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Abstract 

The heating value of fuel is one of its most important physical properties, and is used for 

the design and numerical simulation of combustion processes within internal combustion 

(IC) engines. Recently, there has been a significant increase in the use of dual fuel and 

blended fuels in compression ignition (CI) engines. Most of the blended fuels include 

biodiesel as one of the constituents and hence the objective of this study is to investigate 

the effect of biodiesel content to lower heating value (LHV) and to develop new LHV 

prediction models that correlate the LHV with biodiesel fraction, density and viscosity. 

Furthermore, this study also investigated the effects of the LHV on CI engines 

performance parameters experimentally. To achieve the above mentioned objectives 

density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste oil 

biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, 

where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc) were measured 

as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. The engine 

experimental work was conducted on a four-cylinder, four -stroke, direct injection (DI) 

and turbocharged diesel engine by using rapeseed oil and normal diesel blends. Based on 

the experimental results, models were developed which have the capability to predict the 

LHV corresponding to different fractions, densities and viscosities of biodiesel. The 

models are shown to produce consistent results with experimentally measured ones and 

compared with previous researches’ models. Furthermore the effects of LHV on brake 
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specific fuel consumption (BSFC) and thermal efficiency were analysed and it has been 

seen that for the neat biodiesel which its LHV is lower by 8% than diesel resulted in an 

increment of BSFC and thermal efficiency by 18% and 25% respectively. 

Key words: Biodiesel, Lower heating value, Biodiesel blend, Biodiesel density, Biodiesel 

viscosity, Engine power 

1. Introduction 

The demand for fossil fuel around the world is continuously increasing and as per recent 

estimates the fossil fuel deposits may be depleted within the coming 50 years [1]. The 

automotive sector uses limited alternative energy sources compared to that used in power 

generation and its 98% of the energy sources depend on mineral oil [2]. Currently, growth 

in world energy consumption stands at approximately 2% per annum. Presently there are 

more than 600 million passenger cars in world; production of new cars increased by 20% 

between 1999 and 2009 [3]. In addition, over the last two decades the pollutant emission 

limits for the road transport sector have become increasingly stringent. All these 

challenges have resulted in extensive research activity to provide alternative fuels and 

ones which cause less pollution [4]. A lot of attention  has been focussed on biodiesel as 

an alternative fuel because it is renewable, more environmentally friendly and can be 

used in diesel engines with little or no engine modifications [5], [6], [7], [8], [9], 

[10],[11]. Biodiesel fuels are characterised by a number of physio-chemical properties 

including viscosity, density, LHV, cetane number, cloud point, pour point, flash point, 

ash content, sulphur content and carbon residue [8], [12], [13]. Of all of these properties, 

LHV is one of the most influential parameters that affect the specific fuel consumption, 

brake thermal efficiency and NOx emissions of an engine.  
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The heating value of fuel can be defined in two ways: the higher heating value (HHV), or 

gross calorific value, and the lower heating value (LHV), or net calorific value. HHV is 

determined by bringing all the products of combustion back to the original pre-

combustion temperature, and in particular condensing any vapour produced to liquid 

water, while LHV is based on gaseous water (vapour) as the by product which is 

determined by subtracting the heat of vaporization of the water vapour from the HHV 

[14].  

Although HHV has wider acceptance in biomass characterisation (biomass is renewable 

energy from plants sources), engine performance estimation models usually use LHV of 

the fuel [15]. This is due to the fact that automotive fuels contain only small amount of 

water (<0.05% by mass) which can be neglected during heating value estimation[16], 

[17]. 

Many researchers have reported the heating value of fuel measured using experimental 

testing (using adiabatic bomb calorimeter, proximate and ultimate analyses) [8], [14], 

