and the duration of the 

inhalation could be recorded. For each inhalation manoeuvre through a DPI device, 

the profile with the highest PIF was selected for analysis. 

(c)Inhalation manoeuvre training 

Following the initial inhalation manoeuvres, all subjects received enhanced 

inhalation technique training. An inhalation airflow meter - the IN-Check Dial™ 

(Clement Clark International, UK), set to the resistance of the Turbuhaler, was used 

to improve inhalation technique (Nsour et al. 2001; Chrystyn 2003). Subjects were 

asked to perform inhalation manoeuvres as described above, and were then shown 

their PIF value displayed on the IN-Check Dial™. They were then encouraged to 

inhale faster during a second attempt. This was repeated until each subject had 

increased their PIF by >10 L/min. Following enhanced training, subjects then 

performed two consecutive inhalation manoeuvres through each DPI device (with the 

inhalation profile recorder re-attached) in the same order as before enhanced training 
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but using the faster inhalation technique. As before, the inhalation profile with the 

highest PIF was selected for analysis.  

7.3.3 Inhalation profiles measurements 

Each DPI was adapted so that a small tube was connected between the inhalation 

channel of the device and pressure sensors. The connection was airtight and did not 

interfere with the inhalation manoeuvres. The pressure changes with respect to time 

were electronically downloaded into an EXCEL spreadsheet to compute the 

inhalation parameters. 

The resistance of the Spiromax and the Turbuhaler was 0.0313 and 0.0335 

(kPa)
0.5

(min l
-1

), respectively. 

Pre training inhalation parameters are described as Turbuhaler A [TBH-A] and 

Spiromax A [SPIRO-A] whilst the post training parameters are Turbuhaler B [TBH-

B] and Spiromax B [SPIRO-B].  

7.3.4 Statistical Data Analysis 

The statistical analysis of the data was carried out using the Statistical Package for 

Social Sciences (SPSS for windows, version 17) software. A SPSS dataset was then 

set up and the analysis was performed and presented as follows: 

 Descriptive statics: presented as mean (standard deviation) 

 Normal distribution of the data was examined using histograms and the 

statistical tests for normality: Kolmogorov-Smirnov and Shapiro- Wilk tests  

 Comparisons of measurements within the same study group were performed, 

using the related (paired) - sample- test for parametric data, or the Wilcoxon 

signed rank test for non-parametric data. 
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7.4 Results  

7.4.1 Study population 

A total of 200 patients were recruited and completed this study. A summary of their 

demographic, lung function (presented as FEV1% predicted) and disease severity 

classification is presented in Table 7-1. Individual details of the demographic data 

are presented in APPENDIX B-42.B-43.B-44, B-45 together with their % predicted 

values respectively (refer to the enclosed DVD). A complete summary of their 

inhalation parameters through the Spiromax and Turbuhaler DPIs before and after 

training is presented in Table 7.2. The range of the individual inhalation parameters 

of the children with asthma, before and after training, is presented in Figures 7.2-7.7.  

Table 7.1. Study participant details. All values are mean (SD) unless indicated 

otherwise. 

Characteristics 
Asthmatic 

Children 

Asthmatic 

Adults 
COPD 

Healthy 

Subjects 

Number (n) 50  50 50 50 

Sex [M/F] (n) 28/22 21/29 22/28 21/29 

Age in years 11.6 (3.6) 34.7 (7.6) 66.8(7.9) 32.6 (7.3) 

Height in cm 147.7 (19.7) 168.0 (4.9) 168.7(6.9) 171.2 (7.8) 

Weight in Kg 47.6(17.1) 75.4(10.4) 78.1(13.6) 73.8(14.1) 

FEV1 2.0(0.7) 2.5(0.72) 1.5(0.6) 3.6(0.75) 

FEV1 % predicted 57.1 (16.9) 69.2(16.4) 51.8(21.9) 95.7 (14.3) 

PEF in L/min 251.8(115.0) 329.5(101.1) 216.5(93.3) 479.3(127.6) 

PEF % predicted 55.9 (18.8) 65.9 (16.5) 46.1 (20.5) 99.7 (20.4) 

FVC in Litres 2.5(1.0) 3.1(1.0) 2.3(0.9) 3.9(0.9) 

Disease 

severity 

Mild 7 18 25 N/A 

Moderate 19 20 17 N/A 

Severe 22 12 8 N/A 
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Table 7.2. Mean (SD) inhalation characteristics of asthmatic children, adult with asthmatic, COPD patients and healthy subjects when they 

inhaled through the Turbuhaler and Spiromax DPIs before and after training. 

 PIF (l/min) ∆P (kPa) Tp (sec) IV (L) Ti (sec) ACC (l/sec
2
) Acc(kPa/sec) 

CHILD 

TBH-A 57.6(13.4) 3.92(1.84) 0.75(0.55) 1.451(0.72) 2.08(0.84) 3.03(1.74) 11.32(7.72) 

TBH-B 71.8(14.7) 6.02(2.38) 0.47(0.20) 1.529(0.61) 1.82(0.62) 4.75(2.11) 21.73(12.47) 

SPIRO-A 67.9(15.7) 4.75(2.30) 0.68(0.33) 1.711(0.80) 2.15(0.8) 3.23(1.96) 12.48(9.86) 

SPIRO-B 81.0(16.4) 6.69(2.57) 0.51(0.35) 1.841(0.721) 1.95(0.71) 5.31(2.81) 24.23(16.73) 

ADULT 

TBH-A 65.4(14.4) 5.14(2.55) 0.49(0.26) 2.131(1.00) 2.69(1.20) 2.69(1.21) 13.0(12.0) 

TBH-B 76.7(15.0) 6.85(2.50) 0.27(0.12) 2.121(0.90) 2.31(0.85) 5.17(3.13) 25.95(20.28) 

SPIRO-A 74.4(18.1) 5.74(2.56) 0.936(0.66) 2.390(1.03) 2.74(1.27) 3.55(2.79) 15.66(15.55) 

SPIRO-B 85.5(14.6) 7.35(2.33) 0.292(0.17) 2.377(1.11) 2.32(1.03) 6.19(4.38) 30.02(25.29) 

COPD 

TBH-A 50.1(16.2) 3.10(1.9) 0.96(0.86) 1.577(0.69) 2.94(1.36) 2.42(1.88) 8.44(9.46) 

TBH-B 60.1(17.0) 4.4(2.4) 0.6(0.3) 1.665(0.71) 2.54(1.01) 3.9(2.5) 15.7(14.0) 

