University of Huddersfield Repository

Wigley, Stephen M., Thomson, Jennifer A., Teller, Christoph and Almond, Kevin

The ‘Obesity Crisis’ and Fashion Retailing – a UK view.

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/17257/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
The ‘Obesity Crisis’ and Fashion Retailing – a UK View

Jennifer Thomson – University of Stirling
Stephen Wigley – University of Huddersfield
Christoph Teller – University of Surrey
Kevin Almond – University of Huddersfield
Introduction

• Background & Context.
• Aim.
• Methodology.
• Findings & Analysis.
• Conclusions...
• 25% of all British adults are clinically obese.
• By 2050, 60% of UK women will be obese.
• Industry & media relies on – reinforces – unrealistic images of beauty & style.
• Stylish female personalities with more realistic figures are subject to ridicule & stereotype.
Aim

• Impact on consumers & consumer behaviour?
• Impact on retailer’s marketing initiatives?
• Impact on fashion product design?
• First stage of a multi-faceted project...

Aim:
• Explore the relationship between Fashion Innovation and other predictor variables including: dress size, BMI, fashion consciousness and body weight sensitivity.
Methodology

• Preliminary enquiry.
• Quantitative approach.
• Questionnaire measuring fashion innovation versus body weight sensitivity, BMI, etc.
• 168 participants.
• Sample – female fashion & marketing students.
• Convenience sampling method.
• Combination of email and face to face administration.
Findings

Descriptive Statistics:

Age

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-24</td>
<td>158</td>
<td>94.0</td>
<td>94.0</td>
<td>94.0</td>
</tr>
<tr>
<td>25-34</td>
<td>8</td>
<td>4.8</td>
<td>4.8</td>
<td>98.8</td>
</tr>
<tr>
<td>35-44</td>
<td>2</td>
<td>1.2</td>
<td>1.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>168</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Spend

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td>43</td>
<td>25.6</td>
<td>26.5</td>
<td>26.5</td>
</tr>
<tr>
<td><100</td>
<td>65</td>
<td>38.7</td>
<td>40.1</td>
<td>66.7</td>
</tr>
<tr>
<td><150</td>
<td>14</td>
<td>8.3</td>
<td>8.6</td>
<td>75.3</td>
</tr>
<tr>
<td><200</td>
<td>24</td>
<td>14.3</td>
<td>14.8</td>
<td>90.1</td>
</tr>
<tr>
<td><250</td>
<td>5</td>
<td>3.0</td>
<td>3.1</td>
<td>93.2</td>
</tr>
<tr>
<td><300</td>
<td>6</td>
<td>3.6</td>
<td>3.7</td>
<td>96.9</td>
</tr>
<tr>
<td>>300</td>
<td>5</td>
<td>3.0</td>
<td>3.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>96.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Missing System</td>
<td>6</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>168</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Findings

BMI:

![Histogram](image)

- Mean = 21.82
- Std. Dev. = 3.842
- N = 152
Findings

Dress Size & Fashion Interest:

<table>
<thead>
<tr>
<th>Dress Size</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td><6</td>
<td>1</td>
<td>.6</td>
<td>.6</td>
<td>.6</td>
</tr>
<tr>
<td>6-8</td>
<td>32</td>
<td>19.0</td>
<td>19.2</td>
<td>19.8</td>
</tr>
<tr>
<td>8-10</td>
<td>68</td>
<td>40.5</td>
<td>40.7</td>
<td>60.5</td>
</tr>
<tr>
<td>10-12</td>
<td>39</td>
<td>23.2</td>
<td>23.4</td>
<td>83.8</td>
</tr>
<tr>
<td>12-14</td>
<td>16</td>
<td>9.5</td>
<td>9.6</td>
<td>93.4</td>
</tr>
<tr>
<td>14-16</td>
<td>7</td>
<td>4.2</td>
<td>4.2</td>
<td>97.6</td>
</tr>
<tr>
<td>16-18</td>
<td>4</td>
<td>2.4</td>
<td>2.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>99.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fashion_Interest</td>
<td>167</td>
<td></td>
<td></td>
<td>5.44</td>
<td>.811</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>167</td>
<td></td>
<td></td>
<td>5.44</td>
<td>.811</td>
</tr>
</tbody>
</table>
Analysis

Step 1: Cronbach Alpha (all scales >0.7)

Step 2: Correlations:

<table>
<thead>
<tr>
<th></th>
<th>Consciousness</th>
<th>Innovation</th>
<th>BMI</th>
<th>Sensitivity</th>
<th>Dress size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consciousness</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>0.590</td>
<td>-0.145</td>
<td>-0.030</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
<td>0.075</td>
<td>0.697</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>168</td>
<td>166</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>Innovation</td>
<td>Pearson Correlation</td>
<td>0.590</td>
<td>1</td>
<td>-0.233</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0.000</td>
<td>0.004</td>
<td>0.728</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>166</td>
<td>166</td>
<td>150</td>
<td>166</td>
</tr>
<tr>
<td>BMI</td>
<td>Pearson Correlation</td>
<td>-0.145</td>
<td>-0.233</td>
<td>1</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0.075</td>
<td>0.004</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>152</td>
<td>150</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Pearson Correlation</td>
<td>-0.030</td>
<td>-0.027</td>
<td>0.253</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0.697</td>
<td>0.728</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>168</td>
<td>166</td>
<td>152</td>
<td>168</td>
</tr>
<tr>
<td>Dress_size</td>
<td>Pearson Correlation</td>
<td>-0.172</td>
<td>-0.232</td>
<td>0.696</td>
<td>0.299</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0.026</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>167</td>
<td>165</td>
<td>152</td>
<td>167</td>
</tr>
</tbody>
</table>

. Correlation is significant at the 0.01 level (2-tailed).

. Correlation is significant at the 0.05 level (2-tailed).
Analysis

Stage 3: Regression:

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Change Statistics</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R Square Change</td>
<td>F Change</td>
</tr>
<tr>
<td>1</td>
<td>.259<sup>a</sup></td>
<td>.067</td>
<td>.054</td>
<td>4.09711</td>
<td>.067</td>
<td>5.275</td>
</tr>
<tr>
<td>2</td>
<td>.261<sup>b</sup></td>
<td>.068</td>
<td>.049</td>
<td>4.10840</td>
<td>.001</td>
<td>.193</td>
</tr>
<tr>
<td>3</td>
<td>.629<sup>c</sup></td>
<td>.395</td>
<td>.379</td>
<td>3.32076</td>
<td>.327</td>
<td>78.473</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Dress_size, BMI

b. Predictors: (Constant), Dress_size, BMI, Sensitivity

c. Predictors: (Constant), Dress_size, BMI, Sensitivity, Consciousness

d. Dependent Variable: Innovation
Findings

• The only significant predictor of fashion innovation is fashion consciousness.
 – \(\uparrow\text{consciousness} = \uparrow\text{innovation}\).

• No apparent link between fashion innovation and BMI/dress size.
 – Fashion innovation is about ‘who’ you are and not ‘what’ you are or – importantly - what size you are.

• Limitations.