[15], [18]–[20]. These conventional analysis methods are complicated, time consuming 

and require specialised set-up, measurement and calculation procedures [8]. Many 

attempts have hence been made to develop heating value prediction models based on 

experimental data. The HHVs of different biodiesel fuels have been measured and 

calculated by Freedman et al. [19] and Krisnangkura [21] using a Parr adiabatic 

calorimeter according to ASTM D240 and D2015 standards. They developed a linear 

correlation between the heating value, carbon number and molecular weight, and they 

concluded that the HHV of biodiesel increased with increasing carbon number and 

molecular weight. This correlation can only be used when molecular structure of the fuel 

used is known. Demirbas [22] has reported that the heating value of vegetable oils can be 
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calculated using the saponification point and iodine value. He also determined the HHV 

of vegetable oils, alcohols and alkanes experimentally and correlated these with their 

density and viscosity values [1],[23].  Sadrameli et al. [24] measured the heating values 

of pure fatty acids, also using a Parr bomb calorimeter, and developed a correlation of the 

LHVs of fatty acids with their molecular weight, density and carbon number. They also 

found that the heating value increases with increasing molecular weight and density of 

saturated fatty acid.  

Various heating value prediction methods are summarised in Table 1. Models have been 

developed which use carbon number, molecular weight, density, viscosity, and elemental 

composition of the fuel, and correlations give R
2
 values in the range 0.9380 to 0.9980 

[14], [15], [22]–[24]. From the above review and summary table (Table 1), it can be 

concluded that most of the prediction models have been developed for pure oils or neat 

biodiesel (i.e. unblended biodiesel). However, for use in engine applications, neat 

biodiesel (i.e. 100B) is blended with mineral oil (conventional diesel). To understand the 

effects of the blend on the lower heating value, detailed numerical and experimental 

investigation is vital. In addition, comparing the experimental procedures for density, 

viscosity and LHV, LHV measurement is time intensive and needs costly facilities. It is 

hence attractive to establish a simple, stable and reliable estimation method of lower 

heating value as a function of other biodiesel physical properties such as density and 

viscosity. The model may have huge application in numerical investigation of engine 

combustion, performance and emission characteristics for alternatives fuels and range of 

new engine development.   
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Table 1 Lower and Higher Heating Value prediction approaches  

 

 

 

Author  Correlations Accuracy Fuel type Remarks 

Freedman and Bagby, 

1989  [19] 

HHV=76.71+154.77CN, HHV(Kg.cal/mole) 

HHV=-431.08+11.03Mw 

R
2
 =0.9900 

R
2
 =0.9900 

Saturated ethyl esters, 

unsaturated methyl 

esters and triglycerides 

 

HHV calculated from Carbon 

number(CN), and Molecular 

weight(Mw) of methyl esters 

Demirbas, 2000 [23] HHV=79.014  - 43.126ρ,  HHV(kJ g
-1

), 	�(g cm
-3

) 

HHV=37.945+0.0491µ ,  HHV(kJ g
-1

), µ(mm s
-2

) 

R
2
 =0.9380 

 

R
2
= 0.9980 

Vegetable oils, alcohols 

and alkanes 

 

 

HHV calculated from density 

(ρ) and viscosity (µ ) of 

vegetable oils 

Sadrameli et al., 2008 

[24] 

HHV = 0.0518Mw + 29.76 , HHV(MJ kg
-1

) 

HHV = -93.4ρ + 122.67,  ρ (kg m
-3

) 

HHV=0.7271CN+31.419  

R
2
= 0.9895 

R
2
= 0.9798 

R
2
= 0.9895 

Saturated (C4–C18) and 

unsaturated (C18:1–3) 

fatty acids 

 

HHV calculated from 

molecular weight(Mw), 

density(ρ) and carbon 

number(CN) of fatty acids 

Demirbas, 2009 [22] HHV = -0.0382ρ  + 74.468, HHV(MJ kg
-1

),  

 ρ (kg m
-3

) 

HHV = 0.6154µ + 38.998,  µ(mm s
-2

) 

R
2
= 0.8922 Vegetable oils and their 

biodiesel 

HHV calculated from biodiesel 

density 

Mehta and Anand, 

2009 [15] 

LHV = 0.0109(C/O)exp3 – 0.3516(C/O)exp(2) 

+4.2000(C/O) + 21.066-0.11NDB 

LHV = 0.0011(H/O)exp3 – 0.0785(H/O)exp(2) 

+2.0409(H/O) + 20.992-0.100NDB 

R
2
 =0.9900 

 

 

R
2
 =0.9900 

Straight and processed 

vegetable oils 

 

 

 