SPIRO-A 57.5(21.0) 3.66(2.70) 0.677(0.38) 1.819(0.87) 2.71(1.0) 3.04(2.2) 11.01(12.84) 

SPIRO-B 68.1(18.5) 3.94(2.1) 0.55(0.33) 1.897(0.89) 2.55(1.09) 4.67(3.1) 18.89(17.01) 

Healthy 

TBH-A 78.0(11.8) 6.98(2.05.) 1.19(0.70) 2.71(0.81) 3.02(1.03) 2.58(1.67) 12.84(9.55) 

TBH-B 90.36(10.9) 9.29(2.085) 0.55(0.3) 2.794(1.01) 2.71(0.8) 5.37(2.43) 30.11(14.3) 

SPIRO-A 85.01(13.58) 7.25(2.2.5) 1.02(0.53) 2.984(1.01) 2.94(1.1) 3.34(2.42) 15.85(13.53) 

SPIRO-B 98.68(9.15) 9.62(1.64) 0.54(0.51) 3.069(1.04) 2.67(0.82) 6.06(2.96) 32.21(17.17) 
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7.4.2.1 Inhalation Profiles of the children with asthma before and after training  

 

 

Figure 7.2. The distribution of the individual peak inhalation flows through the 

Turbuhaler and Spiromax, before (A) after training (B) achieved by the children with 

asthma. 

 

Figure 7.3. The distribution of the maximum pressure changes occurring in the 

Turbuhaler and Spiromax before (A), after training (B) during the inhalation of the 

children with asthma. 
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Figure 7.4. The range of the times to PIF when the children with asthma inhaled 

through a Turbuhaler and Spiromax before (A), after training (B). 

 

 

 

Figure 7.5. The distribution of the acceleration rates achieved by the children with 

asthma when they inhaled through the Turbuhaler and Spiromax before (A), after 

training (B). 
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Figure 7.6. The distribution of the inhaled volume achieved by the children with 

asthma when they inhaled through the Turbuhaler and Spiromax before (A), after 

training (B). 

 

 

 

Figure 7.7. The range of the individual inhalation times when the children with 

asthma inhaled through the Turbuhaler and Spiromax before (A), after training (B). 
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7.4.2.2. Inhalation Profiles of the adults with asthma when they through the 

Spiromax™ and Turbuhaler DPIs before and after training. 

 

The range of the inhalation characteristics is presented in Figures 7.8 to 7.13. 

 

Figure 7.8. The distribution of the individual peak inhalation flows achieved by the 

adults with asthma through the Turbuhaler and Spiromax, before (A) and after 

training (B). 

 

Figure 7.9. The distribution of the maximum pressure changes occurring in the 

Turbuhaler and Spiromax, before (A) after training (B), during the inhalations by the 

adults with asthma.  
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Figure 7.10. The range of the times to PIF when the adults with asthma inhaled 

through a Turbuhaler and Spiromax before (A) after training (B). 

 

 

 

Figure 7.11. The distribution of the acceleration rates achieved by the adults with 

asthma when they inhaled through the Turbuhaler and Spiromax before (A) after 

training (B). 
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Figure 7.12. The distribution of the inhaled volume achieved by the adults with 

asthma when they inhaled through the Turbuhaler and Spiromax, before (A) after 

training (B).  

 

 

 

Figure 7.13. The range of the individual inhalation times when the adults with 

asthma inhaled through the Turbuhaler and Spiromax, before (A) after training (B). 
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7.4.2.3. Inhalation characterisation for COPD patients when the inhaled 

through the Turbuhaler and Spiromax before and after training  

 

The range of the inhalation characteristics is presented in Figures 7.14 to 7.19. 

 

 

Figure 7.14. The distribution of the individual peak inhalation flows through the 

Turbuhaler and Spiromax, before (A) after training (B), achieved by the COPD 

patients 

 

Figure 7.15. The distribution of the maximum pressure changes occurring in the 

Turbuhaler and Spiromax, before (A) after training (B), during the inhalations by the 

COPD patients  
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Figure 7.16. The range of the times to PIF when the COPD patients inhaled through 

a Turbuhaler and Spiromax before (A) after training (B) 

 

 

 

 

Figure 7.17. The distribution of the acceleration rates achieved by the COPD patients 

when they inhaled through the Turbuhaler and Spiromax before (A) after training (B) 
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Figure 7.18. The distribution of the inhaled volumes achieved by the COPD patients 

when they inhaled through the Turbuhaler and Spiromax before (A) after training (B)  

 

 

 

Figure 7.19. The range of the individual inhalation times when the COPD patients 

inhaled through the Turbuhaler and Spiromax before (A) after training (B). 
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7.4.2.4. Inhalation characterisation for healthy subjects when the inhaled 

through the Turbuhaler and Spiromax™ DPIs before and after training  

 

The range of the inhalation characteristics is presented in Figures 7.20 to 7.25. 

 

Figure 7.20. The distribution of individual peak inhalation flows achieved by the 

healthy volunteers through the Turbuhaler and Spiromax, before (A) after training 

(B).  

 

Figure 7.21. The distribution of the maximum pressure changes occurring in the 

Turbuhaler and Spiromax, before (A) after training (B), during the inhalation of the 

healthy volunteers. 
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Figure 7.22. The range of the times to PIF when the healthy volunteers inhaled 

through a Turbuhaler and Spiromax, before (A) after training (B). 

 

 

 

Figure 7.23. The distribution of the acceleration rates achieved by the healthy 

volunteers when they inhaled through the Turbuhaler and Spiromax, before (A) after 

training (B). 
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Figure 7. 24. The distribution of the inhaled volumes achieved by healthy volunteers 

when they inhaled through the Turbuhaler and Spiromax, before (A) after training 

(B).  

 

 

Figure 7.25. The range of the individual inhalation times when the healthy volunteers 

inhaled through the Turbuhaler and Spiromax, before (A) after training (B). 
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7.4.3. Comparison of the Inhalation Profiles through the different DPIs 

Spiromax and Turbuhaler  

The normality distribution tests (the Kolmogorov-Smirnov and Shapiro-Wilk tests) 

showed that the parameters were not normally distributed. Comparison, therefore, 

between the various parameters of the inhalation profiles through the different DPIs:  

was made using the two related-samples, nonparametric Wilcoxon signed rank test. 