LHV calculation from carbon 

to oxygen ratio and number of 

double bonds (NDB) 

Krisnangkura, 1991 

[21] 

LHVTrig=1896000/SN − 0.6 IV — 1600  

LHV FAME = 618,000/SN − 0.08 IV — 430. 
1.16% 

accuracy 

Triglycerides 

Methyl ester 

Hear of combustion calculated 

from their saponification 

number (SN) and iodine value 

(IV) 
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The main reason for higher BSFC of an engine running with biodiesel is its LHV as discussed 

by Xue et al.[25] and Lapuerta et al. [26]. Xue et al.[22] and Lapuerta et al reported that from 

the total number of publications, 90% and 80% of the authors agreed that the BSFC of 

biodiesel is higher than the diesel respectively. However, the effects of LHV for range of 

biodiesel blends on BSFC and thermal efficiency of engine have been reported fairly.   

Hence, the focus of this study is: 

1) To develop LHV prediction models based on the major fuel physical properties such as 

density and viscosity as well as to investigate the application of the models for range of 

biodiesel feedstock’s  which have been reported in the previous work.  

2) To investigate the effects of the LHV on the CI engine performances parameters such 

as specific fuel consumption and thermal efficiency during steady state operation. 

To attain the above mentioned objectives three major tasks have been accomplished: 

Firstly, density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste 

oil biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, 

where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc) were measured 

as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. Secondly, based 

on the experimental results, models were developed which have the capability to predict 

the LHV corresponding to different fractions, densities and viscosities of biodiesel. 

Thirdly, the developed LHV predicting models have been compared with the previous 

LHV models. Furthermore, the new models were used to predict the LHV of 26 

biodiesels based on density and viscosity which were recently reviewed by Giakomis et al 

[13] for globally produced biodiesel feedstock. Finally, experimental work was conducted 

on a CI engine using rapeseed oil and normal diesel blends and the effects of LHV on the 

BSFC and thermal efficiency were quantified and discussed. 
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2. Experimental facilities and test procedures 

Experimental facilities and procedures to investigate the LHV of biodiesel and its effects on 

the brake specific fuel consumption and thermal efficiency are described in section 2.1 and 

section 2.2 respectively. 

2.1 Lower heating value measurement 

The heating values of pure diesel and a range biodiesel blends (B5, B20, B50, B75 and B100) 

were determined in a Parr adiabatic oxygen bomb calorimeter, model 230/5. Three different 

biodiesel sources (corn oil biodiesel, waste oil biodiesel and rapeseed oil biodiesel) provided 

the biodiesel used in the analysis. The heating value was measured using the standard DIN 

51900 procedures, summarised in Table 2. The density and viscosity of the biodiesel were 

also measured by the authors, using the EN ISO 3675:1998 and EN ISO 3104:1996 standards 

and these results are reported in an earlier publication [20]. 

Table 2 Lower heating value measurement procedures 

 
I. All bomb calorimeter facilities were prepared and a pellet of benzoic acid (0.8-1.0g) was 

introduced into the clean dry bomb. 

II. The bomb was assembled and pressurised with oxygen to approximately 30 atmospheres. 

III. A 100 mm length of fuse wire was cut and weighed. The fuse wire was threaded through 

the electrodes and configured in a V shape directly above the sample.  

IV. A can was placed inside the insulating jacket, the bomb was set inside the can, and 

electric leads were attached. Exactly 2000ml of water was poured in at a temperature of 

1-2 degrees below room temperature and the cover was closed. 

V. The water in the calorimeter was stirred, and after approximately 2 minutes, the 

temperature readings at 1 minute intervals were taken for 5 minutes. 

VI. The capacitor ignition unit was charged to initiate combustion 30 seconds after the 5 

minute temperature reading and the ignition switch released when the red pilot light went 
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out. 

VII. The temperature was recorded 30 seconds after ignition and then every 30 seconds whilst 

it continued to rise. After the maximum temperature was reached, temperature readings 

for a further 5 minutes were taken, also at one minute intervals. 

VIII. Graphs of temperature versus time were plotted using Matlab to determine the 

temperature change in the given time. 