Table 7.3 shows the comparison between the means of the different inhalation 

parameters 

Table 7.3. Statistical analysis (p values are quoted). 

PIF TURB(A)v‟s 
SPIRO(A) 

TURB(A)v‟s 
(B) 

SPIRO A v‟s 

B 
TURB B‟vs 

SPIRO B 
CHILD 0.000 0.000 0.000 0.000 

ADULTs 0.000 0.000 0.000 0.000 
COPD 0.000 0.000 0.000 0.000 
Healthy 0.000 0.000 0.000 0.000 

PkPa     
CHILD 0.000 0.000 0.000 0.000 

ADULTs 0.016 0.000 0.000 0.004 
COPD 0.002 0.000 0.169 0.039 
Healthy 0.585 0.000 0.000 0.490 

IV     
CHILD 0.000 0.045 0.004 0.000 

ADULTs 0.001 0.709 0.178 0.000 
COPD 0.006 0.067 0.534 0.067 
Healthy 0.005 0.950 0.178 0.000 

ACC     
CHILD 0.191 0.000 0.000 0.000 

ADULTs 0.201 0.000 0.000 0.029 
COPD 0.735 0.000 0.000 0.029 
Healthy 0.057 0.000 0.000 0.585 

Inhalation Time     
CHILD 0.000 0.011 0.825 0.212 

ADULTs 0.521 0.007 0.010 0.712 
COPD 0.735 0.124 0.126 0.836 
Healthy 0.164 0.002 0.041 0.809 

Time at PIF     
CHILD 0.000 0.000 0.000 0.560 

ADULTs 0.732 0.000 0.000 0.444 
COPD 0.018 0.000 0.014 0.000 
Healthy 0.158 0.000 0.000 0.069 
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7.4.4 Asthma control Questionnaires (ACQ) 

(a) Children with asthma 

The mean (SD) ACQ scores are presented in Table.7.4. Table 7.5 presents the level 

of asthma control of child with asthma with respect to the ACQ. Details of each 

individual‟s ACQ are presented in APPENDIX B-4 6(refer to the enclosed DVD) 

Table 7.4. Mean (SD) scores of (ACQ) for children with asthma.   

 Mean(SD)Scores Minimum Maximum 

ACQ 1.68(0.99) 0.33 4.83 

 

Table 7.5. Level of asthma control (Child with Asthma). 

Asthmatic Children 

(n= 50) 

ACQ Categories Frequencies 

≤ 0.75 (well controlled) 5(10.0%) 

0.75-1.50 (not well controlled 25(50.0%) 

≥ 1.50( uncontrolled) 20(40%) 

 

(b) Adults with asthma 

A summary of the ACQ is presented in Table 7.6 and Table 7.7 presents the level of 

asthma control with respect to the ACQ. Details of each individual‟s ACQ are 

presented in APPENDIX B-4 7(refer to the enclosed DVD) 

Table 7.6. Mean (SD) scores of (ACQ) for asthmatic Adults.  

 Mean(SD)Scores Minimum Maximum 

ACQ 1.84(0.90) 0.67 4.50 
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Table 7.7. Level of asthma control. 

Asthmatic Adults 

(n= 50) 

ACQ Categories Frequencies 

≤ 0.75 (well controlled) 2(4.0%) 

0.75-1.50 (not well controlled 22(44.0%) 

≥ 1.50( uncontrolled) 26(52%) 

 

(c) COPD patients 

A summary of the MRC scores for COPD is presented in Table 7.8. Details of each 

individual‟s MRC scores are presented in APPENDIX B-48 (refer to the enclosed 

DVD) 

The MRC “Degree of Breathlessness” 

 
Degree of breathlessness using the MRC Dyspnoea Score (reflects exercise tolerance 

and functional limitation). The frequencies of the COPD patients in the MRC 

“Degree of Breathlessness” categories for one visit study and the frequencies of 

COPD patients in the MRC “Degree of Breathlessness” categories are presented in 

Table 7.8. 

Table 7.8. Dyspnoea (MRC Score) for COPD patients.  

*Degree of breathless related to activities 

Grade 1 2 3 4 5 

Total average  

COPD no.=50  
Non 2 3 4 5 

Pt. No. (%) Non 9/50(18%) 18/50(36%) 15/50(30%) 8/50(16%) 

M/F Non 6/3 4/14 9/6 2/6 

*Degree of breathlessness using the MRC Dyspnoea Score 4 (reflects exercise tolerance and 

functional limitation)
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7.5 Discussion 

Although DPIs are breath actuated many patients have problems preparing a dose for 

inhalation and with using the recommended inhalation manoeuvre (Molimard et al, 

2003, Chrystyn & Price, 2009; Haughney et al, 2010; Melani et al, 2011). Hence the 

ERS / ISAM Consensus Statement recommends that patients are made aware of the 

dose preparation procedures for each DPI and that the inhalation should be as 

forceful and long as possible and that this manoeuvre should commence immediately 

at the start of the inhalation (Laube et al, 2011). These inhalation manoeuvre 

instructions are based on the need to de-aggregate the dose and that this occurs 

during the initial phase of an inhalation when using a DPI (de Boer et al., 1996; de 

Boer et al., 1997; Everard et al., 1997; Kamin et al., 2002).  

It is important therefore to train patients on how to use their DPI. These results were 

available during the draft stage of the ERS / ISAM Consensus Statement and were 

used to inform the recommendation to focus on the initial phase of the inhalation 

during DPI technique training. 

In this study, which was a repeated measure design, all subjects received the DPI 

training that they would have received routinely in the clinic. This included the 

technique instructions recommended in the patient information leaflet.  The first set 

of measurements represents those that would be achieved from standard DPI 

technique training in the clinic. The subjects then received the enhanced training with 

the IN-Check Dial which is not part of routine inhaler technique training.  The very 

highly significant improvements highlight realistic changes in the peak inhalation 

flow and more important in the pressure change (hence turbulent energy) and the 

acceleration of the inhalation (with respect to the pressure changes).  An alternative 

study design would have been to randomise the subjects after the standard training to 
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one group that received the enhanced training and another that received a repeat of 

the standard training.  Although this randomised control trial design would require 

more subjects due to the parallel groups the results would not reflect a training effect.  

However the differences in this repeated design study are very significantly better 

after the intervention and so suggest that any training effect did not influence the 

results. 

Studies have shown that patients with stable asthma (Hawksworth et al, 2000; 

Broeders et al, 2003) and COPD (Nsour et al, 2001; Broeders et al, 2003; Al-Showair 

et al 2007) as well as children with asthma (Agertoft & Pedersen, 1998) do improve 

their inhalation flows after routine training and that highly trained asthmatics (Tarsin 

et al, 2006) and COPD (Derom et al, 2007) patients do inhale with faster flows. The 

results in this chapter confirm that patients can improve their inhalation manoeuvres 

even further with enhanced training using the IN-Check Dial. This training tool 

provides objective feedback about the inhalation manoeuvre rather than the 

subjective response provided during standard inhalation technique training. Two 

different DPIs that had a similar resistance were used so that it could be identified 

that the changes were due to the training and not a device effect. As expected the 

healthy adults produced the best set of inhalation parameters followed by the adults 

with asthma with the children with asthma slightly higher than the COPD patients. 

The pressure changes (hence the turbulent energy), the acceleration rates and the 

inhalation flows were greater for Spiromax than the Turbuhaler in all 4 groups 

although there was little difference in the resistance of the two DPIs. This is 

consistent with the results in Chapter 6. The faster flows would be due to the slightly 

lower resistance of the Spiromax. In Chapter 6 it was found that the influence of the 

higher resistance with respect to the pressure changes and the acceleration flows was 
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not linear and there was the suggestion of a cut-off point when resistance dominates 

the pressure changes. It may be that the resistance of the Spiromax and the 

Turbuhaler is such that inhalation flow influences the pressure changes (and 

turbulent energy) more than the resistance of the device. Inhalation volumes were 

significantly greater when using the Spiromax DPI which would be due to its lower 

resistance. 

Very highly significant improvements (p<0.001) in the maximum pressure change 

(equivalent to the maximum turbulent energy) were obtained after the enhanced 

training in all 4 groups for both DPIs except for the COPD patients when using the 

Spiromax. The lower values in the COPD subjects would be due to the reduced 

inspiratory effort of these patients. All acceleration rates, PIF values and the time to 

the PIF all significantly (p<0.001) improved post enhanced training. The 

improvements in the acceleration rate when using the Turbuhaler were much more 

pronounced in the asthma and COPD patients than those obtained from similar 

patients who received specific and additional verbal instructions using the patient 

information leaflet (Broeders et al, 2003). In this 2003 study the training these 

patients received was similar to standard training that patients would receive in the 

clinic and thus similar to the initial training given to the patients in this study. These 

differences highlight the importance of using more objective methods during 

technique training. The improvements also highlight the value of the IN-Check dial 

as a training aid (Azouz & Chrystyn, 2012). 

In Chapter 6 the patients used their normal real-life technique whereas in this study 

they received standard and enhanced inhalation technique training. This would have 

contributed to the difference between the inhalation parameters measured in the two 

studies. Some differences in the demographics of the patients would also influence 
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the different parameters measured. The baseline inhalation characteristics of the 

children with asthma (age range 5 to 16 years) when they inhaled using the 

Turbuhaler in this Chapter was greater than those in Chapter 6. In addition to the 

training these children were older and taller than those of the study in Chapter 6. 

However their acceleration rates were slower than those of Chapter 6 even though 

they had received verbal and written instructions to inhale as fast as possible. The 

inhalation characteristics of the adults with asthma in this Chapter were also higher 

but compared to the children the difference was smaller (overall less than 10%). 

There was only a small difference in the FEV1 % predicted between the adult 

asthmatics in the two studies. Their acceleration rates were very similar but 

inhalation volumes were higher which could be due to instructions to exhale before 

the inhalation manoeuvre. There were smaller difference between the results in this 

chapter and those in Chapter 6 when COPD patients inhaled using than Spiromax 

and the Turbuhaler. 

The PIF values with the Turbuhaler after the enhanced training was similar to those 

of highly trained COPD (Derom et al, 2007) and asthma (Tarsin et al, 2006) patients. 

In patients receiving standard training the PIF values through the Turbuhaler are 

similar to those reported for COPD patients (Dewar et al, 1999; Al-Showair et al; 

2007), adults with asthma (Meijer et al, 1996; Broeders et al, 2003) and children with 

asthma (Stahl et al 1996). Four COPD patients and 1 adult with asthma but no 

children with asthma used a PIF < 30L/min with the Turbuhaler. All these 

significantly improved above >30L/min post training. Improvements in inhaled 

volume were only small indicating that the participants always made a full 

inhalation. Studies have shown that volume is important when using a DPI with upto 

1L required through a Turbuhaler (Kamin et al, 2002). After the enhanced training 10 
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children with asthma (two 5 years old, two 6 years, three 7 years and one 9, 10 and 

13 year old), 4 adults with asthma (FEV1 43, 52, 72 and 78 % predicted) and 9 

COPD patients (FEV1 21, 25, 26, 32, 35, 42, 45, 52 and 60 % predicted) did not 

inhale greater than 1L. Inhalation volume may be more important to consider that 

any other inhalation characteristic when choosing a DPI. 

The inhalation characteristics shown in the scatter plots (relationships) highlight that 

the compendial methods for in-vitro testing using a pressure change of 4kPa with an 

inhaled volume of 4L are unrealistic. These relationships confirm that focus should 

be directed to methodologies that can use patient inhalation profiles during in-vitro 

testing in place of the vacuum pump that can only replicate a square wave. 

The results show the value of training patients to use a faster flow rate and 

encouraging them that their fast inhalation should begin as soon as they start to 

inhale. Using the IN-Check Dial as a training aid to achieve faster inhalation flows is 

useful. The similar increases of the Spiromax and the Turbuhaler show that the 

improvements in training were due to the method and were not influenced by the 

different design or appearance of the devices. 
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Chapter 8: Summary  
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8.1 Summary and Conclusion 

Pressurised metered dose inhalers (pMDIs) and dry powder inhalers (DPIs) are 

routinely used in the management of asthma and COPD. The pMDI was first 

introduced in 1956 followed by the single dose DPI in 1967 and multidose DPIs in 

1987 (Sanders, 2007). Although some of these devices were introduced over 50 years 

ago patients have problems using the correct technique (Crompton et al., 2006; 

Laube et al., 2011; Melani et al., 2011). The correct inhalation technique by patients 

is crucial for maximum lung deposition and the success of therapy (Laube et al., 

2011). Studies have shown that poor technique is related to poor disease control in 

asthma (Giraud & Roche, 2002; Al-Showair et al., 2007; Melani et al. 2011) and 

COPD patients (Melanie et al., 2011) and is linked with more hospitalisations 

(Melani et al., 2011). National and World guidelines on the management of asthma 

(BTS / SIGN, 2011; GINA 2011) and COPD (NICE, 2010; GOLD, 2011) all stress 

that before a patient‟s inhaled therapy is altered then their inhalation technique and 

their compliance should be checked first. 