IX. The heat capacity of the calorimeter was calculated using the data from the benzoic acid 

test in equation (1). The lower heating value of benzoic acid (LHVba) and iron wire 

(LHVw) are -26.421 kJg
-1

 and -6.694 kJg
-1

 respectively as per manufacturer data sheet

 W=(mbLHVba+mwLHVw)/∆Tb  (1)  

where W is the heat capacity of the calorimeter being used (J/K), mb is the mass of the 

benzoic acid (kg), mw is the mass of the iron wire (kg), and ∆Tb is the temperature rise (K) 

due to the benzoic acid combustion.  

X. Steps I-IX were repeated for biodiesel blends B0, B10, B20, B50, B75 and B100. The 

LHVs for the blends were calculated using equation (2):  

LHVb=(∆TW - mwLHVw)/mbd  (2)  

where ∆T is the temperature rise due to biodiesel combustion (K), W is the heat capacity 

of the calorimeter (J/K) being used which is calculated by equation (1). 

 

2.2 Engine test facilities and procedures 

In this study the combustion characteristics and performance of a CI engine running with 

biodiesel was investigated using a four-cylinder, four-stroke, turbo-charged, water-cooled and 

direct-injection engine. The engine is with a 4.4 litre capacity which is fitted to large 

agricultural vehicles. Full details of the engine are described in Table 3. The engine was 

loaded by a 200kW AC Dynamometer 4-Quadrant regenerative drive with motoring and 

absorbing capability for both steady and transient conditions. The layout of the experimental 

facilities is described in Figure 2. In order to acquire accurate and repeatable engine test data 
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for the engine combustion and performance characteristics, the engine test bed was 

instrumented with speed sensors, fuel flow metres and in-line torque meter.  

 

 

 

 

 

 

 

 

Figure 1 Engine test facilities lay out  

Table 3 Characteristics of engine 

Technical parameters Technical data 

Engine type Turbo charged diesel engine 

Number of cylinders 4 

Bore 103mm 

Stroke 132mm 

Compression ratio 18.3:1 

Injection system Direct injection 

Displacement 4.399 litre 

Nominal Idling speed 800 rpm 

Maximum rating gross intermittent 74.2kW @ 2200rpm 

Maximum torque 425Nm @ 1300rpm 

 

A Hengler RS58 speed sensor was used to measure the speed of the engine. Fuel flow was 

measured by a FMS-1000 gravimetric fuel measuring system which was controlled and 

Diesel tank 

Turbocharger  

Exhaust gas 

4 cylinder engine 

Load cell  

Pressure sensor 

Fuel pump 

E
n

co
d

e
r 

Biodiesel tank 

Fuel flow meter 

Fresh air 

Control unit 

Temp. & pressure 

sensors 

Dynamometer 

Control host PC 



 

 

10 

 

monitored by CADETV12 software [27]. The measuring range and accuracy of these 

instruments are presented in Table 4. 

Table 4 Measuring instruments specifications 

Instruments Type Range  Accuracy  

Fuel flow meter FMS-1000 gravimetric 0 - 300Kg/hr ±0.05% of reading 

Speed sensor Hengstler RS58 0 - 10000rpm - 

Load cell T10FS 0 - 1000Nm 0.006 to 0.002% of reading 

During the testing process the engine was run for 10 minutes to enable it to come to steady 

state before any measurements were carried out. The maximum rated speed and maximum 

torque of the test engine is 2200rpm and 425Nm respectively. The tests were carried out for 

engine speed range from 1000 to 2000rpm with 100rpm increment at loads of 100Nm, 

200Nm, 300Nm and 400Nm.  

In this study, rapeseed biodiesel (ROB) obtained from a local company, had been blended 

with diesel and used for engine performance analysis. The blends were made in mixing tank 

with 10%, 20%, 50%, 75% and 100% biodiesel content by volume. The main physical 

properties such as composition, density, lower heating value (LHV) and viscosity of the 

rapeseed oil biodiesel were measured according to the official test standards in EU and the 

results were published by Tesfa et al [20]. The blends properties are presented in Table 5. 

Table 5 Physical and Chemical properties of rapeseed biodiesel and its blends [20].  

Property Accuracy  Diesel(B0) B10 B20 B50 B75 B100 

  C 87 86 85 82 79.5 77 

Composition (%)   H 13 12.9 12.8 12.5 12.25 12 

   O  0 1.1 2.2 5.5 8.25 11 

Density (kg/m
3
) ±0.05kg/m

3
  853.36 859.00 865.00 871.76 872.50 879.30 

LHV (MJ/Kg) ±0.01MJ/Kg  42.67 42.26 41.84 40.58 39.54 38.50 

Viscosity (mm
2
/s) ±0.02mm

2
/s  3.55 3.91 4.28 4.68 4.74 5.13 
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3. Results and Discussion  

3.1 Effects of biodiesel content on LHV values and LHV prediction models 

Using the procedure mentioned in Table 2, the heating values of the biodiesel and its blends 

were obtained experimentally. To determine the energy equivalent of the bomb calorimeter, 

tests were carried out with a benzoic acid sample of known physical properties. The heat 

capacity of the bomb calorimeter was then calculated by equation (1) and was thereafter used 

in further analysis. Each sample of the biodiesel was tested three times and averaged values 

were used to calculate the associated heating values. The differences between lower heating 

values obtained from these tests did not exceed 0.45MJ/kg with a maximum deviation of 

1.15%. The variation of temperature with time during the fuel combustion in the calorimeter 

is shown in Figure 2. It can be seen that the biodiesels derived from different sources resulted 

in almost the same combustion temperature curves. However, the biodiesel combustions 

yielded lower temperatures than pure diesel, by around 7.5%. 

 

Figure 2 Temperature change in bomb calorimeter for biodiesels from various sources 
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The effects of the volumetric blend fractions on the heating value of the biodiesel are shown 

in Figure 3. From Figure 3(a) it can be seen that as the biodiesel blend fraction increases, the 

LHV decreases. The rapeseed biodiesel, corn biodiesel and waste biodiesel resulted in LHV 

of a reduction in by 9.96%, 10.19% and 9.67% respectively compared to pure diesel. This can 

be explained by the relative composition of the fuels as biodiesel has oxygen present in the 

structure which is not a component of conventional mineral diesel. As a consequence of the 

additional oxygen the carbon and hydrogen content is reduced from 86 to 77% for carbon and 

14 to 12% for hydrogen [28]–[30]. Although the biodiesel result in lower LHV, the 

combustion process is improved due to the presence of the higher oxygen content of the fuel. 

 

Figure 3 Variation of LHV with biodiesel fraction and for different biodiesel source types 

When comparisons were made between the LHVs of the three biodiesels (corn oil against 

rapeseed, and waste oil against rapeseed), the maximum difference was found to be 1.4%, as 
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depicted in Figure 3(b). This very small difference in LHV between the different feedstock 

sources of biodiesel implies that the feedstock source does not have significant influence on 

the LHV of the biodiesel. Consequently, in this study, only rapeseed oil biodiesel was used 

for further investigation of LHV. 

To investigate the effects of biodiesel fraction on LHV, two correlations were developed. The 

first correlation (equation 3) was developed based on the experimentally measured LHV for 

the range biodiesel blends (see Table 5) was developed linear mixing equation. The 

correlation resulted in an R
2
 value of 0.991.  

LHVblend  = -0.041X+42.32           (3) 

Where LHVblend is the lower heating value of the biodiesel blend (MJ/kg) and X is the 

biodiesel fraction (v/v).  

Equation (3), can be used without measuring LHV of neat biodiesel and diesel, since it needs 

only the value of the biodiesel fraction. This brings the advantage of being able to carry out 

simulations of combustion and performance characteristics for engines running with a range 

of biodiesel blends. 