A pMDI should be used with good co-ordination and a slow inhalation flow whereas 

a DPI should be used with a fast inhalation and that this forceful inhalation should 

commence from the beginning (Laube et al., 2011). The inhalation phase for both 

inhaler types should last as long as possible so that the emitted particles have a 

greater chance to be deposited throughout the airways (especially the peripheral 

regions of the lungs). 

Despite the differences in the instructions when using a pMDI and a DPI for efficient 

delivery of the particles from the emitted dose the inhalation flow should be similar. 

It has been suggested that this inhalation flow should be >30 L/min <90L/min 

(Pauwels et al., 1997). The pMDI is an active device because the particles are 
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generated by the device in that when the canister is depressed a valve opens and as 

the propellant evaporates the particles are emitted. There is no resistance to flow in a 

pMDI and so to achieve < 90L/min patients should be encouraged to inhale slowly. 

DPIs are passive devices in that an external source is required to emit the dose from 

the device and generate particles with the potential for lung deposition. This external 

source is the patient‟s inhalation flow interacting with the internal resistance of the 

DPI to create a turbulent force / energy (measured as a pressure change) which de-

aggregates (breaks up) the formulation into particles that have the potential for lung 

deposition (Clark & Hollingworth , 1993). 

De-aggregation takes place during the inhalation manoeuvre because when the dose 

of a DPI has been prepared for inhalation the formulation does not have the 

characteristics for its drug particles to be deposited in the lungs (Chrystyn, 2003). 

During manufacture and dose metering good powder flow is essential and so the 

particles in the formulation are attached to a large particle lactose carrier or 

formulated into spherical agglomerates. The resistance to airflow in each DPI means 

that to achieve the required inhalation flows patients need to use a forceful inhalation 

(Chrystyn, 2003). Also the de-aggregation and dose emission from a DPI occurs in 

the first part of an inhalation (de Boer et al, 1997; Everard et al, 1997; Kamin et al, 

2002) and so the forceful inhalation should commence from the start of each 

inhalation (Laube et al, 2011). Also for each DPI there is a threshold below which 

the turbulent energy generated during an inhalation is not sufficient to efficiently de-

aggregate the dose (Laube et al, 2011). Overall this minimum flow is assumed to be 

30L/min but will be higher in those DPIs with a lower resistance and vice versa 

(Laube et al, 2011). 
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Many patients have problems using their pMDIs. These problems first surfaced in 

1965 (Saunders, 1965) but it was from 1976 in the studies by Crompton (Paterson 

and Crompton, 1976; Crompton 1982) that the problem of poor co-ordination were 

realised and still remain today (Melani et al, 2011). Until recently not using a slow 

flow was not realised as a problem mainly because studies had used bronchodilators 

which would benefit from more central lung deposition (which occurs when using a 

fast flow) as well as high doses. It has been shown that slow flow through a pMDI 

improves asthma control without any changes in the spirometry (Al-Showair et al., 

2007). This reflects better particle penetration of the corticosteroids into the 

peripheral zones of the lungs. Slow inhalation flow improves lung deposition 

especially in the peripheral zones of the lungs (Usmani et al, 2005). Only 8% of 

asthmatics use a slow flow with good co-ordination (Al-Showair et al, 2007). 

Training pMDI and DPI technique can help but patients do revert back to their old 

technique soon after the training session when they leave the clinic (Shim and 

Williams, 1985). Although patients do not always use the correct inhalation 

technique they do receive some benefit from their inhalers but this would be 

improved when using a good technique. There is a need, therefore, to identify simple 

methods that could be used during inhaler technique training that help patients use 

the correct technique and that this trained technique is then used by them at home. 

All the studies in this Thesis used the patients‟ untrained inhalation technique (there 

were two studies that assessed the effect of training but the starting point was their 

untrained technique). 

In the first study the inhalation characteristics of 20 children with asthma, 57 adults 

with asthma and 32 COPD patients was measured electronically when they inhaled 

through a pMDI. These patients routinely used a pMDI and they received no training 
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in the inhalation technique that they should use. The results provide a significant 

contribution of data that describe the inhalation characteristics of patients when they 

use their pMDI. No studies have reported values on children when they use pMDIs 

and spacers 

Previously it had been shown that an inhalation flow of < 90 L/min (Farr et al., 1995; 

Pauwels et al., 1997) indicated slow flow. The mean (SD) inhalation flows of these 

patients were 108.9(40.4), 146.0(58.8) and 107.3(50.6) L/min. Only 7 children, 10 

adults and 10 COPD patients inhaled using a slow flow of < 90L/min. The mean 

(SD) inhalation times were 1.4 (0.27) seconds for the children with asthma, 1.5(0.3) 

seconds by the adults with asthma and 1.6(0.2) seconds by the COPD patients. 

Overall these are shorter than the 5 seconds for an adult and 2-3 seconds by a child 

that has been recommended by the ERS Consensus Statement on the use of inhalers 

(Laube et al, 2011). It is the results of this Thesis that informed the ERS Consensus 

statement to include the recommendation about the focus on the length of the 

inhalation. Inhalation volumes were a mean (SD) of 1.14 (0.6), 2.1(0.9) and 1.8(1.0) 

(L), respectively. The clinical significance of these values is not known. This was a 

preliminary study and the methodology could not measure the point when the patient 

actuated a dose with respect to the start of their inhalation. The methodology of the 

second study was designed to capture co-ordination data. In general the inhalation 

parameters when these patients used their pMDI were similar to those when they 

inhaled through a pMDI attached to a spacer. Overall all inhaled volumes were 

greater than the volume of an AeroChamber but some young children did not achieve 

an inhaled volume greater than that of the Volumatic confirming the standard 

practice for these patients to use tidal breathing rather than one full inhalation. The 
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methodology used in this study did not allow a measure of the time between pressing 

the canister and the start of an inhalation. 