The experimentally measured LHV of biodiesel blends was also correlated with 

experimentally measured density and viscosity values (presented in Table 6). The correlations 

of LHV versus density and LHV versus kinematic viscosity are shown in equations (4) and 

(5) respectively (with R
2 

values of 0.981 and 0.976 respectively): 

LHV= -0.167ρ +184.95         (4) 

LHV= -12.88 ln(µ)+61.3        (5) 

Where LHV is the lower heating value (MJ/kg), X is the biodiesel fraction (%), ρ is the 

density of biodiesel (kg/m
3
) and µ is the kinematic viscosity (mm

2
/s).  
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The density- and viscosity-based LHV prediction models have also been compared with the 

models of other researchers. Demribas [22] and Sadrameli et al. [24] developed regression 

models which correlate density with the LHV of pure biodiesel (B100) as presented in Table 

1. The predictions of LHV were performed using the models of Demribas [22] and Sadrameli 

et al [24] and were compared with those derived from the authors’ approach, along with 

measured values. The measured and predicted LHVs are presented in Table 6, and the 

percentage deviations between the measured values and predicated values are shown in Figure 

4(a).  

It can be seen that the predictions of this study and the measured values show a maximum 

error of 0.87%. However, the measured values deviate from the values obtained from the 

Demirbas and Sadrameli et al predictions by 6.82% and 5.93%, respectively. This higher 

deviation is possibly due to their models being developed only for pure biodiesel. 

 

Figure 4 Lower heating value prediction models, error deviation comparison  

Demribas [22] also developed a correlation between the lower heating value and the 
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Demribas’s correlation, measured lower heating values and predicted lower heating values 

from the correlation developed in this study are presented in Table 7. It can be seen that the 

measured values deviate by 1% from the values obtained from the correlation developed in 

this study and by 10.31% from the values obtained by Demribas, as shown in Figure 4(b).  

Table 6 Lower heating value prediction from the density of rapeseed oil biodiesel blends 

 

Biodiesel   

fraction (v/v) 

  

Density [20] 

  (kg/m
3
) 

            Lower heating value (MJ/kg) 

Measured  This study’s 

correlation of 

density 

Demribas [22] 
density 

correlation 

Sadrameli et al. [24] 
density correlation 

0.00 853.36 42.50 42.39 41.87 42.97 

10.00 854.96 42.23 42.12 41.81 42.82 

20.00 860.97 41.36 41.12 41.58 42.26 

50.00 865.09 40.08 40.43 41.42 41.87 

75.00 871.77 39.19 39.31 41.17 41.25 

100.00 879.35 38.27 38.05 40.88 40.54 

Table 7 Lower heating value prediction from the viscosity of rapeseed oil biodiesel blends 

It can also be seen that the deviation of the values obtained from the Demribas correlation 

compared to the measured values, decrease with increase in biodiesel fraction, indicating that 

the Demribas correlation only most accurately predicts the lower heating value for pure 

 

Biodiesel   

fraction (v/v) 

  

Viscosity [20] 

   (mm
2
/s) 

Lower heating value (MJ/kg) 

Measured 

 

 This study correlation 

of viscosity   
by Demribas [22] 
viscosity correlation 

0.00 3.58 42.50 42.08 38.12 

10.00 3.67 42.13 41.83 38.13 

20.00 3.79 41.36 41.53 38.13 

50.00 4.28 40.08 40.29 38.16 

75.00 4.68 39.19 39.27 38.17 

100.00 5.13 38.27 38.12 38.20 
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biodiesel. The correlation developed in this study, however, results in an acceptable 

percentage error when predicting the lower heating value for neat biodiesel and its blends. 

To investigate whether the models (equation (4) and equation (5)) developed in this study 

could predict the LHV of any biodiesel which are grown in any normal climate conditions 

and produced by any usual production process, comparisons were made based on extensive 

revisions done by Giakoumis [13] on physical properties of biodiesel.  

Table 8 Measured [13] and predicted density, viscosity and lower heating value of biodiesel  

  

Biodiesel type 

  

Density 

(kg/m
3
) 

  

Viscosity 

(mm
2
/s) 

Lower heating value (MJ/kg) 

Measured 

[13] 
Predicted  

by Eq. (4) 

Predicted  

by Eq. (5) 