The second study included methodology to measure the co-ordination of dose 

actuation and with the start of their inhalation. Like study one this was a data capture 

study to describe how patients with asthma (both children and adults) and COPD 

patients use their inhalers. Like study one there is no such published data to describe 

how children with asthma and similar data on asthma patients and COPD subjects are 

limited. Previously it had been shown that 0.2 seconds between the start of an 

inhalation and the actuation of the dose was an indicator for good co-ordination 

(Goodman et al., 1994; Farr et al., 1995). 20 children with asthma, 130 adults with 

asthma and 31 COPD patients completed the study. Their mean (SD) inhalation 

flows were 70.5(36.4) 131.4(60.8) adults and 70.9(28.1) L/min. Overall the flows in 

the children with asthma and in the COPDs were the best with 15 out of 20 (75%) 

children and 24 out of 31 (77%) using a flow <90 L/min. It is amongst the adult 

asthmatics that flow was too fast. Overall 93/130 (72%) used a fast flow with 21 

(16% of the total) inhaling >200 L/min. Five children, 53 of the adults and 10 of the 

COPD patients were good co-ordinators but of these only 3, 6 and 9 patients also 

used a slow flow. Their mean (SD) inhalation times were similar to those of the first 

study; 1.25 (0.46) seconds by children with asthma, 1.68(0.82) seconds by the adults 

and 1.44 (0.65) seconds for the COPD patients. The studies suggest that when 

patients use a pMDI their inhalation times are too short (Laube et al, 2011) so they 

should be trained to inhale for longer. Theoretically when the patient makes a full 

inhalation then the inhaled volume should not change and so their flow will decrease.  

There were no clinical endpoints to this study because the data was collected at one 

visit. However it was possible to classify the patient‟s disease severity and 
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investigate if this was related to technique. Only a small number of patients achieved 

a good technique and so a comparison of their disease control to those with good 

technique was not possible. Furthermore all the patients with good technique were 

clinically not well controlled. This could be due to compliance or that their asthma 

was so severe and affected them so much that they focussed more on their technique 

to ensure they obtained as much therapeutic benefit as possible. In this study good 

correlations were found between the inhaled volume and the forced vital capacity of 

the adult asthmatics with a ratio of around two thirds between the inhaled volume 

and the forced vital capacity. This could be an indicator about the full inhalation that 

patients are recommended to use (breathe out gently from the start and then inhale 

until the lungs are full of air). Electronic aids are in development to help with the 

training of patients by identifying the mistakes they are making (for example AIMS2 

by Vitalograph, UK). Thus by entering the patient‟s spirometry and checking this to 

the inhaled volume then this ratio would indicate to the trainer if a full inhalation has 

been made 

The two studies in these chapters confirm that not using a slow flow with a pMDI is 

the most common mistake made by patients (Al-Showair et al, 2007). They also 

show that the duration of the inhalation is short. There has never been any mention in 

previous literature or recommendations of inhaler technique that one major problem 

is that the inhalation phase is too short when patient use a pMDI. For this reason this 

was included in the investigations of the third pMDI study. 

The previous two studies had shown that overall patients inhaled too fast and that 

their inhalation phase was relatively short 

. Chapter 5 of this thesis investigated the inhalation parameters of asthmatic adults 

when a co-ordination aid was used and then including an instruction to length the 
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inhalation phase. The co-ordination aid increased the resistance of the pMDI and so 

it would naturally slow inhalation flows. The inhalation profiles of 71 stable 

asthmatic patients were measured, their mean (SD) FEV1 was 78.31 (21.03) % 

predicted. The order of inhalations was the pMDI, pMDI+CAP (the cap is the co-

ordination aid) and pMDI+CAP+TRAIN (the train was the instruction to prolong the 

inhalation phase to 5 seconds). Their mean (SD) inhalation flows were 155.6(61.5), 

112.3 (48.4) and 73.8 (34.9) L/min, respectively (p< 0.001). Inhalation volumes did 

not change and the duration of the inhalations was 1.60 (0.21), 1.92 (0.80) and 2.99 

(1.03) seconds (p<0.001). Thus the increased resistance from the co-ordination aid 

naturally decreased their flow and by prolonging the inhalation time with no change 

in the inhalation volume reduced their flows even further. Overall 70% percent of 

patients used the correct pMDI technique with the cap and the simple instruction for 

their inhalation phase to last 5 seconds. Excellent correlations were found between 

the inhalation volumes and the forced vital capacity. The mean inhaled volume to 

forced vital capacity ratio when using the pMDI on its own was 70%. This suggests 

that such a ratio can be used to indicate a „full inhalation‟ (exhale gently as far as 

comfortable followed by an inhalation until the lungs are full of air). 

This study was in progress when the ERS Consensus statement was in the draft stage.  

These results like that of the two previous studies informed the ERS consensus 

statement about the importance of recommending patients to use a long inhalation 

(upto 5 seconds) when they use a pMDI. The correlations are consistent with those 

identified in second study and consolidate the recommendation that the inhaled 

volume to forced expiratory volume ratio could incorporated into electronic inhaler 

training aids to indicate a full inhalation 
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Figure 8.1 shows why inhalation flow decreases when the inhalation volume does not 

change and the inhalation time is increased. Also the results suggest that when a new 

pMDI is designed or a new chemical entity is introduced in a pMDI, then some 

resistance should be included because this will naturally slow down the inhalation 

flow. 

 

 

Figure 8.1. The effect of lengthening the time of the inhalation phase (dashed line)  

This third pMDI study was a repeated measure design instead of a more traditional 

parallel trial.  The benefits of this design are that it improves efficiency (since fewer 

subjects are required) and it eliminates variability due to individual differences in 

overall performance thereby allowing the outcome data to stand out.  The changes in 

the peak inhalation flow and inhalation times are very highly significant hence they 

were realistic changes.  However it is possible that there is an element of a training 

effect with the 5 second inhalation. A different approach would have been that after 

they inhaled through the pMDI and the pMDI cap there could have been a 

randomisation of the patients for one group to receiving the training to prolong the 

inhalation time to 5 seconds and the other group to receive to training 

Two studies involving DPIs are presented in Chapters 6 and 7. The first study in 

Chapter 6 again involved children with asthma (n=16), adults with asthma (n=53) 

and COPD (N=29) patients. The DPIs used ranged from low to high resistance DPIs 
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(Laube et al, 2011) and the main reason for the study was to provide data on the 

inhalation characteristics of patients when they use different DPIs. 

For these measurements patients were asked to use the same inhalation manoeuvre to 

that when they used their own inhaler. Their peak inhalation flow was measured as 

well as the pressure changes (hence turbulent energy) and the acceleration of their 

flows. Measurement of pressure changes in kPa units and acceleration rates in 

kPa/sec units allows a comparison to be made between different DPIs when used by 

patients (Azouz and Chrystyn, 2012). Previously there has not been any emphasis on 

these measurements. The time to the peak inhalation flow, inhaled volume and the 

duration of each inhalation were also measured. Also these chapters provide 

substantial data on the inhalation parameters of patients when they use different DPIs 

The results in these studies confirm that when inhaling through the same DPI 

children with asthma generate lower PIF values than COPD patients and both these 

are lower than the rates achieved by adults with asthma. Another important issue is 

that for each DPI there will be minimum threshold energy for efficient de-

aggregation of the dose. It is universally recognised that the flow through a DPI to 

exceed this minimum threshold energy is 30 L/min. Three of the 16 asthmatic 

children did not achieve 30L/min through the Accuhaler. These were all boys aged 5, 

7 and 12 years old. The 5 and 12 year old did not achieve this flow through the 

Turbuhaler but there were 4 others with flows of either 31 or 32 L/min. The same 2 

children failed to achieve 30L/min with the Clickhaler but only one of them (the 12 

year old) with the Easyhaler. This suggests that it may be the low resistance inhalers 

that patients have problems with exceeding the minimum required flows rather that 

high resistance DPIs.  
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It has been suggested that a failure to achieve an inhalation flow of 30 L/min within 

the first 150 ml of the inhalation affects de-aggregation (Everard et al., 1997) and 

thus inhalation characteristics about the first 150 ml of the inhaled volume were 

obtained. The results show that the PIF at 90% of the inhalation flow corresponded to 

when 150 ml had been inhaled through a Turbuhaler and so this portion of the 

inhalation profile was used to calculate the acceleration rates. The acceleration rates 

were greater in DPIs with high resistance. This together with the pressure changes 

suggest that more efficient de-aggregation occurs in these DPIs and may explain why 

these provide higher lung deposition than low resistance DPIs (Borgstrom, 2001). 

Pressure changes, acceleration rates and volumes were lower in the children and the 

highest values were the adults with asthma. The inhalation flows through DPIs with 

high resistance were lower than those with low resistance but the pressure changes 

were greater. The results highlight the value of including the pressure change 

measurements and the acceleration of the flow when examining inhalation profiles. 

As expected inhaled volumes were lower in the children with asthma than the COPD 

patients and both these were lower than the adults with asthma. When using the 

Aerolizer only one child inhaled > 2 L and more than half < 1 L, 7 COPD patients 

inhaled >2L (one >4L) and 5 < 1 L whilst 17 adults with asthma inhaled >2L but no 

one inhaled >4L and 7 inhaled < 1L. These values highlight the recommendation that 

when using capsule DPIs then patients should make two separate inhalations for each 

dose (Laube et al, 2010). Also many patients (especially children and COPD 

patients) did not achieve an inhaled volume of >1 L through a Turbuhaler. It has 

been suggested that a minimum of 1L is required to be passed through a Turbuhaler 

to efficiently empty the dose from the device (Kamin et al, 2002). 
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The study highlights the misunderstanding during the routine clinical practice that 

focuses on the inhalation flow.  As expected inhalation flows were significantly 

faster when the DPI had a lower resistance and vice versa for high resistance DPIs. 

To make a comparison of flow between inhalers is flawed because it is the turbulent 

energy created by the inhalation manoeuvre inside the inhalation channel of the DPI 

that is critical for the de-aggregation of the dose. The data in this study shows that 

this turbulent energy is higher for the DPIs with higher resistance.  This concept is 

not understood during routine practice and was the reason for the review that has 

arisen from this thesis (Azouz & Chrystyn, 2012) 

It has been recommended that patients use DPIs with a forceful and deep inhalation 

manoeuvre for as long as possible and that this should commence immediately at the 

start of the inhalation (de Boer et al, 1996; ibid, 1997; Everard et al, 1997; Kamin et 

al, 2002: Laube et al, 2011). It is important therefore to train patient on how to use 

their DPI (Laube et al, 2011). The final study, in Chapter 7, describes the changes in 

the inhalation parameters that occur when the inhaler technique training of patients is 

focussed on getting them to use a forceful inhalation that begins at the start of their 

inhalation. Two different DPIs (Spiromax and Turbuhaler) with a similar resistance 

were used so that changes were due to the training rather than the resistance or the 

device.  

All subjects that entered this study received the same routine DPI training that they 

would have received in the clinic (usually from the nurse). This training included 

instructions with reference to the information contained in the Patient Information 

leaflet. Hence the subjects would have been trained to exhale and then use an 

inhalation manoeuvre that is as deep and fast as they can. After the measurements 

enhance training was provide by including the IN-Check Dial as a training aid. 
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Patients were children with asthma, adults with asthma and COPD as well as healthy 

volunteers. There were 50 in each group 

The healthy subjects in this study produced the best set of inhalation parameters 

followed by the adults with asthma with the children with asthma slightly higher than 

the COPD patients. The acceleration rates (pressure change over time), the pressure 

changes (hence the turbulent energy), and the inhalation flows were greater for 

Spiromax than the Turbuhaler in all 4 groups. This study showed that highly 

significant improvements (p<0.001) in the maximum pressure change (equivalent to 

the maximum turbulent energy) were obtained after the enhanced training in all 4 

groups for both DPIs except for the COPD patients when using the Spiromax. All 

acceleration rates, PIF values and the time to the PIF all significantly (p<0.001) 

improved post enhanced training. The improvements in the acceleration rate when 

using the Turbuhaler were much more pronounced in the asthma and COPD patients 

than those obtained from similar patients who received verbal instructions using the 

patient information leaflet (Broeders et al, 2003). Hence, using objective methods 

during inhalation technique training is useful and should be encouraged and the 

results show the value of using the IN-Check Dial as a training aid with a focus on 

the initial part of the inhalation. This enhanced training is extra to that provided in a 

routine clinical setting. Again the study was designed as a repeated measure 

approach starting with standard DPI training with the patient information leaflet 

followed by the enhanced training with the In-Check Dial. A different approach 

would have been to randomise the patients into two groups following the routine DPI 

training.  One group would receive the enhanced training and for the other the 

routine clinic training would be repeated.  
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Figure 8.2 explains the value of using such a technique compared with a slower 

inhalation that starts slowly and gradually builds up. The results in Chapter 7 show 

why patients should be encouraged to use a fast inhalation and that this should 

commence from the start of each inhalation.   