Beef tallow 874.3 4.83 37.22 37.54 38.94 

Canola 881.6 4.4 37.98 38.74 37.72 

Castor 917.6 14.52 37.63 23.37 31.71 

Chiken fat 876.3 4.81 37.61 37.60 38.61 

Coconut 870.8 2.78 36.90 44.66 39.53 

Corn 882.2 4.32 36.8 38.98 37.62 

Cottonseed 879 4.7 38.6 37.89 38.16 

Croton 883.2 4.48 38.17 38.51 37.46 

Fish 887.3 4.3 37.82 39.04 36.77 

Hazelnut 877.9 4.55 38.8 38.31 38.34 

Jatropha 878.7 4.72 38.05 37.84 38.21 

Karanja 882.9 5.04 36.49 36.99 37.51 

Lard 873 4.89 36.91 37.38 39.16 

Linseed 891.5 4.06 39.54 39.78 36.07 

Mahua 874.5 5.06 36.88 36.94 38.91 

Neem 876.2 4.72 37.15 37.84 38.62 

Olive 881.2 5.05 37.29 36.97 37.79 

Palm 874.7 4.61 37.08 38.14 38.88 

Peanut 882.9 4.77 38.05 37.70 37.51 

Rapeseed 882.2 4.63 37.62 38.09 37.62 

Rice brain 880.9 4.7 38.04 37.89 37.84 

Rubber seed 882.3 4.79 37.82 37.65 37.61 

Safflower 883.8 4.1 38.145 39.65 37.36 

Soyabean 882.9 4.29 37.75 39.07 37.51 

Sunflower 882.9 4.53 37.8 38.37 37.51 

Waste cooking 

oil 
880.6 4.75 37.88 37.76 37.89 
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Giakomis [13] recently presented the literature on biodiesel properties and fatty acid 

composition from International Journals and Conferences papers. The physical properties of 

twenty six different biodiesel feedstocks were reported, comprising of twenty-two edible and 

non-edible vegetable oils and four animal fats. From the Giaomis et al report, the biodiesel 

type, density, viscosity and lower heating values have been considered for the validation of 

the model developed in this study. The lower heating value of the twenty four biodiesel types 

are predicted by using equations (4) and (5) and presented in Table 8. From the twenty six 

biodiesels, the castor biodiesel which has higher density (917.6kg/m
3
) and viscosity 

(14.52mm
2
/s) and coconut which have lower density (870kg/m

3
) and viscosity (2.78mm

2
/s 

were excluded in this study. 

The deviation of the measured values and the predicted values with density and viscosity are 

shown in Figure 5 for both density and viscosity based models. It can be seen that for density 

based prediction, the maximum deviation is 8.5% for linseed oil based fuel.  

 

 

 

 

Figure 5 Lower heating value prediction models, error deviation comparison  

The LHV predicted by viscosity resulted in a maximum deviation of 6% the measured values. 

The percentage deviation can be explained as, different biodiesel feedstocks consist various 

0 5 10 15 20 25
0

2

4

6

8

10

 C
h
a
n
g
e
(%

)

 

 

Based on density model

Based on viscosity model

B
ee

f 
ta

ll
o

w
 

C
an

o
la

 

C
h

ic
k

en
 f

at
 

C
o

rn
 

C
o

tt
o

n
se

ed
 

C
ro

to
n
 

F
is

h
 

H
az

el
n
u

t 

Ja
tr

o
p

h
a 

K
ar

an
ja

 

L
ar

d
 

L
in

se
ed

 

M
ah

u
a 

N
ee

m
 

O
li

v
e 

P
al

m
 

P
ea

n
u

t 

R
ap

se
ed

 

R
ic

e 
b
ra

in
 

R
u

b
b

er
 s

ee
d
 

S
af

fl
o

w
er

 

S
o

y
ab

ea
n
 

S
u

n
fl

o
w

er
 

W
as

te
 c

o
o

k
in

g
  



 

 

18 

 

fatty acid composition as shown in Figure 6. As it can be seen in the figure the fatty acid 

compositions range from C8:0 to C22:1. Even though the fatty acid composition affect the 

LHV, the correlation developed in equation (4) and (5) can predict the LHV for any biodiesel 

which is produced by any normal climate conditions and operation process based on the 

density and viscosity values of the biodiesel with acceptable error.  