 

Figure 8.2. A fast (continuous line) and a slow (dashed line) inhalation flow profile 

through a DPI. Dose emission is superimposed onto the profiles  

In conclusion when using a pMDI the focus of the training should be increasing the 

inhalation time towards 5 seconds (3-4 seconds in a child) and then instructing them 

to depress the canister, to release a dose, soon after they start to make their slow 

inhalation. When using a DPI patients should be encouraged to inhale as fast as they 

can for as long as possible and that this forceful inhalation should start from the 

beginning of the inhalation. To achieve this, the IN-Check dial is a useful training 

aid. These simple modifications to how patients are trained to use their inhalers 

should improve their disease control and help meet the GINA challenge (Fitzgerald 

et al, 2011) to reduce hospital admissions. 
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Chapter 9: Future Work  
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9.1 Future Work  

The research studies in this thesis have used electronic measurements to objectively 

highlight the problems patients have using their pMDI and DPIs during real life use. 

Incorporated into the studies were a novel co-ordination aid for use with a pMDI and 

a novel approach to train patients how to solve the common problems with the 

inhalation manoeuvre. The focus of this was to concentrate on getting patients to 

prolong their inhalation time. For the DPI the training used was enhanced by using 

the IN-Check Dial as a training aid. All these studies generated inhalation profiles 

that have demonstrated that there is a large inter-patient variability of the inhalation 

manoeuvre when using all inhalers. The studies involved children with asthma, 

adults with asthma and patients with COPD. 

All the measurements were completed at one visit so future studies need to 

investigate if the training methods provide lasting changes to the patients‟ inhalation 

manoeuvre and whether this improves their disease control. For asthma as well as 

spirometry the asthma control questionnaire (ACQ) would be used whilst for COPD 

the newly introduced COPD Assessment Test (CAT) would be a suitable method. 

Long term studies would include GP visits and hospitalisations. These would need to 

be randomised into trained and not trained patients (both patients would receive 

standard inhaler technique training in addition according to routine patient 

management).  

The first study would be to determine the clinical outcomes that occur when patients 

are trained to prolong their inhalation to 5 seconds. The classical group to use would 

be adult asthmatics but a similar approach could be adopted for the children with 

asthma and the COPD subjects. The length of the study in asthma would have to be 
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>12 weeks so that any changes due to better anti-inflammatory control could be 

identified. The schematic design of such a study is presented in the figure below 

 

 

Figure 9.1.Schematic design of the study to determine the clinical outcome of the 5 

second inhalation instruction 

A longer study with visits at 6 months and 12 months would enable the impact of 

training to be evaluated and also allow the inclusion of acute exacerbations. This 

design could also be used in children with the same outcome measures.  Similarly the 

study design could be used with COPD patients with CATS replacing ACQ.  For 

COPD a 12 month study (or longer) would be desirable.  

Clinical studies using the co-ordination cap are required if this aid is to be 

introduced. These would include an evaluation of the potential critical error that was 

identified during the study. It was noted that some patients do not keep the canister 

depressed throughout the duration of their inhalation. This causes the slits in the cap 

to close thereby preventing any further inhalation. This is a strong feedback 
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mechanism and so patients should quickly realise that the canister has to be kept 

depressed for the entire duration of their inhalation. Whether this is a potential 

critical error or not needs to be identified. Also the methodology to measure the 

electronic inhalation profiles needs to be adapted such that co-ordination with the co-

ordination aid can be measured. This was not measured in the study because of the 

need to maintain an airtight seal within the inhalation system. However this problem 

has been overcome. 

In this study the patients would be divided into standard pMDI and pMDI plus cap 

groups. To further investigate the effect of the 5 second inhalation then each group 

could then be further randomised into one half that received the extra training and the 

other half that did not.  A schematic representation of the randomised groups is 

described in Figure 9.2. 

 

Figure 9.2. Schematic design of the randomisation process. 

Like the study above the length of the study could be 12 weeks with a 2 week 

running period before the study start and the randomisation. Outcome measures 



 

 

295 

 

would be spirometry and ACQ as well as the inhalation parameters.  In COPD 

subjects CATS would replace ACQ.  

The DPI study in Chapter 7 also warrants further investigation as a clinical study.  

One limitation was that it was a repeated measures design and that instead of 

providing enhance training then one half could have had the standard training 

repeated.  After randomisation into these two groups then clinical studies could then 

be extended to 12 or 52 weeks with the same endpoints as the two studies described 

above. A schematic representation of this study is shown in figure 9.3 

 

 

Figure 9.3. Schematic design of the DPI enhanced training study 

For all the above three studies the data from the studies in this Thesis together with 

other clinical studies can be used to inform the number of patients to be included.  It 

is anticipated that due to the parallel design of the studies that large numbers will be 

required. 
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Finally the different inhalation profiles and the parameters achieved by patients show 

that the in-vitro compendial methods to characterise the aerodynamic characteristics 

of the emitted dose are not realistic. The scatter plots in Chapter 6 show that this 

applies to all DPIs. The compendial methods use a vacuum pump that can only 

produce a square wave inhalation profile and are set at an inhalation volume and a 

pressure change (hence flow) that is not achieved by most patients. At present the 

results generated by these methods are quality control measures. For DPIs (and even 

pMDIs) it is possible to replay the inhalation flow profile using a computer 

controlled vacuum pump. This should replace the standard square wave and be 

incorporated into in-vitro compendial methodologies.  

Figure 9.4 shows a schematic diagram of the in-vitro methodology that could be 

used. The Andersen Cascade Impactor (ACI) method described in the 

Pharmacopoeias is adapted so that dose emission from an inhalation profile can be 

determined. This is achieved by using a mixing inlet that inputs supplementary air, 

airflow at 60L/min, whilst the vacuum pump draws air at 60L/min through the ACI - 

see figure 9.4. Hence when the inhaler is in situ there is no flow through it. The 

inhalation profile is introduced into the supplementary which results in this profile 

being replayed as an inhalation through the inhaler in situ. This method is classified 

as an ex-vivo, technique and can be used for a selection of patient profiles to provide 

in-vitro dose emission data about the dose the patient would have inhaled. 

 

 

 

 

 



 

 

297 

 

 

 

 

Figure 9.4 Schematic design of in-vitro methodology to incorporate inhalation 

profiles. 

Although the work in this thesis can suggest other further studies the ones described 

above are those that are recommended because these will consolidate the results 

presented in the thesis 
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