 

Figure 6 Fatty acid composition of vegetable and animal oils [13], [15] 
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3.2 Effects of LHV on engine performance 

To investigate the likely effects of LHV on engine performance, experimental investigations 

were carried out on a CI engine running with diesel and biodiesel blends. Figure 7 shows the 

variation of the brake specific fuel consumption (BSFC) with engine speed for a range of 

biodiesel blends at different loads. The BSFC is the ratio of the mass flow rate of the fuel to 

the brake power output of the engine. It can be seen from the figure that the BSFC decreases 

as the engine speed increases, reaches its minimum value and then increases at higher engine 

speeds. This might be explained on the basis that, the heat losses through the combustion 

chamber walls is proportionally higher and the combustion efficiency is poorer at low speeds. 

These result in higher fuel consumption for the same amount of power produced al lower 

speeds, which result in higher BSFC. At higher speeds, the power required to overcome 

friction increases at a higher rate, resulting in a slower increase in output power with a 

consequent increases in BSFC. This phenomenon has been largely documented by previous 

research [31], [9], [10], [32]–[34]. The main reason for higher BSFC for an engine running 

with biodiesel blends is mainly due to the low heating value of the biodiesel as discussed in 

Figure 3.   

Figure 7 also shows that when the biodiesel fraction increases (from 0% to 100%), the BSFC 

also increases for all operating conditions. The lowest LHV (38.26MJ/kg) of the fuels 

corresponds to neat biodiesel (B100) which resulted in the highest BSFC for all load 

conditions. To quantify the effects of change of LHV of biodiesel blends on BSFC, the 

changes of BSFC versus engine speed is shown in Figure 8. It can be seen that when the LHV 

of the fuel is lower by 7.79%, the BSFC increase up to 18%. By correlating the percentage 

change of LHV and BSFC, it can be seen that a unit change in LHV results in an increment of 

BSFC by 2.5.  
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Figure 7 BSFC versus engine speed for range of biodiesel blends  

Figure 8 also shows that the B10, B20, B50, B75 and B100 results in a percentage change in 

BSFC of 1.5%, 3.5%, 10%, 14% and 18% respectively.  This indicates that for a unit increase 

in biodiesel fraction, increases the BSFC percentage changes approximately by 0.18. 
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                 Figure 8 Change in BSFC versus engine speed due to LHV 
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B75 and B100) and the diesel fuel has been computed for a range of engine speeds and load 
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lower heating value of the fuel as shown in equation (6) [35].   

η = (3600/(BSFC*LHV))*10
6
*100     (6) 

Where η thermal efficiency (%), BSFC is the brake specific fuel consumption (g/kWh) of the 

biodiesel and LHV is the lower heating value (J/kg) of the biodiesel.  
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Figure 10 for range of load conditions. It can be seen that, when the LHV is reduced by 7.79%, the 

thermal efficiency also reduced by up to 25%. Comparing the percentage change of BSFC with the 

percentage change of thermal efficiency due to LHV variation, the latter resulted in a higher 

percentage change. This is due to the effect of the LHV parameter on the thermal efficiency 

calculation (equation (6)).  

 

Figure 9 Thermal efficiency versus engine speed of biodiesel blends 
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Figure 10 Change in thermal efficiency versus engine speeds due to the LHV 

4. Conclusions  

In this paper the effect of biodiesel blend on LHV has been systematically investigated, new 

LHV prediction models that correlate the LHV with biodiesel fraction, density and viscosity 

were developed. In addition, the effects of the LHV on CI engines performance were 
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� Biodiesel sources which are considered in this study (rapeseed oil, corn oil and waste 

oil) do not result in any significant differences in the measured lower heating values. 

� The biodiesel fraction has a direct impact on the lower heating value of a biodiesel 

blend. As the biodiesel fraction in a blend increases, the lower heating value shows a 

proportional decrease. 
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� Empirically derived LHV-predicting equations (density and viscosity based) provide 

values which closely match with the measured ones in this study and by previous 

author.  

� The neat biodiesel which its LHV is lower by 8% than diesel resulted in an increment 

of BSFC and thermal efficiency by 18% and 25% respectively.  

Lower heating value is one of the most important parameters for estimating the design 

parameters and numerical simulation of combustion and estimating engine performance such 

as brake specific fuel consumption and thermal efficiency. The newly developed lower 

heating value models, correlated with biodiesel fraction, density, and kinematic viscosity, 

have significant application in the investigation of combustion characteristics, engine 

performance and emissions during engine simulation and development.   
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